Thermal Enhancement of Interference Effects in Quantum Point Contacts

24
Thermal Enhancement of Interference Effects in Quantum Point Contacts Adel Abbout, Gabriel Lemarié and Jean- Louis Pichard Phys. Rev. Lett. 106, 156810 (2011) IRAMIS/SPEC CEA Saclay Service de Physique de l’Etat Condensé, 91191 Gif Sur Yvette cedex, France

description

Thermal Enhancement of Interference Effects in Quantum Point Contacts. Adel Abbout, Gabriel Lemarié and Jean-Louis Pichard Phys. Rev. Lett. 106, 156810 (2011). IRAMIS/SPEC CEA Saclay Service de Physique de l’Etat Condensé, 91191 Gif Sur Yvette cedex, France. - PowerPoint PPT Presentation

Transcript of Thermal Enhancement of Interference Effects in Quantum Point Contacts

Thermal Enhancement of Interference Effects in Quantum Point Contacts

Adel Abbout, Gabriel Lemarié and Jean-Louis PichardPhys. Rev. Lett. 106, 156810 (2011)

IRAMIS/SPEC CEA Saclay

Service de Physique de l’Etat Condensé, 91191 Gif Sur Yvette cedex, France

Electron Interferometer formed with a quantum point contact and another scatterer in a 2DEG

Interferences in one dimension 1d model with 2 scatterers

Scatterers with a weakly energy dependent transmission

L

Interferences with a resonance

L

2d model:Resonant Level Model for a quantum point

contact

From the RLM model towards realistic contacts

RLM model QPCs in a 2DEG

SGM imaging Conductance of the QPC as a function of the tip position

(Harvard, Stanford, Cambridge, Grenoble,…)Topinka et al., Physics Today (Dec. 2003)

)pwithout ti() tipwith( ggg

g falls off with distance r from the QPC, exhibiting fringes spaced by F/2

2DEG , QPC AFM cantilever

The charged tip creates a depletion region inside the 2deg which can be scanned around the nanostructure (qpc)

QPC Model used in the numerical studyLong and smooth adiabatic contact

Sharp opening of the conduction channels

y

x

xx

yy

xx

L

L

LL

nmmnU

LmL

LnL

mn

100

]2

231[10

),(

),(

41

322

),( mnU + TIP(Square Lattice at low filling, t=1, EF=0.1)

QPC biased at the beginning of the first plateau(Tip: V=1)

T=0 T = 0.01 EF

QPC biased at the beginning of the second plateau(Tip: V=-2)

T=0 T =0.035 EF

Resonant Level Model

2 semi-infinite square lattices with a tip (potential v) on the right side

coupled via a site of energy V0 and coupling terms -tc

Self-energies describing the coupling to leads expressed in terms of surface elements of the lead GFs

Method of the mirror images for the lead GFs. Dyson equation for the tip

• Transmission without tip

~ Lorentzian of width

• Transmission with tip

(Generalized Fisher-Lee formula)

rlrlrl

lrlr

lr

iIR

IIRRVE

IIET

,,,

220

0

4)(

0,0,11lim)exp(

1

2

)]2/2(exp[2/32

xGV

Vi

xO

x

kxi

t

Rr

x

c

r

rrr

I4

FEE Narrow resonance:

Expansion of the transmission T(E) when is small

x

1

IRTTSsITT

RTTT

T

TISRSTsT

I

II

I

RR

TTS

TTT

..2..4

5

4

3

.......

1

2000

230

2023

02

0

20

2

2000

000

0

Out of resonance: T0 < 1, 1/x Linear terms

At resonance: T0=1; S0=0 1/x2 quadratic terms

(Shot noise)

T=0 : Conductance

• Out of resonance:

• At resonance:

00

0

2/30

0

1sin

2

12cossin2

Ts

xO

kx

kx

T

ET

Fringes spaced by (1/x decay)

2/52

2

0

1

xO

kxT

T

2/F

Almost no fringes (1/x2 decay)

FETG

T > 0: Conductance at resonance

• 2 scales:

• Temperature induced fringes:

I

VL

Tk

VL

F

B

FT

4

Thermal length:

New scale:

2

0 2

2cos,

xkxk

xk

L

L

L

xA

Tg

Tg

FF

FT

Rescaled Amplitude

L

Lerfc

L

L

L

xA TT

8.,

1. Universal T-independent decay:

L

xexp2

2. Maximum for

TLx8

Bottom to top: increasing temperatureFL 2

Numerical simulations and analytical resultsIncreasing temperature (top to bottom)

20//2//4.0

10//20//40//2/

Fc

F

T

Vt

L

The thermal enhancement can only be seen around the resonance

RLM model QPC ?

• The expansion obtained in the RLM model can be extended to the QPC, if one takes the QPC staircase function instead of the RLM Lorentzian for T0(E).

• The width of the energy interval where

S0=T0(1-T0) is not negligible for the QPC plays the role of the of the RLM model for the QPC.

Interference fringes obtained with a QPC and previous analytical results

assuming the QPC transmission function

Transmission ½ without tip, Red curve: analytical resultsBlack points: numerical simulations

Peak to peak amplitude

Similar scaling laws for the thermoelectric coefficients and the thermal conductance

Summary