Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik...

67
Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar, July 2004
  • date post

    22-Dec-2015
  • Category

    Documents

  • view

    214
  • download

    0

Transcript of Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik...

Page 1: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Theory of electronic transport in carbon nanotubes

Reinhold Egger Institut für Theoretische PhysikHeinrich-Heine Universität DüsseldorfLes Houches Seminar, July 2004

Page 2: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Electronic transport in nanotubesMost mesoscopic effects have been observed

(see seminar of C.Schönenberger)

Disorder-related: MWNTs Strong-interaction effects Kondo and dot physics Superconductivity Spin transport Ballistic, localized, diffusive transport

What has theory to say?

Page 3: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Overview

Field theory of ballistic single-wall nanotubes: Luttinger liquid and beyond (A.O. Gogolin)

Multi-terminal geometries Y junctions (S. Chen & B. Trauzettel) Crossed nanotubes: Coulomb drag (A. Komnik)

Multi-wall nanotubes: Nonperturbative Altshuler-Aronov effects (A.O. Gogolin)

Superconductivity in ropes of nanotubes (A. De Martino)

Page 4: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Metallic SWNTs: Dispersion relation Basis of graphite sheet

contains two atoms: two sublattices p=+/-, equivalent to right/left movers r=+/-

Two degenerate Bloch waves at each Fermi point K,K´ (α=+/-)

),( yxp

Page 5: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

SWNT: Ideal 1D quantum wire Transverse momentum quantization:

is only relevant transverse mode, all others are far away

1D quantum wire with two spin-degenerate transport channels (bands)

Massless 1D Dirac Hamiltonian Two different momenta for backscattering:

0yk

KkvEq FFFF

/

Page 6: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

What about disorder?

Experimentally observed mean free paths in high-quality metallic SWNTs

Ballistic transport in not too long tubes No diffusive regime: Thouless argument

gives localization length Origin of disorder largely unknown. Probably

substrate inhomogeneities, defects, bends and kinks, adsorbed atoms or molecules,…

For now focus on ballistic regime

m1

2 bandsN

Page 7: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Field theory of interacting SWNTs Keep only two bands at Fermi energy Low-energy expansion of electron operator:

1D fermion operators: Bosonization applies Inserting expansion into full SWNT

Hamiltonian gives 1D field theory

rKip e

Ryx

2

1,

yxxyx pp

p ,,,

Egger & Gogolin, PRL 1997, EPJB 1998Kane, Balents & Fisher, PRL 1997

Page 8: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Interaction potential (no gates…) Second-quantized interaction part:

Unscreened potential on tube surface

2222

2

sin4´)(

/

zaRyy

Rxx

eU

rrrrU

rrrdrdH I

´´

´´2

1

´

´´

Page 9: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

1D fermion interactions

Insert low-energy expansion Momentum conservation allows only two

processes away from half-filling Forward scattering: „Slow“ density modes, probes

long-range part of interaction Backscattering: „Fast“ density modes, probes

short-range properties of interaction Backscattering couplings scale as 1/R, sizeable

only for ultrathin tubes

Page 10: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Backscattering couplings

Fk2Momentum exchange

Fq2

with coupling constant

Ref /05.0 2Reb /1.0 2

Page 11: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Bosonized form of field theory Four bosonic fields, index

Charge (c) and spin (s) Symmetric/antisymmetric K point combinations

Luttinger liquid & nonlinear backscattering

css

ssscsc

aaxaa

F

dxb

dxf

gdxv

H

coscoscos

coscoscoscoscoscos

2222

sscca ,,,

Page 12: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Luttinger parameters for SWNTs Bosonization gives Logarithmic divergence for unscreened

interaction, cut off by tube length

Pronounced non-Fermi liquid correlations

2.0/21

1

2ln8

12/12

c

Fc

E

RL

v

egg

1cag

Page 13: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Phase diagram (quasi long range order) Effective field theory

can be solved in practically exact way

Low temperature phases matter only for ultrathin tubes or in sub-mKelvin regime

bF RRbvbB

bf

eDeTk

TbfT//

)/(

Page 14: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Tunneling DoS for nanotube Power-law suppression of tunneling DoS

reflects orthogonality catastrophe: Electron has to decompose into true quasiparticles

Experimental evidence for Luttinger liquid in tubes available from TDoS

Explicit calculation gives

Geometry dependence:

ExtxdteEx iEt

)0,(),(Re),(0

bulkend

bulk

g

gg

22/)1/1(

4/2/1

Page 15: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Conductance probes tunneling DoS Conductance across

kink:

Universal scaling of nonlinear conductance:

endTG 2

Tk

ieV

Tk

eV

Tk

ieV

Tk

eVdVdIT

Bend

B

Bend

B

end

21Im

2

1

2coth

21

2sinh/

2

2

Delft group

Page 16: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Evidence for Luttinger liquid

Yao et al., Nature 1999

gives g around 0.22

Page 17: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Multi-terminal circuits: Crossed tubes

Fuhrer et al., Science 2000Terrones et al., PRL 2002

Fusion: Electron beam welding(transmission electron microscope)

By chance…

Page 18: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Nanotube Y junctions

Li et al., Nature 1999

Page 19: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Landauer-Büttiker type theory for Luttinger liquids? Standard scattering approach useless:

Elementary excitations are fractionalized quasiparticles, not electrons

No simple scattering of electrons, neither at junction nor at contact to reservoirs

Generalization to Luttinger liquids Coupling to reservoirs via radiative boundary

conditions (or g(x) approach) Junction: Boundary condition plus impurities

Page 20: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Description of junction (node)

Landauer-Büttiker: Incoming and outgoing states related via scattering matrix

Difficult to handle for correlated systems What to do ?

Chen, Trauzettel & Egger, PRL 2002Egger, Trauzettel, Chen & Siano, NJP 2003

)0()0( inout S

Page 21: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Some recent proposals … Perturbation theory in interactions

Lal, Rao & Sen, PRB 2002

Perturbation theory for almost no transmission Safi, Devillard & Martin, PRL 2001

Node as island Nayak, Fisher, Ludwig & Lin, PRB 1999

Node as ring Chamon, Oshikawa & Affleck, PRL 2003

Node boundary condition for ideal symmetric junction (exactly solvable) additional impurities generate arbitrary S matrices,

no conceptual problem Chen, Trauzettel & Egger, PRL 2002

Page 22: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Ideal symmetric junctions N>2 branches, junction with S matrix

implies wavefunction matching at node

1...

............

...1

...1

zzz

zzz

zzz

S

0,2

iN

z

)0(...)0()0( 21 N

)0()0()0( ,, outjinjj

Crossover from full to no transmission tuned by λ

Texier & Montambaux, JP A 2001

Page 23: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Boundary conditions at the node Wavefunction matching implies density

matching

can be handled for Luttinger liquid Additional constraints:

Kirchhoff node rule Gauge invariance

Nonlinear conductance matrix can then be computed exactly for arbitrary parameters

)0(...)0(1 N

j

iij

I

h

eG

0i

iI

Page 24: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Solution for Y junction with g=1/2Nonlinear conductance:

with

T

VUieT

T

eV iiB

B

i

22/

2

1Im

2

2

22

0

)1/(10

)2(

22),(

/

NN

NNNw

wDT gB

ij j

j

i

iii U

VU

VG 19

21

9

8

Page 25: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Nonlinear conductance

g=1/2

F

F eU

32

1

Page 26: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Ideal junction: Fixed point

Symmetric system breaks up into disconnected wires at low energies

Only stable fixed point Typical Luttinger power

law for all conductance coefficients

g=1/3

Page 27: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Asymmetric Y junction Add one impurity of strength W in tube 1

close to node Exact solution possible for g=3/8 (Toulouse

limit in suitable rotated picture) Transition from truly insulating node to

disconnected tube 1 + perfect wire 2+3

Page 28: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Asymmetric Y junction: g=3/8 Full solution:

Asymmetry contribution

Strong asymmetry limit:

2/, 03,23,2

011 IIIIII

DWW

T

eIIiWeWI

B

BB

/

2

/2/2

2

1Im

2

01

2/,0 01

03,23,21 IIII

Page 29: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Crossed tubes: Theory vs. experiment

Weakly coupled crossed nanotubes Single-electron tunneling between tubes irrelevant Electrostatic coupling relevant for strong interactions

Without tunneling: Local Coulomb drag

Komnik & Egger, PRL 1998, EPJB 2001Gao, Komnik, Egger, Glattli, Bachtold, PRL 2004

Page 30: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Characterization: Tunneling DoS Tunneling conductance

through crossing: Power law, consistent with Luttinger liquid

Quantitative fit gives g=0.16

Evidence for Luttinger liquid beyond TDoS?

Page 31: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Dependence on transverse current Experimental data

show suppression of zero-bias anomaly when current flows through transverse tube

Coulomb blockade or heating mechanisms can be ruled out

Prediction of Luttinger liquid theory?

Page 32: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Hamiltonian for crossed tubes Without tunneling: Electrostatic coupling and

crossing-induced backscattering

Density operator:

220

/000

)(2

1

)0()0()0(

ixii

iBAi

iBABA

dxH

HHH

)(16cos)( // xgx BABA

Page 33: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Renormalization group equations Lowest-order RG equations:

Solution:

Here: inter-tube coupling most relevant!

BABA

BA

gdl

d

gdl

d

//

00

41

281

)0()0(2)0()0(2)0()(

)0()()82(

0)81(

0

/)41(

/

BAlg

BAlg

BAlg

BA

eel

el

Page 34: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Low-energy solution Keeping only inter-tube coupling, problem is

exactly solvable by switching to symmetric and antisymmetric (±) boson fields

For g=3/16=0.1875, particularly simple:

2

22

1Im2

2

4/

2

/

BA

B

BBBB

BABA

VVV

Tk

UVieTkTkeU

UUV

h

eI

Page 35: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Comparison to experimental data

Experimental data Theory

Page 36: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

New evidence for Luttinger liquid Rather good agreement, only one fit

parameter: No alternative explanation works Agreement is taken as new evidence for

Luttinger liquid in nanotubes, beyond previous tunneling experiments

Additional evidence from photoemission experiments Ishii et al., Nature 2003

KTB 6.11

Gao, Komnik, Egger, Glattli & Bachtold, PRL 2004

Page 37: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Coulomb drag: Transconductance Strictly local coupling: Linear transconduc-

tance always vanishes Finite length: Couplings in +/- sectors differ

21G

BB

g

B

L

L

BFAF

TT

DDT

xkkdxL

)21/(1

2/

2/

,,0

0

/

)(2cos

Now nonzero linear transconductance,except at T=0!

Page 38: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Linear transconductance: g=1/4

TTc

cc

ccG

B 2/)2/1(1

)2/1(1

2

1'

'

21

1BT

Page 39: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Absolute Coulomb drag

For long contact & low temperature (but finite): Transconductance approaches maximal value

2

/)0/,0(

2

21

heTTTG BB

Averin & Nazarov, PRL 1998Flensberg, PRL 1998Komnik & Egger, PRL 1998, EPJB 2001

Page 40: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Coulomb drag shot noise

Shot noise at T=0 gives important information beyond conductance

For two-terminal setup & one weak impurity: DC shot noise carries no information about fractional charge

Crossed nanotubes: For must be due to cross voltage (drag noise)

)0()()( ItIdteP ti

BSeIP 2

00,0 ABA PVV

Trauzettel, Egger & Grabert, PRL 2002

Ponomarenko & Nagaosa, PRB 1999

Page 41: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Shot noise transmitted to other tube Mapping to decoupled two-terminal problems

in ± channels implies

Consequence: Perfect shot noise locking

Noise in tube A due to cross voltage is exactly equal to noise in tube B

Requires strong interactions, g<1/2 Effect survives thermal fluctuations

0)0()( ItI

2/)( PPPP BA

Page 42: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Multi-wall nanotubes: The disorder-interaction problem Russian doll structure, electronic transport in

MWNTs usually in outermost shell only Energy scales one order smaller Typically due to doping Inner shells can also create `disorder´

Experiments indicate mean free path Ballistic behavior on energy scales

RR 10...

FvE /,1

20bandsN

Page 43: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Tunneling between shells

Bulk 3D graphite is a metal: Band overlap, tunneling between sheets quantum coherent

In MWNTs this effect is strongly suppressed Statistically 1/3 of all shells metallic (random

chirality), since inner shells undoped For adjacent metallic tubes: Momentum

mismatch, incommensurate structures Coulomb interactions suppress single-electron

tunneling between shells

Maarouf, Kane & Mele, PRB 2001

Page 44: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Interactions in MWNTs: Ballistic limit Long-range tail of interaction unscreened Luttinger liquid survives in ballistic limit, but

Luttinger exponents are close to Fermi liquid, e.g.

End/bulk tunneling exponents are at least one order smaller than in SWNTs

Weak backscattering corrections to conductance suppressed even more!

Egger, PRL 1999

bandsN1

Page 45: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Experiment: TDoS of MWNT

TDoS observed from conductance through tunnel contact

Power law zero-bias anomalies

Scaling properties similar to a Luttinger liquid, but: exponent larger than expected from Luttinger theory

Bachtold et al., PRL 2001

Page 46: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Tunneling DoS of MWNTs

bulkend 2

Bachtold et al., PRL 2001

Geometry dependence

Page 47: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Interplay of disorder and interaction Coulomb interaction enhanced by disorder Nonperturbative theory: Interacting Nonlinear

σ Model Kamenev & Andreev, PRB 1999

Equivalent to Coulomb Blockade: spectral density I(ω) of intrinsic electromagnetic modes

Egger & Gogolin, PRL 2001Mishchenko, Andreev & Glazman, PRL 2001

1)(),0(

expRe)(

0

0

tieId

tTJ

tJiEtdt

EP

Page 48: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Intrinsic Coulomb blockade TDoS Debye-Waller factor P(E):

For constant spectral density: Power law with exponent Here:

Tk

TkE

B

B

e

eEPd

E/

/

0 1

1)(

)0( I

2/,1/

/Re)(2

)(

200

*

*2/1

2

2**0

F

n

vDUDD

DDR

nDiDD

UI

Field/particle diffusion constants

Page 49: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Dirty MWNT

High energies: Summation can be converted to integral,

yields constant spectral density, hence power law TDoS with

Tunneling into interacting diffusive 2D metal Altshuler-Aronov law exponentiates into

power law. But: restricted to

DDD

R/ln

2*

0

2)2/( RDEE Thouless

R

Page 50: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Numerical solution

Power law well below Thouless scale

Smaller exponent for weaker interactions, only weak dependence on mean free path

1D pseudogap at very low energies

Mishchenko et al., PRL 2001

1/,12/,10 0 RvvUR FF

Egger & Gogolin, Chem.Phys.2002

Page 51: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Superconductivity in ropes of SWNTs

Kasumov et al., PRB 2003

Page 52: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Experimental results for resistance

Kasumov et al., PRB 2003

Page 53: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Continuum elastic theory of a SWNT: Acoustic phonons Displacement field: Strain tensor:

Elastic energy density:yxxyxy

zxxxx

yyyy

uuu

Ruuu

uu

2

/

222 422 xyyyxxyyxx uuuuu

BuU

),,(),( zyx uuuyxu

Suzuura & Ando, PRB 2002

De Martino & Egger, PRB 2003

Page 54: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Normal mode analysis

Breathing mode

Stretch mode

Twist mode

AeV14.0

2 RMR

BB

sm102.1/ 4 MvT

sm102)(/4 4 BMBvS

Page 55: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Electron-phonon coupling Main contribution from deformation potential

couples to electron density

Other electron-phonon couplings small, but

potentially responsible for Peierls distortion

Effective electron-electron interaction generated

via phonon exchange (integrate out phonons)

eV3020

VdxdyH phel

yyxx uuyxV ),(

Page 56: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

SWNTs with phonon-induced interactions Luttinger parameter in one SWNT due to

screened Coulomb interaction: Assume good screening (e.g. thick rope) Breathing-mode phonon exchange causes

attractive interaction:

10 gg

nmBv

R

RRg

gg

FB

B

24.0)(

2

1

2

2

20

0

13.1 gFor (10,10) SWNT:

Page 57: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Superconductivity in ropes

Model:

Attractive electron-electron interaction within each of the N metallic SWNTs

Arbitrary Josephson coupling matrix, keep only singlet on-tube Cooper pair field

Single-particle hopping again negligible

jiij

ij

N

i

iLutt dyHH

*

1

)(

De Martino & Egger, PRB 2004

,yi

Page 58: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Order parameter for nanotube rope superconductivity Hubbard Stratonovich transformation:

complex order parameter field

to decouple Josephson terms Integration over Luttinger fields gives action:

Lutt

Trjij

yiji eS

**

ln1

,

*

iiii ey ,

Page 59: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Quantum Ginzburg Landau (QGL) theory 1D fluctuations suppress superconductivity Systematic cumulant & gradient expansion:

Expansion parameter QGL action, coefficients from full model

jijij

i

y

Tr

DCTr

BATrS

11

1*

22

4211

T2

Page 60: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Amplitude of the order parameter Mean-field transition at

For lower T, amplitudes are finite, with gapped fluctuations

Transverse fluctuations irrelevant for

QGL accurate down to very low T

10 cTA

100N

Page 61: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Low-energy theory: Phase action Fix amplitude at mean-field value: Low-

energy physics related to phase fluctuations

Rigidity

from QGL, but also influenced by dissipation or disorder

221

2 yss ccdydS

gg

cTTNT

2/)1(

01)(

1

Page 62: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Quantum phase slips: Kosterlitz-Thouless transition to normal state Superconductivity can be destroyed by vortex

excitations: Quantum phase slips (QPS) Local destruction of superconducting order

allows phase to slip by 2π QPS proliferate for True transition temperature

2)( T

KN

TTgg

cc 5.0...1.02

1)1(2

0

Page 63: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Resistance in superconducting state QPS-induced resistance Perturbative calculation, valid well below

transition:

4

2

0

4

23)(2

2

2/2

11

22/2

11

)(

cL

LT

cc TiuT

udu

TiuTu

du

TT

TR

TR

LcT s

L

De Martino & Egger, PRB 2004

Page 64: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Comparison to experiment

Resistance below transition allows detailed comparison to Orsay experiments

Free parameters of the theory: Interaction parameter, taken as Number N of metallic SWNTs, known from

residual resistance (contact resistance) Josephson matrix (only largest eigenvalue

needed), known from transition temperature Only one fit parameter remains:

3.1g

1

Ferrier, De Martino et al., Sol. State Comm. 2004

Page 65: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Comparison to experiment: Sample R2Nice agreement Fit parameter near 1 Rounding near

transition is not described by theory

Quantum phase slips → low-temperature resistance

Thinnest known superconductors

Page 66: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Comparison to experiment: Sample R4 Again good agreement,

but more noise in experimental data

Fit parameter now smaller than 1, dissipative effects

Ropes of carbon nanotubes thus allow to observe quantum phase slips

Page 67: Theory of electronic transport in carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf Les Houches Seminar,

Conclusions

Nanotubes allow for field-theory approach Bosonization & conformal field theory methods Disordered field theories

Close connection to experiments Tunneling density of states Crossed nanotubes & local Coulomb drag Multiwall nanotubes Superconductivity