THE ROLE OF WHOLE BODY VIBRATION IN THE PREVENTION OF POSTMENOPAUSAL OSTEOPOROSIS · 2014-01-29 ·...

270
THE ROLE OF WHOLEBODY VIBRATION IN THE PREVENTION OF POSTMENOPAUSAL OSTEOPOROSIS by Lubomira Slatkovska A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Institute of Medical Science University of Toronto Copyright© by Lubomira Slatkovska 2011

Transcript of THE ROLE OF WHOLE BODY VIBRATION IN THE PREVENTION OF POSTMENOPAUSAL OSTEOPOROSIS · 2014-01-29 ·...

 

 

THE ROLE OF WHOLE‐BODY VIBRATION  

IN THE PREVENTION OF POSTMENOPAUSAL OSTEOPOROSIS 

 

 

 

 

 

by Lubomira Slatkovska 

 

 

 

 

 

 

A thesis submitted in conformity with the requirements 

for the degree of Doctor of Philosophy 

Institute of Medical Science  

 University of Toronto 

 

 

 

 

 

Copyright© by Lubomira Slatkovska 2011

 

 

ABSTRACT 

 

THE ROLE OF WHOLE BODY‐VIBRATION IN THE PREVENTION  

OF POSTMENOPAUSAL OSTEOPOROSIS 

Lubomira Slatkovska 

Doctor of Philosophy 2011 

Graduate Department of Medical Science 

 University of Toronto 

 

Whole‐body vibration (WBV) was recently introduced as a potential modality for 

strengthening bones, and this thesis was set out to investigate whether it plays a role in 

the prevention of postmenopausal bone loss.  

First, effects of WBV on bone mineral density (BMD) were systematically 

evaluated in previous randomized controlled trials (RCTs) in postmenopausal women. 

Second, a RCT of 202 postmenopausal women with primary osteopenia not on bone 

medications was conducted to investigate the effects of WBV at 0.3g and 90 Hz versus 

0.3g and 30 Hz versus controls on various bone outcomes, as measured by dual‐energy 

x‐ray absorptiometry (DXA), high‐resolution peripheral quantitative computed 

tomography (HR‐pQCT), and quantitative ultrasound (QUS).   

ii 

 

In the systematic evaluation of previous RCTs, statistically significant increase in 

areal BMD (aBMD) at the hip was found in postmenopausal women receiving WBV 

versus controls, but the effect was small and may have been due to study bias. Also, 

WBV was not found to influence aBMD at the lumbar spine or volumetric BMD (vBMD) 

at the distal tibia in the systematic evaluation. In the RCT conducted in this thesis, no 

statistically significant effects of WBV were found on aBMD at the femoral neck, total 

hip or lumbar spine, as measured by DXA, or on vBMD or bone structure parameters at 

the distal tibia or distal radius, as measured by HR‐pQCT. Further in this RCT, a 

statistically significant decrease was observed in QUS attenuation at the calcaneus in 

women receiving 90 Hz or 30 Hz WBV compared to controls. This may have been due to 

heel bone or soft tissue damage, although the effect was small and may not be clinically 

important.  

In conclusion, this investigation of postmenopausal women did not find clinically 

relevant benefits of WBV on osteoporotic‐prone skeletal sites, including the hip, spine, 

tibia or radius, while potentially harmful effects on heel bone and/or soft tissue was 

observed in response to WBV. Thus based on this thesis, WBV is currently not 

recommended for the prevention of bone loss in community‐dwelling postmenopausal 

women with primary osteopenia.  

iii 

iv

ACKNOWLEDGEMENTS

First and foremost, I want to thank my supervisor Dr. Angela Cheung for giving me this

opportunity to work with and learn from her about the ins-and-outs of clinical epidemiology,

how to persevere with optimism and see in the big scheme of things.

Also, many thanks to my thesis committee members – Drs. Shabbir Alibhai and Joseph

Beyene. Shabbir, thank you for your helpful feedback, advice and encouragement. Joseph,

thank you for your invaluable statistical advice and for helping me see more clearly through

analytical complexities.

Maryam Hamidi, Olga Gajic-Veljanoski and Judy Scher, thank you for your research

support and advice. My acknowledgements also go to Hanxian Hu who helped me with data

analysis. Alice Demaras, Claudia Chan, Queenie Wong, Farrah Ahmed, Diana Yau and Gail

Jefferson, our research group’s analysts and technologists, thank you for your knowledge and

for being a pleasure to work with. As well, many thanks to all my research volunteers and work-

study students for your hard work with recruitment and data management.

Last but not least, many heartfelt thanks to my loving family and friends for cheering

along and believing in my pursuit. This has been an interesting life journey with many lessons

and surprises that challenged yet fulfilled my being.

This doctoral thesis was supported by the Canadian Institutes of Health

Research/Ontario Women’s Health Council Doctoral Research Award. The study in chapter two

was funded by the Ontario Physicians’ Services Incorporated foundation.

 

TABLE OF CONTENTS

ABSTRACT ............................................................................................................................................................. ii

ACKNOWLEDGEMENTS........................................................................................................................................ iv

TABLE OF CONTENTS ............................................................................................................................................ v

FIGURES AND TABLES .......................................................................................................................................... ix

ABBREVIATIONS ................................................................................................................................................... xi

INTRODUCTION.....................................................................................................................................................1

OSTEOPOROSIS OVERVIEW ..............................................................................................................................1

What is osteoporosis? ..................................................................................................................................1

Public and personal burden..........................................................................................................................2

Bone remodelling .........................................................................................................................................3

Risk factors ...................................................................................................................................................6

DIAGNOSIS AND MONITORING OF POSTMENOPAUSAL OSTEOPOROSIS ........................................................8

Osteoporotic fracture.................................................................................................................................11

Dual‐energy x‐ray: the gold standard.........................................................................................................11

Monitoring..................................................................................................................................................12

BONE STRENGTH AND FRAGILITY ...................................................................................................................13

Bone biomechanics.....................................................................................................................................13

Bone tissue properties................................................................................................................................16

Bone strength determinants in postmenopausal women..........................................................................17

NON‐INVASIVE MEASUREMENTS OF BONE STRENGTH .................................................................................20

Bone densitometry .....................................................................................................................................20

Quantitative ultrasound .............................................................................................................................23

PREVENTION OF POSTMENOPAUSAL OSTEOPOROSIS ...................................................................................25

Nutrition .....................................................................................................................................................27

 

Bone medications .......................................................................................................................................28

Physical activity ..........................................................................................................................................29

PHYSICAL STIMULI AND BONE........................................................................................................................30

Bone adaptation to loading........................................................................................................................30

Loading characteristics required for bone formation ................................................................................31

Translation of physical stimuli via bone fluid‐flow.....................................................................................34

WHOLE‐BODY VIBRATION: PHYSICAL STIMULUS FOR BONE..........................................................................36

What is whole‐body vibration? ..................................................................................................................36

How does whole‐body vibration influence muscles and bones? ...............................................................39

Whole‐body vibration and bone formation ...............................................................................................40

Experimental models of whole‐body vibration ..........................................................................................41

Clinical studies of whole‐body vibration ....................................................................................................43

WHOLE‐BODY VIBRATION SAFETY..................................................................................................................45

RATIONALE..........................................................................................................................................................47

OBJECTIVES AND HYPOTHESIS ............................................................................................................................50

CHAPTER ONE: EFFECT OF WHOLE‐BODY VIBRATION ON BONE MINERAL DENSITY: A SYSTEMATIC REVIEW AND META‐ANALYSIS..........................................................................................................................................54

ABSTRACT .......................................................................................................................................................55

INTRODUCTION...............................................................................................................................................57

METHODS .......................................................................................................................................................58

Data sources ...............................................................................................................................................59

Study selection ...........................................................................................................................................60

Data extraction ...........................................................................................................................................61

Sensitivity and subgroup analyses..............................................................................................................62

Quantitative data synthesis........................................................................................................................63

RESULTS ..........................................................................................................................................................64

Study characteristics...................................................................................................................................64

vi 

 

Postmenopausal women............................................................................................................................66

Children and adolescents ...........................................................................................................................76

Young adults ...............................................................................................................................................78

Adverse events ...........................................................................................................................................78

COMMENT ......................................................................................................................................................79

CHAPTER TWO:  EFFECT OF 12 MONTHS OF WHOLE‐BODY VIBRATION ON BONE DENSITY AND STRUCTURE IN POSTMENOPAUSAL WOMEN WITH OSTEOPENIA: A RANDOMIZED CONTROLLED TRIAL (THE VIBRATION STUDY) ................................................................................................................................................................84

ABSTRACT .......................................................................................................................................................85

INTRODUCTION...............................................................................................................................................87

METHODS .......................................................................................................................................................89

Setting and study design ............................................................................................................................89

Participants.................................................................................................................................................90

Interventions ..............................................................................................................................................91

Outcomes ...................................................................................................................................................92

Statistical analyses......................................................................................................................................93

RESULTS ..........................................................................................................................................................94

Participants characteristics.........................................................................................................................94

Adherence ..................................................................................................................................................96

Bone outcomes...........................................................................................................................................98

Adverse events .........................................................................................................................................100

COMMENT ....................................................................................................................................................100

CHAPTER THREE: EFFECTS OF WHOLE‐BODY VIBRATION ON CALCANEAL QUANTITATIVE ULTRASOUND PARAMETERS IN OSTEOPENIC POSTMENOPAUSAL WOMEN: A RANDOMIZED CONTROLLED TRIAL (THE VIBRATION STUDY) ...........................................................................................................................................107

ABSTRACT .....................................................................................................................................................108

INTRODUCTION.............................................................................................................................................110

METHODS .....................................................................................................................................................114

vii 

 

Participants and study design...................................................................................................................114

Study interventions ..................................................................................................................................115

Outcomes .................................................................................................................................................116

Statistical analyses....................................................................................................................................117

RESULTS ........................................................................................................................................................119

Participant characteristics ........................................................................................................................119

Calcaneus QUS outcomes.........................................................................................................................122

Adverse events .........................................................................................................................................125

COMMENT ....................................................................................................................................................126

DISCUSSION ......................................................................................................................................................131

CONCLUSIONS...................................................................................................................................................156

FUTURE DIRECTIONS.........................................................................................................................................158

LIST OF REFERENCES .........................................................................................................................................162

TECHNICAL APPENDIX.......................................................................................................................................192

CHAPTER ONE: STANDARDIZED DATA COLLECTION FORMS ........................................................................193

CHAPTER ONE: HANDLING MISSING DATA...................................................................................................198

CHAPTERS TWO AND THREE: A PRIORI PROTOCOL......................................................................................201

CHAPTERS TWO AND THREE: STANDARDIZED DATA COLLECTION FORMS..................................................212

CHAPTERS TWO AND THREE: A PRIORI DATA ANALYSIS PLAN.....................................................................227

CHAPTER TWO: SAS CODES ..........................................................................................................................235

CHAPTER TWO: ADDITIONAL RESULTS .........................................................................................................244

CHAPTER THREE: SAS CODES........................................................................................................................247

CHAPTER THREE: QUS QC – CALIBRATION LOG............................................................................................250

CHAPTER THREE: ADDITIONAL RESULTS.......................................................................................................257

 

viii 

 

FIGURES AND TABLES 

 

 

GENERAL INTRODUCTION 

Page 5  Figure 1. Bone mass changes in men and women during a normal bone remodelling life‐cycle. 

Page 9  Table 1. A FRAX® chart for 10‐year probability of osteoporotic fractures (%) according to number of clinical risk factors (CRFs) and BMD T‐score at the femoral neck in Canadian women aged 60.   

Page 10  Table 2. A FRAX® chart for 10‐year probability of hip fracture (%) according to number of clinical risk factors (CRFs) and BMD T‐score at the femoral neck in Canadian women aged 60. 

Page 14  Figure 2. Bone biomechanics: load‐deformation and stress‐strain curves. 

Page 18  Figure 3. Bone material and structure properties that determine bone strength and fracture risk. 

Page 26  Figure 4. Bone material and structure properties that can be directly estimated using DXA, HR‐pQCT and QUS. 

Page 33  Figure 5. Proposed non‐linear relationship between bone strain magnitude and number of daily loading cycles necessary for the maintenance of bone mass in the turkey ulna model. 

Page 38   Figure 6. Low‐magnitude whole‐body vibration platform: Dynamic Motion Therapy 1000 ™ (Juvent Medical Inc.) 

 

 

CHAPTER 1 

Page 65  Figure 1. QUOROM flow diagram showing systematic literature search summary.  

Page 67  Table 1. Characteristics of RCTs included in the systematic review 

Page 69  Table 2. Bone mineral density data extracted for all analyses 

Page 70  Figure 2. Primary analyses of whole‐body vibration effect on bone mineral density in postmenopausal women.  

ix 

 

Page 71  Figure 3. Sensitivity analyses of whole‐body vibration effect on bone mineral density in postmenopausal women.  

Page 74  Figure 4.  Subgroup analyses of whole‐body vibration effect on hip areal bone mineral density (g∙cm‐2) in postmenopausal women.  

Page 77  Figure 5. Primary and sensitivity analyses of whole‐body vibration effect on the spine trabecular volumetric bone mineral density (mg∙cm‐3) in children and adolescents.  

 

 

CHAPTER 2 

Page 95  Figure 1. Flow diagram of participant’s progress through the trial.  

Page 97  Table 1. Baseline characteristics of women participating in the Vibration Study.  

Page 99  Table 2. Absolute change in all DXA and HR‐pQCT parameters.  

Page 101  Table 3. Adverse events summary.  

 

 

CHAPTER 3 

Page 120  Figure 1. Flow diagram of participants’ progress through the analysis of quantitative ultrasound parameters. 

Page 121  Table 1.  Participants baseline characteristics.  

Page 123  Table 2. Absolute 12‐month change in quantitative ultrasound parameters. 

Page 124  Figure 2. Subgroup analyses.  

 

 

ABBREVIATIONS 

 

30Hz  study group receiving 30 Hertz whole‐body vibration in the trial reported in  

chapters two and three of this thesis 

90Hz  study group receiving 90 Hertz whole‐body vibration in the trial reported in  

chapters two and three of this thesis  

aBMD    areal bone mineral density 

aBMDf   areal bone mineral density at the femoral neck 

aBMDh  areal bone mineral density at the total hip (total proximal femur) 

aBMDs   areal bone mineral density at the lumbar spine 

AE    adverse event 

AMI    activity metabolic index 

BMC    bone mineral content 

BMD     bone mineral density 

BMI    body mass index 

BUA    broadband attenuation 

BV/TV    trabecular bone volume fraction  

CAROC   the Canadian Association of Radiologists and Osteoporosis Canada  

CON  control group not receiving whole‐body vibration in the trial reported in  

chapters two and three of this thesis 

CRF    clinical risk factor/case report form 

CTh     cortical thickness 

DXA    dual‐energy x‐ray absorptiometry 

FRAX    fracture risk calculator  

g    acceleration due to gravity, 1g = 9.8 m∙s‐2

HAVS     hand and arm vibration syndrome 

xi 

 

HR‐pQCT   high‐resolution peripheral quantitative computed tomography 

HRT    hormone replacement therapy   

HSA    hip structural analysis 

Hz    Hertz, one oscillation per second 

ITT     intention‐to‐treat 

LSC    least significant change 

pQCT     peripheral quantitative computed tomography 

QC    quality control 

QCT     quantitative computed tomography 

QUI    quantitative ultrasound index 

QUS    quantitative ultrasound 

RCT    randomized controlled trial  

RMS‐CV  root mean square coefficient of variation 

SAE    serious adverse event 

SD    standard deviation 

SOS    speed of sound 

TN     trabecular number 

TSp    trabecular separation 

TTh    trabecular thickness 

vBMD    volumetric bone mineral density  

vBMDc   volumetric bone mineral density of the cortical bone 

vBMDt   volumetric bone mineral density of the trabecular bone 

vBMDtot  volumetric bone mineral density of the total (cortical and trabecular) bone 

UHN    University Health Network in Toronto, Canada 

WBV    whole‐body vibration 

WHO     World Health Organization 

xii 

1

INTRODUCTION

OSTEOPOROSIS OVERVIEW

What is osteoporosis?

Osteoporosis is a disease of bone fragility and fracture. The word osteoporosis comes

from Greek terms osteon meaning bone and poros meaning pore, and thus literally means

porous bone. It is a systemic chronic disease characterized by low bone mass and deterioration

of bone material and structure, which leads to increased bone fragility and risk of fractures,

especially at the hip, spine and wrist (Osteoporosis Canada, 2010c; Kannus et al., 2002;

Consensus Development Conference., 1993). Osteoporosis can be classified into primary and

secondary (Marcus & Majumder, 2001). Primary osteoporosis occurs due to ageing, and is of

significant public interest as it affects a large part Canadian older adult population, especially

postmenopausal women (Osteoporosis Canada, 2010c). Secondary osteoporosis results from

specific clinical disorders (for example, hyperparathyroidism or rheumatoid arthritis) or long-

term exposures to some medications (for example, chemotherapy or glucocorticoids) (Marcus

& Majumder, 2001).

2

Public and personal burden

According to Osteoporosis Canada as many as 2 million Canadians suffer from

osteoporosis (Osteoporosis Canada, 2010c). Based on Canadian fracture data, approximately

one in four women and one in eight men over the age of 50 will be diagnosed with osteoporosis

(Jackson et al., 2000; Prior et al., 1996). The prevalence of osteoporosis rises dramatically with

age. For instance, going from 50 to 80 years of age the prevalence of osteoporosis increases

from approximately 6% to over 50% (Looker et al., 2010). These figures become even more

striking when one considers that by 2031 the population aged 65 and over is expected to reach

25% of the total Canadian population (Rosenberg, 2000).

Osteoporosis-related bone deterioration progresses silently, until an osteoporotic

fracture is sustained (Osteoporosis Canada, 2010c). There were about 25,000 hip fractures in

Canada in 1993, of which 80% were osteoporotic (Osteoporosis Canada, 2010c). Approximately

40% of Canadian postmenopausal women will develop an osteoporotic fracture at the hip,

vertebrae or wrist (Cheung et al., 2004). This is of serious public concern, because osteoporotic

fractures lead to significant increases in mortality and morbidity. For example in North

American and European populations, approximately 20% of postmenopausal women were

found to die within the first year after experiencing a hip fracture (Chrischilles et al., 1991), and

increased mortality was found to persist for 10 years after sustaining a vertebral fracture,

primarily due to pulmonary disease and cancer (Kado et al., 1999; Hasserius et al., 2005).

3

The personal burden of osteoporosis involves a reduction in the quality of life due to

post-fracture recovery. It was estimated that about 50% of postmenopausal women lost their

ability to live independently after sustaining a hip fracture (Chrischilles et al., 1991;

Osteoporosis Canada, 2010c). Vertebral fractures can cause significant back pain and loss of

height due to kyphosis, and may result in depression and low self-esteem (Gold, 1996;

Silverman, 1992). However, only about one-third of vertebral fractures are clinically diagnosed

before leading to visible disfigurement (Cooper et al., 1992).

It was estimated that in 1993 the total Canadian health care costs attributable to

osteoporosis-related hospitalization, outpatient care and drug therapy were $1.3 billion

(Tenenhouse et al., 2000). Given that the proportion of older people in the Canadian

population is rising, these costs are also expected to increase (Osteoporosis Canada, 2010c). For

example, annual Canadian health care costs due to hip fracture were estimated to be $650

million in 2001 and expected to rise to $2.4 billion by 2041 (Wiktorowicz et al., 2001).

Bone remodelling

Bone remodelling refers to the continuous process of bone resorption by a type of bone

cells named osteoclasts, and bone formation by another type of bone cells named osteoblasts.

The balance between bone resorption and formation determines whether bone is accrued,

maintained or lost (Marcus & Majumder, 2001). Based on bone mineral density (BMD)

4

measurement by the gold standard, dual-energy x-ray absorptiometry (DXA), there are three

basic stages during a human life-cycle, during which a different balance between bone

formation and resorption occurs (Marcus & Majumder, 2001). Bones need to grow during

childhood and adolescence, thus the overall bone remodelling rate is relatively high, and

osteoblastic bone formation exceeds osteoclastic bone resorption, leading to overall bone

accrual (Wren et al., 2005). In young adults, osteoblasts and osteoclasts function at a slower

and relatively equal rate, thus bone mass is more or less maintained so that about 10% of old

bone becomes replaced with new bone each year (Marcus & Majumder, 2001). After about the

age of 40, the overall bone remodelling rate increases again but osteoclastic resorption exceeds

osteoblastic formation, hence bone mass is lost (Riggs et al., 2001). Factors that contribute to

this age-related bone loss include reductions in endogenous estrogens, especially in women,

impairment in osteoblast function, calcium and vitamin D deficiency, and changes in intestinal

mineral absorption, renal mineral handling and parathyroid hormone secretion (Riggs et al.,

2001). Compared to men, women are particularly affected by age-related bone loss (Riggs et al.,

2001); one in four women and one in eight men will be diagnosed with osteoporosis in Canada

(Jackson et al., 2000; Prior et al., 1996). This is because in addition to slow age-related bone loss

which begins at the age of 40 for both men and women, postmenopausal women experience

accelerated bone loss during the initial 4 to 8 years of menopause due to a lack of estrogen-

dependent inhibition of osteoclastic resorption (Figure 1). Compared to women, men also tend

to achieve higher absolute peak bone mass (Riggs et al., 2001).

Age,

yea

rs

20

40

60

80

100

Bone mass, g/calcium

Adap

ted

from

: Rig

gs L

, Kho

sla S

, Mel

ton

J. Th

e ty

pe I/

type

II m

odel

for i

nvol

utio

nal o

steo

poro

sis. I

n: M

arcu

s R, F

eldm

an D

, Ke

lsey

J, ed

s. O

steo

poro

sis, S

econ

d Ed

ition

. San

Die

go, C

A: A

cade

mic

Pre

ss; 2

001:

49-5

8.

Figu

re 1

.Bon

e m

ass c

hang

es in

men

and

wom

en d

urin

g a

norm

al b

one

rem

odel

ling

life-

cycl

e

500 1000 1500

Luba
Typewritten Text
5
Luba
Typewritten Text

6

Risk factors

The fracture risk calculator (FRAX®) has been recently developed by the World Health

Organization (WHO) to evaluate individual’s 10-year risk of developing osteoporotic fracture

(World Health Organization, 2010). FRAX® is a computer-driven tool that integrates the

probability of sustaining an osteoporotic fracture based on clinical risk factors and BMD at the

femoral neck. The 10-year risk of fracture is calculated based on models developed from

studying population-based cohorts from various countries and its calculations are country-

specific. The Canadian FRAX® tool can be accessed electronically at the WHO website (World

Health Organization, 2010), and uses the following risk factors for the calculation of 10-year

fracture risk in Canadian women and men:

- BMD at the femoral neck: This factor is optional, as the assessment of 10-year fracture

risk can be performed with only the risk factors listed below, but its inclusion results in

better fracture risk determination (Papaioannou et al., 2010).The lower the femoral

neck BMD the higher the risk of osteoporotic fracture.

- Age: Risk of fracture increases with age

- Sex: Fracture risk is higher for women than men.

- Weight: Low body mass is a risk factor of osteoporosis.

7

- Height: Low body mass index (BMI), calculated based on height and weight is a risk

factor of osteoporosis.

- Previous osteoporotic fracture: Prior osteoporotic fracture is an especially strong risk

factor for sustaining future fracture(s).

- Parent hip fracture: Osteoporosis has a strong genetic component (Williams & Spector ,

2006), therefore family history of osteoporotic fracture indicates an increased risk of

sustaining an osteoporotic fracture(s).

- Current smoking: Current smoking status has a dose-dependent effect; in other words,

the greater the exposure the higher the risk of osteoporosis.

- Glucocorticoids: Taking glucocorticoids for more than 3 months at a dose approximately

equal to 5 mg of prednisolone or more increases the risk of osteoporotic fracture and

the effect is dose-dependent.

- Rheumatoid arthritis: Rheumatoid arthritis is a secondary cause of osteoporosis, and

thus increases the risk of developing osteoporotic fracture.

- Secondary osteoporosis: Other secondary causes of osteoporosis also increase the risk

of developing osteoporotic fracture.

- Alcohol ≥3 units a day: Excessive alcohol ingestion increases bone loss and

deterioration, and has a dose-dependent effect.

8

DIAGNOSIS AND MONITORING OF POSTMENOPAUSAL OSTEOPOROSIS

The Osteoporosis Canada 2010 clinical practice guidelines for the diagnosis and

management of osteoporosis in women and men over the age of 50 highlight a current

paradigm shift in the focus on treating and preventing osteoporotic fractures and their

consequences, rather than on treating low BMD (Papaioannou et al., 2010). This shift occurred

because low BMD, as measured by DXA the gold standard, was viewed as only one of several

risk factors for fracture. Thus, the 2010 Canadian guidelines recommend that the treatment of

osteoporosis is not just based on DXA BMD testing, but rather has to be predicated by an

assessment of absolute fracture risk (Papaioannou et al., 2010). The absolute 10-year fracture

risk can be assessed using two different clinical tools, with high (90%) concordance to one

another, both calibrated using the same Canadian fracture data and validated in Canadians: 1)

the Canadian Association of Radiologists and Osteoporosis Canada tool (CAROC;

www.osteoporosis.ca) and 2) the WHO FRAX® tool, specific for Canada (Papaioannou et al.,

2010). The CAROC tool uses sex, age, femoral neck DXA BMD testing, presence of prior fragility

fracture after age 40, and recent prolonged use of systemic glucocorticoids to assess absolute

10-year fracture risk, and is easy to use. The WHO FRAX® tool uses a more complete set of

clinical risk factors to assess absolute or hip 10-year fracture risk, described in the section

above, but its calculations require access to system software, website or paper charts (e.g.,

Table 1 and 2). The, the choice between these two tools should be primarily based on personal

preference and convenience (Papaioannou et al., 2010). However, although this paradigm shit

in Canadian osteoporosis guidelines occurred, DXA BMD testing still remains the strongest

Sour

ce: F

RAX®

WHO

web

site

-ht

tp:/

/ww

w.s

heffi

eld.

ac.u

k/FR

AX/c

hart

s.jsp

Not

e: B

MI i

s set

at 2

4 kg

/m²)

Tabl

e 1.

A F

RAX®

cha

rt fo

r 10-

year

pro

babi

lity

of o

steo

poro

tic fr

actu

re(s

) (%

) acc

ordi

ng to

num

ber o

f clin

ical

risk

fact

ors (

CRFs

) and

BM

D T-

scor

e at

the

fem

oral

nec

k in

Can

adia

n w

omen

age

d 60

.

Luba
Typewritten Text
9

Tabl

e 2.

A F

RAX®

cha

rt fo

r 10-

year

pro

babi

lity

of h

ip fr

actu

re (%

) acc

ordi

ng to

num

ber o

f clin

ical

risk

fact

ors (

CRFs

) and

BM

D T-

scor

e at

the

fem

oral

nec

k in

Can

adia

n w

omen

age

d 60

.

Sour

ce: F

RAX®

WHO

web

site

-ht

tp:/

/ww

w.s

heffi

eld.

ac.u

k/FR

AX/c

hart

s.jsp

Not

e: B

MI i

s set

at 2

4 kg

/m²)

Luba
Typewritten Text
10

11

independent skeletal factor for the prediction of osteoporotic fractures, and is used as the gold

standard to classify patients as having osteoporosis or low bone mass (also known as

osteopenia in postmenopausal women) (World Health Organization, 1994).

Osteoporotic fracture

The diagnosis of osteoporosis in postmenopausal population is made when a

osteoporotic or fragility fracture is sustained after the age of 40. Although the definition of

osteoporotic fracture is somewhat subjective, some criteria exist (Johnell & Kanis, 2005). A

fracture is considered osteoporotic if it occurs at a site associated with low bone mass (for

example, femur, pelvis, vertebrae, radius and ulna), and in response to a seemingly insignificant

force that would otherwise not be expected to cause a clinical fracture (Johnell & Kanis, 2005;

Cummings & Nevitt, 1989). For example, a hip fracture that is sustained due to a fall from a

standing height or less would be considered as osteoporotic.

Dual-energy x-ray: the gold standard

BMD, as assessed by DXA at the femoral neck, total proximal femur, lumbar spine or

distal radius, is the gold standard for diagnosing postmenopausal osteoporosis in Canada

(Siminoski et al., 2005). DXA BMD testing is recommended in postmenopausal women with a

risk factor for osteoporotic fracture or those aged 65 or older (Papaioannou et al., 2010). DXA

measurement is evaluated based on a scoring system called the T-Score, which specifies the

number of standard deviations (SDs) that a postmenopausal woman’s BMD falls below the

12

mean BMD of a young female reference population (Siminoski et al., 2005). Since peak BMD is

generally achieved around the age of 30, young versus old reference population is used for

comparison (Riggs et al., 2001). Based on WHO criteria, postmenopausal osteoporosis is

defined as a T-Score of ≤-2.5 SDs, and osteopenia, a stage prior to postmenopausal

osteoporosis, is defined as a T-Score falling between ≤-1.0 and >-2.5 SDs (World Health

Organization, 1994). A threshold of -2.5 SDs was chosen for the diagnosis of osteoporosis,

because it identifies approximately 30% of Caucasian women as having osteoporosis, which is

similar to the proportion of women who will experience fracture in their lifetime (Lewiecki et

al., 2006). Based on the WHO criteria using DXA BMD, the prevalence of osteoporosis in

Canadian women 50 years or older was found to be 8% at the femoral neck and 12% at the

lumbar spine in the Canadian Multicentre Osteoporosis Study (Tenenhouse et al., 2000).

Monitoring

Monitoring of bone health in postmenopausal population begins with the assessment of

10-year risk of fracture with CAROC or WHO FRAX® tools and initial DXA BMD testing, which are

used to decide whether pharmacotherapy would be beneficial to reduce fracture risk

(Papaioannou et al., 2010). After pharmacotherapy has been provided, monitoring of bone

health in postmenopausal women based on CAROC or WHO FRAX® tools is not recommended,

because this 10-year fracture risk assessment reflects the theoretical risk of treatment-naïve

patients and does not reflect a reduction in risk associated with therapy (Papaioannou et al.,

2010). Monitoring with DXA BMD is recommended in the Osteoporosis Canada 2010 clinical

13

practice guidelines in postmenopausal women who are 1) treatment-naïve with moderate 10-

year fracture risk every 1-3 years, 2) treatment-naïve with low 10-year fracture risk and stable

BMD every 5-10 years, and 3) on bone pharmacotherapy every 1-3 years (Papaioannou et al.,

2010). New osteoporotic and vertebral fractures also need to be assessed in postmenopausal

women as part of bone health monitoring (Papaioannou et al., 2010).

BONE STRENGTH AND FRAGILITY

Bone biomechanics

The complex nature of bone strength can be better understood by examining bone’s

behaviour when it is placed under an external force or load. In ex vivo experiments, an external

load is typically applied to a long bone through bending, such as four-point bending, and as the

load is progressively increased, bone deformation is measured in millimetres at the side that is

being stretched or elongated (Bouxsein, 2006). This relationship between external loading and

bone deformation can be plotted using the load-deformation curve (Figure 2). When the load is

initially applied, the bone will undergo deformation in a linear manner in the elastic region until

it reaches its yield point. Prior to reaching the yield point, bone returns to its original size and

shape when the load is removed. Beyond the yield point, bone will enter the plastic region

during which deformation becomes permanent and the bone does not return to its original size

Figu

re 2

.Bon

e bi

omec

hani

cs: l

oad-

defo

rmat

ion

and

stre

ss-s

trai

n cu

rves

.

Adap

ted

from

: Bou

xsei

n M

L. B

iom

echa

nics

of b

one.

In: D

emps

ter D

, Fel

senb

erg

D, v

an D

er G

eest

S, e

ds.

The

Bone

Qua

lity

Book

: A G

uide

to F

acto

rs In

fluen

cing

Bon

e St

reng

th. A

mst

erda

m: E

lsvie

r BV;

200

6.

Def

orm

atio

n (m

m)

Load (N)

Stra

in (m

m/m

m)

Stress (N/mm2)

ULT

IMAT

E ST

RES

S =

STR

ENG

TH

STIF

FNES

S (N

/mm

)

Duc

tile

mat

eria

l, e.

g. ir

on

Brit

tle m

ater

ial e

.g.,

glas

s

Bon

e

ELAS

TIC

M

OD

ULU

S/

STIF

FNES

S

TOU

GH

NES

S

FAIL

UR

E LO

AD

Luba
Typewritten Text
14

15

or shape. If the load continues to be applied, the bone will reach its failure load, at which point

a complete structural failure results in bone fracture. Bone stiffness is estimated by the slope

of the load-deformation relationship in the elastic region, and represents the amount of force

needed to cause deformation. When a significant amount of force is required to deform a

structure by a small length, the structure is said to be stiff. On the other hand, an elastic

structure will undergo ample deformation under small external loads and return to its original

shape easily.

When the applied load is expressed per bone’s cross sectional area (stress) and the

deformation is divided by the original bone length (strain), the resulting relationship, known as

the stress-strain curve, provides additional information about bone’s biomechanics (Bouxsein,

2006). Elastic modulus, or the inherent stiffness of a bone tissue, can be calculated by obtaining

the slope of a stress-strain curve in the elastic region. Bone toughness can be calculated by

obtaining the area under stress-strain curve, and bone strength is the ultimate stress reached at

the failure point (Figure 2). A material such as glass is said to be brittle because it undergoes

very little deformation, while iron is considered to be ductile as it undergoes significant

deformation before it completely reaches its ultimate stress.

Since bone is a composite material, comprised mainly of mineral and collagen matrix

embedded in one another, it can act with both stiffness and toughness; mineral affords bone its

stiffness and collagen its toughness (Bouxsein, 2006). Bone also has viscoelastic and anisotropic

16

characteristics. Viscoleasticity determines bone’s behaviour in response to loads applied at

different rates. Bone will respond with more stiffness and withstand greater loads prior to

failure when they are applied at faster rates. Anisotropy refers to bone’s ability to behave

differently under loads applied in different directions. For example, bone is strong under

compression, because it has been habitually loaded in that direction, but does not have much

strength under loads applied in a transverse direction, as it is unaccustomed to shear or torsion

stresses (Bouxsein, 2006).

Bone tissue properties

Bone has material and structural properties which determine its strength (Felsenberg,

2006). Human bone is a composite material made up of inorganic mineral matrix (70%), organic

matrix (~25%) and water (5-8%) (Bouxsein, 2006). As mentioned above, the calcium-phosphate

mineral matrix, which is a specific hydroxyapatite crystal, gives bone its stiffness. The organic

phase is primarily made up of type I collagen fibres, which are imbedded in the mineral matrix

in various directions, and partly provides bone with elasticity and toughness. Bone fluid is found

in pores or canaliculi within the bone matrix and gives bone its viscoelastic properties.

Two types of bone tissue exist, each with different bone strength characteristics.

Cortical (or compact) bone tissue forms the outer layer of bones, particularly along the shafts of

long bones. It is made up of hollow tubes of bone matrix placed inside one another, so that

17

they are packed very densely and give bone it stiffness and strength. Trabecular (or cancellous)

bone tissue is made up of small flat pieces of bone matrix (trabeculi) connected to one another

in a lattice-like arrangement, and is found in abundance in the vertebral bodies, femoral neck

and calcaneus. Although it is more porous, less stiff and more likely to fracture than cortical

bone, its trabecular microstructure allows it to resist forces by absorbing and distributing

energy. Trabecular tissue contributes to bone’s elasticity and shock-absorption, and allows the

skeleton to remain relatively light while maintaining its strength. The trabeculi will also adapt

their thickness, number and orientation in parallel to the direction of the imposed stress, and

thus contribute to bone’s anisotropy.

Bone strength determinants in postmenopausal women

Various bone material and structural properties influence bone fragility in

postmenopausal women (Figure 3), and some can be measured non-invasively as described in a

section below. The most widely used in vivo determinant of bone strength is the amount of

mineralized bone matrix or BMD (Siminoski et al., 2005). Bone hydroxyapatite provides bone

with stiffness and strength, and the lower the BMD the higher the risk of osteoporotic fracture

(Kanis et al., 2010). Bone geometry, including its shape and external diameter, influence bone’s

behaviour under external load, and is especially important to consider when examining femoral

neck fractures in postmenopausal women (Turner, 2005). Also, expansion of the external bone

BON

E ST

REN

GTH

Bone

min

eral

den

sity

Area

lTo

tal

Volu

met

ric

Trab

ecul

arCo

rtic

alTr

abec

ular

/tot

al

Bone

stru

ctur

e

Geom

etry

Bone

shap

eEx

tern

al d

iam

eter

Cort

ical

thic

knes

s

Mic

roar

chite

ctur

eTr

abec

ular

Co

rtic

al p

oros

ity

Bone

intr

insic

pro

pert

ies

Min

eral

Min

eral

/mat

rixCr

ysta

l size

Mic

roda

mag

eN

umbe

rSi

zeLo

catio

n

Colla

gen

Amou

ntCr

oss-

links

Frac

ture

Bala

nce,

m

uscl

e st

reng

th,

& p

rote

ctiv

e re

spon

ses

Figu

re 3

. Bon

e m

ater

ial a

nd st

ruct

ure

prop

ertie

s tha

t det

erm

ine

bone

stre

ngth

and

frac

ture

risk

.

Luba
Typewritten Text
18

19

diameter that occurs after menopause is believed to compensate for some of the age-related

bone fragility due to decreased BMD (Ahlborg et al., 2003). Further, deterioration in trabecular

microarchitecture is believed to significantly contribute to age-related increase in bone fragility,

especially in early menopause (Pacifici, 2001). Age-related perforation and complete

disappearance of bone trabeculi lead to porous trabecular tissue, making it less able to absorb

energy and more likely to collapse. Slow, age-related bone loss is 50-70% cortical and 30-50%

trabecular, and accelerated early postmenopausal bone loss is at least 85% trabecular (Riggs et

al., 2001). Further, women who develop postmenopausal osteoporosis can often experience 15

to 20 years of the accelerated trabecular bone loss (Riggs et al., 2001). The intrinsic properties

of bone inorganic and organic matrix further determine bone strength (Felsenberg, 2006). The

mineral to organic matrix ratio influences the balance between bone stiffness and flexibility; for

example, too much mineral matrix and the bone loses its elasticity only to become too brittle.

The accumulated bone fatigue or microdamage also contributes to bone’s increased risk of

fracturing in postmenopausal women. More abundant, larger micro-cracks, which can

accumulate at an already weakened skeletal site, are believed to contribute to osteoporotic

fractures (Burr et al., 1997; Felsenberg, 2006). Finally, whether a postmenopausal woman

sustains an osteoporotic fracture does not only depend on her bone strength but also on her

muscle strength, balance and protective responses during a fall (Cumming et al., 1997).

20

NON-INVASIVE MEASUREMENTS OF BONE STRENGTH

Bone densitometry

Several bone material and structure properties discussed above can be estimated using

various non-invasive bone densitometry instruments. DXA is one bone densitometry tool and

its BMD measurement is used for the diagnosis of osteoporosis, predicting fracture risk and

monitoring treatment in clinical practice (Kanis et al., 2010; Siminoski et al., 2005; World Health

Organization, 1994). DXA involves minimal ionizing radiation (approximately 1/10th of a chest x-

ray), and its measurements are made at osteoporosis-prone sites, including the femoral neck,

total proximal femur (total hip), lumbar spine (L1-L4) and distal radius. BMD measurement

using DXA involves differential absorption of two x-ray beams by bone and soft tissues, and

reflects the mass of mineralized bone matrix per unit of bone area (g·cm-2). DXA has good

accuracy (3-5%) and precision (0.5-2%) (Mirsky & Einhorn, 1998). Since it reflects bone mass

and the degree of bone matrix mineralization, it has been shown to correlate strongly (r2 = 0.4-

0.9) with the force needed to break a bone in ex vivo studies (Cummings et al., 2002). Hip

structural analysis (HSA), which is based on DXA hip measurement and involves making

projective estimates about bone geometric and biomechanical parameters, has also been used

in research (Prevrhal et al., 2008). However, DXA measurements do not reflect bone

microarchitecture or bone intrinsic properties. Further, true density is a volumetric measure

21

where mass is expressed per unit of volume (mg·cm-3), but DXA obtains areal BMD (aBMD)

expressed per unit of area in the coronal plane (g·cm-2). As such, DXA BMD is significantly

influenced by changes in bone size or volume, especially in children and adolescents whose

bones are growing (Binkley et al., 2005). DXA’s limitations partly explain why only a portion of

fracture risk reduction in response to osteoporosis medications can be explained by increased

aBMD (Lenchik et al., 2002) and why fragility fractures often occur even when aBMD T-Scores

are >-2.5 SD in postmenopausal women (Marshall et al., 1996).

To overcome some of DXA’s shortcomings, volumetric bone densitometry tools have

been developed including quantitative computed tomography (QCT). Due to three-dimensional

and high-resolution measurement characteristics, QCT is able to obtain true volumetric BMD

(vBMD, g·cm-3), separately assess trabecular and cortical bone tissues, and examine bone

geometry (Bouxsein, 2004). QCT measurement is particularly responsive to lumbar spine

trabecular vBMD changes in postmenopausal women (Chesnut et al., 2001). However, QCT

involves high doses of radiation, because it is used for measurements at central sites. Thus,

peripheral computed tomography (pQCT) instruments have been developed for volumetric

densitometry measurements at peripheral sites, generally the tibia and radius, which involve

approximately the same dose of radiation as DXA (Bouxsein, 2004). vBMD measurements using

pQCT were found to have good short-term and long-term precision and accuracy, comparable

to DXA (Wapniarz et al., 1994; Grampp et al., 1994; Ashe et al., 2006).

22

More recently, high-resolution pQCT (HR-pQCT) instruments were developed for

measurements of cortical thickness and trabecular microarchitecture (Bouxsein, 2004). HR-

pQCT is of particular interest in the management of postmenopausal osteoporosis, because it

can assess trabecular vBMD and microarchitecture, which become especially deteriorated

during early menopause (Riggs et al., 2001). Used as an adjunct to DXA aBMD, it can better

identify postmenopausal women at increased risk of fracture and examine responses to

treatment (Boutroy et al., 2005; Bouxsein, 2004). Other advantages of HR-pQCT include exact

three dimensional matching of bone volume for intra-person comparisons and minimal

superposition of soft tissues (Chesnut et al., 2001). In a cross-sectional study, HR-pQCT was able

to differentiate between premenopausal and postmenopausal women based on vBMD,

trabecular microarchitecture and cortical thickness (Boutroy et al., 2005). Also based on

trabecular bone parameters, HR-pQCT was able to identify those postmenopausal women who

were diagnosed with osteopenia but sustained osteoporotic fracture (Boutroy et al., 2005).

Although short-term precision, as measured by root mean square coefficient of deviation (RMS-

CV), for HR-pQCT vBMD measurements (RMS-CVs: 0.7-1.5%) is good and comparable to DXA, it

is not as good for trabecular microarchitecture measurements (RMS-CVs: 2.5-4.4%) (Boutroy et

al., 2005). As well, there is some concern that peripheral HR-pQCT bone characteristics are site-

specific and do not necessarily reflect bone properties at central sites (Lochmüller et al., 2002).

Also, some bone intrinsic properties, such as micro-cracks, cannot be evaluated using HR-pQCT,

because its resolution is still not high enough. Finally, because it is a newer technology and not

23

the gold standard, HR-pQCT remains less available and less readily utilized in the management

of postmenopausal osteoporosis than DXA (Bouxsein, 2004).

Quantitative ultrasound

Quantitative ultrasound (QUS) is not a bone densitometry tool, but it can be used to

estimate BMD and bone stiffness (Guglielmi et al., 2010). Although various peripheral

measurements can be made with QUS, the calcaneus has been more commonly examined in

osteoporosis research than other skeletal sites, such as the phalanges (Krieg et al., 2008).

Calcaneal QUS measurement involves placing a heel between two piezoelectric probes, one of

which emits and the other one receives impulses of ultrasound waves (typical frequency range:

200-800 kHz) (Guglielmi et al., 2010; Krieg et al., 2008). After being transmitted through the

bone, ultrasound wave characteristics that relate to bone material and structure are obtained,

including attenuation (dB·MHz-1) and speed (m·s-1) of sound (Guglielmi et al., 2010; Krieg et al.,

2008). The stronger the bone, the greater is the attenuation and speed of sound through the

bone. Ex vivo QUS bone measurements were found to be well correlated with bone stiffness,

strength and BMD in human cadavers and bovine femur (Ashman et al., 1987; Bouxsein &

Radloff, 1997; Glüer et al., 1994; Hodgskinson et al., 1996; Langton et al., 1996; Njeh et al.,

1996; Sasso et al., 2008). Since bone acoustic properties are believed to be primarily affected by

the mineralized bone matrix, it is currently accepted that QUS parameters are good estimates

24

of the calcaneal BMD (Nicholson et al., 2001; Wu et al., 1998). However, some believe that they

may also reflect trabecular microarchitecture and bone intrinsic properties of collagen fibres

(Lin et al., 2009; Njeh et al., 2001; Sasso et al., 2008; Wu et al., 1998). Sound attenuation, but

not speed, was found to be particularly influenced by trabecular microarchitecture, possibly

because as sound waves pass through bone they may become scattered and absorbed by the

trabecular structure (Glüer et al., 1994; Kaczmarek et al., 2000; Sasso et al., 2008).

Correlations between QUS and DXA have been found to be as high as r = 0.8-0.9 at the

same skeletal sites, as summarize elsewhere (Lewiecki et al., 2006). Further, in a recent large

prospective study, QUS was found to predict fracture risk independently of DXA (Moayyeri et

al., 2009). Although discordant QUS and DXA results occur, they are not believed to represent

QUS measurement error, but rather the difference in independent information obtained by

these two techniques (Krieg et al., 2008). Currently, calcaneal QUS measurements have been

recommended for estimating the risk of fracture where DXA is not available, as part of

educational programs designed to increase public awareness of osteoporosis, but were not

recommended for osteoporosis diagnosis or treatment monitoring in postmenopausal

population (Krieg et al., 2008; Lewiecki et al., 2006). In postmenopausal research, calcaneal

QUS parameters have been used to monitor bone medications and nutritional strategies (Frost,

2001; Moschonis & Manios, 2006), but large randomized controlled trials (RCTs) are lacking

(Krieg et al., 2008). Although calcaneal QUS has good short-term precision (RMS-CVs: 2.7-5%)

25

(Krieg et al., 2008), follow-up measurements can be influenced by changes in soft tissue

thickness, composition or skin temperature (Chappard et al., 2000; Ikeda & Iki, 2004; Kotzki et

al., 1994). Further, calcaneal QUS parameters were found to be less responsive to bone

medications than central DXA aBMD (Frost, 2001), primarily because peripheral sites are

believed to respond slower to pharmacological interventions (Bouxsein et al., 1999; Krieg et al.,

2008; Lewiecki et al., 2006).

In summary, various bone material and structure properties that determine bone

strength can be estimated non-invasively using DXA, HR-pQCT and QUS tools, as summarized in

Figure 4.

PREVENTION OF POSTMENOPAUSAL OSTEOPOROSIS

Prevention of osteoporosis is especially important in postmenopausal women with

osteopenia, because their bone fragility is not far from being considered osteoporotic and they

continue to lose bone. A postmenopausal woman who is diagnosed with osteopenia should first

attempt to reduce or eliminate modifiable risk factors for osteoporotic fracture, such as

excessive alcohol consumption (≥3 drinks a day) and smoking (Kanis et al., 2010).

BON

E ST

REN

GTH

Bone

min

eral

den

sity

Area

lTo

tal

Volu

met

ric

Trab

ecul

arCo

rtic

alTr

abec

ular

/tot

al

Bone

stru

ctur

e

Geom

etry

Bone

shap

eEx

tern

al d

iam

eter

Cort

ical

thic

knes

s

Mic

roar

chite

ctur

eTr

abec

ular

Co

rtic

al p

oros

ity

Bone

intr

insic

pro

pert

ies

Min

eral

Min

eral

/mat

rixCr

ysta

l size

Mic

roda

mag

eN

umbe

rSi

zeLo

catio

n

Colla

gen

Amou

ntCr

oss-

links

DXA

HR-p

QCT

QU

S

Figu

re 4

. Bon

e m

ater

ial a

nd st

ruct

ure

prop

ertie

s tha

t can

be

dire

ctly

est

imat

ed u

sing

DXA,

HR-

pQCT

and

QU

S.

Abbr

evia

tions

: HR-

pQCT

, hig

h-re

solu

tion

perip

hera

l qua

ntita

tive

com

pute

d to

mog

raph

y; Q

US,

qua

ntita

tive

ultr

asou

nd; D

XA, d

ual-e

nerg

y x-

ray

abso

rptio

met

ry. D

otte

d ar

row

: Alth

ough

HR-

pQCT

is a

ble

to o

btai

n ar

eal b

one

min

eral

den

sity,

it is

not

par

t of i

ts st

anda

rd o

utpu

t.

Luba
Typewritten Text
26

27

Nutrition

Adequate calcium and vitamin D intakes are necessary for healthy bones, because

calcium is the main constituent of the bone mineral matrix and vitamin D regulates calcium

absorption in the body. The most recent Osteoporosis Canada guidelines recommend daily

1200 mg of calcium and 800-2000 IU of vitamin D in adults over the age of 50 (Osteoporosis

Canada, 2010c). Postmenopausal women often do not ingest adequate amounts of calcium

through diet, and are not exposed to enough sunshine throughout the year in the Canadian

climate to metabolize adequate amounts of vitamin D (Pacifici, 2001; Marcus & Majumder,

2001). Thus, calcium and vitamin D supplements are especially recommended in this population

(Brown et al., 2006). However, since excessive calcium supplementation has been recently

linked to increased risk of kidney stones and vascular events (Bolland et al., 2008), dietary

calcium intakes should be estimated and supplements should be matched so that total (diet

plus supplements) daily intakes are no more than 1500 mg (Hung et al., 2010; Osteoporosis

Canada, 2010a). Although the role of other nutrients (for example, vitamin K) and dietary

patterns have been previously investigated (Tucker et al., 2002; Cheung et al., 2008), only

calcium and vitamin D remain to be recommended for osteoporosis prevention in clinical

practice (Brown et al., 2006).

28

Bone medications

Various bone medications are currently prescribed in Canada, but are generally used for

osteoporosis treatment and not prevention in postmenopausal women (Papaioannou et al.,

2010). However, if a postmenopausal woman who has osteopenia is deemed to have a high 10-

year fracture risk due to other clinical factors besides her BMD and age (for example, taking

glucocorticoids for >3 months), bone medications are recommended (Kanis et al., 2010; World

Health Organization, 2010). The most commonly administered bone medications are

bisphosphonates, which reduce bone resorption and bone loss during menopause (Brown et al.,

1990; Cheung et al., 2004). Of these, once a year infusion of zoledronic acid was recently shown

to significantly reduce mortality due to osteoporosis-related causes (Lyles et al., 2007). Daily

injections of parathyroid hormone have been primarily administered in Canada to patients with

severe osteoporosis, because it is a strong anabolic bone agent that not only reduces bone

resorption but also increases bone formation (Black et al., 2003). Other bone medications

include selective estrogen receptor modulators (for example, raloxifene), calcitonin and

denosumab (Osteoporosis Canada, 2010b). Hormone replacement therapy (HRT) is currently

recommended for the treatment of osteoporosis in select postmenopausal women, such as

those with vasomotor symptoms of menopause (NAMS, 2010).

29

Physical activity

Prevention of postmenopausal osteoporosis through physical activity should be a life-

long goal (Vainionpää et al., 2005). There are many striking examples of the effects of physical

activity or disuse on the human skeleton. For instance, adult professional tennis players were

observed to have as much as 35% larger and denser bone in the dominant versus non-dominant

arm (Jones et al., 1977). Astronauts were found to experience as much as 2% monthly bone loss

due to microgravity-related disuse (Jones et al., 1977; Lang et al., 2004), which is similar to the

amount of bone lost in a year in postmenopausal women (Cheung et al., 2008). Physical activity

during childhood and adolescence is especially important for maintaining bone health

throughout life, because insufficient bone formation during this life period can result in

inadequate peak bone accrual (Shea et al., 2004; Wallace & Cumming, 2000). Also compared to

the aging skeleton, young bones have a greater potential for forming new bone, and are thus

more responsive to physical activity (Forwood & Burr, 1993). Only modest increases in BMD (1-

2%) have been found in postmenopausal women, primarily in response to moderate- to high-

intensity but not light-intensity exercises (Shea et al., 2004; Wallace & Cumming, 2000).

Adherence to physical activity can also be low in postmenopausal women, partly due to fear of

sustaining musculoskeletal injury or falling (Shea et al., 2004; Wallace & Cumming, 2000).

However, in spite of minimal BMD improvements and struggles with adherence, physical

activity continues to be an important strategy for the prevention of postmenopausal

30

osteoporosis, because it also improves muscle strength and balance and reduces the risk of

falling (Shea et al., 2004; Wallace & Cumming, 2000).

PHYSICAL STIMULI AND BONE

Bone adaptation to loading

According to Wolff’s law of bone adaptation, normal bone will respond to external loads

it is placed under by adapting to it (Wolff, 1986). If loading on a particular bone is increased

over time, the bone will undergo remodelling and adjust its properties so that it becomes

stronger and better able to resist such forces. In contrast, if loading on a bone decreases, bone

remodelling changes over time so that less bone is accrued and bone becomes weaker. Thus,

habitual loading of the skeleton is necessary for the maintenance of strong bones, otherwise

the skeletal tissue will become compromised by disuse; ‘use it or lose it’ principle applies to the

bones as it does to muscles (Wolff, 1986). In response to increased mechanical loading over

time, the net bone remodelling balance will favour bone formation, resulting in various changes

including increased bone diameter (Haapasalo et al., 2000; Jones et al., 1977), cortical thickness

(Adami et al., 1999), trabecular thickness and number (Modlesky et al., 2008), and BMD

(Wallace & Cumming, 2000). Trabecular microarchitecture will also adapt in the direction at

which the load is applied, due to its anisotropic properties (Biewener et al., 1996).

31

Loading characteristics required for bone formation

What characteristics should an external load have to stimulate bone formation? First,

the load needs to be dynamic or time-varying and not static (Lanyon & Rubin, 1984). Also, bone

responds more to high-magnitude loads and this effect is dose dependent (Rubin & Lanyon,

1985). Until recently, the common perception was that only powerful forces, such as those

experienced during high-intensity impact activities, can cause bone adaptation (Rubin et al.,

2001a). It was assumed that a certain threshold of magnitude of an external force had to be

reached to cause bone tissue microdamage, which would require repair and stimulate bone

formation through osteoblasts (Wolff, 1986; Rubin et al., 2001a). If the magnitude of an

external load was not high enough, bone adaptation was not expected. This assumption was

supported by the evidence which showed that bone adaptation in humans was significant in

response to high-intensity impact activities or heavy dynamic loading, such as running or

weightlifting, but not due to low-intensity physical activities (Margulies et al., 1986; Wallace &

Cumming, 2000). Thus, primarily moderate- to high-intensity physical activities have been

recommended for the prevention of osteoporosis in postmenopausal women (Forwood & Burr,

1993).

Recently, however, the importance of small-magnitude loads, which were applied below

an order necessary to cause bone microdamage, but at a high frequency, became highlighted

32

(Judex et al., 2003). High-magnitude loads are not very common during a typical human day,

while small-magnitude strains seem to be omnipresent due to muscle contractions necessary to

retain posture (Fritton et al., 2000). If only high-magnitude strains were the primary source of

physical bone adaptation in humans, then disuse due to microgravity would be expected to

cause minimal bone deterioration in astronauts (Rubin et al., 2001a). However, the amount of

bone lost during one month of microgravity is similar to that of annual bone loss due to age-

related osteoporosis (Lang et al., 2004; Cheung et al., 2008). Thus, lack of constant contractions

of postural slow-twitch muscles, which cause small-magnitude high-frequency strains within

the bone, probably explains such considerable bone loss due to microgravity (Ozcivici et al.,

2010). The importance of high-frequency small-magnitude physical stimuli became more

apparent after various experimental models were conducted (Judex et al., 2003; Qin et al.,

1998; Rubin et al., 2001a; Rubin & McLeod, 1994). Using the turkey ulna model, Qin et al.

established a non-linear relationship between strain magnitude and number of daily loading

cycles necessary for the maintenance of bone mass (Qin et al., 1998), as shown in Figure 5. Also

in disuse osteopenia turkey models, smaller reductions in cross-sectional bone area and

increased growth in bone implant were found in response to low-magnitude high-frequency

mechanical loading applied directly to ulnae using vibrating clamps (Rubin & McLeod, 1994).

Figu

re 5

. Pro

pose

d no

n-lin

ear r

elat

ions

hip

betw

een

bone

stra

in m

agni

tude

and

num

ber o

f dai

ly lo

adin

g cy

cles

nec

essa

ry fo

r the

m

aint

enan

ce o

f bon

e m

ass

in th

e tu

rkey

uln

a m

odel

.

Adap

ted

from

: Qin

YX,

Rub

in C

T, M

cLeo

d K.

Non

linea

r dep

ende

nce

of lo

adin

g in

tens

ity a

nd c

ycle

num

ber i

n th

e m

aint

enan

ce

of b

one

mas

s and

mor

phol

ogy.

Jour

nal o

f Ort

hopa

edic

Res

earc

h.19

98; 1

6:48

2-48

9.

Num

ber o

f loa

ding

cyc

les

Bone strain magnitude

Bone

reso

rptio

n

Bone

form

atio

n

2,00

0 m

icro

stra

in,

4 cy

cles

X

1,00

0 m

icro

stra

in,

100

cycl

es

X

10 m

icro

stra

in,

100,

000

cycl

es

X

Luba
Typewritten Text
33

34

Translation of physical stimuli via bone fluid-flow

How do physical stimuli become translated within the bone to cause regulatory changes

and bone formation? As discussed above, Wolff’s law and the assumption that high enough

forces were required to cause bone microdamage and bone formation did not explain how

small-magnitude physical stimuli became amplified and translated into bone formation within

the bone (Qin et al., 1998; Wolff, 1986). Thus, it was proposed that transduction of mechanical

signals to bone formation probably involved bone fluid-flow through pores or canaliculi in the

bone matrix, as the bone became influenced by physical perturbations in its environment

(Huiskes et al., 2000; Knothe Tate, 2003; Frost, 1998; Turner et al., 1995). Potential bone cells

that may become influenced by changes in bone fluid-flow and orchestrate transduction of

mechanical signals into cellular signalling include bone osteocytes, which are mature

osteoblasts surrounded by their own secreted products with cytoplasmic extensions connecting

one osteocyte to another (Huiskes et al., 2000; Knothe Tate, 2003; Frost, 1998; Turner et al.,

1995). These cytoplasmic extensions are located in a network of canaliculi and surrounded by

the bone fluid. Osteocytes are also connected to bone lining cells, which are precursors of

osteoblasts located on the trabecular surface. Thus, this syncytium of osteocytes, which is

surrounded by bone fluid and connected to bone lining cells and osteoblasts, became the

candidate medium for the conversion of mechanical signals into regulatory mechanisms

involving bone formation (Huiskes et al., 2000).

35

Under stable conditions, bone exists in an environment with specific strain

characteristics to which it is accustomed, and which is dictated by its material and structural

properties. When a physical stimulus is applied to a bone, perturbations in bone’s strain

environment occur, leading to changes in bone fluid-flow. Perturbations to bone’s strain

environment can be caused by external or internal physical stimuli. For example, osteoclastic

resporption is believed to result in a formation of tiny cavities, which can cause perturbations

to bone’s strain environment and fluid-flow locally, and thus stimulate bone formation

(Huiskes et al., 2000), while skeletal muscles contraction provides external stimulation (Judex &

Rubin, 2010). High-magnitude external forces may cause more significant perturbations to

bone’s strain environment and bone fluid-flow, while small-magnitude high-frequency

mechanical signals may create smaller but more abundant changes in bone fluid-flow (Huiskes

et al., 2000).

How exactly bone fluid-flow changes become translated into bone formation is still

poorly understood. As already mentioned, osteocytes are believed to be involved in the

orchestration of mechanical signals transduction by bone fluid-flow changes perhaps via the

Wnt-β-catenin signalling and mesenchynal stem cell differentiation towards osteoblasts

(Ozcivici et al., 2010). As summarized elsewhere, the mechanosensors that may sense bone

fluid-flow changes by the bone cells may include 1) cellular ion channels activity stimulated by

36

stretch and/or strain, 2) cell membrane integrins influenced by shear stress and deformation, 3)

cell membrane lipid rafts influenced by shear stress (Ozcivici et al., 2010).

WHOLE-BODY VIBRATION: PHYSICAL STIMULUS FOR BONE

What is whole-body vibration?

Recently, whole-body vibration (WBV) has been advocated as an exercise modality for

improving muscle and bone strength (Prisby et al., 2008; Totosy de Zepetnek et al., 2009). WBV

involves a person standing on a ground-based platform which accelerates up-and-down in an

oscillating fashion, and in turn propagates mechanical signals from the plantar feet surface to

the weight-bearing muscles and bones. Both, frequency and magnitude of WBV determine its

intensity. Frequency is the speed at which the platform oscillates and is expressed in Hertz; 1 Hz

equals one oscillation per second. The magnitude or peak acceleration at which the WBV

platform moves up-and-down is expressed as acceleration due to Earth’s gravity; 1g equals 9.8

m·s-2 (Rauch et al., 2010). Generally, the higher the frequency and magnitude of WBV, the

faster and more pronounced is the body’s movement (Griffin, 1998; Griffin & Mills, 2002a;

Griffin & Mills, 2002b). Also, at a certain frequency range even small-magnitude WBV can

become amplified within the body. This phenomenon is known as resonance. The frequency at

which resonance occurs is called natural frequency, and it varies from one body segment to

37

another. For example, resonance of the whole body occurs at natural frequencies between 8 to

20Hz, while spine resonates at 3 to 5 Hz and fingers at 125 to 300 Hz (Miwa, 1988; Randall et

al., 1997). Further, radius was found to resonate between 70 to 110 Hz in older men and tibia

between 21 to 39 Hz in postmenopausal women (Bediz et al., 2010; Ozdurak et al., 2006).

Currently available WBV platforms have been commonly classified as low-magnitude or

high-magnitude (Rubin et al., 2004). Low-magnitude WBV platforms oscillate at <1g, while high-

magnitude WBV accelerates the body at ≥1g. Low-magnitude WBV was the primary focus of

experimental animal models which examined WBV effects on bone (Rubin et al., 2001a). In

clinical bone research, the most commonly examined low-magnitude WBV was at 0.3g and at

90 Hz or 30 Hz (e.g., Figure 6 shows Dynamic Motion Therapy 1000 by Juvent Medical Inc.)

(Gilsanz et al., 2006; Rubin et al., 2004; Ward et al., 2004). Investigations of high-magnitude

WBV initially focused on its effects on muscle strength and power, particularly in athletes (Rehn

et al., 2007). When osteogenic effects of high-magnitude WBV were examined, various

magnitudes above 1g were used at frequencies typically less than 30 Hz, although one

investigation used frequencies between 35 and 40 Hz (Verschueren et al., 2004). WBV

platforms have also been classified based on the direction of vibration plate movement as 1)

synchronous, due to vertical up-and-down movement, and 2) side-alternating, due to tilting up-

and-down movement (Rauch et al., 2010).

Figu

re 6

. Low

-mag

nitu

de w

hole

-bod

y vi

brat

ion

plat

form

: Dyn

amic

Mot

ion

Ther

apy

1000

™ (J

uven

t Med

ical

Inc.

)

Luba
Typewritten Text
38

39

How does whole-body vibration influence muscles and bones?

From a biomechanical standpoint, WBV accelerates the whole body and its segments

analogous to ground reaction forces leading to ground-based accelerations of the body during

weight-bearing activities, such as walking, running or jumping. As such, WBV may 1) directly

‘shake’ the bones and/or 2) activate the skeletal muscles, possibly via the stretch reflex, and

thus indirectly stimulate the bones (Cardinale & Lim, 2003; Judex & Rubin, 2010). It was

recently highlighted that although high-magnitude WBV may activate the skeletal muscles and

thus stimulate the bone, low-magnitude WBV probably causes direct ‘shaking’ and stimulation

of the bone, independent of skeletal muscle activation (Judex & Rubin, 2010). In older adults,

who experience age-related sarcopenia and decline in skeleton’s sensitivity to mechanical

signals, WBV is believed to harness mechanical stimulation within the bone that would

otherwise arise due to skeletal muscles contraction during activities of normal daily-living or

due to slow-twitch postural muscles contractions (Ozcivici et al., 2010). This harnessing of

mechanical stimulation of the bone in older adults could occur in various ways: 1) direct

stimulation or ‘shaking’ of the bones by WBV may mimic mechanical signals that would

otherwise arise from skeletal muscles activation, 2) skeletal muscles activation by the WBV may

introduce additional mechanical signals within the bone, and 3) increased muscle strength due

to skeletal muscles activation by WBV may expose bone to greater forces and thus introduce

greater stimulation of the bones during normal daily activities (Judex & Rubin, 2010).

How much the whole body and its parts become accelerated in response to WBV

depends on the transmission of vibration signal through the body, and is influenced by WBV

magnitude, frequency and resonance, soft tissue attenuation, joint angles, and muscle activity

40

(Kiiski et al., 2008; Rubin et al., 2003). Although transmission of the WBV signal through the

body is a complex phenomenon that depends on an interplay between many factors, several

generalizations can be made (Kiiski et al., 2008; Rubin et al., 2003). Compared to low-

magnitude WBV, high-magnitude vibration shakes the body parts more violently, and is thus

propagated more readily through the body (Kiiski et al., 2008; Rubin et al., 2003). Transmission

of WBV is also frequency-dependent, possibly due to resonance. For example, more than 100%

transmissibility of WBV signal was found at the hip at frequencies <20 Hz, but declined to 80%

at frequencies >25 Hz (Rubin et al., 2003). Finally, the further away the WBV signal has to travel

from its oscillating source, the more attenuated it becomes within the body (Kiiski et al., 2008).

One study found that WBV accelerations transmitted through the body were the least

attenuated at the ankle and the most at the spine, regardless of frequencies and magnitudes

used (Kiiski et al., 2008). Significant factors that are believed to dampen accelerations due to

WBV, include muscle activity, body fat and joint flexion, specially at the knees (Kiiski et al.,

2008; Rubin et al., 2003; Rubin et al., 2004).

Whole-body vibration and bone formation

Based on experimental findings of increased bone formation rate and other bone

benefits in early animal models’ of WBV (Garman et al., 2007; Judex et al., 2007; Oxlund et al.,

2003) and improvements in BMD in clinical studies’ of WBV (Gusi et al., 2006; Ruan et al., 2008;

Verschueren et al., 2004; Gilsanz et al., 2006; Ward et al., 2004), several physiological

mechanisms have been proposed to explain WBV effects on bone; however, the exact

41

mechanism has not yet been elucidated. Regardless of whether WBV causes direct ‘shaking’ of

the bones or activation of the skeletal muscles, mechanical signals arising from vibration within

the bone become somehow translated into cellular mechanisms leading to increased bone

formation. Since the magnitude of external loads due to WBV may not be high enough to cause

bone tissue microdamage, especially with low-magnitude WBV, microdamage repair leading to

increased bone formation probably does not occur (Judex & Rubin, 2010; Qin et al., 1998;

Wolff, 1986). Thus, bone fluid-flow changes in the canaliculi, resulting from the direct or

indirect shaking of the bones, may occur in response to WBV and cause anabolic bone changes,

via cellular mechanisms explained in the section above (You et al., 2001). Other physiological

mechanisms, such as increased oxygen consumption and blood flow and hormonal activation

may also influence bone changes in response to WBV (Cardinale & Lim, 2003; Cardinale et al.,

2007; Kvorning et al., 2006; Rittweger et al., 2000; Stewart et al., 2005).

Experimental models of whole-body vibration

As reviewed previously (Prisby et al., 2008), several experimental animal models, albeit

not all (Castillo et al., 2006; Rubinacci et al., 2008), found anabolic effects of WBV on bone.

Perhaps the most convincing evidence of WBV osteogenic effects was obtained by Rubin et al.

(2001a), who administered WBV in mature female sheep through their hind legs. After 12

months of low-magnitude WBV at 0.3g and 30 Hz for 20 minutes a day, a 30% increase in

trabecular vBMD and significant improvements in trabecular microarchitecture were observed

42

at the femur when compared to controls (Rubin et al., 2001a; Rubin et al., 2002b). However,

these osteogenic effects of WBV were observed at hind limbs (femur) and not front limbs

(radius), suggesting that the benefits may be limited to the weight-bearing bones in humans

(Rubin et al., 2002b). Positive effects of WBV on the skeleton were also found in growing mice

and rats (Garman et al., 2007; Ozcivici E et al., 2007; Rubin et al., 2001a; Xie et al., 2008), and

ovariectomized young and mature rats (Judex et al., 2007; Oxlund et al., 2003; Flieger et al.,

1998). WBV was found to counteract bone loss in ovariectomized rats while no effect was

found in SHAM-operated controls, indicating that more compromised skeleton may respond

more to WBV (Flieger et al., 1998). In adult mice, enhanced trabecular bone volume was found

in the proximal tibia but not at skeletal sites located further away from the origin of WBV

stimulus, such as vertebrae or femur (Christiansen & Silva, 2006). Bone parameters which were

found to significantly improve due to WBV in experimental animal models, included trabecular

bone volume (Christiansen & Silva, 2006; Judex et al., 2007), bone mass (Rubin et al., 2001a)

and bone formation rate (Garman et al., 2007; Judex et al., 2007; Oxlund et al., 2003).

Trabecular bone parameters were found to respond more to WBV than cortical (Rubin et al.,

2002b). Further, WBV at low magnitudes (0.1 to 0.6 g) and high frequencies (30-90Hz) was

primarily examined in experimental animal models (Prisby et al., 2008). One study in mice

observed greater enhancements in trabecular bone formation at 0.3g than 0.6g WBV at 45 Hz

(Garman et al., 2007), while another investigation in rats observed improvements in trabecular

microarchitecture in response to 90 Hz but not 45 Hz WBV at 0.15g (Judex et al., 2007). This

43

evidence suggests that WBV anabolic bone effects may be more frequency than magnitude-

dependent. Finally, Judex et al. observed significant bone anabolic effects of WBV only in a

subset of mice with specific genetic variations, suggesting that genes also play a role in

skeleton’s responsiveness to WBV (Judex et al., 2002).

Clinical studies of whole-body vibration

Clinical investigations of WBV effects on bone have been primarily conducted in

postmenopausal women (Gusi et al., 2006; Iwamoto et al., 2005; Ruan et al., 2008; Rubin et al.,

2004; Russo et al., 2003; Verschueren et al., 2004; von Stengel et al., 2010a), although other

clinical populations were also investigated (Davis et al., 2010; Gilsanz et al., 2006; Torvinen et

al., 2003; Ward et al., 2004). Postmenopausal women were probably more commonly

examined because, as discussed above, they are at increased risk of developing osteoporosis,

and would thus especially benefit from novel prevention strategy such as WBV. As well, WBV

was previously shown to increase muscle power, strength and balance in younger individuals

and postmenopausal women (Verschueren et al., 2004; Cardinale & Rittweger, 2006; Rehn et

al., 2007). As such, not only skeletal but also muscle and balance benefits were expected in

response to WBV in postmenopausal women, which may protect them better from sustaining a

fall-related fracture (Verschueren et al., 2004). Some trials of postmenopausal women found

improvements in BMD (Gusi et al., 2006; Ruan et al., 2008; Verschueren et al., 2004), while

44

others did not (Iwamoto et al., 2005; Rubin et al., 2004; Russo et al., 2003; von Stengel et al.,

2010a). Conclusions about the efficacy of WBV in reducing postmenopausal bone loss are

difficult to make, because prior trials utilized somewhat flawed study designs and

heterogeneous WBV regimens. For instance, calcium and vitamin D supplements were not

provided in many trials, sample sizes were small (n<100) and loss to follow-up was significant.

Low-magnitude and high-magnitude WBV were administered at various frequencies (12-90 Hz)

anywhere between 4 to 20 minutes per day and once a week to twice a day.

In addition to postmenopausal women, WBV effects on the bone have been examined

in various clinical populations, such as children and adolescents with low bone mass, healthy

young adults, and spinal cord injury patients (Davis et al., 2010; Gilsanz et al., 2006; Torvinen et

al., 2003; Ward et al., 2004). Significant effects of WBV on bone were observed in children and

adolescents with compromised bones (Gilsanz et al., 2006; Ward et al., 2004). For example,

compared to controls, an overall 18% improvement in vBMD was found in children with

disabling conditions who received WBV at 0.3g and 90 Hz for 6 months (10 minutes a day, 5

days a week), and this in spite of 44% adherence (Ward et al., 2004). Only one trial was

conducted in young adults showing no significant WBV effects (Torvinen et al., 2003), and

investigations in spinal cord injury patients are only beginning (Davis et al., 2010).

45

WHOLE-BODY VIBRATION SAFETY

Safety of WBV as an exercise and osteoporosis-prevention strategy requires some

attention. Although previous trials in postmenopausal women did not report serious or

frequent adverse events in response to 6 to 12 months of WBV (Gusi et al., 2006; Iwamoto et

al., 2005; Ruan et al., 2008; Rubin et al., 2004; Russo et al., 2003; Verschueren et al., 2004; von

Stengel et al., 2010a), prolonged exposures to WBV in occupational settings have been linked to

a variety of debilitating chronic conditions (Griffin, 1998; Randall et al., 1997). Vibration sources

in occupational settings such as construction, mining, and forestry include, driving in a vehicle

that causes vertical accelerations of the seated body, standing on a drilling platform or holding

a drill. Some deleterious effects of occupational vibration are believed to be caused by

resonance due to WBV in a seated position, generally at high magnitude (≥1g) and low

frequency (<20 Hz) (Griffin, 1998; Mansfield, 2005; Randall et al., 1997). Different body parts

were found to be sensitive to different resonance frequencies; for example, the standing body

was found to resonate at 8-20 Hz, while spinal column resonated at 3-5 Hz and stomach at 4-5

Hz (Randall et al., 1997). Common deleterious effects due to prolonged exposures to

occupational WBV in a seated position at high magnitude and low frequency (for example,

driving) include, motion sickness, gastric motility suppression, low-back and neck pain, and

spinal degeneration (Griffin, 1998; Mansfield, 2005; Ishitake et al., 1999). Interestingly, some of

46

the symptoms caused by prolonged exposures to occupational WBV are opposite to those

observed in response to WBV as an exercise-like modality. For example, improvements in

balance were observed in nursing home residents in response to WBV as an exercise-like

modality (Bruyere et al., 2005), while reductions in standing balance occurred to drivers

exposed to WBV while driving (Mani et al., 2010). Similarly, improvements in back pain were

found in postmenopausal women due to exercise-like WBV (Iwamoto et al., 2005), but chronic

back pain symptoms have been reported in drivers due to occupational WBV (Lings et al., 2000;

Pope et al., 1998).

Other injuries in the occupational settings involve local vibration of the feet, generally

due to standing on a drilling platform or sitting in a moving vehicle. Vibration-related symptoms

of the feet resemble those of a well-known vibration syndrome due to holding a drill, the hand-

and-arm vibration syndrome (HAVS), which involves vascular, neurological and musculoskeletal

damage leading to disorders such as Raynaud’s and vibration-white hand (Dong et al., 2001;

Friden, 2001). Vibration-white foot syndrome was also recently described in the medical

literature (Thompson et al., 2010; Dong et al., 2001; Friden, 2001). Hands were found to be

more deleteriously influenced by the vibration at high frequencies (hand: 30-40Hz; fingers: 125-

300 Hz) (Dong et al., 2001; Friden, 2001), and foot sensitivity to small-magnitude WBV was also

found to increase with increasing frequency (Miwa, 1988). However, resonance frequency

range for foot injuries due to WBV has not yet been established.

47

RATIONALE

Is there a role for WBV in the prevention of postmenopausal osteoporosis? A plethora

of WBV platforms exist, some advertised as osteoporosis prevention strategies while others as

exercise-like modalities (Power Plate, 2020; Juvent Inc, 2010). Hopeful claims have been made

in the newspapers, magazines and medical journals (Eisman, 2001; Harvard Health Publications,

2006; Skelly, 2007). As reviewed above, early experimental animal models showed relatively

consistent and significant improvements in various bone parameters due to WBV. Also, the

current understanding of how mechanical signals become translated to bone formation via

bone fluid-flow elegantly parallels a potential mechanism through which WBV could exert its

osteogenic effects. However, clinical research in postmenopausal women produced conflicting

results and contained several research gaps, thus requiring further investigations. This has left

clinicians and the general population wondering whether WBV can be used to improve skeletal

integrity in humans, and especially in postmenopausal women who are burdened by age-

related osteoporosis (Eisman, 2001; Harvard Health Publications, 2006; Skelly, 2007).

Many reviews have been written in an attempt to decipher the overall effect of WBV on

bone in postmenopausal women, however none were conducted systematically (Cardinale &

Rittweger, 2006; Ozcivici et al., 2010; Prisby et al., 2008; Rubin et al., 2006; Totosy de Zepetnek

et al., 2009). Further, previous RCTs have not yet been examined in a meta-analysis to estimate

48

the overall magnitude of WBV effect on bone. This is important, because the sample sizes of

previous trials were small (n<100), thus statistical power could be gained by combining them in

a meta-analysis. As well, because previous study designs were relatively flawed, more RCTs are

needed in postmenopausal women with methodological improvements.

Previous RCTs of WBV effects on bone in postmenopausal women primarily examined

aBMD measurements at central sites. Although central DXA measurements are more relevant

to postmenopausal osteoporosis management, the efficacy of WBV in this population is yet to

be determined. Peripheral sites are located closer to the origin of WBV and are thus expected

to receive a less attenuated WBV signal (Kiiski et al., 2008). Also, because trabecular bone is

more metabolically active than cortical bone, and was shown in experimental models to be

especially responsive to WBV (Rubin et al., 2002b), obtaining peripheral measurement of

trabecular bone is of particular interest. Thus, further assessment of trabecular vBMD at the

distal tibia using an HR-pQCT would be of great relevance to the study of WBV efficacy in

postmenopausal population. As well, WBV effects on calcaneal QUS parameters have not yet

been examined in any clinical populations or experimental animal models. Although calcaneal

QUS measurements have not been as widely used and recommended for monitoring therapy as

DXA and HR-pQCT (Krieg et al., 2008; Lewiecki et al., 2006), WBV presents a special clinical

situation where such measurements would be of special interest, because the vibration

stimulus enters the skeleton through the plantar feet surface, including the calcaneus.

49

To better elucidate the efficacy of WBV on postmenopausal skeleton, women with low

BMD should be examined. Early experimental models have shown that more compromised

bones may respond better to WBV (Flieger et al., 1998). However, since WBV is not yet

considered an appropriate treatment for osteoporosis, it should not be investigated in

osteoporotic populations unless they are also taking bone medications. Thus, a more

appropriate postmenopausal population for the study of WBV effects on bone would be

osteopenic women not on bone medications.

Finally, previous RCTs in postmenopausal women utilized various magnitudes and

frequencies of WBV, potentially contributing to conflicting findings. Since animal models

showed smaller importance of high-magnitude WBV and greater importance of a high-

frequency WBV, this should be also investigated in postmenopausal women (Garman et al.,

2007; Judex et al., 2007).

Thus, this thesis was proposed to first examine previous RCTs of WBV effects on bone in

postmenopausal women by conducting a systematic review and a meta-analysis. Second, a RCT

was conducted in osteopenic postmenopausal women to examine effects of low-magnitude

WBV at two different frequencies (90Hz and 30 Hz) on bone parameters assessed by DXA and

HR-pQCT, while improving on several methodological limitations of previous trials. Third,

calcaneal QUS parameters were also examined as secondary outcomes in this RCT.

50

OBJECTIVES AND HYPOTHESIS

The main objectives and this investigation were:

1. To perform a systematic review and meta-analysis of the existing RCTs to examine WBV

effects on BMD in postmenopausal women.

2. To conduct a RCT to examine bone changes (absolute, 12-month) assessed by bone

densitometry tools, DXA (aBMD at the femoral neck, total hip and lumbar spine) and HR-pQCT

(total, cortical and trabecular vBMD, cortical thickness, and trabecular microarchitecture at the

distal tibia and distal radius), in response to WBV in postmenopausal women.

3. To examine bone ultrasound properties (broadband attenuation and speed of sound), as

assessed by calcaneal QUS, as secondary outcomes in the aforementioned RCT.

The systematic evaluation was conducted here so that only trials which used a true

randomized controlled design were included, and so that methodological quality and study bias

were assessed. Children, adolescents and young adults were also included in the systematic

evaluation, so that WBV effects in postmenopausal women could be compared to those

occurring during other stages of the bone remodelling cycle. Meta-analysis was also conducted

as part of this systematic evaluation to estimate WBV effect magnitude.

51

The RCT conducted as part of this thesis was designed to improve on the following gaps and

methodological limitations observed in previous trials:

- Only postmenopausal women with osteopenia, as defined by WHO criteria, not on bone

medications were included. Strict inclusion and exclusion criteria were applied to

eliminate any potential effects of bone medications and secondary causes for

osteoporosis.

- A fuller assessment of bone changes in response to WBV was performed by non-

invasively obtaining more determinants of bone strength than in prior trials. The

following measurements were obtained: DXA aBMD at the femoral neck, total hip,

lumbar spine (aBMDf, aBMDh, aBMDs); HR-pQCT total, cortical, and trabecular vBMD

(vBMDtot, vBMDc, vBMDt), cortical thickness (CTh), and trabecular thickness,

separation, number and bone volume fracture (TTh, TSp, TN, BV/TV) at the distal tibia

and distal radius; and QUS broadband attenuation (BUA), speed of sound (SOS) and

quantitative ultrasound index (QUI, a composite score of BUA and SOS) at the calcaneus.

The primary outcome, specified a priori, was trabecular vBMD at the distal tibia.

- Adequate calcium and vitamin D supplements were provided, so that total daily intakes

from diet plus supplements were approximately 1200 mg and 1000 IU, respectively.

52

- A larger sample size (n>100) was ensured here compared to previous RCTs to increase

statistical power. As well, intention-to-treat (ITT) analysis was performed to reduce

attrition bias.

- Low-magnitude WBV at 0.3g and 90 Hz versus 0.3g and 30 Hz versus controls was

examined.

- WBV was administered daily for 20 consecutive minutes.

This doctoral thesis was summarized in three chapters, each written as a manuscript for

publication in a peer-reviewed journal. Chapter one reports the systematic review and meta-

analysis, while chapters two and three describe the RCT. DXA and HR-pQCT findings were

reported in chapter two, separately from calcaneal QUS results, which were described in

chapter three. As discussed above, compared to QUS, DXA and HR-pQCT are more widely used

and accepted tools for the assessment and monitoring of postmenopausal osteoporosis, and

their results were therefore reported separately.

The main hypotheses in this investigation were:

1. The pooled estimate of the RCTs included in the meta-analysis was expected to show

significant improvement in BMD in WBV participants compared to controls.

53

2. DXA and HR-pQCT parameters were expected to improve in WBV participants compared to

controls to indicate stronger bones. The greatest improvements were expected in trabecular

vBMD and structure measurements at the distal tibia. WBV at 90 Hz was expected to have

stronger effects than at 30 Hz.

3. Calcaneal QUS parameters were expected to improve in WBV participants compared to

controls to indicate stronger bones. WBV at 90 Hz was expected to have stronger effects than

at 30 Hz.

54

CHAPTER ONE: EFFECT OF WHOLE-BODY VIBRATION ON BONE MINERAL DENSITY: A

SYSTEMATIC REVIEW AND META-ANALYSIS.

Accepted for publication in a peer-reviewed journal:

Slatkovska L, Alibhai S, Beyene J, Cheung AM. Effect of whole-body vibration on bone mineral

density: a systematic review and meta-analysis. Osteoporosis International, 2010 (Epub ahead

of print)

55

ABSTRACT

Purpose: Animal experiments report anabolic bone changes in response to whole-body

vibration (WBV), but data in humans are limited. Our objective is to conduct a systematic

review and meta-analysis of RCTs examining WBV effect on bone mineral density (BMD).

Methods: Eligible RCTs included randomized or quasi-randomized trials, with follow-up

of ≥6 months, examining WBV effects on BMD in ambulatory individuals without secondary

causes of osteoporosis. The weighted mean differences between WBV and control groups in

absolute pre-post change in spine and hip areal BMD (aBMD), and in spine and tibia trabecular

volumetric BMD (vBMD) were calculated.

Results: Eight RCTs in postmenopausal women (5 RCTs), young adults (1 RCT), and

children and adolescents (2 RCTs) were included. The regimens were heterogeneous, study

durations were relatively short, and available data was mostly per-protocol. In postmenopausal

women, WBV was found to significantly increase hip aBMD (0.015 g·cm-2; 95% CI, 0.008-0.022;

n=131) versus controls, but not spine aBMD (n=181) or tibia trabecular vBMD (n=29). In

children and adolescents, WBV significantly increased spine (6.2 mg·cm-3; 95% CI, 2.5-10.0;

n=65) and tibia (14.2 mg·cm-3; 95% CI, 5.2-23.2; n=17) trabecular vBMD. In young adults, WBV

did not increase spine or hip bone mineral content, or tibia trabecular vBMD (n=53).

56

Conclusions: We found significant but small improvements in BMD in postmenopausal

women and children and adolescents, but not in young adults. WBV is a promising new

modality, but before recommendations can be made for clinical practice, large-scale long-term

studies are needed to determine optimal magnitude, frequency and duration.

Keywords: meta-analysis, whole-body vibration, bone mineral density, quantitative computed

tomography.

57

INTRODUCTION

Whole-body vibration (WBV) has received much attention as a potential anti-

osteoporotic intervention in recent years (Eisman, 2001; Rubin et al., 2006). In experimental

animal models, WBV was found to lead to anabolic bone changes (Flieger et al., 1998; Rubin et

al., 2001b; Rubinacci et al., 2008; Judex et al., 2003; Rubin et al., 2002a; Rubin et al., 2002b;

Judex et al., 2005; Xie et al., 2006; Christiansen & Silva, 2006). Based on these data and the

availability of many different WBV platforms in North America and Europe, optimistic claims

that these benefits may translate to humans have been made within the scientific community

(Rubin et al., 2001a) and in the media (Kolata, 2007). Such claims quickly proliferated to today’s

information-savvy general population (Wikimedia Foundation Inc, 2009), and has left many

clinicians and patients wondering about the role of WBV in osteoporosis prevention and/or

treatment.

The intervention involves an individual standing on a vibrating platform. Through

ground-based vertical accelerations starting at the plantar surface of the feet, the mechanical

vibration is transmitted through the weight-bearing muscles and bones (Kiiski et al., 2008;

Rubin et al., 2003). The intensity of WBV is defined by its frequency (Hertz) and magnitude,

where magnitude is expressed as peak acceleration (g; 1g=9.8 m/s2 acceleration due to gravity)

and/or vertical displacement (millimetres). A hypothesized mechanism through which WBV is

58

believed to exert its anabolic effects on the skeleton is via activation of the musculature which

results in mechanotransduction of vibration strains within the bone (Rubin et al., 2006; Fritton

et al., 2000). Another hypothesis is that these high frequencies but low magnitude WBV signals

become amplified within the bone tissue by stress-generated fluid flow, and thereby activate

bone cells which act as mechanosensors (Rubin et al., 2006; Fritton et al., 2000).

In spite of the plausible physiological mechanism and the promising results obtained in

experimental animal models, effects of WBV on the human skeleton remain uncertain.

Although different reviews have attempted to summarize the existing body of clinical evidence,

none of them have performed a systematic evaluation (Eisman, 2001; Prisby et al., 2008; Rubin

et al., 2006). Therefore, to more objectively advance our knowledge of the role of WBV in

clinical practice, we conducted a systematic review and a meta-analysis of WBV effect on bone

mineral density (BMD) in humans.

METHODS

We followed the procedures for conducting systematic reviews as defined by the

Cochrane Collaboration (Higgins & Green S, 2008), and reporting guidelines of the QUOROM

statement (Moher et al., 1999). Data sources, study selection, data extraction and quantitative

data synthesis were specified a priori. Study selection and data extraction were conducted

59

independently by two authors (LS and SMHA) using the same data forms, and disagreements

were resolved by consensus. Subgroup and sensitivity analyses were modified post hoc due to

the small number of eligible RCTs.

Data sources

One reviewer (LS) performed a search strategy, screened the titles and abstracts, and

identified references potentially appropriate for inclusion. With assistance from an experienced

research librarian, a broad search strategy was performed without language restriction, from

the earliest available date, using relevant electronic databases (MEDLINE, EMBASE, Cochrane,

CINAHL, SportsDiscus, ProQuest Dissertations, and Theses Canada Portal). The following

medical subject headings terms were used: (vibration, mechanical stress, physical stress,

physical activity, or weight-bearing) and (bone and bones, bone density, or muscles) and (clinical

trial, meta-analysis or multicenter study). Finally, we performed a hand search of bibliographies

of the publications that were retrieved. Unpublished trials were searched using clinical trials

registries (ClinicalTrials.gov and controlled-trials.com) and by enquiring experts in the area of

WBV.

60

Study selection

We included randomized and quasi-randomized trials examining the effects of WBV on

BMD in humans, with a minimum follow-up period of six months, as it takes 6 or more months

for BMD to show a significant response. Eligible study populations were not restricted based on

age, sex, race, or physical activity levels. Blinding of participants and study staff was not an

eligibility requirement. WBV therapy was defined as mechanical vibration, performed with a

straight body (standing or lying), with no restriction on the frequency (Hertz), amplitude

(millimetres), peak acceleration (gravitational constant, g), and cumulative dose (total number

of minutes per study duration; most WBV platforms have a sensory device that monitors the

adherence) of WBV. Localized mechanical vibration (for example, vibration pads) or ultrasound

and electrical stimuli were not recognized as WBV. Vibration signals that were not received

through a completely straight body (for example, sitting on a vibrating chair) were also

excluded. Acceptable control interventions types included no treatment, sham vibration

(audible sound with no mechanical vibration), and exercise interventions. Trials which included

participants with secondary causes of osteoporosis (for example, glucocorticoids therapy or

haemodialysis) or those with causes for non-ambulatory status (for example, paraplegics) were

also excluded. We also excluded RCTs in which participants were taking anti-osteoporotic

medications if they were not distributed equally between study-arms, but we included trials in

which anti-osteoporotic co-interventions were matched between trial arms. Finally, trials with

more than two study arms were included in the analysis without eliminating any of the arms;

61

relevant study arms were combined to create a single pair-wise comparison as recommended

in the Cochrane Handbook for Systematic Reviews of Interventions version 5.0.1 (Higgins &

Green S, 2008).

Data extraction

All data was extracted using standardized data collection forms (see the Technical

Appendix). The extracted data included any relevant information regarding the trials’

characteristics, BMD outcomes, and methodological quality. Per-protocol and not intention-to-

treat (ITT) data were preferentially extracted for primary analysis. We chose per-protocol over

ITT data because the majority of the included RCTs reported per-protocol and not ITT analysis.

Also, adherence to prescribed cumulative dose of WBV ranged considerably between the

included trials. Hence, using per-protocol data allowed us to minimize the clinical heterogeneity

between-trials, as well as enabled us to better examine the effectiveness of WBV due to higher

overall adherence. A major drawback of per-protocol analysis is that it produces attrition bias,

reduces the methodological quality of the results, and thus increases the type I error.

Data was extracted separately for postmenopausal women, young adults, and children

and adolescents, so that separate analyses can be performed for each population. Pooling

these populations would introduce unwanted clinical heterogeneity, because physiologically

different bone metabolic processes occur in these populations. In children and adolescents,

62

bone is being accrued and their BMD typically increases over time and in response to effective

therapies (Nelson et al., 2006). In young adults, BMD generally plateaus and would be expected

to also increase in response to effective interventions (Nelson et al., 2006). Finally,

postmenopausal women typically lose BMD over time, and would be expected to experience a

reduction in the decline of BMD in response an effective therapy (Reid, 2006).

Methodological quality was assessed in terms of the different components that make up

trial quality as opposed to using the currently available quality scales, due to the advantages

that this approach offers in comparison to the scale approach (Juni et al., 2001). As such, we

identified the presence of the following types of study bias via a standardized but not validated

checklist: selection bias (lack of true randomization and concealment of allocation),

performance bias (lack of matching based on relevant baseline characteristics), detection bias

(lack of blinding of outcome assessors), and/or attrition bias (lack of ITT data).

Sensitivity and subgroup analyses

Per-protocol data were replaced with ITT data for those trials that made both types of

data available, in order to examine whether the different analytic approach influenced our

primary results. The influence of methodological quality on the robustness of the results was

assessed by excluding trial(s) with the greatest number of biases. For the areal BMD (aBMD)

63

analysis of the hip, trials that obtained the femoral neck measurements were analyzed

separately from those that obtained the total hip measurements.

We performed separate subgroup analyses for each population type (postmenopausal

women, young adults, and children and adolescents). A priori specified sources of clinical

heterogeneity were analyzed in the following subgroup analyses: 1) control intervention type

(no treatment or sham vibration versus exercise interventions; excluded RCTs where bone

medications were used as a co-intervention), 2) magnitude of WBV (low magnitude [<1g]

versus high magnitude [≥1g]), and 3) actual cumulative dose of WBV (at or below median

versus above median).

Quantitative data synthesis

The effect measure was a weighted mean difference between the WBV and control

groups (WBV group minus control group) in absolute pre-post change in aBMD in the spine (L1-

L4 or L2-L4) and hip (femoral neck or total hip), as measured by DXA, and in the trabecular

volumetric BMD (vBMDt) in the spine (lumbar) and tibia (distal or proximal), as measured by

quantitative computed tomography (QCT). Values were considered statistically significant if

p≤0.05. Fixed effect models were reported, unless statistically significant heterogeneity was

found, in which case random effects models were used. The Cochrane Q test for heterogeneity

was performed and considered statistically significant if p≤0.10. Heterogeneity was also

64

quantified with the I2 statistic, where 0-40%, 30-60%, 50-90%, and 75-100% is generally defined

as unimportant, moderate, substantial, and considerable heterogeneity, respectively (Higgins &

Green S, 2008). All analyses were performed using RevMan version 5.0.16. For included trials

with missing information, two reviewers (LS and AMC) contacted the original authors. Where

the original data were no longer available, estimations and/or statistical inferences were used

to obtain the BMD outcomes; as well, estimations were made to determine the cumulative

dose of WBV based on the duration per session and number of days used (see the Technical

Appendix).

RESULTS

Study characteristics

From 1302 potentially relevant titles and abstracts identified, 8 RCTs were deemed

eligible (Figure 1, (Gilsanz et al., 2006; Gusi et al., 2006; Iwamoto et al., 2005; Rubin et al., 2004;

Russo et al., 2003; Torvinen et al., 2003; Verschueren et al., 2004; Ward et al., 2004)). The

majority of identified studies were excluded because they were not RCTs and/or the

experimental treatment did not fit our criteria of WBV. The remaining RCTs were then primarily

excluded because they did not obtain BMD measurements and/or their study duration was too

short. The RCTs included in our systematic review involved the following study population

Figure 1. QUOROM flow diagram showing systematic literature search summary. 

1302 Potentially Relevant References Identified and Screened for retrieval

163 Abstracts Retrieved for More Detailed Evaluation

1139 Excluded1139 Not whole-body vibration or not RCT

144 Excluded10 Double references

4 Not RCT8 No BMD measurement

49 Not whole-body vibration60 Not ≥ 6 months follow-up

2 Ineligible study population11 Incomplete/unpublished trial

8 RCTs Included in Primary Analyses2 Children/adolescents1 Young adults5 Postmenopausal women

19 Potentially Appropriate for Inclusion

11 Excluded6 Not RCTa

3 No BMD measurement1 Not whole-body vibration1 Ineligible study population

aOne study,  “potentially appropriate for inclusion”, was later excluded because it was not a true RCT. This study examined postmenopausal Chinese women with osteoporosis who received either whole‐body vibration or no treatment (Ruan et al., 2008). After contacting the original authors, it was confirmed that the group allocation did not involve randomization or quasi‐randomization but instead it involved a convenience‐based assignment. 

Luba
Typewritten Text
65

66

types: postmenopausal women (n=210, 5 RCTs, (Gusi et al., 2006; Iwamoto et al., 2005; Rubin

et al., 2004; Russo et al., 2003; Verschueren et al., 2004)), young adults (n=53, 1 RCT, (Torvinen

et al., 2003)), and children and adolescents (n=65, 2 RCTs, (Gilsanz et al., 2006; Ward et al.,

2004)). All included trials were of relatively short duration (6 to 12 months) and small sample

size (17 to 70 participants), and included at least one type of study bias (Table 1). The control

intervention types included no treatment, sham vibration, and exercise regimens. The WBV

regimens varied between the included trials in terms of the WBV frequency and magnitude,

and the cumulative dose (Table 1). Four studies ensured adequate calcium intake either

through diet (Torvinen et al., 2003; Iwamoto et al., 2005) or supplementation (Russo et al.,

2003; Gilsanz et al., 2006), but only one trial also ensured adequate vitamin D intake (Russo et

al., 2003). Two RCTs measured dietary calcium but not vitamin D intake at baseline, but did not

report whether the average intake was adequate and/or matched between the study groups

(Gusi et al., 2006; Rubin et al., 2004).

Postmenopausal women

There were five trials in postmenopausal women: four using high magnitude WBV (Gusi

et al., 2006; Russo et al., 2003) (Iwamoto et al., 2005; Verschueren et al., 2004) and one using

low magnitude WBV (Rubin et al., 2004). Study participants included women with osteopenia

and osteoporosis, aged 47-88 years, of Caucasian and Southeast Asian origin, and with low to

        Table 1 Ch

aracteristics of RCT

s includ

ed in

 the system

atic review 

  Source 

No. of 

participants 

enrolled  

No. of 

participants 

analyzed

 

Age (range, 

years or 

mean ± SD

Participants 

Control 

Interven

tion 

Follow‐up 

(mon

ths)  

WBV

 freq

uency 

(Hertz) 

WBV

 magnitude

 (g) 

Prescribed

 mean 

cumulative 

volume 

(minutes) 

Actual m

ean 

cumulative 

volume 

(minutes)a

Calcium 

requ

irem

ents 

Vitamin D 

requ

irem

ents 

Stud

y bias 

POSTMEN

OPA

USA

L WOMEN

 

Russo et al., 

2003

 33

 29

 61

 ± 7 

Health

y Europe

an 

wom

en 

No treatm

ent 

6 12

‐28 

 ≥

 ≥

 ≥1 

240 

200 

1000

 mg 

supp

lemen

t 0.25

 µg 

supp

lemen

t S, D, A

 

Verschue

ren et 

al., 2004

 89

 70

 58

‐74 

Health

y Europe

an 

wom

en 

No treatm

ent 

& re

sistance 

training

 

6 35

‐40

1 1134

 1021

 Non

e Non

e S, A 

Rubin et al., 

2004

 70

 33

 47

‐64 

Health

y North 

American

 wom

en 

Sham

 vibration 

12 

30 

<1 

7300

 5840

 Measured 

intake 

Non

e P, A 

Iwam

oto et al., 

2005

 50

 50

 55

‐88 

Osteo

porotic

 Japane

se 

wom

en on 

alen

dron

ate (5 m

g pe

r day) 

No treatm

ent 

12 

201 

208 

208 

>800mg 

through diet 

Non

e S 

Gusi et a

l., 2006 

36 

28 

66 ± 5 

Health

y Europe

an 

wom

en 

Walking

 8 

12.6 

≥1 

549 

494 

Measured 

intake 

Measured 

intake 

S, P, A

 

YOUNG ADULTS 

Torvinen

 et a

l., 

2003

 56

 53

 19

‐38 

Health

y no

n‐athletic 

Europe

an m

en and

 wom

en 

No treatm

ent 

8 25

‐45

1 354 

330 

>800mg 

through diet 

Non

e S, A 

CHILDRE

N/ADOLESCEN

TS 

Ward et al., 

2004

 20

 17

 4‐19

 Ambu

latory North 

American

 boys and 

girls with

 limite

d mob

ility due

 to 

disabled

 con

ditio

ns 

Sham

 vibration 

6 90

 <1

 1300

 568 

Non

e Non

e P, A 

Gilsanz et al., 

2006

 48

 48

 15

‐20 

Health

y North 

American

 Caucasian

 girls with

 low BMD 

No treatm

ent 

12 

30 

<1 

3650

 2124

 500m

g supp

lemen

t Non

e S, A 

  WBV

, who

le‐bod

y vibration; SD, stand

ard de

viation; g, acceleration du

e to gravity; S, selectio

n bias; P, perform

ance bias; D, detectio

n bias; A

, attritio

n bias.  

 aActual cum

ulative do

se was derived

 from

 the mean pe

rcen

t adh

eren

ce and

 the prescribed

 cum

ulative do

se.  

Luba
Typewritten Text
67

68

moderate physical activity levels (Table 1). Most participants did not take bone medication as a

co-intervention, except for one RCT in which 50 osteoporotic Japanese women received the

same alendronate treatment in both the WBV and the control arms (Iwamoto et al., 2005). In

another trial, 8 out of 29 women were on hormone replacement therapy and were matched

between the trial arms (Russo et al., 2003). Where two control arms were included

(Verschueren et al., 2004), we combined them in the primary analysis to create a single pair-

wise comparison (n=45) and then entered them separately in a subgroup analysis of the control

intervention type (no treatment: n=23; exercise: n=22). Four RCTs obtained spine aBMD

measurements (L1-L4, 2 RCTs, (Iwamoto et al., 2005; Verschueren et al., 2004); L2-L4, 2 RCTs,

(Gusi et al., 2006; Rubin et al., 2004)), three hip aBMD (femoral neck, 2 RCTs, (Gusi et al., 2006;

Rubin et al., 2004); total hip, 1 RCT, (Verschueren et al., 2004)) and one tibia vBMDt

measurements (Table 2, (Russo et al., 2003)).

The difference in the hip aBMD change between the WBV and control groups was

statistically significant (0.015 g·cm-2 [95% confidence interval (CI), 0.008 to 0.022] p<0.0001,

n=131; Figure 2). No significant effects of WBV on spine aBMD (-0.003 g·cm-2 [95% CI, -0.012-

0.005] p=0.44, n=181; Figure 2) and tibia vBMDt (-2.2 mg·cm-3 [95% CI, -10.0-5.7] p=0.58, n=29)

were found.

When we analyzed BMD outcomes according to ITT analysis, there was no effect of WBV

on hip aBMD (0.014 g·cm-2 [95% CI, -0.003-0.031] p=0.12, n=168; Figure 3), and spine aBMD

      Table 2. Bon

e mineral den

sity data extracted for a

ll analyses 

  Source 

Data type

 available for 

extractio

Stud

y grou

p No. participants 

extracted 

Absolute pre‐po

st change in BMD (m

ean ± SD

)      

    

    

Hip aBM

D (g

∙cm

‐2) 

Spine aB

MD (g

∙cm

‐2) 

Tibia vBMDt (mg∙cm

‐3) 

Spine vBMDt (mg∙cm

‐3) 

POSTMEN

OPA

USA

L WOMEN

 Ru

sso et al., 2003 [28] 

Per‐protocol 

Vibration 

14 

  

‐ 

  

‐ 

  

  

    

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 ‐

 

  

  

   

  

  

3.5 ± 12.9

   

Control  

15 

 1.3 ± 7.9

Verschue

ren et al., 200

4 [30] 

Per‐protocol 

Vibration 

25 

0.008 ± 0.01

6*‐0.003

 ± 0.019

   

Control  

45 

‐0.006

 ± 0.013

 0.003 ± 0.02

0  

Rubin et al., 2004 [27] 

Per‐protocol           Vibration 

19‐0.002

 ± 0.048

‐0.004

 ± 0.057

   

Control  

14‐0.009

 ± 0.029

‐0.008

 ± 0.029

  (IT

T) 

Vibration 

(33) 

(‐0.005 ± 0.048) 

(‐0.005 ± 0.057)

   

Control  

(37) 

(‐0.002 ± 0.029) 

(‐0.006 ± 0.029)

Iwam

oto et al., 2005 [26] 

ITT 

Vibration 

250.051 ± 0.04

5  

   

Control  

250.042 ± 0.04

6  

Gusi et a

l., 2006 [25] 

Per‐protocol 

Vibration 

14 

0.020 ± 0.04

8*‐0.010

 ±  0.057

  

   

Control  

14‐0.020

 ± 0.029

‐0.010

 ± 0.029

YOUNG ADULTS 

Torvinen

 et a

l., 2003 [29] 

Per‐protocol 

Vibration 

27 

0.033 ± 0.21

9a0.454 ± 3.06

4a4.2 ± 8.3

   

Control  

26 

0.029 ± 0.24

0a0.026 ± 3.31

2a4.9 ± 10.1

CHILDRE

N/ADOLESCEN

TS 

Ward et al., 2004 [31] 

Per‐protocol 

Vibration 

8  

8.5 ± 8.2*

 5.5 ± 8.3 

    

Control  

9  

5.7 ± 10.7

‐0.5 ± 8.3 

Gilsanz et al., 2006 [24] 

Per‐protocol           Vibration 

18                   

  

     5.9 ± 7.2* 

    

Control  

30                   

  

  ‐0

.4 ± 7.4 

  (IT

T) 

Vibration 

(24)

(3.8 ± 7.7) 

    

Control  

(24)

(0.1 ± 7.7) 

ITT, intention‐to‐treat; aBM

D, areal BMD; vBM

Dt, trabecular volum

etric BM

D; SD, stand

ard de

viation  

a aBM

D change repo

rted

 in bon

e mineral con

tent units (grams). 

*Significant e

ffect o

f the

 who

le‐bod

y vibration grou

p compared to th

e control group

, as repo

rted

 in th

e original pub

lication.  

Note: Brackets indicate intention‐to‐treat data that was used as part o

f the

 sen

sitiv

ity analysis on

ly.  

Luba
Typewritten Text
69

Figure 2. P

rimary analyses of w

hole‐bod

y vibration effect on bo

ne m

ineral den

sity in

 postm

enop

ausal w

omen

. a)H

ip areal bon

e mineral den

sity (g

∙cm

‐2); b) Spine

 areal bon

e mineral den

sity (g

∙cm

‐2). 

Stud

y or

Sub

grou

pV

ersc

huer

enR

ubin

Iwam

oto

Gus

i

Tota

l (95

% C

I)H

eter

ogen

eity

: Chi

² = 1

.49,

df =

3 (P

= 0

.68)

; I² =

0%

Test

for o

vera

ll ef

fect

: Z =

0.7

8 (P

= 0

.44)

Mea

n-0

.003

-0.0

040.

051

-0.0

1

SD0.

019

0.05

70.

045

0.05

7

Tota

l25 19 25 14 83

Mea

n0.

003

-0.0

080.

042

-0.0

1

SD 0.02

0.02

90.

046

0.02

9

Tota

l45 14 25 14 98

Wei

ght

75.7

%7.

6%10

.7%

6.0%

100.

0%

IV, F

ixed

, 95%

CI

-0.0

1 [-0

.02,

0.0

0]0.

00 [-

0.03

, 0.0

3]0.

01 [-

0.02

, 0.0

3]0.

00 [-

0.03

, 0.0

3]

-0.0

0 [-0

.01,

0.0

0]

Year

2004

2004

2005

2006

Vibr

atio

nC

ontr

olM

ean

Diff

eren

ceM

ean

Diff

eren

ceIV

, Fix

ed, 9

5% C

I

-0.1

-0.0

50

0.05

0.1

Favo

urs

cont

rol

Favo

urs

vibr

atio

n

b

Stud

y or

Sub

grou

pVe

rsch

uere

nRu

bin

Gus

i

Tota

l (95

% C

I)He

tero

gene

ity: C

hi² =

3.2

1, d

f = 2

(P =

0.2

0); I

² = 3

8%Te

st fo

r ove

rall e

ffect

: Z =

4.2

7 (P

< 0

.000

1)

Mea

n0.

008

-0.0

020.

02

SD0.

016

0.04

80.

048

Tota

l25 19 14 58

Mea

n-0

.006

-0.0

09-0

.02

SD0.

013

0.02

90.

029

Tota

l45 14 14 73

Wei

ght

87.8

%6.

8%5.

5%

100.

0%

IV, F

ixed

, 95%

CI

0.01

[0.0

1, 0

.02]

0.01

[-0.

02, 0

.03]

0.04

[0.0

1, 0

.07]

0.01

[0.0

1, 0

.02]

Year

2004

2004

2006

Vibr

atio

nCo

ntro

lM

ean

Diffe

renc

eM

ean

Diffe

renc

eIV

, Fix

ed, 9

5% C

I

-0.1

-0.0

50

0.05

0.1

Favo

urs

cont

rol

Favo

urs

vibra

tion

a

Forest plots sho

w th

e weighted mean differen

ce between the who

le‐bod

y vibration and the control group

s in absolute pre‐po

st change. Squ

ares and

 diamon

ds 

represen

t the

 effect sizes fo

r each trial and

 for all tria

ls, respe

ctively. Lines crossing the squares represen

t con

fiden

ce intervals. W

hen the line crossing

 the square doe

s no

t  tou

ch th

e middle vertical line

, the

 trial results are statistically significant. W

hen the black diam

ond do

es not to

uch the middle vertical line

, the

 poo

led results are 

statistically significant. Tria

ls were listed by year o

f pub

lication startin

g with

 the earliest trial. Note: The

 RevMan

 5.0.16 software repo

rted

 all bo

ne m

ineral den

sitie

sin 

term

s of tw

o de

cimal places in th

e forest plots. In the text and

tables, areal bon

e mineral den

sitie

s and trabecular volum

etric bo

ne m

ineral den

sitie

s are repo

rted

 in 

term

s of th

ree and on

e de

cimal place(s), respectively.

Luba
Typewritten Text
70

Stud

y or

Sub

grou

pVe

rsch

uere

nRu

bin

Gus

i

Tota

l (95

% C

I)He

tero

gene

ity: T

au² =

0.0

0; C

hi² =

6.0

8, d

f = 2

(P =

0.0

5); I

² = 6

7%Te

st fo

r ove

rall e

ffect

: Z =

1.5

7 (P

= 0

.12)

Mea

n0.

008

-0.0

050.

02

SD0.

016

0.04

80.

048

Tota

l25 33 14 72

Mea

n-0

.006

-0.0

02-0

.02

SD0.

013

0.02

90.

029

Tota

l45 37 14 96

Wei

ght

47.0

%32

.1%

20.9

%

100.

0%

IV, R

ando

m, 9

5% C

I0.

01 [0

.01,

0.0

2]-0

.00

[-0.0

2, 0

.02]

0.04

[0.0

1, 0

.07]

0.01

[-0.

00, 0

.03]

Year

2004

2004

2006

Vibr

atio

nCo

ntro

lM

ean

Diffe

renc

eM

ean

Diffe

renc

eIV

, Ran

dom

, 95%

CI

-0.1

-0.0

50

0.05

0.1

Favo

urs

cont

rol

Favo

urs

vibra

tion

Stud

y or

Sub

grou

pV

ersc

huer

enR

ubin

Iwam

oto

Gus

i

Tota

l (95

% C

I)H

eter

ogen

eity

: Chi

² = 1

.42,

df =

3 (P

= 0

.70)

; I² =

0%

Test

for o

vera

ll ef

fect

: Z =

0.7

9 (P

= 0

.43)

Mea

n-0

.003

-0.0

050.

051

-0.0

1

SD0.

019

0.05

70.

045

0.05

7

Tota

l25 33 25 14 97

Mea

n0.

003

-0.0

060.

042

-0.0

1

SD 0.02

0.02

90.

046

0.02

9

Tota

l45 37 25 14 121

Wei

ght

70.8

%13

.6%

10.0

%5.

7%

100.

0%

IV, F

ixed

, 95%

CI

-0.0

1 [-0

.02,

0.0

0]0.

00 [-

0.02

, 0.0

2]0.

01 [-

0.02

, 0.0

3]0.

00 [-

0.03

, 0.0

3]

-0.0

0 [-0

.01,

0.0

0]

Year

2004

2004

2005

2006

Vibr

atio

nC

ontr

olM

ean

Diff

eren

ceM

ean

Diff

eren

ceIV

, Fix

ed, 9

5% C

I

-0.1

-0.0

50

0.05

0.1

Favo

urs

cont

rol

Favo

urs

vibr

atio

n

baFigure 3.Sen

sitiv

ity analyses of who

le‐bod

y vibration effect on bo

ne m

ineral den

sity in

 postm

enop

ausal w

omen

. a) H

ip areal bon

e mineral den

sity (g

∙cm

‐2) –

intention‐to‐treat data includ

ed;  b) Spine

 areal bon

e mineral den

sity (g

∙cm

‐2) –

intention‐to‐treat data 

includ

ed;  c) Hip areal bon

e mineral den

sity (g

∙cm

‐2) –

trial w

ith largest n

umbe

r of bias exclud

ed; d

) Spine

 areal bon

e mineral den

sity 

(g∙cm

‐2) –

trial w

ith largest n

umbe

r of bias exclud

ed. 

Luba
Typewritten Text
71

Stud

y or

Sub

grou

pVe

rsch

uere

nRu

bin

Iwam

oto

Tota

l (95

% C

I)He

tero

gene

ity: C

hi² =

1.4

5, d

f = 2

(P =

0.4

8); I

² = 0

%Te

st fo

r ove

rall e

ffect

: Z =

0.8

0 (P

= 0

.42)

Mea

n-0

.003

-0.0

040.

051

SD0.

019

0.05

70.

045

Tota

l25 19 25 69

Mea

n0.

003

-0.0

080.

042

SD 0.02

0.02

90.

046

Tota

l45 14 25 84

Wei

ght

80.5

%8.

1%11

.3%

100.

0%

IV, F

ixed

, 95%

CI

-0.0

1 [-0

.02,

0.0

0]0.

00 [-

0.03

, 0.0

3]0.

01 [-

0.02

, 0.0

3]

-0.0

0 [-0

.01,

0.0

1]

Year

2004

2004

2005

Expe

rimen

tal

Cont

rol

Mea

n Di

ffere

nce

Mea

n Di

ffere

nce

IV, F

ixed

, 95%

CI

-0.1

-0.0

50

0.05

0.1

Favo

urs

expe

rimen

tal

Favo

urs

cont

rol

dStud

y or

Sub

grou

pVe

rsch

uere

nRu

bin

Tota

l (95

% C

I)He

tero

gene

ity: C

hi² =

0.2

5, d

f = 1

(P =

0.6

2); I

² = 0

%Te

st fo

r ove

rall e

ffect

: Z =

3.7

4 (P

= 0

.000

2)

Mea

n0.

008

-0.0

02

SD0.

016

0.04

8

Tota

l25 19 44

Mea

n-0

.006

-0.0

09

SD0.

013

0.02

9

Tota

l45 14 59

Wei

ght

92.8

%7.

2%

100.

0%

IV, F

ixed

, 95%

CI

0.01

[0.0

1, 0

.02]

0.01

[-0.

02, 0

.03]

0.01

[0.0

1, 0

.02]

Vibr

atio

nCo

ntro

lM

ean

Diffe

renc

eM

ean

Diffe

renc

eIV

, Fix

ed, 9

5% C

I

-0.1

-0.0

50

0.05

0.1

Favo

urs

cont

rol

Favo

urs

vibra

tion

c Forest plots sho

w th

e weighted mean differen

ce between the who

le‐bod

y vibration and the control group

s in absolute pre‐po

st change. Squ

ares and

 diam

onds rep

resent th

e effect sizes fo

r each trial and

 for a

ll trials, respe

ctively. Lines crossing the squares represen

t con

fiden

ce intervals. W

hen the line 

crossing

 the square doe

s no

t tou

ch th

e middle vertical line

, the

trial results are statistically significant. W

hen the black diam

ond do

es not to

uch the middle 

vertical line

, the

 poo

led results are statistically significant.Trials were listed by year o

f pub

lication startin

g with

 the earliest trial. Note: The

 RevMan

 5.0.16 

software repo

rted

 all bo

ne m

ineral den

sitie

sin te

rms of  tw

o de

cimal places in th

e forest plots. In the textand tables, areal bon

e mineral den

sitie

s and 

trabecular volum

etric

 bon

e mineral den

sitie

s are repo

rted

 in te

rms of th

ree and on

e de

cimal place(s), respectively.

Luba
Typewritten Text
72

73

(-0.003 g·cm-2 [95% CI, -0.011-0.005] p=0.43, n=218; Figure 3). When we excluded the lowest

quality trial (Gusi et al., 2006), our results remained the same as in the primary analysis

(Difference in hip aBMD: 0.014 g·cm-2 [95% CI, 0.006-0.021] p=0.0002, n=103; Difference in

spine aBMD: -0.003 g·cm-2 [95% CI, -0.012-0.005] p=0.42, n=153; Figure 3). Finally, after

separating the hip aBMD measurements into total hip (1 RCT, (Verschueren et al., 2004)) and

femoral neck (2 RCTs, (Gusi et al., 2006; Rubin et al., 2004)), the results remained significant for

the total hip (0.014 g·cm-2 [95% CI, 0.007-0.021] p=0.0002, n=70) but not for the femoral neck

(0.023 g·cm-2 [95% CI, -0.009-0.055] p=0.17, n=61).

In all subgroup analyses of spine aBMD, our results remained non-significant. In a

subgroup analysis of hip aBMD based on different control intervention types, results remained

statistically significant when WBV was compared to no treatment or sham vibration (0.013

g·cm-2 [95% CI, 0.005-0.021] p=0.001, n=81; Figure 4), but became non-significant when WBV

was compared to exercise interventions (0.023 g·cm-2 [95% CI, -0.003-0.048] p=0.08, n=75;

Figure 4). Hip aBMD subgroup analyses of the magnitude and actual cumulative dose involved

the same division of trials. The aBMD results were neither significant for RCTs examining WBV

at ≥1g magnitude and at or below median cumulative dose (0.023 g·cm-2 [95% CI, -0.001-0.047]

p=0.06, n=98; Figure 4), nor for a trial examining WBV at <1g magnitude and above median

cumulative dose (0.007 g·cm-2 [95% CI, -0.019-0.033] p=0.60, n=33; Figure 4).

Stud

y or

Sub

grou

pVe

rsch

uere

nRu

bin

Tota

l (95

% C

I)He

tero

gene

ity: C

hi² =

0.2

4, d

f = 1

(P =

0.6

2); I

² = 0

%Te

st fo

r ove

rall e

ffect

: Z =

3.2

4 (P

= 0

.001

)

Mea

n0.

008

-0.0

02

SD0.

016

0.04

8

Tota

l25 19 44

Mea

n-0

.006

-0.0

09

SD0.

014

0.02

9

Tota

l23 14 37

Wei

ght

90.6

%9.

4%

100.

0%

IV, F

ixed

, 95%

CI

0.01

[0.0

1, 0

.02]

0.01

[-0.

02, 0

.03]

0.01

[0.0

1, 0

.02]

Vibr

atio

nCo

ntro

lM

ean

Diffe

renc

eM

ean

Diffe

renc

eIV

, Fix

ed, 9

5% C

I

-0.1

-0.0

50

0.05

0.1

Favo

urs

cont

rol

Favo

urs

vibra

tion

aFigure 4.Subgroup

 analyses of who

le‐bod

y vibration effect on hip areal bon

e mineral den

sity  (g∙cm

‐2) in po

stmen

opausal w

omen

. a)  Sham who

le‐bod

y vibration or no treatm

ent con

trol group

s with

out b

one med

ications used as a co‐interven

tion;  b)  Exercise 

interven

tion control group

s; c)  High magnitude

 and

 at/be

low m

edian cumulative do

se of w

hole‐bod

y vibration;  d)  Low 

magnitude

 and

 abo

ve m

edian cumulative do

se of w

hole‐bod

y vibration. 

Stud

y or S

ubgr

oup

Versc

huer

enGu

si

Total

(95%

CI)

Heter

ogen

eity:

Tau²

= 0.

00; C

hi² =

3.02

, df =

1 (P

= 0.

08);

I² =

67%

Test

for ov

erall

effec

t: Z =

1.75

(P =

0.08

)

Mean

0.008 0.0

2

SD0.0

160.0

48

Total 25 14 39

Mean

-0.00

5-0

.02

SD0.0

120.0

29

Total 22 14 36

Weig

ht64

.3%35

.7%

100.0

%

IV, R

ando

m, 9

5% C

I0.0

1 [0.0

0, 0.0

2]0.0

4 [0.0

1, 0.0

7]

0.02 [

-0.00

, 0.05

]

Year

2004

2006

Vibr

ation

Cont

rol

Mean

Diff

eren

ceMe

an D

iffer

ence

IV, R

ando

m, 95

% CI

-0.1

-0.05

00.0

50.1

Favo

urs c

ontro

lFa

vour

s vibr

ation

b

Luba
Typewritten Text
74

c Stud

y or S

ubgr

oup

Vers

chue

ren

Gusi

Tota

l (95

% C

I)He

tero

gene

ity: T

au² =

0.0

0; C

hi² =

2.8

3, d

f = 1

(P =

0.0

9); I

² = 6

5%Te

st fo

r ove

rall e

ffect:

Z =

1.8

6 (P

= 0

.06)

Mean

0.00

80.

02

SD0.

016

0.04

8

Tota

l25 14 39

Mean

-0.0

06-0

.02

SD0.

013

0.02

9

Tota

l45 14 59

Weig

ht65

.6%

34.4

%

100.0

%

IV, R

ando

m, 9

5% C

I0.

01 [0

.01,

0.0

2]0.

04 [0

.01,

0.0

7]

0.02 [

-0.00

, 0.05

]

Year

2004

2006

Vibr

atio

nCo

ntro

lMe

an D

iffer

ence

Mean

Diff

eren

ceIV

, Ran

dom

, 95%

CI

-0.1

-0.0

50

0.05

0.1

Favo

urs c

ontro

lFa

vour

s vibr

ation

Stud

y or S

ubgr

oup

Rubin

Total

(95%

CI)

Heter

ogen

eity:

Not a

pplic

able

Test

for ov

erall e

ffect:

Z = 0

.52 (P

= 0.6

0)

Mean

-0.00

2SD

0.048

Total 19 19

Mean

-0.00

9SD

0.029

Total 14 14

Weig

ht10

0.0%

100.0

%

IV, Fi

xed,

95%

CI0.0

1 [-0.

02, 0

.03]

0.01 [

-0.02

, 0.03

]

Year

2004

Vibrat

ionCo

ntrol

Mean

Diffe

rence

Mean

Diffe

rence

IV, Fi

xed,

95%

CI

-0.1

-0.05

00.0

50.1

Favo

urs co

ntrol

Favo

urs vi

bratio

n

d

Forest plots sho

w th

e weighted mean differen

ce between the who

le‐bod

y vibration and the control group

s in absolute pre‐po

st change. Squ

ares and

 diam

onds rep

resent th

e effect sizes fo

r each trial and

 for a

ll trials, respe

ctively. Lines crossing the squares represen

t con

fiden

ce intervals. W

hen the line 

crossing

 the square doe

s no

t  tou

ch th

e middle vertical line

, the

trial results are statistically significant. W

hen the black diam

ond do

es not to

uch the middle 

vertical line

, the

 poo

led results are statistically significant.Trials were listed by year o

f pub

lication startin

g with

 the earliest trial. Note: The

 RevMan

 5.0.16 

software repo

rted

 all bo

ne m

ineral den

sitie

sin te

rms of  tw

o de

cimal places in th

e forest plots. In the textand tables, areal bon

e mineral den

sitie

s and 

trabecular volum

etric

 bon

e mineral den

sitie

s are repo

rted

 in te

rms of th

ree and on

e de

cimal place(s), respectively.

Luba
Typewritten Text
75

76

Children and adolescents

There were two trials in children and adolescents (Gilsanz et al., 2006),(Ward et al.,

2004) . Both used low magnitude WBV. Study participants included ambulatory boys and girls

aged 4 to 20 years with limited mobility due to disabled conditions (Ward et al., 2004), and

healthy girls aged 15 to 20 years with low BMD and a history of at least one fracture ((Gilsanz et

al., 2006), Table 1). As part of their per-protocol analysis, one trial (Gilsanz et al., 2006)

excluded the lowest adherence quartile of WBV participants (n=6) from the WBV vibration

group (n=18) and included it in the control group (n=30). A significant difference in the tibia

vBMDt was observed between the control and WBV groups (14.2 mg·cm-3 [95% CI, 5.2-23.2]

p=0.002, n=17) in one RCT (Ward et al., 2004). A significant difference in the spine vBMDt (L2,

(Ward et al., 2004) and L1-L3, (Gilsanz et al., 2006)) was also found (6.2 mg·cm-3 [95% CI, 2.5-

10.0] p=0.001, n=65; Figure 5). In addition to per-protocol data, one trial also reported the ITT

data which involved the original allocation of WBV (n=24) and control (n=24) participants in

their respective arms (Gilsanz et al., 2006). This allowed us to perform a sensitivity analysis of

the influence of different analytical approaches, in which the spine vBMDt results remained

significant (4.2 mg·cm-3 [95% CI, 0.4-8.1] p=0.03, n=65; Figure 5). No additional sensitivity

analyses were performed, because the methodological quality was similar and no hip aBMD

outcomes were reported in the two included RCTs. Finally, no subgroup analyses were

performed due to insufficient number of eligible trials.

Stud

y or

Sub

grou

pW

ard

Gils

anz

Tota

l (95

% C

I)He

tero

gene

ity: C

hi² =

0.0

0, d

f = 1

(P =

0.9

5); I

² = 0

%Te

st fo

r ove

rall e

ffect:

Z =

3.2

6 (P

= 0

.001

)

Mea

n 5.5

5.9

SD 8.3

7.2

Tota

l 8 18 26

Mea

n-0

.5-0

.4

SD 8.3

7.4

Tota

l 9 30 39

Wei

ght

22.4

%77

.6%

100.

0%

IV, F

ixed

, 95%

CI

6.00

[-1.

90, 1

3.90

]6.

30 [2

.05,

10.

55]

6.23

[2.4

9, 9

.98]

Year

2004

2006

Vibr

atio

nCo

ntro

lM

ean

Diffe

renc

eM

ean

Diffe

renc

eIV

, Fix

ed, 9

5% C

I

-20

-10

010

20Fa

vour

s con

trol

Favo

urs

vibra

tion

a

Stud

y or

Sub

grou

pW

ard

Gils

anz

Tota

l (95

% C

I)He

tero

gene

ity: C

hi² =

0.2

5, d

f = 1

(P =

0.6

2); I

² = 0

%Te

st fo

r ove

rall e

ffect:

Z =

2.1

8 (P

= 0

.03)

Mea

n 5.5

3.8

SD 8.3

7.7

Tota

l 8 24 32

Mea

n-0

.5 0.1

SD 8.3

7.7

Tota

l 9 24 33

Wei

ght

23.3

%76

.7%

100.

0%

IV, F

ixed

, 95%

CI

6.00

[-1.

90, 1

3.90

]3.

70 [-

0.66

, 8.0

6]

4.24

[0.4

2, 8

.05]

Year

2004

2006

Vibr

atio

nCo

ntro

lM

ean

Diffe

renc

eM

ean

Diffe

renc

eIV

, Fix

ed, 9

5% C

I

-20

-10

010

20Fa

vour

s con

trol

Favo

urs

vibra

tion

bFig. 5Prim

ary (a) and

 sen

sitivity

 (b) analyses of who

le‐bod

y vibration effect on the spine trabecular volum

etric bo

ne m

ineral 

density

 (mg∙cm

‐3) in children and adolescents. 

Forest plots sho

w th

e weighted mean differen

ce between the who

le‐bod

y vibration and the control group

s in absolute pre‐po

st change. Squ

ares and

 diam

onds rep

resent th

e effect sizes fo

r each trial and

 for a

ll trials, respe

ctively. Lines crossing the squares represen

t con

fiden

ce intervals. W

hen the line 

crossing

 the square doe

s no

t  tou

ch th

e middle vertical line

, the

trial results are statistically significant. W

hen the black diam

ond do

es not to

uch the middle 

vertical line

, the

 poo

led results are statistically significant.Trials were listed by year o

f pub

lication startin

g with

 the earliest trial. Note: The

 RevMan

 5.0.16 

software repo

rted

 all bo

ne m

ineral den

sitie

sin te

rms of  tw

o de

cimal places in th

e forest plots. In the textand tables, areal bon

e mineral den

sitie

s and 

trabecular volum

etric

 bon

e mineral den

sitie

s are repo

rted

 in te

rms of th

ree and on

e de

cimal place(s), respectively.

Luba
Typewritten Text
77

78

Young adults

There is only one trial using high magnitude WBV in young adults (Torvinen et al., 2003).

Study participants were healthy, non-athletic European men and women aged 19 to 38 (Table

1). Bone mineral content (BMC, in grams) versus aBMD was reported in one eligible trial, and

aBMD was not available to the original authors (Torvinen et al., 2003). However, since bone size

would not be expected to change in a young adult population over the study duration of 8

months, BMC changes were included in our analysis to approximate aBMD changes (Table 2).

No significant between-group differences in the change in L2-L4 BMC (0.428 g [95% CI, -1.291-

2.147], p=0.63, n=53), femoral neck BMC (0.004 g [95% CI, -0.120-0.128] p=0.95, n=53), and

tibia vBMDt (-0.7 mg·cm-3 [95% CI, -5.7-4.3] p=0.78, n=53) were observed (Torvinen et al.,

2003). No subgroup or sensitivity analyses were performed due to insufficient number of

eligible trials.

Adverse events

Only one included RCT, examining postmenopausal women, reported non-serious

adverse events (AEs) that were possibly caused or exacerbated by WBV (Russo et al., 2003).

Lower leg itching and erythema was reported in 6 of 17 participants receiving high-magnitude

WBV, which disappeared after the first three vibration sessions (Russo et al., 2003). Possible

knee pain exacerbation was also reported in two overweight WBV participants with pre-existing

79

knee osteoarthritis, which subsided after a few days of rest (Russo et al., 2003). Based on an 8-

month follow-up MRI examination, the trial which examined young adults did not observe any

changes in the articular cartilage or bone tissue of the ankle joint (Torvinen et al., 2003). The

remaining trials did not report AEs that could be possibly related to WBV use (Verschueren et

al., 2004; Gusi et al., 2006; Iwamoto et al., 2005; Rubin et al., 2004; Torvinen et al., 2003;

Gilsanz et al., 2006; Ward et al., 2004). Positive health-related outcomes were reported in one

trial which examined 50 Japanese postmenopausal, osteoporotic women receiving alendronate

therapy (Iwamoto et al., 2005). As part of the trial’s inclusion criteria, all of the included

participants were experiencing chronic low back pain at baseline, as evaluated by face scale

score (Iwamoto et al., 2005). After 12 months of high-magnitude WBV, most of the treatment-

arm participants “felt refreshed in the leg and back muscles” immediately after the vibration

session. Further, the chronic back pain of the WBV participants was significantly less when

compared to the controls (Iwamoto et al., 2005).

COMMENT

Our systematic evaluation of WBV found statistically significant improvement in hip

aBMD in postmenopausal women and in spine and tibia vBMDt in children and adolescents. No

significant effects were found on spine aBMD and tibia vBMDt in postmenopausal women, and

80

on BMC and vBMDt in young adults. Although statistically significant, the effect size in

postmenopausal women was small. The between-group difference in the hip aBMD change of

0.015 g·cm-2 is comparable to the effect size expected in response to adequate calcium and

vitamin D supplementation (Tang et al., 2007). Further, this magnitude is approximately one

half of the least significant change (LSC) in hip aBMD as detectable by current DXA instruments

in the clinical settings (Bonnick, 2004).

Compared to postmenopausal women, the effect size observed in children and

adolescents was greater. The magnitude of the effect for vBMDt in children and adolescents

was 14.2 mg·cm-3 in the tibia and 6.2 mg·cm-3 in the spine. An RCT examining the effect of

adequate calcium supplementation in normal children found a between-group difference of

approximately 6.0 mg·cm-3 in the tibia vBMDt (Ward et al., 2007). This comparably larger effect

size existed even though children and adolescents were relatively less adherent to WBV than

the other two populations (Table 1). Therefore, it would seem that a growing skeleton in

children and adolescents with a compromised bone mass is more sensitive to WBV than that of

postmenopausal women or young adults.

There may be differential effects of WBV on different bone sites, because of the

variability in the transmission of WBV signals. The transmissibility of WBV signals varies

significantly from one anatomical site to another due to the nonlinearities of the

musculoskeletal system (for example, joint angle, soft tissue distribution) and the differences in

81

body positions (for example, bent knees versus straight knees) (Kiiski et al., 2008; Rubin et al.,

2003). This may explain the discrepancy between the hip versus spine aBMD findings in

postmenopausal women. However, the discrepancy between the hip aBMD versus tibia vBMDt

results in postmenopausal women was probably due to inadequate sample size, leading to

inadequate statistical power in the vBMDt analysis.

In contrast to postmenopausal women and children and adolescents, we did not find a

significant effect of WBV in healthy young adults. Some clinical (Rubin et al., 2004) and

experimental (Flieger et al., 1998; Judex et al., 2002) evidence suggests that there is an inverse

relationship between the skeleton’s sensitivity to WBV and the initial BMD. Young adults may

be less sensitive to WBV, because their baseline BMDs are generally higher than those in

postmenopausal women and children and adolescents. As well, young adults’ skeletons are less

metabolically active than children’s and adolescents’, and thus may be less sensitive to

mechanical stimuli such as WBV. Another plausible reason for not observing a significant effect

in young adults is insufficient sample size and statistical power in this population.

There are current controversies as to the optimal frequency and magnitude of WBV.

According to Wolff’s law of bone remodelling, only large-magnitude strains (such as those

arising from high-intensity impact activities) are capable of new bone formation, and the

greater the magnitude the greater the effect (Wolff, 1986; Rubin et al., 2002b). For WBV, this

conventional premise was challenged by the experimental animal models which showed that

82

exposures to low-magnitude but high-frequency vibration can also enhance bone accrual

(Flieger et al., 1998; Rubin et al., 2001b; Rubinacci et al., 2008; Judex et al., 2003; Rubin et al.,

2002a; Rubin et al., 2002b; Christiansen & Silva, 2006; Judex et al., 2005; Xie et al., 2006). These

high-frequency, low-magnitude vibration signals are believed to stimulate bone cells via stress-

generated fluid flow (Rubin et al., 2006; Fritton et al., 2000), with the bone anabolic effect

increasing with increasing frequency (Rubin et al., 2004; Ward et al., 2004). We were unable to

examine the differential effect of various frequencies (12-90 Hz) because of the small number

of RCTs included. However, we grouped the magnitudes of WBV into two relevant categories

(<1g and ≥1g) for hip aBMD analysis, and found no significant differences (Figure 4).

There are several limitations to our study, including the small number of RCTs available,

and the small sample sizes, short durations and methodological issues of the included trials. The

small number of RCTs was especially true for the adult (1 RCT, n=53, (Torvinen et al., 2003)) and

children and adolescent (2 RCTs, n=65, (Gilsanz et al., 2006; Ward et al., 2004)) populations in

comparison to the postmenopausal women (5 RCTs, n=210, (Gusi et al., 2006; Iwamoto et al.,

2005; Rubin et al., 2004; Russo et al., 2003; Verschueren et al., 2004)). At least one study bias

was present in each trial, most frequently attrition bias, and calcium and vitamin D intakes may

have been insufficient in study subjects. Our primary analysis was not according to ITT, because

of the lack of ITT data in the original trials. This may bias our results to show more favourable

outcomes.

83

In conclusion, this is the first systematic review and meta-analysis of the effect of WBV

on BMD in humans. We found statistically significant but clinically small effects in

postmenopausal women, and moderate effects in children and adolescents, but not in young

adults. We also found WBV to be well tolerated and safe. While WBV is a promising new

modality for improving bone health in certain populations, larger and well-designed RCTs are

needed before recommendations can be made for clinical practice. In addition to examining

efficacy and safety of WBV on BMD, these future RCTs should also compare different

frequencies, magnitudes, and cumulative doses of WBV, as well as examine other bone quality

parameters as measured by newer techniques such as high resolution peripheral quantitative

computed tomography. Whether WBV can exert effects in addition to other simultaneous

bone therapies such as calcium and vitamin D supplementation, exercise, and pharmacological

interventions should also be further examined.

84

CHAPTER TWO: EFFECT OF 12 MONTHS OF WHOLE-BODY VIBRATION ON BONE DENSITY AND

STRUCTURE IN POSTMENOPAUSAL WOMEN WITH OSTEOPENIA: A RANDOMIZED

CONTROLLED TRIAL (THE VIBRATION STUDY)

Being submitted for publication in a peer-reviewed scientific journal:

Slatkovska L, Alibhai S, Beyene J, Hu H, Alice Demaras, Cheung AM. (2010). Effect of 12 months

of whole-body vibration on bone density and structure in postmenopausal women with

osteopenia: a randomized controlled trial (The Vibration Study).

85

ABSTRACT

Context and objective: Recent data suggest that whole-body vibration (WBV) may have

beneficial effects on bone. Therefore, we investigated whether WBV prevents postmenopausal

bone loss.

Design and setting: A randomized controlled trial was conducted from November 2006

to December 2009 at the University Health Network (Toronto, Canada).

Participants and interventions: Two hundred and two postmenopausal women with

primary osteopenia not on bone medications were randomized to one of three groups: 0.3g

WBV at 90 Hz (90Hz, n=67), 0.3g WBV at 30 Hz (30Hz, n=68) and control (CON, n=67). Women

in the 90Hz and 30Hz groups were asked to stand on a WBV platform daily for 20 minutes for

12 months. All women were provided calcium and vitamin D supplements.

Main outcome measures: Volumetric bone mineral density (vBMD) and bone structure,

measured by high-resolution peripheral quantitative computed tomography (HR-pQCT) at the

distal tibia and distal radius, and areal bone mineral density (aBMD), measured by dual-energy

x-ray absorptiometry (DXA) at the femoral neck, total hip and lumbar spine, were obtained at

baseline and 12 months. Primary outcome was trabecular vBMD at the distal tibia. Adherence

was recorded by each WBV platform. Between-group differences in absolute change in HR-

pQCT and DXA parameters were examined using ANOVA with a priori contrasts (p < 0.05).

86

Results: No significant between-group differences in 12-month change in trabecular

vBMD at the distal tibia were found (p=0.5; +0.4, -0.1 and -0.2 mg⋅cm-3 in 90Hz, 30Hz and CON,

respectively). No effects on any other HR-pQCT or DXA parameters were found. A priori

specified subgroups also did not reveal any effect in women ≥80% adherent, <65 kg in mass,

≤60 years-old or ≤10 years since menopause. Median adherence based on total cumulative

duration of WBV was 79% and 77% in 90Hz and 30Hz groups, respectively.

Conclusions: WBV for 12 months at 0.3g and 90 or 30 Hz did not alter BMD or bone

structure in postmenopausal women with osteopenia.

Trial Registration: ClinicalTrials.gov (#NCT00420940)

Keywords: whole-body vibration, menopause, bone mineral density, bone structure,

osteopenia

87

INTRODUCTION

Whole-body vibration (WBV) has been introduced as a promising new anti-osteoporotic

therapy in the past decade (Eisman, 2001; Rubin et al., 2001a; Harvard Health Publications,

2006; Skelly, 2007). Currently, many different WBV platforms are available worldwide (Juvent

Inc, 2010; Power Plate, 2020). Most (Flieger et al., 1998; Judex et al., 2005; Rubin et al., 2001b;

Rubin et al., 2002b; Rubin et al., 2002a; Usui et al., 1989), albeit not all (Castillo et al., 2006),

early animal models showed anabolic bone changes in response to WBV; however, the clinical

evidence remains inconclusive (Slatkovska et al., 2010a).

WBV involves standing on a platform which produces ground-based accelerations that are

transmitted as mechanical vibration from the feet to the weight-bearing bones and muscles

(Kiiski et al., 2008; Rubin et al., 2003). The peak acceleration or magnitude (acceleration due to

Earth’s gravity, 1g=9.8 m·s-2) and frequency (Hertz, 1 Hz equals one oscillation per second) of

WBV determine its intensity (Rauch et al., 2010). Several physiological mechanisms have been

proposed to explain WBV effects on bone. First, WBV is believed to cause bone fluid flow

changes leading to mechanotransduction of mechanical stimuli potentially by the osteocytes

and increased bone formation (Judex & Rubin, 2010). Other physiological mechanisms, such as

activation of the skeletal muscles, increased oxygen consumption and blood flow, and

hormonal activation may also influence bone adaptations in response to WBV (Cardinale & Lim,

2003; Cardinale et al., 2007; Kvorning et al., 2006; Rittweger et al., 2000; Stewart et al., 2005).

It is currently unclear whether WBV can prevent postmenopausal bone loss. Five

randomized controlled trials (RCTs) in postmenopausal women examined WBV effect on bone

88

mineral density (BMD) (Gusi et al., 2006; Iwamoto et al., 2005; Rubin et al., 2004; Verschueren

et al., 2004; Russo et al., 2003). Four trials assessed areal BMD (aBMD), as measured by dual-

energy x-ray absorptiometry (DXA), and found no effect at the lumbar spine (Gusi et al., 2006;

Iwamoto et al., 2005; Rubin et al., 2004; Verschueren et al., 2004), while significant

improvements on hip aBMD were observed two trials (Gusi et al., 2006; Verschueren et al.,

2004). Only one RCT examined volumetric BMD (vBMD), as measured by high-resolution

peripheral quantitative tomography (HR-pQCT), but no significant effect was found at the distal

tibia (Russo et al., 2003). Limitations of these RCTs included inadequate calcium and vitamin D

supplementation (Gusi et al., 2006; Iwamoto et al., 2005; Rubin et al., 2004; Verschueren et al.,

2004), small sample sizes (n<100) and attrition bias, as summarized in our recent meta-analysis

(Slatkovska et al., 2010a).

Further, whether different magnitudes and frequencies of WBV utilized in previous RCTs of

postmenopausal women contributed to discrepant findings is not known. Four trials

administered high-magnitude (≥1g) WBV at 12 to 40 Hz (Gusi et al., 2006; Iwamoto et al., 2005;

Russo et al., 2003; Verschueren et al., 2004), of which two found significant effect on hip aBMD

(Gusi et al., 2006; Verschueren et al., 2004). One RCT examined low-magnitude (<1g) WBV at

0.3g and 30 Hz, but no effect on hip or spine aBMD was found. In contrast, early animal models

primarily examined low-magnitude (<1g) WBV at 30 to 90 Hz, as summarized elsewhere (Prisby

et al., 2008), and found more significant increases in bone formation rate at WBV magnitude of

0.3g versus 0.6g (at 45 Hz) (Garman et al., 2007) and at WBV frequency of 90 Hz versus 45 Hz

(at 0.2g) (Judex et al., 2007). In RCTs of children and adolescents, low-magnitude WBV at 0.3g

and 30 or 90 Hz was also found to significantly increase vBMD at the tibia, femur and spine

89

(Gilsanz et al., 2006; Ward et al., 2004). Finally, deleterious effects of WBV on the human body

are also more likely at higher magnitudes (Griffin, 1998).

Therefore, we conducted a 12-month RCT to examine effects of daily 20-minute WBV at

0.3g and 90 Hz versus 0.3g and 30 Hz versus no WBV on aBMD, vBMD and bone structure in

202 osteopenic postmenopausal women with adequate calcium and vitamin D

supplementation.

METHODS

Setting and study design

Postmenopausal women were primarily recruited through newsletters, posted flyers

and word-of-mouth in the Greater Toronto Area, Canada. A computer-generated block-

randomization scheme (n=10) and sealed envelopes were used to randomly assign eligible

participants to one of three groups: 90 Hz WBV (90Hz), 30 Hz WBV (30Hz), and control (CON).

Women in the 90Hz and 30Hz groups received WBV, and were blinded to the frequency of their

WBV platform, while controls did not receive WBV or a sham platform. Outcome assessors,

including HR-pQCT and DXA analysts, were blinded to group assignment. Data collection was

conducted from November 2006 to December 2009 at the Centre of Excellence in Skeletal

Health Assessment (Toronto, Canada), and included baseline and 6- and 12-month follow-up

visits. HR-pQCT and DXA bone parameters, physical activity levels, and body mass and height

90

were collected at baseline and 12 months. Medical conditions, medications and falls were

assessed at each study visit, and participants were also asked to inform us via phone of any

health changes they experienced during study. Dietary calcium and vitamin D intakes were

assessed and supplements were provided at baseline and 6 months. Adherence to WBV was

self-reported at 6 months and extracted from WBV platforms at 12 months, while adherence to

calcium and vitamin D supplements was self-reported at 12 months. Serum 25-hydroxy vitamin

D levels were obtained from recent medical records (i.e., obtained during the study period ±3

months). A priori study protocol and standardised data forms were used for collecting all data

(see the Technical Appendix). This study was approved by the UHN research ethics board,

registered at ClinicalTrials.gov (#NCT00420940) and funded by the Ontario Physicians’ Services

Incorporated Foundation.

Participants

Women were eligible if they were postmenopausal (≥1 year after cessation of menses)

and had primary osteopenia (lowest aBMD T-score at the lumbar spine, femoral neck, or total

hip between -1.0 and -2.5). Exclusion criteria included osteoporosis; fragility fracture after age

40; secondary causes for bone loss; other metabolic bone diseases or diseases affecting bone

metabolism; current use of any bone medications; recent use of hormone replacement therapy

(HRT) (past 12 months), bisphosphonates (past 3 months) or raloxifene (past 6 months); prior

use of bisphosphonates for ≥3 months; chronic glucocorticoid, anticoagulant or anticonvulsant

therapy; history of active cancer in the past 5 years; body mass of ≥90 kg; knee or hip joint

91

replacements; spinal implants; inability to tolerate WBV for 20 minutes; expected changes in

physical activity levels; and expected travels for more than four consecutive weeks during the

study.

Interventions

90Hz and 30Hz participants were asked to stand on a WBV platform (Dynamic Motion

Therapy 1000™, Juvent Medical Inc, Somerset, NJ) oscillating at a magnitude of 0.3g and at

frequencies of 90 or 30 Hz, respectively, for 20 minutes a day for 12 months at home, while

controls did not receive WBV. At baseline, 90Hz and 30Hz participants were provided

instructions about how to stand on a vibrating platform; erect, with neutral posture at the neck,

lumbar spine, and knees, wearing socks or barefoot, and without excessive foot or body

movements. Self-reported adherence to WBV was obtained at 6 months and feedback about

how to improve adherence was provided. Actual adherence to WBV was extracted from each

platform at study completion, using an internal digital clock recording of every session date,

time and duration. All platforms were designed to automatically turn off at the end of each 20-

minute WBV session, but it was possible for participants to administer two or more daily WBV

sessions or less than 20 minutes a day. As such, three different percent adherence measures

were obtained; based on the total cumulative duration of all WBV sessions, total number of

WBV days and total number of full 20-minute WBV sessions performed during study.

Daily dietary calcium and vitamin D intakes were estimated using a recall questionnaire

(Hung et al., 2010) and appropriate supplement (Jamieson Laboratories™ calcium carbonate or

92

citrate and cholecalciferol tablets) dose was provided to all participants, so that total daily

calcium and vitamin D intakes from diet plus supplements were approximately 1200 mg and

1000 IU, respectively. All participants were asked to report their perceived percent adherence

(0-100%) to calcium and vitamin D supplements.

Outcomes

vBMD (trabecular, cortical and total; vBMDt, vBMDc, vBMDtot) and bone structure

(cortical thickness, and trabecular thickness, number, separation and bone volume fraction;

CTh, TTh, TN, TSp, BV/TV) were measured using HR-pQCT (XtremeCT, Scanco Medical AG,

Bassersdorf, Switzerland) at the distal tibia and distal radius. Our primary outcome was vBMDt

at the distal tibia. aBMD was measured using DXA (Hologic DiscoveryA; Hologic, Bedford, MA)

at the femoral neck, total hip and L1 to L4 lumbar spine (aBMDf, aBMDh, aBMDs). HR-pQCT and

DXA outcome assessment was performed by trained and certified technologists using a

standardized protocol and manufacturer software. Baseline and final HR-pQCT scans were

matched for their common region in order to calculate absolute 12-month change in HR-pQCT

parameters. The RMS-CVs for short-term reproducibility in our laboratory were: HR-pQCT distal

tibia vBMD, 0.19-0.40%, CTh, 0.50%, BV/TV, 0.37%, and trabecular structure, 3.73-4.08%; HR-

pQCT distal radius vBMD, 0.46-0.70%, CTh, 1.33%, BV/TV, 0.71%, and trabecular structure,

4.55-4.83%; DXA aBMD, 1.0-1.8% (Cheung et al., 2008; Cheung et al., 2010).

Serious adverse events (SAEs; hospitalization, cancer, life-threatening event or death

experienced during study) and adverse events (AEs; any untoward effects with an onset after

93

baseline or worsening of an existing condition) were recorded using the National Cancer

Institute’s Common Terminology Criteria for AEs v3.0 (National Cancer Institute, 2006). Clinical

fractures occurring during the study were confirmed by radiographs or radiological reports. An

investigator blinded to group assignment (AMC) determined whether SAEs were related to

WBV and identified clinical fractures experienced during study as fragility or non-fragility. Falls

were recorded based on participants’ recall, and medications and other treatments were self-

reported. Daily physical activity metabolic index (AMI, kcal/day) was obtained using the

Minnesota Leisure-Time Physical Activity Questionnaire (Wilson, 1997).

Statistical analyses

Baseline characteristics were compared between groups using one-way ANOVA and X2

statistics. Differences in absolute 12-month change (final – baseline) in all bone outcomes were

assessed with one-way ANOVA with contrasts, using intention-to-treat (ITT) and per-protocol

approaches (Vickers, 2001). All randomized participants were included in the ITT approach, and

single imputations based on group means substituted any missing bone outcomes; in other

words, for each participant with a missing bone outcome, the mean value of that bone

outcome for the study group to which they belonged was used in place of the missing value.

Missing bone outcomes and participants who started hormone replacement therapy (HRT)

during study were excluded from the per-protocol approach. The following contrasts were

specified a priori: all pair-wise (90Hz versus 30Hz, 30Hz versus CON, 90Hz versus CON) and

90Hz plus 30Hz versus CON group (see the Technical Appendix for a priori data analysis plan).

94

Our a priori specified subgroups included participants who were ≥80% adherent (using all three

adherence estimates), <65 kg in mass, ≤60 years-old or ≤10 years since menopause. Using one-

way ANCOVA with contrasts, we examined whether baseline physical activity or serum vitamin

D levels influenced between-group differences in bone outcomes. In our sensitivity analyses,

we excluded participants with potentially compromised bone outcomes (for example, due to

fracture-related ankle immobilization) or study conduct (for example, performed WBV with

shoes). Changes in total daily calcium and vitamin D intakes, physical activity levels, and body

mass and body mass index were assessed with one-way ANOVA. AEs were categorized

independently by two investigators (LS and HH) and compared between study groups using the

Fisher’s Exact X2 test. Using a LSC of 1.1% and a standard deviation of ~2.5% for tibial vBMDt,

based on a precision study in our laboratory (Cheung et al., 2010), a sample size of 200 was

deemed adequate to achieve 80% statistical power at α=0.05. All analyses were conducted

using SAS version 9.2 (see the Technical Appendix for SAS codes) and a statistical significance

level of p≤0.05.

RESULTS

Participants characteristics

We contacted 1,126 potential participants, of which 303 were interested and eligible,

attended a screening visit, and signed an informed consent (Figure 1). Of those, 202 osteopenic

202

Ran

dom

ized

90 H

z WBV

Gro

up67

Allo

cate

d to

and

rece

ived

90

Hz W

BV

Co

ntro

l Gro

up67

Allo

cate

d to

and

rece

ived

no

WBV

2 L

ost t

o fo

llow

-up

1 ex

tenu

atin

g ci

rcum

stan

ces

1 lo

ss o

f int

eres

t

2 Lo

st to

follo

w-u

p 2

loss

of i

nter

est

67 In

clud

ed in

inte

ntio

n-to

-tre

at a

naly

sis64

Incl

uded

in p

er-p

roto

col a

naly

sis3

Excl

uded

: 2 L

ost t

o fo

llow

-up

1 st

arte

d HR

T

67 In

clud

ed in

int

entio

n-to

-tre

at a

naly

sis64

Incl

uded

in p

er-p

roto

col a

naly

sis3

Excl

uded

: 2 L

ost t

o fo

llow

-up

1 st

arte

d HR

T

823

Excl

uded

524

Did

not m

eet i

nclu

sion

crite

ria19

8 Re

fuse

d to

par

ticip

ate

101

Oth

er re

ason

sa

1126

As

sess

ed fo

r elig

ibili

ty &

in

tere

st v

ia p

hone

101

Did

not m

eet i

nclu

sion

crite

riab

30 H

z WBV

Gro

up68

Allo

cate

d to

and

rece

ived

30

Hz W

BV

3 Lo

st to

follo

w-u

p1

exte

nuat

ing

circ

umst

ance

s1

loss

of i

nter

est

1 m

oved

68 In

clud

ed in

inte

ntio

n-to

-tre

at a

naly

sis65

Incl

uded

in p

er-p

roto

col a

naly

sis3

Excl

uded

: 3 L

ost t

o fo

llow

-up

303

Ass

esse

d fo

r elig

ibili

ty &

in

tere

st d

urin

g sc

reen

ing

visit

a No

resp

onse

(n=5

5), s

tudy

clo

sed

prio

r to

asse

ssin

g el

igib

ility

via

pho

ne (n

=33)

, diff

icul

t to

sche

dule

(n=7

), an

d ot

her (

n=6)

b Not

ost

eope

nic

(n=8

3), m

edic

atio

ns a

ffect

ing

bone

met

abol

ism (n

=9),

not p

ostm

enop

ausa

l (n=

1), d

iseas

es a

ffect

ing

bone

met

abol

ism(n

=2),

body

mas

s of >

90 k

g (n

=1),

expe

cted

trav

els f

or >

1 m

onth

(n=1

), e

xpec

ted

chan

ges i

n ph

ysic

al le

vels

(n=1

), jo

int r

epla

cem

ents

/spi

ne im

plan

ts (n

=1),

and

poor

med

ical

/psy

chia

tric

risk

(n=2

).

Figu

re 1

. Flo

w d

iagr

am o

f par

ticip

ants

’ pr

ogre

ss th

roug

h th

e tr

ial.

Luba
Typewritten Text
95

96

postmenopausal women met our inclusion/exclusion criteria, and were randomized to 90Hz

(n=67), 30Hz (n=68) or CON (n=67) groups. Participants were primarily of European (78%) and

South-East Asian (16%) ethnic origin with mean age of 60 years (range: 44-79), on average 10

years (range: 1-43) past menopause, mean body mass of 63 kg (range: 43-88), and total daily

calcium and vitamin D intakes of 1429 mg (SD: 660) and 817 IU (SD: 581). Baseline

characteristics were similar between groups (Table 1). Seven participants dropped out (four lost

interest, two underwent extenuating life circumstances and one moved) and two participants

started taking HRT during the study. Mean change in total daily calcium (90Hz, -63 mg; 30Hz, 18

mg; CON, 102 mg; p=0.29) and vitamin D (90Hz, 11 IU; 30Hz, 68 IU; CON, 86 IU; p=0.68) intakes,

after we provided study supplements, were insignificant and similar between groups. Serum

25-hydroxy vitamin D levels (90Hz, 94 nmol/L, n=60; 30Hz, 94 nmol/L, n=61; CON, 90 nmol/L,

n=59; p=0.67) and 12-month change in physical activity levels (90Hz, -24 AMI; 30Hz, -12 AMI;

CON, -30 AMI; p=0.85), body mass (90Hz, 0.2 kg; 30Hz, 0.0 kg; CON, 0.5 kg; p=0.60) and BMI

(90Hz, 0.1 kg·m-2; 30Hz, 0.0 kg·m-2; CON, 0.2 kg·m-2; p=0.53) were also similar between groups.

Additional results are reported in the Technical Appendix.

Adherence

Adherence to WBV was not obtained in five drop-outs and in three participants with

WBV platform digital clock malfunction. Most participants were either close to 100% or 0%

adherent, making the adherence distribution bimodal and heavy in the extremes, thus medians

were calculated. All three estimates of adherence to WBV, based on total cumulative duration,

Table 1. Baseline Characteristics of Women Participating in the Vibration Study. Baseline Characteristic Category 90 Hz WBV

(n = 67) 30 Hz WBV

(n = 68) Control (n = 67)

Age, mean (SD) - 60.5 (7.0) 59.6 (6.0) 60.8 (5.5) Age at menarche, mean (SD) - 12.9 (1.5) 12.2 (1.5) 12.9 (1.6) Years since menopause, mean (SD) Natural menopause (n=169) 8.6 (6.0) 9.5 (6.7) 9.4 (6.2) Surgical menopause (n=33) 24.6 (11.5) 15.8 (7.4) 15.2 (10.4) Mass (kg), mean (SD) - 64.4 (10.6) 62.0 (10.5) 62.4 (9.5) Height (m), mean (SD) - 1.61 (0.06) 1.59 (0.06) 1.60 (0.06) BMI (kg∙m-2), mean (SD) - 24.9 (4.0) 24.5 (3.6) 24.2 (3.4) Ethnicity, n (%) European 55 (82) 48 (70) 54 (81) Southeast Asian 8 (12) 14 (20) 10 (15) Other 4 (6) 6 (9) 3 (4) Education, n (%) High school or less 13 (19) 11 (16) 11 (16) University/community college 44 (66) 35 (51) 35 (52) Post graduate 10 (15) 22 (32) 21 (31) Marital status, n (%) Married/common law 38 (57) 41 (60) 41 (61) Divorced/separated/widowed 20 (30) 21 (31) 15 (22) Never married 9 (13) 6 (9) 11 (16) Family osteoporosis history, n (%) - 26 (39) 34 (50) 35 (52) Alcohol use, n (%) None 30 (45) 39 (57) 35 (52) 1 serving a day 32 (48) 23 (34) 25 (37) >1 servings a day 5 (7) 6 (9) 7 (10) Smoking, n (%) Past smoker 24 (36) 19 (28) 20 (30) Current smoker 4 (6) 4 (6) 4 (6) Never smoked 39 (58) 45 (66) 43 (64) Falls experienced in past 12 months, n (%) None 52 (78) 54 (79) 48 (72) 1 fall 13 (19) 10 (15) 16 (24) >1 falls 2 (3) 4 (6) 3 (4) DXA areal measurements, mean (SD) aBMDf (g∙cm-2) 0.686 (0.049) 0.676 (0.060) 0.687 (0.054) aBMDh (g∙cm-2) 0.851 (0.066) 0.836 (0.083) 0.845 (0.068) aBMDs (g∙cm-2) 0.904 (0.090) 0.890 (0.069) 0.902 (0.080) Distal tibia HR-pQCT measurements, mean (SD)* vBMDt (mg⋅cm-3) 149 (36) 144 (29) 145 (30) vBMDc (mg⋅cm-3) 827 (54) 828 (61) 823 (44) vBMDtot (mg⋅cm-3) 264 (48) 268 (41) 264 (43) CTh (mm) 0.99 (0.21) 1.03 (0.24) 1.00 (0.20) TTh (mm) 0.079 (0.016) 0.081 (0.013) 0.079 (0.015) TN (mm-1) 1.56 (0.25) 1.50 (0.28) 1.54 (0.27) TSp (mm) 0.578 (0.118) 0.610 (0.127) 0.592 (0.125) BV/TV (%) 0.124 (0.030) 0.120 (0.024) 0.120 (0.025) Distal radius HR-pQCT measurements, mean (SD)* vBMDt (mg⋅cm-3) 137 (35) 138 (28) 139 (32) vBMDc (mg⋅cm-3) 847 (66) 837 (71) 843 (62) vBMDtot (mg⋅cm-3) 291 (64) 290 (58) 294 (59) CTh (mm) 0.68 (0.17) 0.67 (0.18) 0.69 (0.17) TTh (mm) 0.066 (0.011) 0.067 (0.010) 0.067 (0.012) TN (mm-1) 1.73 (0.26) 1.71 (0.27) 1.73 (0.28) TSp (mm) 0.526 (0.095) 0.530 (0.093) 0.530 (0.130) BV/TV (%) 0.114 (0.029) 0.115 (0.024) 0.116 (0.027) Calcium intakes (mg), mean (SD) - 1538 (677) 1399 (656) 1352 (642) Vitamin D intakes (IU), mean (SD) - 866 (582) 778 (583) 808 (584) Physical activity AMI (kcal/day), mean (SD)** 352 (224) 337 (237) 383 (277) Abbreviations: WBV, whole-body vibration; SD, standard deviation; BMI, body mass index; DXA, dual-energy x-ray absorptiometry; BMD, bone mineral density; aBMDf, areal BMD at the femoral neck; aBMDh, areal BMD at the total hip; aBMDs, areal BMD at the lumbar spine L1-L4; HR-pQCT, high-resolution peripheral quantitative computed tomography; vBMDt, trabecular volumetric BMD; vBMDc, cortical volumetric BMD; vBMDtot, total volumetric BMD; CTh, cortical thickness; TTh, trabecular thickness; TN, trabecular number; TSp, trabecular separation; BV/TV, trabecular bone volume fraction. *One distal tibia (n=201) and two distal radius (n=200) scans were not evaluable, resulting in an incomplete baseline analysis of HR-pQCT parameters. **Daily physical activity metabolic index (AMIs) units in kcal per day, as estimated by Minnesota Leisure-Time Physical Activity Questionnaire.

Luba
Typewritten Text
97

98

number of days and number of full treatments, were similar in 90Hz and 30Hz groups, and their

medians were, respectively, 79%‚ 70% and 78% (mean: 65%, 58%, 64%; interquartile range:

50%‚ 49%‚ 51%) versus 77%‚ 65% and 77% (mean: 66%, 60%; 65%; interquartile range: 30%‚

28%‚ 33%). Depending on the adherence estimate used, 29-48% of 90Hz participants and 26-

45% of 30Hz participants were ≥80% adherent to WBV. Mean adherence to calcium and vitamin

D supplements was also similar between 90Hz (90%; median: 98%), 30Hz (89%; median: 98%)

and CON (89%; median: 96%) groups.

Bone outcomes

There was excellent matching of baseline and final HR-pQCT scans with mean matched

common region of 96% (SD: 3) for the distal tibia and 93% (SD: 6) for the distal radius. After 12-

months of WBV, no significant between-group differences in any HR-pQCT or DXA parameters

were observed using ITT or per-protocol approaches (Table 2). Percent 12-month changes

observed in the per-protocol approach for 90Hz, 30Hz, and CON groups were, respectively:

distal tibia vBMDt, 0.4%, -0.1% and -0.2%; aBMDf, -0.7%, -0.8% and -0.1%; aBMDh -0.4%, -0.2%

and -0.3%; and aBMDs, -0.6%, -0.9% and -0.8%. Our subgroup analyses of participants who

were ≥80% adherent, <65 kg in mass, ≤60 years-old or ≤10 years since menopause did not

identify any subgroup which responded to WBV. Finally, our adjustment for baseline physical

activity levels or serum vitamin D levels, or our sensitivity analyses did not make a difference in

the HR-pQCT and DXA findings.

Table 2. Absolute change in all DXA and HR-pQCT parameters. Intention-to-treat approach (n=202) Per-protocol approach (n=193) Bone Outcomes: Absolute 12 months Change

90 Hz WBV (n = 67)

30 Hz WBV (n = 68)

Control (n = 67)

90 Hz (n = 64)

30 Hz (n = 65)

Control (n = 64)

DXA areal bone mineral density, mean (SD) aBMDf (g∙cm-2) -0.005 (0.018) -0.005 (0.022) -0.001 (0.020) -0.005 (0.018) -0.005 (0.022) -0.001 (0.020) aBMDh (g∙cm-2) -0.004 (0.014) -0.002 (0.016) -0.002 (0.016) -0.004 (0.015) -0.002 (0.016) -0.002 (0.016) aBMDs (g∙cm-2) -0.006 (0.028) -0.008 (0.020) -0.007 (0.020) -0.006 (0.029) -0.008 (0.020) -0.006 (0.021) Distal tibia HR pQCT volumetric bone measurements, mean (SD)* vBMDt (mg⋅cm-3) 0.4 (3.7) -0.1 (3.3) -0.2 (3.1) 0.4 (3.8) -0.1 (3.4) -0.2 (3.2) vBMDc (mg⋅cm-3) -10.9 (12.7) -10.4 (14.0) -9.2 (11.6) -11.1 (12.9) -10.4 (14.5) -9.1 (11.8) vBMDtot (mg⋅cm-3) -1.4 (5.4) -2.3 (5.3) -1.7 (4.3) -1.4 (5.5) -2.3 (5.5) -1.7 (4.4) CTh (mm) 0.000 (0.028) -0.006 (0.036) 0.001 (0.026) 0.000 (0.029) -0.006 (0.038) 0.001 (0.026) TTh (mm) -0.003 (0.006) -0.004 (0.007) -0.002 (0.006) -0.003 (0.006) -0.004 (0.007) -0.002 (0.006) TN (mm-1) 0.070 (0.142) 0.078 (0.154) 0.056 (0.128) 0.072 (0.146) 0.078 (0.160) 0.056 (0.132) TSp (mm) -0.022 (0.044) -0.023 (0.046) -0.018 (0.048) -0.023 (0.045) -0.023 (0.048) -0.017 (0.049) BV/TV (%) 0.000 (0.003) -0.000 (0.003) -0.000 (0.003) 0.000 (0.003) -0.000 (0.003) -0.000 (0.003) Distal radius HR pQCT volumetric bone measurements, mean (SD)** vBMDt (mg⋅cm-3) -2.2 (9.6) -1.6 (5.0) -1.0 (4.4) -2.1 (9.9) -1.6 (5.1) -0.9 (4.4) vBMDc (mg⋅cm-3) -14.8 (17.1) -10.4 (18.0) -13.0 (17.1) -15.1 (17.5) -10.4 (18.7) -12.8 (17.6) vBMDtot (mg⋅cm-3) -5.2 (12.1) -3.8 (7.5) -5.2 (9.3) -5.2 (12.5) -3.8 (7.8) -5.0 (9.4) CTh (mm) -0.007 (0.032) -0.006 (0.024) -0.014 (0.037) -0.007 (0.033) -0.006 (0.025) -0.013 (0.038) TTh (mm) -0.002 (0.006) -0.002 (0.006) -0.001 (0.007) -0.002 (0.006) -0.002 (0.006) -0.001 (0.007) TN (mm-1) 0.031 (0.196) 0.036 (0.137) 0.024 (0.167) 0.033 (0.201) 0.036 (0.142) 0.028 (0.168) TSp (mm) -0.002 (0.096) -0.010 (0.038) -0.008 (0.052) -0.003 (0.099) -0.010 (0.039) -0.010 (0.052) BV/TV (%) -0.002 (0.008) -0.001 (0.004) -0.001 (0.004) -0.002 (0.008) -0.001 (0.004) -0.001 (0.004) Abbreviations: DXA, dual-energy x-ray absorptiometry; HR-pQCT, high-resolution peripheral quantitative computed tomography; WBV, whole-body vibration; SD, standard deviation; BMI, body mass index; BMD, bone mineral density; aBMDf, areal BMD at the femoral neck; aBMDh, areal BMD at the total hip; aBMDs, areal BMD at the lumbar spine L1-L4; vBMDt, trabecular volumetric BMD; vBMDc, cortical volumetric BMD; vBMDtot, total volumetric BMD; CTh, cortical thickness; TTh, trabecular thickness; TN, trabecular number; TSp, trabecular separation; BV/TV, trabecular bone volume fraction. *HR-pQCT analysis of the distal tibia was based on <193 participants included in the per-protocol approach (n=191), due to compromised bone scans (one baseline scan was not evaluable and one participant refused to complete the final scan). **HR-pQCT analysis of the distal radius was based on <193 participants included in the per-protocol approach (n=189), due to compromised bone scans (two baseline scans were not evaluable and two participants refused to complete the final scan).

Luba
Typewritten Text
99

100

Adverse events

The following SAEs were reported, but none were deemed to be due to WBV: breast

cancer (1 in 30Hz, 1 in CON), grade 3 oligodendroglioma (1 in 30Hz), appendicitis (2 in CON),

pneumonia requiring hospitalization (1 in 30Hz) and pacemaker insertion (30Hz, n=1). When

various AE categories were compared between study groups, including falls and clinical

fractures, no statistically significant differences were observed (Table 3).Three participants

discontinued WBV, within two months after starting the therapy, upon experiencing the

following AEs with WBV use: dizziness at night (1 in 30Hz), chronic shin pain (1 in 90Hz) and

chronic plantar foot pain (1 in 30Hz). The following mild symptoms lasting briefly during or just

after WBV were also reported: pain, numbness or weakness at various leg sites (5 in 90Hz, 5 in

30Hz), nausea (2 in 90Hz), increased bowel movement (2 in 90Hz, 1 in 30Hz), and exacerbation

of pre-existing headaches, bladder discomfort, inner ear sensitivity or neck pain (3 in 90Hz, 1 in

30Hz).

COMMENT

In our RCT of osteopenic postmenopausal women, low magnitude WBV at 0.3g and at

90 or 30 Hz had no effect on vBMD and bone structure parameters at the distal tibia and distal

radius, and aBMD at the lumbar spine, total hip and femoral neck. Low-magnitude WBV at 0.3g

and 30 Hz was previously examined in one RCT of postmenopausal women, and similarly no

Table 3 – Adverse events summary. Adverse Events Category Number of participants

90Hz 30Hz CON All adverse events 44 47 43 Serious adverse events 0 4 3 Clinical fractures One 3 1 0 Two 1 0 1 Fall(s) One 11 6 17 Two or more 10 6 7 Back pain Improved 6 8 2 Worsened 4 7 3 Unchanged 23 20 26 Osteoarthritis 2 2 2 Lower-limb problems* 27 20 19 Other musculoskeletal problems** 34 24 26 Edema 4 2 3 Dizziness or faintness 1 1 4 Headache 2 2 0 Gastrointestinal discomfort 5 1 2 Ear problems 2 1 0 Eye problems 5 3 2 Renal problems 1 3 0 Hypertension 2 4 2 Depression, anxiety or insomnia 2 2 4 *Included aches and pains, joint stiffness or weakness, change is sensation or numbness, swelling or edema or any other symptoms in the lower-limbs (hips, thighs, knees, lower leg and feet). Did not include clinical fractures. **Included all musculoskeletal problems, except clinical fractures, back pain and osteoarthritis, occurring anywhere in the body including the lower limbs.

Luba
Typewritten Text
101

102

significant effect on aBMD at the lumbar spine or femoral neck was found (Rubin et al., 2004).

Four RCTs in postmenopausal women examined high-magnitude (≥1g) WBV at frequencies

between 12 to 40 Hz, and observed no significant effect on vBMDt at the distal tibia (Russo et

al., 2003) or aBMD at the lumbar spine (Gusi et al., 2006; Iwamoto et al., 2005; Rubin et al.,

2004; Verschueren et al., 2004), however, statistically significant but small effect on hip aBMD

was found in two trials (Gusi et al., 2006; Verschueren et al., 2004). Although high- (≥1g) but

not low-magnitude (<1g) WBV was previously found to improve hip aBMD in postmenopausal

women (Gusi et al., 2006; Verschueren et al., 2004), we examined low-magnitude WBV in our

RCT for various reasons. The early animal models primarily examined low-magnitude WBV at

0.1g to 0.6g and observed bone adaptations in the weight-bearing skeleton, such as improved

trabecular vBMD and microarchitecture, as summarized elsewhere (Prisby et al., 2008). Further,

larger increases in bone formation rate were found in adult female mice receiving 0.3g versus

0.6g WBV at 45 Hz (Garman et al., 2007). In children and adolescents, 0.3g WBV at 90 and 30

Hz was found to significantly improve vBMD at the spine, femur and tibia (Gilsanz et al., 2006;

Ward et al., 2004). Finally, the RCT in postmenopausal women which examined effects of 0.3g

WBV at 30 Hz on hip and spine aBMD, observed significant improvements in a small subgroup

of ≥80% adherent and <65 kg women (n=10), albeit not in the whole study population (n=70),

and calcium and vitamin D supplements were not provided in this trial (Rubin et al., 2004).

Compared to previous RCTs of WBV effects on bone in postmenopausal women, we

examined larger sample size (n=202 vs. n<100) (Gusi et al., 2006; Iwamoto et al., 2005; Rubin et

al., 2004; Russo et al., 2003; Verschueren et al., 2004), lost less participants to follow-up (4% vs.

13-50%) (Gusi et al., 2006; Rubin et al., 2004; Russo et al., 2003; Verschueren et al., 2004) and

103

provided calcium and vitamin D supplements (Gusi et al., 2006; Iwamoto et al., 2005; Rubin et

al., 2004; Verschueren et al., 2004). Also, we employed several strategies to improve the

efficacy of WBV in our trial. First, our primary outcome was vBMDt at the distal tibia, because

trabecular bone density at a weight-bearing site closest to the vibrating platform was expected

to respond more to WBV than other bone parameters or sites (Rubin et al., 2002b; Rubin et al.,

2002a; Kiiski et al., 2008). Second, we included postmenopausal women with osteopenia versus

normal aBMD, because early animal models have shown stronger osteogenic effects of WBV in

rats with more compromised skeletons (Flieger et al., 1998), while previous RCTs of WBV also

included postmenopausal women with normal aBMD (Gusi et al., 2006; Rubin et al., 2004;

Russo et al., 2003; Verschueren et al., 2004). Third, we examined a priori specified subgroups of

<65 kg, ≤10 years after menopause or ≤60-year-old women, as previous authors hypothesized

that skeletons of lighter women with smaller soft tissue mass may receive less dissipated WBV

stimulus (Rubin et al., 2004), and we hypothesized that younger postmenopausal women may

respond more to WBV due to faster bone metabolism (Reid, 2006).

Overall, low-magnitude WBV at 30 and 90 Hz was found to be well tolerated in our

population of osteopenic postmenopausal women. Previous RCTs in this population also found

WBV to be well tolerated, as summarized in our recent meta-analysis (Slatkovska et al., 2010a).

However, prolonged exposure to WBV in occupational settings (e.g., driving or drilling

platforms) has been linked to various conditions (Griffin, 1998; Randall et al., 1997), such as

vibration-white foot syndrome and motion sickness (Griffin, 1998; Thompson et al., 2010).

Several 90Hz and 30Hz participants self-reported pain and numbness involving the feet and

dizziness and nausea possibly related to WBV. Increased gastrointestinal motility during or just

104

after WBV was also reported in our trial, while prolonged vibration exposure during driving was

previously found to reduce gastrointestinal motility (Ishitake et al., 1999).

To our knowledge, this was the first RCT to administer more than 10 consecutive

minutes of WBV to postmenopausal women (Rubin et al., 2004; Slatkovska et al., 2010a). The

early animal models primarily examined 10 to 30 minutes of continuous WBV and observed

significant bone adaptations (Prisby et al., 2008); for example, 12 months of daily 20-minute

WBV at 0.3g and 30 Hz was found to increase femur vBMDt by 30% in adult female sheep

(Rubin et al., 2002b; Rubin et al., 2002a). In contrast, some believe that intermittent WBV may

be more beneficial for promoting musculoskeletal adaptations in humans (Totosy de Zepetnek

et al., 2009), since prolonged muscle vibration was previously found to reduce motor output

during muscular contraction (Bongiovanni et al., 1990). However, it was recently proposed that

although potential osteogenic effects of high-magnitude WBV may involve skeletal muscles

activation, this is probably not the case with low-magnitude WBV (Judex & Rubin, 2010).

Instead, low-magnitude WBV was hypothesized to exert osteogenic effects by direct ‘shaking’

of the bones leading to bone fluid-flow changes and mechanotransduction of mechanical

stimuli potentially by the osteocytes (Judex & Rubin, 2010). As such, low-magnitude WBV is

believed to mimic mechanical signals that would normally arise within the skeleton from slow-

twitch postural muscles contractions, especially in older adults who experience sarcopenia and

reduced skeletal muscles activity (Ozcivici et al., 2010). Further, compared to high-magnitude,

low-magnitude WBV can be safely tolerated for up to several hours, according to the

International Standardization Organization guidelines for WBV exposure in industrial settings

(ISO 2631) (Griffin, 1998; Rubin et al., 2004).

105

Several limitations existed in our trial. First, median adherence to WBV ranged between

65-79%, depending on the estimate used, and mean cumulative duration of WBV was 4700

minutes versus prescribed 7300 minutes. When low-magnitude WBV was previously prescribed

to postmenopausal women for 12-months twice a day for 10 continuous minutes, no effect of

WBV on aBMD was found and adherence was also low; 37% of participants were ≥80%

adherent (Rubin et al., 2004). Thus, in order to improve adherence in our trial, we combined

two daily 10-minute sessions into one 20-minute session, and we monitored adherence at 6-

months to provide feedback to our participants. In RCTs of children and adolescents, significant

effect of low-magnitude WBV was found on vBMD even with mean cumulative duration of 600-

2100 minutes (Gilsanz et al., 2006; Ward et al., 2004), while in RCTs of postmenopausal women,

significant effect of high-magnitude WBV was found on aBMD even with mean cumulative

duration of 500-1000 minutes (Gusi et al., 2006; Verschueren et al., 2004). Also, our ≥80%

adherent subgroups included approximately 100 participants, which is more than the total

sample sizes of previous RCTs examining WBV effects on bone in postmenopausal women

(Slatkovska et al., 2010a). Second, due to feasibility, WBV was administered at home, thus

beyond us providing instructions at baseline and reinforcing them at 6 months, participants

were not supervised during WBV. For example, some participants performed more than one

daily WBV session on some days, as if trying to catch up. Also, whether or not instructions

regarding proper posture during WBV were followed is not known. However, at-home

administration may in some ways better represent real-life use of WBV. Third, double-blinding

was not possible, because due to limited funding sham WBV, a platform producing audible

sound, was not provided to our controls. However, sham versus true WBV are somewhat

106

discernable from one another, as 70% of controls receiving sham WBV correctly guessed their

group assignment in a previous RCT of postmenopausal women (Rubin et al., 2004). Thus, we

ensured that HR-pQCT and DXA outcome assessors were blinded to group assignment in our

trial.

To conclude, in our population of healthy community-dwelling osteopenic

postmenopausal women, 12 months of low-magnitude (0.3g) WBV at 90 or 30 Hz did not

influence vBMD and bone structure parameters at the distal tibia or distal radius as measured

by HR-pQCT or aBMD at the femoral neck, total hip or lumbar spine as measured by DXA.

Future RCTs should investigate effects of this WBV therapy in other study populations.

107

CHAPTER THREE: EFFECTS OF WHOLE-BODY VIBRATION ON CALCANEAL QUANTITATIVE

ULTRASOUND PARAMETERS IN OSTEOPENIC POSTMENOPAUSAL WOMEN: A RANDOMIZED

CONTROLLED TRIAL (THE VIBRATION STUDY)

Being submitted for publication in a peer-reviewed journal:

Slatkovska L, Alibhai S, Beyene J, Queenie Wong, Cheung AM. (2010). Effects of Whole-Body

Vibration on Calcaneal Quantitative Ultrasound Parameters in Osteopenic Postmenopausal

Women: A Randomized Controlled Trial (The Vibration Study).

108

ABSTRACT

Objective and context: Although recent data suggest that whole-body vibration (WBV)

may have beneficial effect on bone, calcaneal quantitative ultrasound (QUS) parameters have

not been examined. Since WBV enters the body through the plantar foot surface, calcaneus

may respond more to WBV than other skeletal sites. Thus, we examined WBV effect on

calcaneal QUS parameters.

Design, participants and interventions: A 12-month randomized controlled trial was

conducted with calcaneal QUS outcomes as secondary endpoints. Participants were 202

postmenopausal women with primary not on bone medications, randomized to one of three

groups: 90Hz, receiving 90 Hz WBV at 0.3g (n=67); 30Hz, receiving 30 Hz WBV at 0.3g (n=68); or

CON, controls not receiving WBV (n=67). Participants in the 90Hz and 30Hz groups were asked

to stand on a WBV platform for 20 minutes a day and all participants were provided with daily

calcium and vitamin D supplements for 12 months.

Quantitative ultrasound outcomes: At baseline and 12 months, broadband attenuation

(BUA), speed of sound (SOS) and QUS index (QUI) were obtained at the calcaneus using the

Sahara Clinical Bone Sonometer (Hologic). Between-group differences in absolute 12-month

change in SOS, BUA and QUI were examined using one-way ANOVA with a priori contrasts. A

109

priori specified ≥80% adherent, <65 kg in mass, ≤60 years-old or ≤10 years since menopause

subgroups were also examined.

Results: Between-group differences in BUA change were found to be statistically

significant (p<0.05) using the intention-to-treat analysis (ITT) analysis, due to a decrease in 90Hz

(-0.4 dB·MHz-1) and 30Hz (-0.7 dB·MHz-1) groups and an increase in controls (1.3 dB·MHz-1).

Significant BUA decrease in 30Hz versus CON group was found using ITT (n=202) and per-

protocol (n=175) approaches, while significant decrease in 90Hz versus CON group was found in

≥80% adherent and <65 kg subgroups. BUA decrease was not significantly different between

90Hz and 30Hz groups in any analysis. No significant between-group differences in SOS or QUI

changes were found.

Conclusions: WBV may reduce BUA in osteopenic postmenopausal women. However,

the observed negative effect was small and likely not clinically significant. Since this was the

first study to examine effects of WBV on calcaneal QUS parameters, future studies are needed

to confirm our findings.

Trial Registration: ClinicalTrials.gov (#NCT00420940).

Keywords: whole-body vibration, menopause, quantitative ultrasound, broadband attenuation,

calcaneus

110

INTRODUCTION

The potential role of whole-body vibration (WBV) in preventing postmenopausal bone

loss was previously examined (Slatkovska et al., 2010a). Small bone mineral density (BMD)

improvements were found at the hip in some randomized controlled trials (RCTs) of WBV (Gusi

et al., 2006; Verschueren et al., 2004), but not at the lumbar spine or distal tibia (Gusi et al.,

2006; Iwamoto et al., 2005; Rubin et al., 2004; Russo et al., 2003; Verschueren et al., 2004).

Potential reasons for conflicting results include small sample sizes (<100), lack of calcium and

vitamin D supplementation, and heterogeneity between WBV therapies (Slatkovska et al.,

2010a).

WBV involves standing on an oscillating platform, which transmits mechanical waves

from the plantar feet surface to the weight-bearing muscles and bones (Kiiski et al., 2008; Rubin

et al., 2003), and is believed to stimulate bone cells via bone fluid flow changes directly or

indirectly by skeletal muscles activation (Judex & Rubin, 2010; Ozcivici et al., 2010). Intensity of

WBV is determined by its magnitude and frequency. Magnitude or peak acceleration refers to

how powerful the oscillations are, and is generally expressed in units of acceleration due to

gravity (1g, gravitational constant 9.8 m·s-2), while frequency refers to the speed of oscillations

(1 Hz, one oscillation per second). Higher WBV magnitudes may exert stronger effects on bone

(Wolff, 1986; Frost, 1998), but can also be harmful to the body (Griffin, 1998; Griffin & Mills,

111

2002b; Wolff, 1986; Mansfield, 2005; Seidel & Heide, 1986). Osteogenic effects of WBV may be

frequency-dependent, with greater effects occurring at higher frequencies (Judex et al., 2007;

Ward et al., 2004), but specific frequency range has not been determined in humans

(Slatkovska et al., 2010a). It is also plausible that matching WBV to bone’s resonance frequency

range (for example, ulna, 70-110 Hz; tibia at 21-38Hz (Bediz et al., 2010; Ozdurak et al., 2006))

could prove to be more efficacious, since resonance involves amplification of even small-

magnitude vibrations within a system (Randall et al., 1997). However, long-term exposures to

vibration in industrial settings have been linked to various deleterious effects due to resonance

of the stomach (4-5 Hz), spinal column (3-5 Hz), hands (30-40 Hz), or fingers (125-300 Hz)

(Griffin, 1998; Mansfield, 2005; Miwa, 1988; Randall et al., 1997).

Many WBV platforms exist world-wide and can be classified into high- (≥1g) and low-

magnitude (<1g) WBV, both of which have been previously examined in postmenopausal

women (Gusi et al., 2006; Iwamoto et al., 2005; Rubin et al., 2004; Russo et al., 2003;

Verschueren et al., 2004). High-magnitude WBV (≥1g) was administered at 12 to 40 Hz in short

bursts (1 to 4 min) per session (4 to 20 min) one to three times a week in a supervised setting

(Gusi et al., 2006; Iwamoto et al., 2005; Russo et al., 2003; Verschueren et al., 2004). Although

no improvements were found in lumbar spine or distal tibia BMD (Gusi et al., 2006; Iwamoto et

al., 2005; Russo et al., 2003; Verschueren et al., 2004), small increases in hip BMD were

observed in two small trials (n=33 to 89) with short follow-up (6 to 8 months) (Gusi et al., 2006;

112

Verschueren et al., 2004). Only one RCT examined low-magnitude (<1g) WBV in

postmenopausal women (n=70) administered at 0.3g and 30 Hz for 10 minutes twice a day at

home (Rubin et al., 2004). No effects were found on hip or lumbar spine BMD after 12-months,

except in the ≥80% adherent and <65 kg subgroup (Rubin et al., 2004). However, only 37% of

women in this trial were ≥80% adherent (Rubin et al., 2004). At 0.3g and 90 or 30 Hz, low-

magnitude WBV was found to increase BMD at the lumbar spine and proximal tibia when

administered to children and adolescents for 10 minutes a day 5-7 days a week, in spite of 43-

58% adherence (Gilsanz et al., 2006; Ward et al., 2004).

Previous RCTs of WBV in postmenopausal women examined areal BMD (aBMD) at

central sites as measured by dual-energy x-ray absorptiometry (DXA) (Gusi et al., 2006;

Iwamoto et al., 2005; Rubin et al., 2004; Verschueren et al., 2004), and volumetric BMD (vBMD)

at the tibia as measured by high-resolution peripheral quantitative tomography (HR-pQCT)

(Russo et al., 2003). To our knowledge, no previous clinical studies or experimental animal

models examined WBV effects on bone using quantitative ultrasound (QUS) parameters (Prisby

et al., 2008; Slatkovska et al., 2010a). QUS measurements collect different information about

bone material properties than bone densitometry tools. In a recent large prospective study,

QUS parameters were found to predict fracture incidence among the elderly at least as well as

and independent of DXA; a 1 SD decrease in DXA-aBMD and QUS-BUA was associated with a

2.26 and 2.04 increased risk for fracture, respectively (Moayyeri et al., 2009). QUS measures the

113

broadband attenuation (BUA) and speed of sound (SOS) of ultrasound waves, which pass

through the calcaneus and become altered due to bone material properties (Guglielmi et al.,

2010; Krieg et al., 2008). While BUA and SOS have been found to be primarily related to bone

hydroxyapatite crystal status or BMD (Nicholson et al., 2001; Wu et al., 1998), they may also

reflect bone trabecular microarchitecture (Njeh et al., 2001), particularly BUA (Lin et al., 2009;

Sasso et al., 2008; Wu et al., 1998). A composite score of BUA and SOS, termed quantitative

ultrasound index (QUI), has also been obtained in research (Guglielmi et al., 2010; Krieg et al.,

2008; Hans et al., 1996). QUS measurements at the calcaneus may be useful for evaluating

efficacy of WBV, because it is likely that this site receives more intense WBV stimulus prior to it

becoming dissipated by lower-limb joints and soft tissue (Kiiski et al., 2008; Rubin et al., 2003).

Further, calcaneus is almost entirely made up of trabecular bone, which compared to cortical

bone is more metabolically active and responds faster to treatment (Rubin et al., 2002a;

Guglielmi et al., 2010).

Thus, as part of a 12-month RCT of 202 osteopenic postmenopausal women (The Vibration

Study), we examined effects of daily 20-minute WBV at 0.3g and 90 Hz versus 0.3g and 30 Hz

versus no WBV on calcaneal QUS parameters as pre-specified secondary outcomes.

114

METHODS

Participants and study design

This 12-month RCT examined WBV effects on HR-pQCT, DXA and QUS bone parameters

and was conducted at the University Health Network (UHN) in Toronto Canada from November

2006 to December 2009; HR-pQCT and DXA bone outcomes were published elsewhere

(Slatkovska et al., 2010b). Women were included in this trial if they were postmenopausal (≥1

year after cessation of menses) and osteopenic (lowest aBMD T-score at the lumbar spine,

femoral neck, or total hip between -1.0 and -2.5), and were excluded due to taking medications

affecting bone metabolism, secondary causes for bone loss, and if they could not safely

undergo WBV (see elsewhere for detailed inclusion/exclusion criteria (Slatkovska et al., 2010b)).

Computer-generated block-randomization scheme (n=10) and sealed envelopes were used to

assign eligible participants to the 90 Hz WBV group (90Hz), the 30 Hz group WBV (30Hz) or the

control group (CON). WBV was provided to 90Hz and 30Hz participants, but not to controls.

There was a single QUS outcome assessor (LS), not blinded to the participants’ group

assignment.

Three study visits were conducted as part of this RCT, baseline and 6- and 12-month

follow-up. At baseline and 12-motnhs, calcaneal QUS bone parameters, body mass, body mass

index (BMI), and physical activity levels were obtained. Adherence to WBV was self-reported at

115

6-months and extracted from the WBV platform at 12-months. Calcium and vitamin D intakes

were assessed and supplements were provided at baseline and 6 months. Participants’ medical

records were accessed to obtain recent serum 25-hydroxy vitamin D levels (i.e., obtained during

the study period ±3 months). Health conditions and current medication or other treatments

were self-reported by at each study visit, and participants were also asked to phone us

regarding any health changes that they experienced during stud. This trial was approved by the

UHN research ethics board and informed consent was obtained from all participants.

ClinicalTrials.gov (#NCT00420940) was used for trial registration and funding was provided by

the Ontario Physicians’ Services Incorporated Foundation.

Study interventions

Participants in 90Hz and 30Hz groups were asked to stand on a WBV platform (Dynamic

Motion Therapy 1000™, Juvent Medical Inc, Somerset, NJ) oscillating at 0.3g and 90 and 30 Hz,

respectively, for 20 minutes once a day at home for 12 months. Based on previous RCTs and ISO

2631 guidelines for occupational hazards of WBV, low-magnitude (0.3g) high-frequency (>30

Hz) WBV administered for 20 minutes a day was expected to be safe (Gilsanz et al., 2006;

Griffin, 1998; Rubin et al., 2004; Ward et al., 2004). Each platform was designed to

automatically turn off after 20 minutes of WBV and to record each session date, time and

duration. Since on some days some participants administered WBV for <20 minutes or >1

116

sessions per day, three adherence measures were assessed; based on total cumulative

duration, number of WBV days and full 20-minute treatment count. Sham WBV was not utilized

in controls because sham and true WBV are somewhat discernable from one another (Rubin et

al., 2004), and due to limited funding. Using a recall questionnaire (Hung et al., 2010), dietary

calcium and vitamin D intakes were assessed and so that appropriate supplement dose was

provided to all participants to ensure total (supplements plus diet) daily intakes of 1200 mg and

800 IU.

Outcomes

Calcaneal QUS bone parameters included BUA (dB·MHz-1), SOS (m·s-1) and QUI (0.41 ×

[BUA + SOS] -571), and were measured at the non-dominant using Sahara Clinical Bone

Sonometer (Hologic, Waltham, MA). A single trained outcome assessor, QUS device, and

calibration phantom were used. Calibration was performed on the day of measurement using a

manufacturer-specific phantom, and when acceptable quality control (QC) values could not be

obtained, it was repeated until satisfactory. QC values were recorded over the study duration

and their mean, range and standard deviations (SDs) were compared with manufacturer

specifications to assess device stability over time (Hologic Inc, 1998). During QUS measurement,

each participant sat still in a chair with her foot placed in an indicated area on the device, so

that her knee angle was at 90 degrees and her heel and toes were positioned at the same mark

117

each time. If BUA, SOS and QUI values were indicated as invalid by the QUS device,

measurement was repeated up to three times. The root mean square coefficient of variation

(RMS-CV) for short-term reproducibility in our laboratory for calcaneal BUA measurements

were 3.0-4.5%, which translates to least significant change of 12.5% (LSC, 2.77 x RMS-CV). RMS-

CVs obtained in our laboratory are comparable to previous investigations using the same device

(mean: 4.1%; range: 2.7-5.0%) (Krieg et al., 2008). Two sources of error were identified, due to

which QUS outcomes were excluded from the analysis: 1) unsuccessful calibration on the day of

measurement and 2) invalid measurement due to ankle edema or after three attempts as

indicated by the device (Krieg et al., 2008).

Adverse events (AEs), any untoward effects with an onset after baseline or worsening of

pre-existing health conditions, were reported using the National Cancer Institute’s Common

Terminology Criteria for AEs v3.0 (National Cancer Institute, 2006)). Daily physical activity

metabolic index (AMI, kcal/day) was obtained using the Minnesota Leisure-Time Physical

Activity Questionnaire (Wilson, 1997).

Statistical analyses

Baseline characteristics were compared between groups using one-way ANOVA and X2

statistics. Between-group differences in absolute 12-month change (final – baseline) in BUA,

SOS and QUI were assessed using one-way ANOVA with contrasts specified a priori; all pair-wise

118

(90Hz versus CON, 30Hz versus CON, and 90 Hz versus 30 Hz) and 90Hz plus 30Hz versus CON

group comparisons were made. An intention-to-treat (ITT) approach was used, in which all

randomized participants were included, and missing or compromised QUS outcomes were

imputed using single imputation from group means; in other words, for each participant with a

missing bone outcome, the mean value of that bone outcome for the study group to which they

belonged was used in place of the missing value. Multiple imputation models were used to

assess the robustness of estimating missing data with single imputations (Rubin, 1996). A per-

protocol approach was also used, from which missing or compromised QUS outcomes and

participants who started hormone replacement therapy (HRT) during study were excluded. A

priori-specified ≥80% adherent (based on all three adherence estimates), <65 kg in mass, ≤60

years-old or ≤10 years since menopause subgroups were examined. Women with smaller soft

tissue mass (<65 kg) were expected to experience less dissipated WBV stimulus (Rubin et al.,

2004), while younger postmenopausal women were expected to respond more due to faster

bone remodelling (Reid, 2006). To examine whether between-group differences in QUS

outcomes were influenced by baseline physical activity levels or vitamin D levels, ANCOVA with

contrasts was performed. We additionally excluded participants with potentially compromised

study conduct (for example, wore shoes during WBV) as part of our sensitivity analyses. AEs

were compared between groups using Fisher’s Exact test. Sample size calculations were based

on our primary outcome, HR-pQCT volumetric trabecular BMD at the distal tibia, as reported

119

elsewhere (Slatkovska et al., 2010b). All analyses were conducted using SAS Version 9.2 (see

Technical Appendix for SAS codes) at p≤0.05.

RESULTS

Participant characteristics

Participants were the same osteopenic postmenopausal women as those included in our

analysis of HR-pQCT and DXA bone outcomes (Figure 1; 90Hz, n=67; 30Hz, n=68; CON, n=67)

(Slatkovska et al., 2010b). Baseline characteristics were similar between groups (Table 1). No

significant between-group differences in 12-month changes in HR-pQCT or DXA parameters,

calcium or vitamin D intakes, body mass or physical activity levels were found (Slatkovska et al.,

2010b). Mean serum 25-hydroxy vitamin D levels were also similar between groups (90Hz, 94

nmol/L, 30Hz, 94 nmol/L; CON, 90 nmol/L). Median adherences to WBV based on cumulative

duration, number of days and full-treatment count were 79%‚ 70% and 78% (mean: 65%, 58%

and 64%) in 90Hz and 77%‚ 65% and 77% (mean: 66%, 60% and 65%) in 30Hz groups. QUS

outcomes were missing or compromised in 27 participants due to drop-out (n=7), unattained

final measurement (n=4), unsuccessful calibration (n=7), invalid measurement (n=7) or taking

HRT during study (n=2).

Abbr

evia

tions

: RCT

, ran

dom

ized

cont

rolle

d tr

ial;

HR-p

QCT

, hi

gh re

solu

tion

perip

hera

l qua

ntita

tive

com

pute

d to

mog

raph

y; D

XA, d

ual-e

nerg

y x-

ray

abso

rptio

met

ry; Q

US,

qua

ntita

tive

ultr

asou

nd.

90 H

z WBV

Gro

up67

Allo

cate

d to

and

rece

ived

90

Hz W

BV

Co

ntro

l Gro

up67

Allo

cate

d to

and

rece

ived

no

WBV

2 L

ost t

o fo

llow

-up

1 lo

st in

tere

st, 1

life

circ

umst

ance

s6

QU

S M

easu

rem

ent i

ssue

s3

unca

libra

ted,

3 u

natt

aine

d

202

Rand

omize

d in

the

mai

n RC

T of

HR

-pQ

CT a

nd D

XA b

one

outc

omes

30 H

z WBV

Gro

up68

Allo

cate

d to

and

rece

ived

30

Hz W

BV

67 In

clud

ed in

QU

S in

tent

ion-

to-t

reat

ana

lysis

57 In

clud

ed in

QU

S pe

r-pr

otoc

ol a

naly

sis10

Exc

lude

d: 2

Los

t to

follo

w-u

p 7

mea

sure

men

t iss

ues

1 st

arte

d HR

T

67 In

clud

ed in

QU

S in

tent

ion-

to-t

reat

ana

lysis

58 In

clud

ed in

QU

S pe

r-pr

otoc

ol a

naly

sis9

Excl

uded

: 2 L

ost t

o fo

llow

-up

6 m

easu

rem

ent i

ssue

s1

star

ted

HRT

68 In

clud

ed in

QU

S in

tent

ion-

to-t

reat

ana

lysis

60 In

clud

ed in

QU

S pe

r-pr

otoc

ol a

naly

sis8

Excl

uded

: 3 L

ost t

o fo

llow

-up

5 m

easu

rem

ent i

ssue

s

3 Lo

st to

follo

w-u

p 1

lost

inte

rest

, 1 m

oved

, 1 li

fe c

ircum

stan

ces

5 Q

US

Mea

sure

men

t iss

ues

1 un

calib

rate

d, 4

inva

lid

2 Lo

st to

follo

w-u

p 2

lost

inte

rest

7 Q

US

Mea

sure

men

t iss

ues

3 un

calib

rate

d, 3

inva

lid, 1

una

ttai

ned

Figu

re 1

. Flo

w d

iagr

am o

f par

ticip

ants

’ pro

gres

s thr

ough

the

anal

ysis

of q

uant

itativ

e ul

tras

ound

par

amet

ers.

Luba
Typewritten Text
120

Table 1. Participants Baseline Characteristics. Baseline Characteristic 90Hz

(n = 67) 30Hz

(n = 68) CON

(n = 67) Ethnicity, n (%) European 55 (82) 48 (70) 54 (81) Southeast Asian 8 (12) 14 (20) 10 (15) Other 4 (6) 6 (9) 3 (4) Age, mean (SD) 60.5 (7.0) 59.6 (6.0) 60.8 (5.5) Years since menopause, mean (SD) 10.2 (8.3) 10.8 (7.3) 10.5 (7.5) Mass (kg), mean (SD) 64.4 (10.6) 62.0 (10.5) 62.4 (9.5) BMI (kg∙m-2), mean (SD) 24.9 (4.0) 24.5 (3.6) 24.2 (3.4) Calcium intakes (mg), mean (SD) 1538 (677) 1399 (656) 1352 (642) Vitamin D intakes (IU), mean (SD) 866 (582) 778 (583) 808 (584) Physical activity AMI (kcal/day), mean (SD) 352 (224) 337 (237) 383 (277) QUS calcaneus measurements, mean (SD)* BUA (dB∙MHz-1) 72.2 (13.0) 75.4 (14.7) 72.0 (12.9) SOS (m∙s-1) 1538.0 (28.3) 1542.7 (23.9) 1538.6 (23.5) QUI 89.2 (16.3) 92.4 (14.8) 89.3 (14.4) DXA areal BMD measurements, mean (SD) Femoral neck (g∙cm-2) 0.686 (0.049) 0.676 (0.060) 0.687 (0.054) Total hip (g∙cm-2) 0.851 (0.066) 0.836 (0.083) 0.845 (0.068) Spine L1 to L4 (g∙cm-2) 0.904 (0.090) 0.890 (0.069) 0.902 (0.080) Abbreviations: 90Hz, 90 Hz group; 30Hz, 30 Hz group; CON, controls; SD, standard deviation; BMI, body mass index; AMI, daily activity metabolic index as estimated by validated Minnesota Leisure-Time Physical Activity Questionnaire; QUS, quantitative ultrasound; SOS, speed of sound; BUA, broadband attenuation; QUI, quantitative ultrasound index; BMD, bone mineral density; DXA, dual-energy x-ray absorptiometry; *Baseline analysis of QUS parameters (n=196) was incomplete due to uncalibrated or invalid baseline measurements.

Luba
Typewritten Text
121

122

Calcaneus QUS outcomes

QC values for our QUS device obtained during the study period and their mean and SD

corresponded with ranges specified by the manufacturer (see the Technical Appendix for QUS

calibration log). ITT analysis revealed statistically significant between-group differences in BUA

change due to decreases in 90Hz (-0.4 dB·MHz-1) and 30Hz (-0.7 dB·MHz-1) groups and an

increase in controls (1.3 dB·MHz-1; p=0.048; Table 2). This WBV effect was small and translated

to percent BUA changes of -0.2% (SD: 8.1%) in 90Hz, -0.6% (SD: 7.2%) in 30Hz and 2.0% (SD:

6.9%) in controls in per-protocol analysis. Significant between-group differences in BUA change

were also found in ≥80% adherent based on cumulative duration and full-treatment count and

<65 kg subgroups (Figure 2a,b,d), but not in ≥80% adherent based on number of days, ≤60 year-

old or ≤10 years after menopause subgroups (Figure 2c,e,f). In the ITT and per-protocol

analyses of BUA change, 30Hz versus CON and 90Hz plus 30Hz versus CON contrasts were

significant, while in the ≥80% adherent based on cumulative duration and full-treatment count

and <65 kg subgroups, 90Hz versus CON and 90Hz plus 30Hz versus CON comparisons were

significant. BUA change in 90Hz and 30Hz groups was not found to be statistically different in

any of our analyses. When we adjusted for baseline physical activity levels or vitamin D levels

and when we excluded participants with potentially compromised study

Table 2. Absolute 12-Month Change in Quantitative Ultrasound Parameters. Quantitative Ultrasound Parameters

N 90Hz 30Hz CON One-way ANOVA

p BUA, mean (SD) Intention-to-treat (dB∙MHz-1) 202 -0.4 (5.5) -0.7 (5.7)* 1.3 (4.5)** <0.05 Per-protocol (dB∙MHz-1) 175 -0.4 (5.9) -0.7 (6.0)* 1.3 (4.8)** 0.11 SOS, mean (SD) Intention-to-treat (m∙s-1) 202 -1.7 (10.3) -1.7 (8.7) -0.4 (7.9) 0.66 Per-protocol (m∙s-1) 175 -1.6 (11.1) -1.7 (9.2) -0.4 (8.6) 0.73 QUI, mean (SD) Intention-to-treat 202 -0.9 (5.6) -1.0 (4.9) 0.4 (4.5) 0.24 Per-protocol 175 -0.8 (6.1) -1.0 (5.2) 0.4 (4.9) 0.34 Abbreviations: 90Hz, 90 Hz WBV group; 30Hz, 30 Hz WBV group; CON, control group, SD, standard deviation; SOS, speed of sound; BUA, broadband attenuation; QUI, quantitative ultrasound index. *Significant 30Hz versus CON comparison p<0.05. **Significant 90Hz plus 30Hz versus CON comparison p<0.05.

Luba
Typewritten Text
123

Blac

k -9

0Hz (

90 H

z WBV

gro

up),

Grey

-30

Hz (3

0Hz W

BV g

roup

), W

hite

-CO

N.

A) ≥

80%

adh

eren

t par

ticip

ants

, bas

ed o

n to

tal c

umul

ativ

e W

BV d

urat

ion

(90H

z, n

=29;

30H

z, n

=27;

CO

N, n

=57)

. B) ≥

80%

adh

eren

t par

ticip

ants

, bas

ed o

n to

tal n

umbe

r of

full

WBV

trea

tmen

ts (9

0Hz,

n=2

9; 3

0Hz,

n=2

6; C

ON

, n=5

7) C

) ≥80

% a

dher

ent p

artic

ipan

ts, b

ased

on

tota

l num

ber o

f WBV

day

s (90

Hz,n

=18;

30H

z, n

=17;

CO

N, n

=57)

. D)

<65

kg (9

0Hz,

n=3

3 30

Hz, n

=42;

CO

N, n

=35)

. E) ≤

60 y

ears

old

(90H

z, n

=27

30Hz

, n=3

5; C

ON

, n=2

5). F

) ≤10

yea

rs a

fter

men

opau

se (9

0Hz,

n=3

6 30

Hz, n

=35;

CO

N, n

=37)

.

Figu

re 2

.Sub

grou

p An

alys

es.

-0.7

1.3

-1.3

-2

-1.5-1

-0.50

0.51

1.52

BUA change (dB/MHz)

90Hz

vs. 3

0Hz v

s. C

ON:

p<0.

0590

Hz vs

. CON

:

p<0.

0530

Hz vs

. CON

:

p=0.

0790

Hz +

30Hz

vs. C

ON:

p<

0.05

-1.1

0.4

1.3

-2

-1.5-1

-0.50

0.51

1.52

BUA change (dB/MHz)

90Hz

vs. 3

0Hz v

s. CO

N:

p=

0.15

90Hz

vs. C

ON:

p

=0.0

630

Hz vs

. CON

:

p=0

.47

90Hz

+ 30

Hz vs

. CON

:

p=

0.10

-1.3

-0.7

1.3

-2

-1.5-1

-0.50

0.51

1.52

BUA change (dB/MHz)

90Hz

vs. 3

0Hz v

s.CO

N:

p<0

.05

90Hz

vs. C

ON:

p

<0.0

530

Hz vs

. CON

:

p=0

.07

90Hz

+ 30

Hz vs

. CON

:

p<0

.05

0.1

1.7

-1.4

-2

-1.5-1

-0.50

0.51

1.52

BUA change (dB/MHz)

90Hz

vs. 3

0Hz v

s. C

ON:

p<0

.05

90Hz

vs. C

ON:

p

<0.0

130

Hz vs

. CON

:

p=0

.16

90Hz

+ 30

Hz vs

. CON

:

p<0

.05

-0.8

-0.9

1.2

-2

-1.5-1

-0.50

0.51

1.52

BUA change (dB/MHz)

90Hz

vs. 3

0Hz v

s. C

ON:

p

=0.2

490

Hz vs

. CON

:

p

=0.1

430

Hz vs

. CON

:

p

=0.1

290

Hz +

30Hz

vs. C

ON:

p=0.

08

-1.3

-0.8

1.0

-2

-1.5-1

-0.50

0.51

1.52

BUA change (dB/MHz)

90Hz

vs. 3

0Hz v

s. C

ON:

p=0

.26

90Hz

vs. C

ON:

p

=0.1

230

Hz vs

. CON

:

p=0

.20

90Hz

+ 30

Hz vs

. CON

:

p=0

.11

AB

C

DE

F

Luba
Typewritten Text
124

125

conduct (n=16) our results remained similar as in our per-protocol analysis. Various multiple

imputation models were used (Rubin, 1996), which produced similar BUA results as our ITT

analysis based on single imputations from group means (see the Technical appendix for

additional results). No significant between-group differences in SOS change were observed in

any analyses. QUI change was significant in 90Hz versus CON group comparison in <65 kg

subgroup (90Hz, -1.8 versus CON, 0.7; p=0.041) due to the BUA component.

Adverse events

AEs and serious adverse events were similar between groups, as reported elsewhere

(Slatkovska et al., 2010b). However, various foot AEs were self-reported by 90Hz and 30Hz

participants, and were assessed here qualitatively. One 30Hz participant developed chronic

plantar foot pain and refused to administer WBV after seven weeks of use (14% adherent). The

pain was exacerbated during WBV, disappeared when WBV was stopped for two weeks, and

returned within two weeks after it was re-introduced. Two 90Hz participants also developed

chronic plantar foot pain potentially related to WBV – one limited WBV use (22% adherent) and

another wore shoes during WBV (83% adherent). Other participants reported minor transient

foot pain or numbness (2 in 90Hz, 2 in 30Hz) and toe cramps or loss in sensation (2 in 90Hz)

lasting briefly during or just after WBV. When lower-limb AEs (90Hz, n=27; 30Hz, n=20; CON,

126

n=19) or plantar foot pain (90Hz, n=5; 30Hz, n=2; CON, n=1) were compared quantitatively, no

significant between-group differences were found.

COMMENT

After 12 months of WBV, we found a statistically significant decrease in BUA in 90Hz and

30Hz participants compared to controls. These findings were unexpected, as prior RCTs in

postmenopausal women either showed no bone changes (Iwamoto et al., 2005; Rubin et al.,

2004; Russo et al., 2003; Slatkovska et al., 2010b) or small improvements in hip aBMD (Gusi et

al., 2006; Verschueren et al., 2004) in response to WBV. However, no previous clinical studies

or experimental models obtained QUS bone measurements (Prisby et al., 2008; Slatkovska et

al., 2010a).

Although the negative effect in BUA was small in this RCT, our results were not likely

due to chance or measurement error. First, consistent decreases were observed in 90Hz and

30Hz groups in various analyses. Also, since 13% of QUS outcomes were lost due to

measurement issues (lack of calibration and invalid measurement) and unattained

measurements (drop-out and refused), ITT analysis was performed with single and multiple

imputations to confirm our per-protocol BUA results. Finally, we also ensured that our QC

procedures were according to prior recommendations (Krieg et al., 2008) and the same across

all measurements. A single QUS outcome assessor, device and phantom were used, foot

127

positioning was standardized, and our QC values were found to be stable over time and within

the manufacturer-specified range (Hologic Inc, 1998).

However, whether these findings represent real bone changes requires further

investigation. Potential variations in heel soft tissue properties over time, including thickness,

fat content and skin temperature, can influence ultrasound propagation through the calcaneus

(Krieg et al., 2008; Lewiecki et al., 2006). Currently, no accepted standards exist as to how to

control for these sources of error (Krieg et al., 2008; Krieg et al., 2008). Mild symptoms

probably involving the feet soft tissue were qualitatively observed in 90Hz and 30Hz groups (for

example, plantar heel pain, foot numbness). In occupational settings like construction or

mining, prolonged exposures to WBV through the feet were also found to result in

musculoskeletal and vascular damage, such as Raynaud’s and vibration-white foot syndromes

(Sakakibara et al., 1991; Thompson et al., 2010; Miwa, 1988). However, variations in heel soft

tissue properties were previously shown to significantly alter calcaneal SOS but not BUA

measurements (Chappard et al., 2000; Ikeda & Iki, 2004; Kotzki et al., 1994). Further, the

recommended follow-up duration for assessing real bone changes with calcaneal QUS in

response to anti-osteoporotic therapy is currently more than 12 months (Krieg et al., 2008;

Lewiecki et al., 2006), primarily because peripheral sites are believed to respond slower to

pharmacological treatments (Krieg et al., 2008; Lewiecki et al., 2006). However, the study of

WBV effects on the calcaneus may represent a special clinical situation where less time is

128

possibly adequate to show changes in the bone tissue, because the physical stimulus is applied

directly to the calcaneus.

If the reductions in BUA observed in this trial reflects real bone changes, the effect we

found was small and likely clinically insignificant. BUA decreased only by -0.2% and -0.6% in

90Hz and 30Hz groups, respectively, and increased by 2% in controls. A prior prospective study,

which used the same QUS device to monitor calcium and vitamin D effects in postmenopausal

women, found BUA increase of 0.9% in controls and 2.0% in participants receiving calcium and

vitamin D, but observed no statistically significant between-group differences (Moschonis &

Manios, 2006). Since all participants received calcium and vitamin D supplements in this RCT,

the 2% increase in BUA observed in our control group may have reflected this. The overall

treatment effects for BUA, defined as the difference in the mean BUA changes between

controls and 90Hz/30Hz groups, were -2.2/-2.6% and -1.7/-2.0 dB·MHz-1, respectively. This was

smaller in magnitude than the LSC for BUA of obtained in our laboratory (LSC = 2.77 x RMS-CV =

2.77 x 4.5% = 12.5%). In a Swiss study using the same QUS device (Sahara, Hologic), the

difference in mean BUA between healthy postmenopausal women aged 65-87 years (n=38,

BUA: 61.2 db·MHz-1) and young women aged 20-40 years (n=47, BUA: 77.5 db·MHz-1) was -16.3

db·MHz-1 (-26.6%) (Hans et al., 2003). Further, when DXA and HR-pQCT bone changes were

examined in this RCT, no statistically significant between-group differences were observed for

aBMD at the lumbar spine, femoral neck or total hip or for vBMD or bone structure at the distal

129

tibia or distal radius (Slatkovska et al., 2010b). Therefore, any potential negative bone tissue

effects in response to WBV, as reflected in BUA decline in 90Hz and 30Hz participants, probably

represented changes at the calcaneus and not at other central or skeletal sites that we assessed

(Slatkovska et al., 2010b).

A plausible mechanism that could explain calcaneal BUA decrease in response to WBV in

osteopenic postmenopausal women may involve changes in the calcaneus microstructure due

to high-rate compressive loads applied repeatedly over time. Although BUA and SOS have been

primarily correlated with aBMD (Nicholson et al., 2001; Wu et al., 1998), BUA has also been

hypothesized to reflect bone microarchitecture characteristics (Njeh et al., 2001; Lin et al.,

2009; Sasso et al., 2008; Wu et al., 1998). Since SOS was similar between-groups while BUA

significantly differed, changes in trabecular microarchitecture rather than BMD may have

occurred in response to WBV. Each time the WBV platform accelerates upwards, it presses

against the heel, thus creating strains within the calcaneus. Even though these compressive

forces were not very high, they occurred 30 or 90 times per second for 20 consecutive minutes,

and their strains perhaps accumulated over time. In a similar way in which a bone fatigue test

can cause a break in a bone specimen, due to application of many low-force loading cycles

(Bouxsein, 2006), low-magnitude vibration applied to the calcaneus could potentially cause

micro-damage of the trabecular microstructure, especially in osteopenic postmenopausal

women who already have weakened trabeculi and accelerated bone resorption (Pacifici, 2001).

130

Structural damage to collagen is also plausible, because vibration was previously shown to

damage connective tissue (Falkenbach et al., 1997; Hedlund, 1989), and collagen reinforces the

bone hydroxyapatite crystal which primarily influences QUS measurements (Wu et al., 1998).

However, further clinical investigations or experimental models are needed to confirm our

findings and provide more information about the potential mechanisms. Future studies should

control for heel soft tissue variations in thickness, composition or temperature, and assess foot

injuries.

In conclusion, WBV at 0.3g and at 90 or 30 Hz may reduce BUA in osteopenic

postmenopausal women, although the observed effect was small, and it is unclear whether it

was due to bone or soft tissue changes. Since this was the first study to examine effects of WBV

on calcaneal QUS parameters, future studies are needed to confirm our findings.

131

DISCUSSION

This thesis examined the effects of WBV on various bone parameters through

systematic evaluation of previous RCTs conducted in postmenopausal women, young adults,

and children and adolescents, as well as by carrying out a 12-month RCT in 202 osteopenic

postmenopausal women investigating effects of WBV at 0.3g and 90 Hz versus 0.3g and 30 Hz

versus controls on DXA, HR-pQCT and QUS bone parameters. The primary objective was to

provide new information to enhance our current understanding of the role of WBV in the

prevention of postmenopausal osteoporosis.

In the systematic review, small improvements in hip aBMD, similar in magnitude to that

of calcium and vitamin D supplementation, were found in postmenopausal women receiving

WBV compared to controls. However, no significant effects of WBV were observed on lumbar

spine aBMD or distal tibia vBMD. In the 12-month RCT, the effects of WBV at 0.3g and 90 Hz

versus 0.3g and 30 Hz versus controls were examined, but no significant improvements were

found in aBMD at the femoral neck, total hip or lumbar spine as measured by DXA, or in vBMD

or bone structure parameters at the distal tibia or distal radius as measured by HR-pQCT.

Finally, the analysis of calcaneal QUS parameters, collected as secondary outcomes in the same

RCT, revealed possible decreases in BUA in 90Hz and 30Hz participants compared to controls.

Eight RCTs were selected for the systematic evaluation of WBV effects on BMD, as

reported in chapter one (Gilsanz et al., 2006; Gusi et al., 2006; Iwamoto et al., 2005; Rubin et

132

al., 2004; Russo et al., 2003; Torvinen et al., 2003; Verschueren et al., 2004; Ward et al., 2004).

Systematic review and a meta-analysis were conducted using pre-specified and standardized

forms for study inclusion/exclusion, quality assessment and data extraction (see the Technical

Appendix – chapter one: standardized data collection forms). In summary, eligible RCTs were

randomized or quasi-randomized controlled trials with a minimum follow-up of 6 months,

which examined WBV effects on aBMD or vBMD in ambulatory individuals without secondary

causes for osteoporosis. Five eligible RCTs were conducted in postmenopausal women (Gusi et

al., 2006; Iwamoto et al., 2005; Rubin et al., 2004; Russo et al., 2003; Verschueren et al., 2004),

two in children and adolescents (Gilsanz et al., 2006; Ward et al., 2004), and one in young

adults (Torvinen et al., 2003). Mostly high-magnitude WBV was examined in postmenopausal

women between 12 to 40 Hz (Gusi et al., 2006; Iwamoto et al., 2005; Russo et al., 2003;

Verschueren et al., 2004), although one trial administered low-magnitude WBV at 30 Hz (Rubin

et al., 2004). High-magnitude WBV was also assessed in young adults (25-45 Hz) (Torvinen et al.,

2003), while only low-magnitude WBV was examined in children and adolescents (30 and 90

Hz) (Gilsanz et al., 2006; Ward et al., 2004).

From five RCTs conducted in postmenopausal women, four examined effects of WBV on

lumbar spine aBMD (Gusi et al., 2006; Iwamoto et al., 2005; Rubin et al., 2004; Verschueren et

al., 2004). Of these, three RCTs were combined in the analysis of hip aBMD, which included

total hip or femoral neck measurements (Gusi et al., 2006; Rubin et al., 2004; Verschueren et

133

al., 2004). One RCT was not included in the meta-analysis of hip or spine aBMD, because only

vBMD measurements at the distal tibia were collected in this trial (Russo et al., 2003). As

hypothesized, small improvements in hip aBMD were observed in the meta-analysis of

postmenopausal women receiving WBV compared to controls. However, no significant effect

was found on lumbar spine aBMD, even though more participants were included in the spine

(n=181) versus hip (n=131) analysis. This site-specific response to WBV in postmenopausal

women may have been due to different transmission of the vibration signal to the hip versus

spine (Kiiski et al., 2008; Rubin et al., 2003). Propagation of WBV through the weight-bearing

skeleton is a complex phenomenon that depends on many factors, including joint angles,

muscle activity, and vibration frequency and magnitude (Kiiski et al., 2008; Rubin et al., 2003).

When transmissibility of WBV at various magnitudes and frequencies was compared between

the ankle, hip and spine, accelerations were found to be the least attenuated at the ankle, and

the most at the spine (Kiiski et al., 2008). In other words, the further up the weight-bearing

skeleton the vibration signal needs to travel, the more dissipated it becomes. Thus compared to

the hip, the spine may have received insufficient WBV stimulus in this population of

postmenopausal women. Finally, although statistically significant WBV effect was found in the

hip aBMD, the magnitude of this effect was small and not clinically significant.

Two trials in postmenopausal women were not included in the systematic evaluation,

because upon closer inspection it was established that they were not true RCTs (Ruan et al.,

134

2008; von Stengel et al., 2010a). First, a 6-moth study of 116 postmenopausal women with

osteoporosis examined high-magnitude WBV (>1g, 30 Hz) in a group of participants compared

to controls (Ruan et al., 2008). Although no between-group comparisons were made, when

aBMD change was assessed within-groups, femoral neck and lumbar spine aBMDs were found

to significantly increase in the WBV group and decrease in controls. This study was not a RCT,

because the group assignment was based on convenience; women who could not guarantee to

adhere to WBV were assigned to the control group. Further, a 12-month study of 151

postmenopausal women randomly selected participants from two different study cohorts (von

Stengel et al., 2010a; Institute of Medical Physics, 2010). One cohort (the Erlangen Longitudinal

Vibration Study; ELVIS) prospectively examined effects of high-magnitude WBV (>1g, 25 Hz) on

aBMD (von Stengel et al., 2010a), while the other cohort (the Fitness and Prevention Study;

SEFIP) compared effects of high versus low intensity physical activity using various parameters,

including aBMD (Kemmler et al., 2010). When women from these two cohorts were compared,

no significant effects of WBV were found on hip or lumbar spine aBMD (von Stengel et al.,

2010a).

When two RCTs in children and adolescents were combined in the meta-analysis,

significant improvements were found in vBMD at the lumbar spine (n=65) and proximal tibia

(n=17) in response to low-magnitude (0.3g) WBV at 90 or 30 Hz, in spite of small sample sizes

(Gilsanz et al., 2006; Ward et al., 2004). As discussed in chapter one, the magnitude of WBV

135

effect on BMD was found to be approximately the same as that of calcium and vitamin D

supplementation in postmenopausal women, while in children and adolescents it was found to

be slightly greater, in spite of low adherence (44-58%). Therefore, postmenopausal women’s

skeletons may benefit less from the WBV stimulus than children’s and adolescents’. This is

probably because bone remodelling favours bone resorption in postmenopausal women, while

the growing skeleton favours bone formation. Physical activity is also known to cause greater

skeletal improvements in the growing versus ageing skeleton, which has been partly attributed

to children and adolescents having greater potential for bone accrual (Forwood & Burr, 1993;

Shea et al., 2004; Wallace & Cumming, 2000). Only one trial which examined WBV in young

adults was included in the systematic evaluation, but no significant effects were found on BMC

at the spine or hip or on vBMD at the distal tibia (Torvinen et al., 2003).

Several limitations existed in the systematic evaluation of postmenopausal women.

First, eligible RCTs had small sample sizes (n=33 to n=89), and even after they were combined in

the meta-analysis of hip or spine aBMD, less than 200 postmenopausal women were assessed.

Therefore, significant aBMD hip results were particularly influenced by the largest trial of

Verschueren at al. (2004) (n=89). Second, at least one study bias was present in included RCTs.

Except for Iwamoto’s et al. (2005) trial, each trial suffered attrition bias because ITT analysis

was not performed and loss to follow-up was >10%. This was especially true for Verschueren’s

et al. (2004) and Rubin’s et al. (2004) trials, where the loss to follow-up was >20%. Selection

136

bias was also present in most trials, as concealed randomization methods were not utilized.

Most importantly, except for one trial which examined WBV effects on vBMD (Russo et al.,

2003), calcium and vitamin D were not supplemented and their intakes were not reported.

Since observed WBV effect on hip aBMD was similar in magnitude to that of calcium and

vitamin D supplementation, it is possible that it was due to between-group differences in

calcium and vitamin D intakes. Most participants were unblinded to their group assignment,

and thus knew that they were receiving WBV. Even when blinding was performed by

administering sham WBV to controls, at least 70% of participants were aware of their group

assignment (Rubin et al., 2004). Thus, it is possible that compared to controls, participants who

received WBV became more conscious and eager about bone health and experienced higher

calcium and vitamin D intakes. However, it is also possible that participants receiving WBV

became falsely reassured that BMD would increase due to WBV, and thus became less

conscious about their calcium and vitamin D intakes.

When a systematic evaluation relies primarily on small-sampled and biased RCTs, the

search for true treatment effect becomes flawed by the methodological limitations present in

the original study designs (Moher et al., 1999). This situation is sometimes described as

“garbage in, garbage out”, and requires deciphering the overall results with caution. In other

words, the higher the overall methodological quality of RCTs included in the meta-analysis, the

more trustworthy are its findings. Only five RCTs in postmenopausal women with relatively

137

flawed study designs were eligible for this systematic evaluation, and were all included

regardless of their methodological quality. The systematic evaluation of WBV effects on BMD in

postmenopausal women was necessary at this point, because as outlined in the rationale, the

role of WBV in the prevention of postmenopausal osteoporosis is of considerable interest. Since

previous RCTs had small sample sizes, it was important to include as many participants as

possible to obtain reasonable statistical power in the meta-analysis. Without such systematic

evaluation, it would be even more difficult to make clinical decisions and recommendations

about the role of WBV in the prevention of postmenopausal bone loss.

Several important sources of study bias described above were eliminated in this RCT of

WBV effects on various bone parameters in osteopenic postmenopausal women conducted

here; calcium and vitamin D supplements were provided and sample size of 202 was evaluated

using the ITT approach. In contrast to the original hypothesis, no significant effects of low-

magnitude WBV at 0.3g and at 90 or 30 Hz were found on DXA aBMD at the femoral neck, total

hip or lumbar spine or on HR-pQCT vBMD or bone structure parameters at the distal tibia or

distal radius, as reported in chapter two. In Verschueren’s et al. and Gusi’s et al. trials, where

significant improvements in hip aBMD were observed, WBV was administered at high-

magnitudes (≥1g) and frequencies of 13 Hz and 45 Hz, three times a week, and better mean

adherence was achieved (90%) (Gusi et al., 2006; Verschueren et al., 2004). It is possible that

compared to high-magnitude, low-magnitude WBV administered at 0.3g was an insufficient

138

mechanical stimulus to cause bone changes required for increased bone accrual in this

population of postmenopausal women, especially since median adherence obtained here was

only 65-79%. Low-magnitude WBV may cause small changes in bone fluid-flow that may

sometimes become significant enough to increase bone accrual, primarily in populations such

as children and adolescents, whose skeletons are more responsive to physical stimuli than

postmenopausal women’s (Gilsanz et al., 2006; Ward et al., 2004).

However, since this RCT improved on many of the methodological limitations observed

previously, the null effects of WBV on DXA and HR-pQCT bone parameters found here may

simply represent elimination of study bias that was potentially present in Verschueren’s et al.

(2004) and Gusi’s et al. (2006) trials. First, the sample size was much larger (n=202 versus n=36

or n=89) and the study duration was longer (12 months versus 8 or 6 months), thus the results

were probably less likely to be influenced by random variation in bone measurements in this

RCT. Second, ITT analysis was performed and loss to follow-up was smaller (3% versus 22% or

21%), thus reducing the influence of attrition bias on the results obtained here. Third, HR-pQCT

measurements were obtained in addition to DXA to better monitor WBV effects by obtaining

more sensitive measurements (i.e., vBMDt) at potentially more responsive skeletal sites (i.e.,

distal tibia). Finally, as already discussed, adequate calcium and vitamin D intakes were ensured

in all participants regardless of their group assignment. In Russo’s et al. (2003) RCT, where

postmenopausal women were administered high-magnitude WBV at 12 to 28 Hz to (n=36), and

139

adequate calcium and vitamin D supplements provided, no significant effect of WBV on HR-

pQCT vBMDt at the distal tibia was found at mean adherence of 83%.

In spite of methodological improvements that were made in this RCT, several limitations

remained in the investigation of DXA and HR-pQCT parameters. As in most prior RCTs (Gusi et

al., 2006; Iwamoto et al., 2005; Russo et al., 2003; Torvinen et al., 2003; Verschueren et al.,

2004), double-blinding was not possible, because sham WBV was not utilized. However, HR-

pQCT and DXA outcome assessors were blinded in this trial. As well, study group allocation was

concealed here with sealed envelopes, and baseline data collection of calcium and vitamin D

intakes, physical activity levels and general health history was completed prior to

randomization and opening of the sealed envelopes. Although the sample size in this RCT was

larger than in previous investigations of WBV, it was still relatively small with a potential for

type II or false negative error, especially when compared to large RCTs which examined effects

of bone medications on postmenopausal bone loss (Black et al., 2007). However, even if much

larger RCT was performed and statistically significant results were obtained, the magnitude of

WBV effect may have been small and clinically irrelevant, as seen in the meta-analysis of hip

aBMD in postmenopausal women, in chapter two of this thesis. Although large-magnitude

effects of WBV were observed in experimental animal models (for example, 30% increase in

vBMDt in adult sheep) (Rubin et al., 2002b), effects of much smaller magnitudes have been

140

observed thus far in various clinical populations (Gilsanz et al., 2006; Gusi et al., 2006; Rubin et

al., 2004; Verschueren et al., 2004; Ward et al., 2004).

Challenges with adherence to WBV were expected prior to commencing this RCT.

Rubin’s et al. (2004) 12-month trial in community-dwelling postmenopausal women (n=70),

which administered low-magnitude WBV at 0.3g and 30 Hz for 10 minutes twice a day,

observed only 37% of participants being at least 80% adherent. In this trial of community-

dwelling postmenopausal women, 45% of 90Hz participants and 48% of 30Hz participants were

at least 80% adherent based on total cumulative duration. Neither this nor Rubin’s et al. (2004)

trial found overall improvements in aBMD at the hip or lumbar spine, but they reported

significant improvements in aBMD at the lumbar spine when WBV participants were compared

to controls in ≥80% adherent and <65 kg subgroup. However, this subgroup in Rubin’s et al.

(2004) trial included only 10 participants, and since they did not provide calcium and vitamin D

supplements, the subgroup analysis was further biased. In Hannan’s et al. (2004) 6-month trial

of elderly women (79 to 86 years old) living in a retirement community, the mean adherence to

WBV at 0.3g and 30 Hz was 83% (Hannan et al., 2004). Hannan et al. (2004) administered WBV

once a day for 10 minutes, but bone outcomes were not obtained. Therefore, WBV was

administered once a day for 20 consecutive minutes in the RCT conducted as part of this thesis,

because it was expected that a twice-a-day regimen may be too time-demanding for this study

population of community-dwelling postmenopausal women. However, 20 minutes per day

141

were maintained here as in Rubin’s et al. trial, to ensure that adequate and comparable amount

of WBV stimulus was administered. Since adherence to WBV observed in this RCT (~65%)

remained lower than in Hannan’s et al. (2004) trial, factors other than number of daily sessions

probably played a role on participants’ willingness to administer WBV. Hannan’s et al. (2004)

trial was conducted only for 6 months and their adherence to WBV is probably not

representative of the expected adherence after 12 months. Also, their participants were elderly

women living in a retirement community who probably lead less busy lives than community-

dwelling women in this and Rubin’s et al. (2004) trial. Finally, the primary outcome of Hannan’s

et al. (2004) trial was adherence and most of their trial’s resources were probably dedicated to

ensuring good adherence.

Although several adherence and retention strategies were employed in this trial, they

seemed inadequate. One of the strategies utilized here, was to conduct scheduled follow-up

phone calls with participants to assess their performance and provide helpful tips on how to

improve their adherence to WBV. Each platform displayed the number of full 20-minute

treatments completed since baseline, and participants were asked to read this number during

follow-up phone calls. This strategy was terminated after approximately 6 months of data

collection, because participants who were not very adherent avoided these follow-up phone

calls and/or their adherence was not improving. Thus, there was a concern that this strategy

may actually make women less eager about their participation in this trial. Since this adherence

142

strategy was unsuccessful, new ones were put in place. First, all participants attended a 6

month follow-up visit during which calcium and vitamin D intakes were re-assessed and more

supplements were dispensed. During this visit, 90Hz and 30Hz participants were questioned in

detail about how they were doing with WBV and what adherence problems were they

encountering. Encouragement and practical tips were provided, which included: 1) to keep the

WBV platform visible and easily accessible in the house so that a WBV routine can be more

easily established and maintained, 2) to perform other activities while standing on the platform

which would not interfere with the transmission of WBV through the body, including reading

morning newspapers or leisure books, talking on the phone or watching regular TV shows, and

3) even if a daily routine could not be established, participants were encouraged to attempt this

as much as they possibly could. Newsletters which included trial updates, bone health news

and bone-nutrient-rich recipes were also mailed to participants approximately twice a year.

These newsletters were well-received, but it is not clear if they influenced the overall

adherence to WBV. Even though adherence strategies were not very successful in this trial, the

overall adherence observed here may approximate or possibly even overestimate expected

adherence to this WBV therapy in the general population. Women in this trial were probably

systematically different from the general postmenopausal population, because they were self-

motivated and health-conscious enough to seek out participation in this trial. Many of them

were also eager to administer WBV because of its novelty and because it was provided to them

free of charge for 12-months. However, after commencing the trial, many became dissatisfied

143

with the WBV regimen because they found daily schedule and/or 20 consecutive minutes too

tedious and time-consuming, especially those with full-time jobs (see the Technical appendix

chapter two additional results).

Calcaneal QUS parameters were also obtained in this RCT, but were examined and

reported as secondary outcomes in chapter three, separate from DXA and HR-pQCT

parameters. This was done because compared to HR-pQCT and DXA, QUS measurements are

currently not as well accepted in the management of postmenopausal osteoporosis (Krieg et al.,

2008; Lewiecki et al., 2006). In addition, 13% (n=27) of calcaneal QUS data was either missing or

compromised and not included in the analysis. Participants with missing or compromised QUS

outcomes may have been systematically different from the complete cases, and imputations

were thus necessary. The multiple imputations method is generally used as the gold standard

when a significant amount of data is missing (>10%), because it maintains the natural variability

and preserves relationships between variables in the dataset (Rubin, 1996). As a result, more

statistically valid inferences can be made that better reflect the uncertainty due to missing

values than with single imputations from the mean (Rubin, 1996). Thus, in addition to single

imputations based on group means, multiple imputations were performed in the analysis of

QUS parameters to assess the robustness of ITT results based on the single imputations (see the

Technical appendix – chapter three: additional results).

144

In contrast to the hypothesis made at the beginning of this investigation, calcaneal BUA

declined in the 90Hz and 30Hz groups when compared to controls. Between-group differences

in BUA change were statistically significant in the ITT analysis, as well as in the analyses of ≥80%

adherent based on cumulative duration or full-treatment count or <65 kg subgroups. Both 90Hz

and 30Hz groups experienced significant reductions in BUA compared to controls. In the

aforementioned subgroup analyses, decrease in BUA in 90Hz group versus controls was

statistically significant, as well as greater in magnitude and more consistent than in the 30Hz

group. In contrast, decrease in BUA in the 30Hz group versus controls, but not in the 90Hz

group, was statistically significant in the ITT and per-protocol analyses. Finally, whenever the

90Hz versus 30Hz groups were compared, BUA change was not found to be significantly

different in any of the analysis performed. Although controls experienced significant increases

in BUA in this trial, this was may not have been not due to chance but possibly due to calcium

and vitamin D supplementation. In 1-year prospective study of 101 postmenopausal women

without osteoporosis (55-65 years old), similar increase in BUA (2%) was observed in the study

group receiving 1200 mg of calcium and 300 IU of vitamin D, as measured by the same QUS

device (Moschonis & Manios, 2006). However, since all participants here in this RCT were

supplemented with calcium and vitamin D equally, similar increases in BUA as that observed in

controls were also expected in 90Hz and 30Hz groups.

145

Although a statistically significant treatment effect was observed in the analysis of

calcaneal BUA, its magnitude was relatively small and probably not clinically significant. The

magnitude of WBV treatment effect can be estimated by obtaining the difference in mean

absolute 12-month change in BUA between 90Hz participants and controls (90Hz – CON) or

between 30Hz participants and controls (30Hz – CON). In the per-protocol approach, WBV

treatment effect was -1.7 db·MHz-1 (-2.2%) for 90Hz participants and -2.0 db·MHz-1 (-2.6%) for

30 Hz participants. In a prospective study of postmenopausal women with a mean age of 59

years, where the same QUS device was used (Sahara, Hologic), significant 12-month treatment

effect of anti-resortpive bone medications (n=39; BUA mean change: 5.5 db·MHz-1) on calcaneal

BUA was found to be 4.2 db·MHz-1 (7.3%) compared to controls (n=131; BUA mean change: 1.3

db·MHz-1) (Frost, 2001). Further, using the same QUS device (Sahara, Hologic) in a cross-

sectional study of Swiss women, the difference in mean calcaneal BUA between healthy

postmenopausal women aged 65-87 years (n=38; BUA: 61.2 db·MHz-1) and age-matched

women with a recent osteoporotic hip fracture (n=38; BUA: 41.9 db·MHz-1) was 19.3 db·MHz-1

(31.5%) (Hans et al., 2003). In the same Swiss study, the difference in mean BUA between the

same population of healthy postmenopausal women and young women aged 20-40 years

(n=47, BUA: 77.5 db·MHz-1) was -16.3 db·MHz-1 (-26.6%) (Hans et al., 2003).

As reported in chapter three, statistically significant reductions in BUA in 90Hz and 30Hz

groups compared to controls were probably not due to chance, lack of QC procedures or

146

outcome assessor bias. If chance played a significant role then BUA decline would probably not

be as consistent between 90Hz and 30Hz groups and between various analyses that were

performed. Several QC strategies recommended by the International Society for Bone

Densitometry were also employed to minimize sources of QUS measurement error (Krieg et al.,

2008). The same room, device, outcome assessor and foot positioning procedures were used

across all measurements regardless of participants’ group assignment. QUS device calibration

was performed on the day of measurement using the same phantom and according to

manufacturer’s instruction. All calibration values obtained for BUA and SOS during this trial’s

data collection as well as their means and SDs were evaluated and found to correspond with

ranges specified by the manufacturer (see the Technical Appendix QUS QC – calibration log).

Sometimes calibration could not be obtained after numerous tries, while at other times

calcaneal measurements were identified as invalid by the QUS device even after three

attempts. However, uncalibrated or invalid measurements were not included in the analysis. It

was unclear why sometimes calibration or normal calcaneal measurements could not be

obtained, but anecdotal observations were made. Calibration problems tended to be more

common during extremely cold winter days, indicating that fluctuations in the room or

phantom temperature may have played a role. For most participants with an invalid QUS

measurement, either baseline or final scan was affected. However, in one participant, both

measurements were affected, probably due to her noticeably small feet and narrow heels.

Several women with bunions had to have their feet repositioned differently from those without

147

bunions, so that valid measurement could be obtained. Although some of the variation in the

calcaneal QUS outcomes was probably still due to foot positioning and/or calibration errors, it

was unlikely to be systematically different in 90Hz and 30Hz groups compared to controls, since

QC procedures were standardized across all measurements. The QUS outcome assessor was

unblinded but had no control over what BUA, SOS or QUI values were obtained. Beyond foot

positioning, outcome assessor was not able to manipulate the measurement to obtain desired

outcomes, because QUS device displayed BUA, SOS, QUI values and no further evaluation was

needed. Manipulating foot positioning to obtain desired values is extremely difficult, if not

impossible, thus detection bias due to an unblinded QUS outcome assessment probably did not

play a role in observing significant BUA reductions in 90Hz and 30Hz groups compared to

controls.

Real bone tissue changes at the calcaneus may explain statistically significant reductions

in BUA in 90Hz and 30Hz groups compared to controls observed in this trial. It is possible that

the BUA decrease observed here may represents changes in trabecular microarchitecture

and/or collagen but probably not BMD. Although calcaneal BUA and SOS measurements are

primarily influenced by bone hydroxyapatite properties, which relate to BMD, other bone

strength determinants may also play a role (Nicholson et al., 2001; Wu et al., 1998). For

instance, trabecular microarchitecture was previously shown to influence QUS measurements

in vivo and ex vivo, BUA in particular (Njeh et al., 2001; Lin et al., 2009; Sasso et al., 2008; Wu

148

et al., 1998). Since significant reductions in calcaneal BUA, but not in SOS, were observed in

90Hz and 30Hz groups compared to controls, it is possible that bone tissue changes primarily

involved trabecular microstructure damage. Further, type one collagen fibres are intertwined

within the bone mineral matrix which partly gives bone its elasticity, and their properties are

also believed by some to influence calcaneal BUA and SOS measurements (Wu et al., 1998).

Thus, changes in bone collagen in response to WBV may have also played role in the statistically

significant decrease in BUA in 90Hz and 30Hz groups.

Low-magnitude WBV applied to the calcaneus could have potentially caused micro-

damage of the trabecular microstructure in a similar way in which a bone fatigue test can cause

a break in a bone specimen, due to the application of many low-force loading cycles (Bouxsein,

2006). Each time the WBV platform accelerates upwards, it presses against the heel, thus

creating strains within the calcaneus. Even though these compressive forces were not very high,

they occurred 30 or 90 times per second for 20 consecutive minutes, and their strains may have

accumulated over time. It is possible that this accumulated strain within the calcaneus caused

buckling or crumbling of tiny trabeculi (mean baseline TTh: 0.08 mm). This is especially true for

osteopenic postmenopausal women who already have compromised trabecular

microarchitecture (Pacifici, 2001). The compression strains due to WBV may have resembled

those created by osteoclastic cavities, which according to bone fluid-flow hypothesis describe

earlier should upregulate bone formation, so that the cavities can be filled up with new bone

149

(Huiskes et al., 2000). However, osteoclastic cavities or bone resorption are in greater

abundance in postmenopausal women than bone formation, resulting in overall trabecular

deterioration (Pacifici, 2001). Similarly, for the amount trabecular microdamage that was

created by the compression of the calcaneus due to WBV, insufficient bone formation may have

been recruited in osteopenic postmenopausal women for adequate compensation, thus leading

to overall trabecular deterioration.

It is important to note that between-group differences in BUA change observed in this

trial most likely reflect site-specific WBV effect unique to the heel and not other central or

peripheral skeletal sites. As seen in chapter two, no significant between-group differences in

12-month change were observed in aBMD at the femoral neck, total hip or lumbar spine as

measured by DXA, the gold standard, or in vBMD or bone structure parameters at the distal

tibia and distal radius as measured by HR-pQCT. Also as discussed above, statistically significant

reductions in BUA in 90Hz and 30Hz groups versus controls were probably due to the

accumulated compression forces applied directly to the heels as the platform accelerates

upwards. As the WBV stimulus propagates through the heels to other weight-bearing bones, it

is dissipated by the soft tissue and joints and becomes increasingly less intense the further

away it travels from the oscillating platform (Kiiski et al., 2008). No significant changes in HR-

pQCT vBMDt or trabecular microarchitecture were found even at the distal tibia, which is in

very close proximity to the calcaneus, possibly due to the absorption of the WBV compression

150

forces by the talocrural joint (the ankle). Therefore, compared to the calcaneus, the remaining

weight-bearing bones were probably just ‘shaken’ and not compressed by the upward

acceleration of the WBV platform and body segments, due to the cushioning provided by the

joints.

However, BUA findings observed in this RCT may not reflect bone but instead soft tissue

changes, as also discussed in chapter three. Several sources of evidence indicate that soft tissue

changes due to WBV may have occurred in 90Hz and 30Hz groups, which were possibly

reflected in BUA measurements. Several foot-related AEs probably involving the soft tissue

were observed in 90Hz and 30Hz participants in this RCT. For example, plantar foot and heel

pain, which resembled plantar fasciitis and was probably related to WBV, was reported in three

WBV participants. In occupational settings such as mining and construction (for example, drills

and drilling platforms), prolonged exposures to hands and feet vibration can often lead to soft

tissue injuries involving the muscles, vasculature and connective tissues (for example,

Raynaud’s) (Falkenbach et al., 1997; Hedlund, 1989). Some studies have also shown that WBV

may reduce fat content in mice and body weight in postmenopausal women (Rubin et al., 2007;

von Stengel et al., 2010b). Previous examinations of the influence of heel soft tissue

characteristics on the calcaneal QUS parameters have shown that skin temperature, and soft

tissue thickness and fat content play a significant role (Chappard et al., 2000; Ikeda & Iki, 2004;

Kotzki et al., 1994). However, primarily calcaneal SOS was previously found to be significantly

151

affected by soft tissue characteristics but not BUA (Chappard et al., 2000; Ikeda & Iki, 2004;

Kotzki et al., 1994), perhaps because the heel soft tissue has similar speed of sound

characteristics as the calcaneal bone (Krieg et al., 2008).

BUA changes observed in 90Hz and 30Hz groups in this trial may not reflect real bone

changes, also because prospective studies have shown that calcaneal BUA measurements

respond slower to bone medications than central DXA aBMD measurements (Frost, 2001).

Thus, more than 12 months of follow-up has been recommended to observe real bone tissue

changes (Krieg et al., 2008; Lewiecki et al., 2006). However, QUS parameters are believed to be

less responsive in monitoring pharmacological treatments not necessarily because QUS involves

less sensitive measurement, but because peripheral sites such as the calcaneus are expected to

respond slower to bone medications (Bouxsein et al., 1999; Krieg et al., 2008; Lewiecki et al.,

2006). In contrast, WBV may represent a unique clinical situation where the physical stimulus is

applied directly at the calcaneus and at greater intensity than expected at the central sites

(Kiiski et al., 2008).

BUA decrease in 90Hz group was especially pronounced in ≥80% adherent based on

cumulative duration and <65 kg subgroups, suggesting that potential harmful effects of WBV on

the calcaneal bone or heel soft tissue may be dose-dependent and more pronounced when

body mass is lower. Similar trends exist in exercise literature involving injuries in runners. As

reviewed elsewhere, running injuries involving the lower-legs have been primarily attributed to

152

the repetitive nature of the same movement and ground reaction forces experienced at the

feet (van Gent et al., 2007; van Mechelen, 1992). The risk of such injuries was found to

significantly rise with increasing weekly running distance or duration (van Gent et al., 2007; van

Mechelen, 1992). Also, there is some evidence to suggest that running injuries involving the

feet may be more likely in runners with lower body mass (Taunton et al., 2002). Thus, similar

biomechanics as those experienced during running may reflect potential deleterious effects of

WBV on the heel bone and/or soft tissue, as reflected by BUA decrease in 90Hz and 30Hz

groups, particularly in lighter postmenopausal women exposed to a greater cumulative

duration of WBV.

Overall, WBV administered at 0.3g and 90 or 30 Hz for 12 months was found to be

relatively safe and well-tolerated. As shown in chapter two, number of reported SAEs was

similar between study groups, and none of the SAEs experienced in the 90Hz or 30Hz groups

were deemed to be related to WBV. Further, when numbers of AEs were compared between

groups using various relevant categories (for example, back pain, lower-leg injuries, and

gastrointestinal problems) no statistically significant differences were found. However, when

AEs were reported qualitatively, several AEs somewhat resembled conditions due to prolonged

exposures to WBV in occupational settings (Griffin, 1998; Mansfield, 2005; Randall et al., 1997).

For example, nausea and dizziness resembling motion sickness were reported in one participant

who discontinued WBV because they lasted during sleep, as well as in two other participants

153

who experienced these symptoms only briefly during WBV. Although in occupational settings

motion sickness was primarily observed in response to low-frequency high-magnitude WBV in a

seated position (for example, driving a large forestry vehicle) (Griffin, 1998; Mansfield, 2005),

the postmenopausal women in this trial were possibly also sensitive to high-frequency and low-

magnitude WBV in a standing position. WBV was also found to influence the gastrointestinal

tract in this trial, as increased motility was self-reported in three women, especially when WBV

was performed immediately after breakfast. Interestingly, suppressed gastrointestinal motility

have been found to occur due to prolonged exposures to WBV at low frequencies (for example,

4 Hz) during driving in a seated position (Ishitake et al., 1999), while increased motility was

observed here, and participants perceived this symptom as positive. Further, various mild and

transient foot symptoms were self-reported by 90 or 30 Hz participants, which lasted briefly

during WBV and included plantar foot pain, foot numbness or loss in sensation and joint

stiffness or weakness. Vibration-white foot syndrome, also involving loss in sensation and pain

of the feet, has been reported due to vibration exposure from prolonged standing on a drilling

platform (Sakakibara et al., 1991; Thompson et al., 2010). As discussed in chapter one, previous

RCTs of postmenopausal women did not adequatelyreport AEs, except for Russo et al. (2003)

who observed knee pain and lower-leg erythema in response to high-magnitude WBV. No

significant knee pain or lower-leg erythema was observed in this RCT. Finally, compared

Iwamoto’s at al. (2005) trial where high-magnitude (≥1g) WBV administered at 20 Hz to

154

Japanese postmenopausal women was found to significantly reduce pre-existing back pain, no

significant reductions in back pain were observed here in this RCT.

Other health-risks potentially related to WBV that were of more concern than the

aforementioned AEs involved chronic plantar fasciitis-like pain of the feet, as reported in

chapter three. One 30Hz participant was weaned off and on WBV, and the plantar pain

subsided during the weeks when WBV was not administered, but came back when it was

reintroduced and was exacerbated during WBV. The plantar foot pain was perhaps due to the

interplay between high WBV frequency and cumulative duration of WBV. Foot sensitivity to

mechanical vibration was previously shown to rise with increasing frequency (Kekoni et al.,

1989; Miwa, 1988). Also as discussed previously, risk of running injuries of the lower legs were

found to rise with increasing weekly running duration possibly due to excessive repetition of

the same movement and ground reaction forces (van Gent et al., 2007; van Mechelen, 1992).

This is similar to the biomechanics of WBV in relation to the feet and to the cumulative duration

of WBV performed in a week. Although the compression forces at the feet during WBV at 0.3g

were probably smaller than those expected during running, the repetitive nature of WBV was

far more excessive (30 or 90 times per second) than that of repeated pounding at the ground

during running. It is also probably important to note that foot and hand soft tissue injuries in

occupational settings occur due to long-term exposures to WBV (years) and can sometimes be

debilitating (Sakakibara et al., 1991; Thompson et al., 2010), while deleterious effects of the

155

feet that were possibly related to WBV (for example, chronic plantar foot pain or decreased

BUA) in this trial occurred in a mild form, but with an exposure of <12 months.

156

CONCLUSIONS

When previous RCTs in postmenopausal women were systematically evaluated in

chapter one, various high- and low-magnitude WBV therapies were not found to have

significant effect on lumbar spine aBMD or distal tibia vBMD. A statistically significant but small

WBV effect was found on hip aBMD but may have been due to study bias observed in the

included trials.

Based on the RCT results reported in chapters two and three, low-magnitude WBV at

0.3g and at 90 or 30 Hz prescribed daily for 20 minutes for 12 months to community-dwelling

osteopenic postmenopausal women was found to be:

1. Not effective in reducing overall postmenopausal bone loss, as determined by DXA aBMD

measurements at the femoral neck, total hip and lumbar spine, and by HR-pQCT vBMD and

bone structure measurements at the distal tibia and distal radius.

2. Inadequately adhered to (median 65-79%), primarily due to its time-consuming nature (i.e.,

20 minutes per day 7 days a week)

3. Possibly causes small reductions in the calcaneal BUA that may have been due to bone

and/or tissue damage, as a result of its frequent and repetitive compression forces applied to

the heels by the oscillating platform.

157

Thus, WBV is not recommended for the prevention of osteoporosis in community-

dwelling osteopenic postmenopausal women, because its effects on various osteoporosis-

prone sites were found to be clinically insignificant, while it may also cause small damage to

heel bone and/or soft tissue.

158

FUTURE DIRECTIONS

Future RCTs of WBV effects on DXA aBMD at the central sites or HR-pQCT

measurements at the peripheral sites are not recommended in healthy community-dwelling

osteopenic postmenopausal women for the following reasons:

- Although statistically significant improvements in hip aBMD were found in the

systematic evaluation of 131 postmenopausal women, the effect was small and clinically

not relevant. This effect may have been due to lack of calcium and vitamin D

supplementation and/or attrition bias.

- In the RCT of 202 osteopenic postmenopausal women, no significant improvements

were found in response to low-magnitude WBV. Compared to RCTs included in the

systematic evaluation, calcium and vitamin D was provided, attrition bias was minimized

and more sensitive and responsive measurements were obtained.

- Possible small damage of heel bone and/or soft tissue due low-magnitude WBV were

observed in this RCT, which further makes WBV an undesirable choice for

postmenopausal osteoporosis management. More serious, similar deleterious effects

would probably be expected in response to high-magnitude WBV.

159

Future RCTs of WBV effects on bone should be conducted in different clinical

populations that may benefit from WBV more than postmenopausal women. Children and

adolescents with compromised skeletal integrity should be perhaps examined further.

Populations such as children with cerebral palsy (Ward et al., 2004) and girls with low BMD

(Gilsanz et al., 2006) were previously examined in two small trials, as summarized in chapter

one, and significant improvements were found in response to low-magnitude WBV even with

low adherence (<60%). Low-magnitude WBV should be examined in children and adolescents,

because high-magnitude WBV may be too deleterious for the growing bodies, while low-

magnitude was previously found to be well-tolerated. Volumetric measurements should be

obtained in this children and adolescent, because their bones are growing in size, which makes

DXA a poor bone densitometry choice. Calcium and vitamin D supplements should be provided

and larger sample sizes should be examined than previously. It is not recommended to study

normal children or adolescents in future trials of WBV, because this population should be

encouraged to participate in regular physical activity, and their bones are not expected to be so

compromised to require an adjunct bone-building strategy. However, populations such as

children with cerebral palsy, who have more compromised skeletons and find it more difficult

to engage in physical activities, such as running or jumping, should be examined. In young girls

with low bone mass who may also have low BMI, WBV-related foot injuries should be of

concern and should be carefully monitored in clinical trials. Finally, it may be interesting to

examine obese or overweight children receiving WBV. These children are often reluctant to

160

engage in regular physical activities, and may thus benefit from an exercise-like modality such

as WBV. Since some evidence exists to show that WBV may reduce body’s fat content and body

mass (Rubin et al., 2007; von Stengel et al., 2010b), it is recommended that body composition

measurements are made in addition to bone measurements in such trials.

Investigations of WBV effects on bones and muscles in spinal cord injury patients should

also be conducted in the future (Davis et al., 2010; Melchiorri et al., 2007). These patients have

inactive and disused weight-bearing muscles and bones and are unable to perform any type of

weight-bearing physical activity or locomotion. As such, they may especially benefit from WBV,

because it has a potential to improve their skeletal integrity possibly via bone fluid-flow

changes. As well, compared to osteopenic postmenopausal women, spinal cord injury patients

tend to be younger individuals with more compromised bones, especially in the hips and legs,

and may thus be more responsive to WBV.

Further, there is a need to carefully incorporate investigations of AEs in any future trials

of WBV. As discussed in chapter one, reporting of AEs in previous RCTs of WBV effects on bone

was scarce and inadequate. Our current knowledge of potential deleterious effects of WBV on

the body relies on older studies conducted in occupational settings (Griffin, 1998). Compared to

current WBV therapies, WBV in the occupational settings is generally administered in a seated

position, at larger magnitudes and lower frequencies (for example, due to driving in a mining

vehicle) or locally at higher frequencies (for example, standing on a drilling platform), and for

161

prolonged exposures (daily for years). There is a need for a systematic evaluation of WBV

deleterious effects that would separately examine occupational vibration and WBV as exercise-

like modality.

Future investigations of WBV in any study population, where the entry point of vibration

is through the feet, should also obtain calcaneal QUS measurements to confirm the findings of

possible decrease in BUA due to WBV obtained in this RCT conducted here. Calcaneal QUS

device is easy and safe to use, inexpensive and portable, and thus does not require significant

study resources. Future experimental models should also incorporate QUS measurements in

their design to better elucidate potential mechanisms behind the possible relationship between

WBV and bone QUS properties.

Finally, WBV should continue to be examined in various populations for other than bone

effects. Potential benefits of WBV on muscle strength and balance (Verschueren et al., 2004), as

well as on fibromyalgia, multiple sclerosis and Parkinson’s symptoms have been previously

examined (Alenton-Geli et al., 2008; Haas et al., 2006; Schuhfried et al., 2005). However, future

clinical investigations of WBV effects on any outcome should employ effective adherence

strategies and rigorously monitor and report AEs.

162

LIST OF REFERENCES

Adami, S., Gatti, D., Braga, V., Bianchini, D., & Rossini, M. (1999). Site-specific effects of strength

training on bone structure and geometry of ultradistal radius in postmenopausal

women. Journal of Bone and Mineral Research, 14, 1634-1635.

Ahlborg, H., Johnell, O., Turner, C., Rannevik, G., & Karlsson, M. (2003). Bone loss and bone size

after menopause. New England Journal of Medicine, 349, 327-334.

Alenton-Geli, E., Padilla, J., Moras, G., Haro, C., & Fernandez-Sola, J. (2008). Six weeks of whole-

body vibration exercise improves pain and fatigue in women with fibromyalgia. Journal

of Alternative and Complementary Medicine, 14, 975-981.

Ashe, M., Khan, K., Kontulainen, S., Guy, P., Liu, D., Beck, T. et al. (2006). Accuracy of pQCT for

evaluating the aged human radius: an ashing, histomorphometry and failure load

investigation. Osteoporos International, 17, 1241-1251.

Ashman, R., Corin, J., & Turner, C. (1987). Elastic properties of cancellous bone: measurement

by an ultrasonic technique. Journal of Biomechanics, 20, 979-986.

Bediz, B., Ozguven, N., & Korkusuz, F. (2010). Vibration measirements predict the mechanical

properties of human tibia. Clinical Biomechanics, 25, 365-371.

Biewener, A., Fazzalari, N., Konieczynski, D., & Baudinette, R. (1996). Adaptive changes in

trabecular architecture in relation to functional strain patterns and disuse. Bone, 19, 1-8.

163

Binkley, T., Johnson, J., Vogel, L., Kecskemethy, H., Henderson, R., & Specker, B. (2005). Bone

measurements by peripheral quantitative computed tomography (pQCT) in children

with cerebral palsy. Journal of Pediatrics, 147, 791-796.

Black, D., Delmas, P., Eastell, R., Reid, I., Boonen, S., Cauley, J. et al. (2007). Once-yearly

zoledronic acid for treatment of postmenopausal osteoporosis.HORIZON Pivotal

Fracture Trial. New England Journal of Medicine, 356, 1809-1822.

Black, D., Greenspan, S., Ensrud, K., Palermo, L., McGowan, J., Lang, T. et al. (2003). The effects

of parathyroid hormone and alendronate alone or in combination in postmenopausal

osteoporosis. New England Journal of Medicine, 349, 1207-1215.

Bolland, M., Barber, P., Doughty, R., Mason, B., Horne, A., Ames, R. et al. (2008). Vascular

events in healthy older women receiving calcium supplementation: randomised

controlled trial. British Medical Journal, 336, 262-266.

Bongiovanni, L., Hagbarth, K., & Stjernberg, L. (1990). Prolonged muscle vibration reducing

motor output in maximal voluntary contractions in man. Journal of Physiology, 423, 15-

26.

Bonnick, S. L. (2004). Changes in bone density. In Bone Densitometry in Clinical Practice:

Application and Interpretation, 2nd edn (pp. 279). Totowa: Human Press Inc.

Boutroy, S., Bouxsein ML, Munoz F, & Delmas PD (2005). In vivo assessment of trabecular bone

microarchitecture by high-resolution peripheral quantitative computed tomography.

Journal of Clinical Endocrinology and Metabolism, 90, 6508-6515.

164

Bouxsein, M. (2004). Non-invasive measurements of bone strength: promise and peril. Journal

of Musculoskeletal Neuronal Interactions, 4, 404-405.

Bouxsein, M. (2006). Biomechanics of bone. In D.Dempster, D. Felsenberg, & S. van Der Geest

(Eds.), The Bone Quality Book: A Guide to Factors Influencing Bone Strength,

Amsterdam: Elsvier BV.

Bouxsein, M., Parker, R., & Greenspan, S. (1999). Forearm bone mineral densitometry cannot

be used to monitor response to alendronate therapy in postmenopausal women.

Osteoporosis International, 10, 505-509.

Bouxsein, M. & Radloff, S. (1997). Quantitative ultrasound of the calcaneus reflects the

mechanical properties of calcaneal trabecular bone. Journal of Bone and Mineral

Research, 12, 839-846.

Brown, J., Fortier, M., Frame, H., Lalonde, A., Papaioannou, A., Senikas, V. et al. (2006).

Canadian consensus conference on osteoporosis, 2006 update. Journal of Obstetrics and

Gynaecology Canada, 28, S95-S112.

Brown, T. D., Pedersen, D. R., Gray, M. L., Brand, R. A., & Rubin, C. T. (1990). Toward an

identification of mechanical parameters initiating periosteal remodeling: a combined

experimental and analytic approach. Journal of Biomechanics, 23, 893-905.

Bruyere, O., Wuidart, M., Di Palma, E., Gourlay, M., Ethgen, O., Richy, F. et al. (2005). Controlled

whole body vibration to decrease fall risk and improve health-related quality of life of

nursing home residents. Archives of Physical Medicine & Rehabilitation, 86, 303-307.

165

Burr, D., Forwood, M., Fyhrie, D., Martin, R., Schaffler, M., & Turner, C. (1997). Bone

microdamage and skeletal fragility in osteoporotic and stress fractures. Journal of Bone

and Mineral Research, 12, 6-15.

Cardinale, M., Leiper, J., Farajian, P., & Heer, M. (2007). Whole-body vibration can reduce

calciuria induced by high protein intakes and may counteract bone resorption: A

preliminary study. Journal of Sports Sciences, 25, 111-119.

Cardinale, M. & Lim, J. (2003). Electromyography activity of vastus lateralis muscle during

whole-body vibrations of different frequencies. Journal of Strength & Conditioning

Research, 17, 621-624.

Cardinale, M. & Rittweger, J. (2006). Vibration exercise makes your muscles and bones

stronger: fact or fiction? Journal of the British Menopause Society, 12, 12-18.

Castillo, A. B., Alam, I., Tanaka, S. M., Levenda, J., Li, J., Warden, S. J. et al. (2006). Low-

amplitude, broad-frequency vibration effects on cortical bone formation in mice. Bone,

39, 1087-1096.

Chappard, C., Camus, E., Lefebvre, F., Guillot, G., Bittoun, J., Berger, G. et al. (2000). Evaluation

of error bounds on calcaneal speed of sound caused by surrounding soft tissue. Journal

of Clinical Densitometry, 3, 121-131.

Chesnut, C., Majumdar, S., Gardner, J., Shields, A., Newitt, D., Erickson, E. et al. (2001).

Assessment of bone quality, quantity, and turnover with multiple methodologies at

multiple skeletal sites. Advances in Experimental Medicine and Biology, 496, 95-97.

166

Cheung, A. M., Chan, C., Ahmed, F., Hu, H., Demaras, A., Polidoulis, I. et al. (2010). Intra-

operator precision for in vivo high resolution pQCT scans. (submitted).

Cheung, A. M., Feig, D. S., Kapral, M., Raz-Granados, N., Dodin, S., & Canadian Task Force on

Preventive Health Care (2004). Prevention of osteoporosis and osteoporotic fractures in

postmenopausal women: recommendation statement from the Canadian Task Force on

Preventive Health Care. Canadian Medical Association Journal, 170, 1665-1667.

Cheung, A. M., Tile, L., Lee, Y., Tomlinson, G., Hawker, G., Scher, J. et al. (2008). Vitamin K

supplementation in postmenopausal women with osteopenia (ECKO trial): a randomized

controlled trial. PLoS Medicine, 5, 1-12.

Chrischilles, E., Butler, D., Davis, C., & Wallace, R. (1991). A model of lifetime osteoporosis

impact. Archives of Internal Medicine, 151, 2026-2032.

Christiansen, B. A. & Silva, M. J. (2006). The effect of varying magnitudes of whole-body

vibration on several skeletal sites in mice. Annals of Biomedical Engineering.34(7):1149-

56.

Consensus Development Conference. (1993). Diagnosis, prophylaxis and treatment of

osteoporosis. The American Journal of Medicine, 94, 646-650.

Cooper, C., Atkinson, E., O'Fallon, W., & Melton, L. 3. (1992). Incidence of clinically diagnosed

vertebral fractures: a population-based study in Rochester, Minnesota, 1985-1989.

Journal of Bone and Mineral Research, 7, 221-227.

167

Cumming, R., Nevitt, M., & Cummings, S. (1997). Epidemiology of hip fractures. Epidemiology

Reviews, 19, 244-257.

Cummings, S., Bates, D., & Black, D. (2002). Clinical use of bone densitometry: scientific review.

Journal of American Medical Association, 288, 1889-1897.

Cummings, S. & Nevitt, M. (1989). A hypothesis: the causes of hip fractures. Journal of

Gerontology, 44, 107-111.

Davis, R., Sanborn, C., Nichols, D., Bazett-Jones, D., & Dugan, E. (2010). The effect of whole

body vibration on bone mineral density for a person with a spinal cord injury: a case

study. Adapted Physical Activity Quarterly, 27, 60-72.

Dong, R. G., Rakheja, S., Schopper, A. W., Han, B., & Smutz, W. P. (2001). Hand-transmitted

vibration and biodynamic response of the human hand-arm: a critical review. Critical

Reviews in Biomedical Engineering, 29, 393-439.

Eisman, J. A. (2001). Good, good, good ... good vibrations: the best option for better bones?

Lancet, 358, 1924-1925.

Falkenbach, A., Watanabe, I., Hartmann, B., & Agishi, Y. (1997). Raynaud's phenomenon in

vibration syndrome: the impact of cold feet on skin temperature and vasomotion of the

hand after immersion in cold water. Angiology, 48, 1037-1044.

168

Felsenberg, D. (2006). Bone quality. In D.Dempster, D. Felsenberg, & S. van Der Geest (Eds.),

The Bone Quality Book: A Guide to Factors Influencing Bone Strength ( Amsterdam:

Elsvier BV.

Flieger, J., Karachalios, T., Khaldi, L., Raptou, P., & Lyritis, G. (1998). Mechanical stimulation in

the form of vibration prevents postmenopausal bone loss in ovariectomized rats.

Calcified Tissue International, 63, 510-504.

Forwood, M. & Burr, D. (1993). Physical activity and bone mass: exercises in futility? Bone

Mineral, 21, 89-112.

Friden, J. (2001). Vibration damage to the hand: clinical presentation, prognosis and length and

severity of vibration required. Journal of Hand Surgery - British Volume, 26, 471-474.

Fritton, J. C., McLeod, K., & Rubin, B. (2000). Quantifying the strain history of bone: spatial

uniformity and self-similarity of low-magnitude strains. Journal of Biomechanics, 33,

317-325.

Frost, H. (1998). From Wolff's law to the mechanostat: a new "face" of physiology. Journal of

Orthopaedic Science, 3, 282-286.

Frost, M. (2001). Changes in QUS and BMD measurements with antiresorptive therapy: a two-

year longitudinal study. Calcified Tissue International, 69, 138-146.

169

Garman, R., Gaudette, G., Donahue, L. R., Rubin, C., & Judex, S. (2007). Low-level accelerations

applied in the absence of weight bearing can enhance trabecular bone formation.

Journal of Orthopaedic Research, 25, 732-740.

Gilsanz, V., Wren, T. A. L., Sanchez, M., Dorey, F., Judex, S., & Rubin, C. (2006). Low-level, high-

frequency mechanical signals enhance musculoskeletal development of young women

with low BMD. Journal of Bone and Mineral Research, 21, 1464-1474.

Glüer, C., Wu, C., Jergas, M., Goldstein, S., & Genant, H. (1994). Three quantitative ultrasound

parameters reflect bone structure. Calcified Tissue International, 55, 46-52.

Gold, D. (1996). The clinical impact of vertebral fractures: quality of life in women with

osteoporosis. Bone, 18, S185-S189.

Grampp, S., Lang, P., Jergas, M., Gluer, C., Takada, M., Engelke, K. et al. (1994). Peripheral

quantitative computed tomography: short-term in-vivo precision and comparison to

forearem DXA. Journal of Bone and Mineral Research, 9, A368.

Griffin, M. J. (1998). Predicting the hazards of whole-body vibration - consideration of a

standard. Industrial Health, 36, 83-91.

Griffin, M. J. & Mills, K. L. (2002a). Effect of frequency and direction of horizontal oscillation on

motion sickness. Aviation Space & Environmental Medicine, 73, 537-543.

Griffin, M. J. & Mills, K. L. (2002b). Effect of magnitude and direction of horizontal oscillation on

motion sickness. Aviation Space & Environmental Medicine, 73, 640-646.

170

Guglielmi, G., Scalzo, G., de Terlizzi, F., & Peh, WC. (2010). Quantitative ultrasound in

osteoporosis and bone metabolism pathologies. Radiology Clinics of North America, 48,

577-588.

Gusi, N., Raimundo, A., & Leal, A. (2006). Low-frequency vibratory exercise reduces the risk of

bone fracture more than walking: a randomized controlled trial. BMC Musculoskelet

Disord, 7, 92.

Haapasalo, H., Kontulainen, S., Sievänen, H., Kannus, P., Järvinen, M., & Vuori, I. (2000).

Exercise-induced bone gain is due to enlargement in bone size without a change in

volumetric bone density: a peripheral quantitative computed tomography study of the

upper arms of male tennis players. Bone, 27, 351-357.

Haas, C. T., Turbanski, S., Kessler, K., & Schmidtbleicher, D. (2006). The effects of random

whole-body-vibration on motor symptoms in Parkinson's disease. Neurorehabilitation,

21, 29-36.

Hannan, M. T., Cheng, D. M., Green, E., Swift, C., Rubin, C. T., & Kiel, D. P. (2004). Establishing

the compliance in elderly women for use of a low level mechanical stress device in a

clinical osteoporosis study. Osteoporosis International, 15, 918-926.

Hans, D., Dargent-Molina, P., Schott, A., Sebert, J., Cormier, C., Kotzki, P. et al. (1996).

Ultrasonographic heel measurements to predict hip fracture in elderly women: the

EPIDOS prospective study. Lancet, 348, 511-514.

171

Hans, D., Genton, L., Allaoua, S., Pichard, C., & Slosman, D. (2003). Hip Fracture Discrimination

Study. Journal of Clinical Densitometry, 6, 163-172.

Harvard Health Publications (2006). Tiny vibrations may help muscle, bone, and balance.

Harvard Women's Health Watch, 14, 7.

Hasserius, R., Karlsson, M., Jónsson, B., Redlund-Johnell, I., & Johnell, O. (2005). Long-term

morbidity and mortality after a clinically diagnosed vertebral fracture in the elderly: a

12- and 22-year follow-up of 257 patients. Calcified Tissue International, 76, 235-242.

Hedlund, U. (1989). Raynaud's phenomenon of fingers and toes of miners exposed to local and

whole-body vibration and cold. International Archives of Occupational & Environmental

Health, 61, 457-461.

Higgins, J. & Green S (2008). Cochrane's handbook for systematic reviews of interventions

version 5.0.1 (Accessed Jun 2008). The Cochrane Collaboration. [On-line]. Available:

http://www.cochrane-handbook.org

Hodgskinson, R., Njeh, C., Whitehead, M., & Langton, C. (1996). The non-linear relationship

between BUA and porosity in cancellous bone. Physics in Medicine and Biology, 41,

2411-2420.

Hologic Inc (1998). Sahara Clinical Bone Sonometer Clinical User's Guide. Waltham, MA: Hologic

Inc.

172

Huiskes, R., Ruimerman, R., & Janssen, J. (2000). Effects of mechanical forces on maintenance

and adaptation of form in trabecular bone. Nature, 405, 704-706.

Hung, A., Hamidi, M., Riazantseva, E., Thompson, L., Tile, L., Tomlinson, G. et al. (2010).

Validation of a calcium assessment tool in Canadian postmenopausal women.

(submitted).

Ikeda, Y. & Iki, M. (2004). Precision control and seasonal variations in quantitative ultrasound

measurement of the calcaneus. Journal of Bone and Mineral Research, 22, 588-593.

Institute of Medical Physics (2010). Osteoporosis Research (Accessed August 2010). Institute of

Medical Physics Website [On-line]. Available: http://www.imp.uni-erlangen.de

Ishitake, T., Miyazaki, Y., Ando, H., & Matoba, T. (1999). Suppressive mechanism of gastric

motility by whole-body vibration. International Archives of Occupational &

Environmental Health, 72, 469-474.

Iwamoto, J., Takeda, T., Sato, Y., & Uzawa, M. (2005). Effect of whole-body vibration exercise on

lumbar bone mineral density, bone turnover, and chronic back pain in post-menopausal

osteoporotic women treated with alendronate. Aging Clinical and Experimental

Research, 17, 157-163.

Jackson, S., Tenenhouse, A., & Robertson, L. (2000). Vertebral fracture definition from

population-based data: preliminary results from the Canadian Multicenter Osteoporosis

Study (CaMos). Osteoporosis International, 11, 680-687.

173

Johnell, O. & Kanis, J. (2005). Epidemiology of osteoporotic fractures. Osteoporos Int., 16, S3-S7.

Jones, H. H., Priest, J., & Hayes, W. (1977). Humeral hypertrophy in response to exercise.

Journal of Bone and Joint Surgery American Volume, 59, 204-208.

Judex, S., Lei, X., Han, D., & Rubin, C. (2007). Low-magnitude mechanical signals that stimulate

bone formation in the ovariectomized rat are dependent on the applied frequency but

not on the strain magnitude. Journal of Biomechanics, 40, 1333-1339.

Judex, S., Boyd, S., Qin, Y. X., Turner, S., Ye, K., Muller, R. et al. (2003). Adaptations of trabecular

bone to low magnitude vibrations result in more uniform stress and strain under load.

Annals of Biomedical Engineering, 31, 12-20.

Judex, S., Donahue, L. R., & Rubin, C. (2002). Genetic predisposition to osteoporosis is paralleled

by an enhanced sensitivity to signals anabolic to the skeleton. FASEB Journal, 16, 1280-

1282.

Judex, S. & Rubin, C. T. (2010). Is bone formation induced by high-frequency mechanical signals

modulated by muscle activity? Journal of Musculoskeletal Neuronal Interactions.10(1):3-

11.

Judex, S., Zhong, N., Squire, M. E., Ye, K., Donahue, L. R., Hadjiargyrou, M. et al. (2005).

Mechanical modulation of molecular signals which regulate anabolic and catabolic

activity in bone tissue. Journal of Cell Biochemistry, 94, 982-994.

174

Juni, P., Altman, G., & Egger, M. (2001). Assessing the quality of controlled clinical trials. British

Medical Journal, 323, 42-46.

Juvent Inc (2010). The Juvent 1000 (Accessed August 2010). American Medical Innovations LLC

[On-line]. Available: http://www.juvent.com/juvent/

Kaczmarek, M., Pakula, M., & Kubik, J. (2000). Multiphase nature and structure biomaterials

studies by ultrasounds. Ultrasonics, 38, 703-707.

Kado, D., Browner, W., Palermo, L., Nevitt, M., Genant, H., & Cummings, S. (1999). Vertebral

fractures and mortality in older women: a prospective study. Study of Osteoporotic

Fractures Research Group. Archives of Internal Medicine, 159, 1215-1220.

Kanis, J., McCloskey, E., Johansson, H., Oden, A., & Borgström, F. (2010). Development and use

of FRAX in osteoporosis. Osteoporos International, 21, S407-S413.

Kannus, P., Palvanen, M., Niemi, S., Parkkari, J., & Järvinen, M. (2002). Increasing number and

incidence of low-trauma ankle fractures in elderly people: Finnish statistics during 1970-

2000 and projections for the future. Bone, 31, 430-433.

Kekoni, J., Hamalainen, H., Rautio, J., & Tukeva, T. (1989). Mechanical sensibility of the sole of

the foot determined with vibratory stimuli of varying frequency. Experimental Brain

Research, 78, 419-424.

Kemmler, W., von Stengel, S., Engelke, K., Häberle, L., & Kalender, W. (2010). Exercise effects on

bone mineral density, falls, coronary risk factors, and health care costs in older women:

175

the randomized controlled senior fitness and prevention (SEFIP) study. Archives of

Internal Medicine, 170, 179-185.

Kiiski, J., Heinonen, A., Jarvinen, T. L., Kannus, P., & Sievanen, H. (2008). Transmission of vertical

whole body vibration to the human body. Journal of Bone and Mineral Research, 23,

1318-1325.

Knothe Tate, M. (2003). "Whither flows the fluid in bone?" An osteocyte's perspective. Journal

of Biomechanics, 36, 1409-1424.

Kolata, G. (2007). Low buzz may give mice better bones and less fat. The New York Times,

October 10, F6.

Kotzki, P., Buyck, D., Hans, D., Thomas, E., Bonnel, F., Favier, F. et al. (1994). Influence of fat on

ultrasound measurements of the Os calcis. Calcified Tissue International, 54, 91-95.

Krieg, M., Barkmann R, Gonnelli S, Stewart A, Bauer DC, Del Rio Barquero L et al. (2008).

Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD Official

Positions. Journal of Clinical Densitometry, 11, 163-187.

Kvorning, T., Bagger, M., Caserotti, P., & Madsen, K. (2006). Effects of vibration and resistance

training on neuromuscular and hormonal measures. European Journal of Applied

Physiology, 96, 615-625.

176

Lang, T., LeBlanc, A., Evans, H., Lu, Y., & Yu, A. (2004). Cortical and trabecular bone mineral loss

from the spine and hip in long-duration spaceflight. Journal of Bone and Mineral

Research, 19, 1006-1012.

Langton, C., Njeh, C., Hodgskinson, R., & Currey, J. (1996). Prediction of mechanical properties

of the human calcaneus by broadband ultrasonic attenuation. Bone, 18, 495-503.

Lanyon, L. & Rubin, C. (1984). Static vs dynamic loads as an influence on bone remodelling.

Journal of Biomechanics, 17, 897-905.

Lenchik, L., Kiebzak, G., Blunt, B., & International Society for ClinicalDensitometry Position

Development Panel and Scientific Advisory Committee. (2002). What is the role of serial

bone mineral density measurements in patient management? Journal of Clinical

Densitometry, 5, S29-S38.

Lewiecki, E., Richmond, B., & Miller, P. (2006). Uses and misuses of quantitative

ultrasonography in managing osteoporosis. Cleveland Clinic Journal of Medicine, 73,

742-752.

Lin , W., Xia, Y., & Qin, Y. (2009). Characterization of the trabecular bone structure using

frequency modulated ultrasound pulse. Journal of Acoustic Society of America, 125,

4071-4077.

Lings, S., Leboeuf-Yde, & C (2000). Whole-body vibration and low back pain: A systematic,

critical review of the epidimiological literature 1992-1999. International Archives of

Occupational and Environmental Health, 73, 290-297.

177

Lochmüller, E., Bürklein, D., Kuhn, V., Glaser, C., Müller, R., Glüer, C. et al. (2002). Mechanical

strength of the thoracolumbar spine in the elderly: prediction from in situ dual-energy

X-ray absorptiometry, quantitative computed tomography (QCT), upper and lower limb

peripheral QCT, and quantitative ultrasound. Bone, 31, 77-84.

Looker, A., Melton, L. 3., Harris, T., Borrud, L., & Shepherd, J. (2010). Prevalence and trends in

low femur bone density among older US adults: NHANES 2005-2006 compared with

NHANES III. Journal of Bone and Mineral Research, 25, 64-71.

Lyles, K., Colón-Emeric, C., Magaziner, J., Adachi, J., Pieper, C., Mautalen, C. et al. (2007).

Zoledronic acid and clinical fractures and mortality after hip fracture. New England

Journal of Medicine, 357, 1799-1809.

Mani, R., Milosavljevic, S., & Sullivan, S. (2010). The effect of occupational whole-body vibration

on standing balance: A systematic review. International Journal of Industrial Ergonomics

(Epub ahead of print).

Mansfield, N. J. (2005). Whole-body vibration. In Human Response to Vibration. (London: CRC

Press LLC.

Marcus, R. & Majumder, S. (2001). The nature of osteoporosis. In R.Marcus, D. Feldman, & J.

Kelsey (Eds.), Osteoporosis (pp. 3-18). San Diego, CA: Academic Press.

Margulies, J., Simkin, A., Leichter, I., Steinberg, R., Giladi, M., Kashtan, H. et al. (1986). Effect of

intense physical activity on the bone-mineral content in the lower limbs of young adults.

Journal of Bone and Joint Surgery American Volume, 68, 1090-1093.

178

Marshall, D., Johnell, O., & Wedel, H. (1996). Meta-analysis of how well measures of bone

mineral density predict occurrence of osteoporotic fractures. British Medical Journal,

312, 1254-1259.

Melchiorri, G., Andreoli, A., Padua, E., Sorge, R., & De, L. A. (2007). Use of vibration exercise in

spinal cord injury patients who regularly practise sport. Functional Neurology, 22, 151-

154.

Mirsky, E. & Einhorn, T. (1998). Bone densitometry in orthopaedic practice. Journal of Bone and

Joint Surgery - American Volume, 80, 1687-1698.

Miwa, T. (1988). Evaluation of vertical vibration given to the human foot. Journal of Acoustic

Society of America, 83, 984-990.

Moayyeri, A., Kaptoge, S., Dalzell, N., Luben, R., Wareham, N., Reeve, J. et al. (2009). Is QUS or

DXA better for predicting the 10-year absolute risk of fracture? Journal of Bone and

Mineral, 24, 1319-1325.

Modlesky, C., Majumdar, S., & Dudley, G. (2008). Trabecular bone microarchitecture in female

collegiate gymnasts. Osteoporosis International, 19, 1011-1018.

Moher, D., Cook, D., Eastwood, O., Rennie, D., & Stroup, F. (1999). Improving the quality of

reports of meta-analyses of randomized controlled trials: the QUOROM statement.

Lancet, 354, 1896-1900.

179

Moschonis, G. & Manios, Y. (2006). Skeletal site-dependent response of bone mineral density

and quantitative ultrasound parameters following 12-month dietary intervention using

dairy products fortified with calcium and vitamin D: the postmenopausal health study.

British Journal of Nutrition, 96, 1140-1148.

NAMS (2010). Estrogen and progestogen use in postmenopausal women: 2010 position

statement of The North American Menopause Society. Menopause, 17, 242-255.

National Cancer Institute (2006). Common Terminology Criteria for Adverse Events 3.0

(Accessed September 2006). National Cancer Institute [On-line]. Available:

http://ctep.cancer.gov

Nelson, D. A., Norris, S. A., & Gilsanz, V. (2006). Childhood and adolescence. In M.J.Favus (Ed.),

Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism,

Washington: American Society for Bone and Mineral Research.

Nicholson, P., Müller, R., Cheng, X., Rüegsegger, P., Van Der Perre, G., Dequeker, J. et al. (2001).

Quantitative ultrasound and trabecular architecture in the human calcaneus. Journal of

Bone and Mineral Research, 16, 1886-1892.

Njeh, C., Fuerst, T., Diessel, E., & Genant, H. (2001). Is quantitative ultrasound dependent on

bone structure? A reflection. Osteoporosis International, 12, 1-15.

Njeh, C., Hodgskinson, R., Currey, J., & Langton, C. (1996). Orthogonal relationships between

ultrasonic velocity and material properties of bovine cancellous bone. Medical

Engineering & Physics, 18, 373-381.

180

Osteoporosis Canada (2010a). Calculate my calcium (Accessed September 2010). Osteoporosis

Canada [On-line]. Available:

http://www.osteoporosis.ca/index.php/ci_id/5355/la_id/1.htm

Osteoporosis Canada (2010b). Health Canada approves PROLIATM (denosumab) as new choice in

osteoporosis therapy (Accessed September 2010). Osteoporosis Canada [On-line].

Available: http://www.osteoporosis.ca/index.php/ci_id/10046/la_id/1.htm

Osteoporosis Canada (2010c). Osteoporosis at-a-glance (Accessed August 2010). Osteoporosis

Canada [On-line]. Available:

http://www.osteoporosis.ca/index.php/ci_id/5526/la_id/1.htm

Oxlund, B., Ørtoft, G., Andreassen, T., & Oxlund, H. (2003). Low-intensity, high-frequency

vibration appears to prevent the decrease in strength of the femur and tibia associated

with ovariectomy of adult rats. Bone, 32, 69-77.

Ozcivici E, Garman R, & Judex S (2007). High-frequency oscillatory motions enhance the

simulated mechanical properties of non-weight bearing trabecular bone. Journal of

Biomechanics, 40, 3404-3411.

Ozcivici, E., Luu, Y. K., Adler, B., Qin, Y. X., Rubin, J., Judex, S. et al. (2010). Mechanical signals as

anabolic agents in bone. Nature Reviews Rheumatology, 6, 50-59.

Ozdurak, R. H., Sezgin, O. C., Akin, S., & Korkusuz, F. (2006). Vibration analysis of the human

radius of elderly men. Clinical Orthopaedics & Related Research, 443, 94-100.

181

Pacifici, R. (2001). Postmenopausal osteoporosis: how the hormonal changes of menopause

cause bone loss. In R.Marcus, D. Feldman, & J. Kelsey (Eds.), Osteoporosis Second

Edition, San Diego, CA: Academic Press.

Papaioannou, A., Morin, S., Cheung, A. M., Atkkinson, S., Brown, J., Feldman, S. et al. (2010).

2010 clinical practice guidelines for the diagnosis and management of osteoporosis in

Canada: summary. Canadian Medical Association Journal (Epub ahead of print).

Pope, M. H., Magnusson, M., & Wilder, D. G. (1998). Kappa Delta Award. Low back pain and

whole body vibration. Clinical Orthopaedics & Related Research, 354, 241-248.

Power Plate (2020). Products: Power Plate Products for Every Purpose (Accessed August 2010).

Power Plate International Limited [On-line]. Available: http://ca.powerplate.com

Prevrhal, S., Shepherd, J., Faulkner, K., Gaither, K., Black, D., & Lang, T. (2008). Comparison of

DXA hip structural analysis with volumetric QCT. Journal of Clinical Densitometry, 11,

232-236.

Prior, J., Barr, S., Chow, R., & Faulkner RA (1996). Prevention and management of osteoporosis:

consensus statements from the Scientific Advisory Board of the Osteoporosis Society of

Canada. 5. Physical activity as therapy for osteoporosis. Canadian Medical Association

Journal, 155, 940-944.

Prisby, R. D., Lafage-Proust, M. H., Malaval, L., Belli, A., & Vico, L. (2008). Effects of whole-body

vibration on the skeleton and other organ systems in man and animal models: what we

know and what we need to know. Ageing Research Reviews, 7, 319-329.

182

Qin, Y. X., Rubin, C. T., & McLeod, K. (1998). Nonlinear dependence of loading intensity and

cycle number in the maintenance of bone mass and morphology. Journal of Orthopaedic

Research, 16, 482-489.

Randall, J., Matthews, R., & Stiles, M. (1997). Resonant frequencies of standing humans.

Ergonomics, 40, 879-886.

Rauch, F., Sievanen, H., Boonen, S., Cardinale, M., Degens, H., Felsenberg, D. et al. (2010).

Reporting whole-body vibration intervention studies: recommendations of the

International Society of Musculoskeletal and Neuronal Interactions. Journal of

Musculoskeletal Neuronal Interactions, 10, 193-198.

Rehn, B., Lidstrom, J., Skoglund, J., & Lindstrom, B. (2007). Effects on leg muscular performance

from whole-body vibration exercise: a systematic review. Scandinavian Journal of

Medicine & Science in Sports, 17, 2-11.

Reid, I. R. (2006). Menopause. In M.J.Favus (Ed.), Primer on the Metabolic Bone Diseases and

Disorders of Mineral Metabolism, Washington: American Society for Bone and Mineral

Research.

Riggs, L., Khosla, S., & Melton, J. (2001). The type I/type II model for involutional osteoporosis.

In R.Marcus, D. Feldman, & J. Kelsey (Eds.), Osteoporosis, San Diego, CA: Academic

Press.

Rittweger, J., Beller, G., & Felsenberg, D. (2000). Acute physiological effects of exhaustive

whole-body vibration exercise in man. Clinical Physiology, 20, 134-142.

183

Rosenberg, M. (2000). The effects of population ageing on the Canadian Health Care System.

Social and Economic Dimensions of an Aging Population Research Papers (SEDAP).,

McMaster University, 1-43.

Ruan, XY., Jin, FY., Liu, Y., Peng, ZL., & Sundelin, YG. (2008). Effects of vibration therapy on bone

mineral density in postmenopausal women with osteoporosis. Chinese Medical Journal,

121, 1155-1158.

Rubin, C., Judex, S., & Qin, Y. X. (2006). Low-level mechanical signals and their potential as a

non-pharmacological intervention for osteoporosis. Age Ageing, 35, ii32-ii36.

Rubin, C., Pope, M., Fritton, J. C., Magnusson, M., Hansson, T., & McLeod, K. (2003).

Transmissibility of 15-Hertz to 35-Hertz vibrations to the human hip and lumbar spine:

determining the physiologic feasibility of delivering low-level anabolic mechanical

stimuli to skeletal regions at greatest risk of fracture because of osteoporosis. Spine, 28,

2621-2627.

Rubin, C., Recker, R., Cullen, D., Ryaby, J., McCabe, J., & McLeod, K. (2004). Prevention of

postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a

clinical trial assessing compliance, efficacy, and safety. Journal of Bone and Mineral

Research, 19, 343-351.

Rubin, C., Turner, A. S., Bain, S., Mallinckrodt, C., & McLeod, K. (2001a). Anabolism. Low

mechanical signals strengthen long bones. Nature, 412, 603-604.

184

Rubin, C., Turner, A. S., Mallinckrodt, C., Jerome, C., McLeod, K., & Bain, S. (2002a). Mechanical

strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous

bone, but not cortical bone. Bone, 30, 445-452.

Rubin, C., Turner, A. S., Muller, R., Mittra, E., McLeod, K., Lin, W. et al. (2002b). Quantity and

quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive

mechanical intervention. Journal of Bone and Mineral Research, 17, 349-357.

Rubin, C., Xu, G., & Judex, S. (2001b). The anabolic activity of bone tissue, suppressed by disuse,

is normalized by brief exposure to extremely low-magnitude mechanical stimuli. FASEB

Journal, 15, 2225-2229.

Rubin, C. T., Capilla, E., Luu, Y. K., Busa, B., Crawford, H., Nolan, D. J. et al. (2007). Adipogenesis

is inhibited by brief, daily exposure to high-frequency, extremely low-magnitude

mechanical signals. Proceedings of the National Academy of Sciences of the United

States of America.104(45):17879-84.

Rubin, C. T. & McLeod, K. J. (1994). Promotion of bony ingrowth by frequency-specific, low-

amplitude mechanical strain. Clinical Orthopaedics & Related Research.(298):165-74.

Rubin, C. & Lanyon, L. (1985). Regulation of bone mass by mechanical strain magnitude.

Calcified Tissue International, 37, 411-417.

Rubin, D. (1996). Multiple imputation After 18+ years. Journal of American Statistical

Association, 91, 473-489.

185

Rubinacci, A., Marenzana, M., Cavani, F., Colasante, F., Villa, I., Willnecker, J. et al. (2008).

Ovariectomy sensitizes rat cortical bone to whole-body vibration. Calcified Tissue

International, 82, 316-326.

Russo, C. R., Lauretani, F., Bandinelli, S., Bartali, B., Cavazzini, C., Guralnik, J. M. et al. (2003).

High-frequency vibration training increases muscle power in postmenopausal women.

Archives of Physical Medicine & Rehabilitation, 84, 1854-1857.

Sakakibara, H., Hashiguchi, T., Furuta, M., Kondo, T., Miyao, M., & Yamada, S. (1991).

Circulatory disturbances of the foot in vibration syndrome. International Archives of

Occupational & Environmental Health, 63, 145-148.

Sasso, M., Haïat, G., Yamato, Y., Naili, S., & Matsukawa, M. (2008). Dependence of ultrasonic

attenuation on bone mass and microstructure in bovine cortical bone. Journal of

Biomechanics, 41, 347-355.

Schuhfried, O., Mittermaier, C., Jovanovic, T., Pieber, K., & Paternostro-Sluga, T. (2005). Effects

of whole-body vibration in patients with multiple sclerosis: a pilot study. Clinical

Rehabilitation, 19, 834-842.

Seidel, H. & Heide, R. (1986). Long-term effects of whole-body vibration: a critical survey of the

literature. International Archives of Occupational and Environmental Health, 58, 1-26.

Shea, B., Bonaiuti, D., Iovine, R., Negrini, S., Robinson, V., Kemper, H. et al. (2004). Cochrane

Review on exercise for preventing and treating osteoporosis in postmenopausal women.

Eura Medicophysica, 40, 199-209.

186

Silverman, S. (1992). The clinical consequences of vertebral compression fracture. Bone, 13,

S27-S31.

Siminoski, K., Lesilie, W. D., Frame, H., Hodsman, A., Jose, R., Khan, A. et al. (2005).

Recommendations for Bone Mineral Density Reporting in Canada. Canadian Association

of Radiologists Journal, 56, 178-188.

Skelly, A. (2007). Good vibrations. The Medical Post, 38, 22.

Slatkovska, L., Alibhai, S., Beyene, J., & Cheung, A. (2010a). Effect of whole-body vibration on

BMD: a systematic review and meta-analysis. Osteoporosis International (Epub ahead of

print).

Slatkovska, L., Alibhai, S., Beyene, J., Hu, H., & Cheung, A. M. (2010b). Effect of 12 months of

whole-body vibration on bone density and structure in postmenopausal women with

osteopenia: a randomized controlled trial (The Vibration Study). (submitted).

Stewart, J. M., Karman, C., Montgomery, L. D., & McLeod, K. J. (2005). Plantar vibration

improves leg fluid flow in perimenopausal women. American Journal of Physiology -

Regulatory Integrative & Comparative Physiology, 288, R623-R629.

Tang, B., Eslick, G., Nowson, C., Smith, C., & Bensoussan, A. (2007). Use of calcium or calcium in

combination with vitamin D supplementation to prevent fractures and bone loss in

people aged 50 years and older: a meta-analysis. Lancet, 370, 657-666.

187

Taunton, J., Ryan, M., Clement, D., McKenzie, D., loyd-Smith, D., & umbo, B. (2002). A

retrospecitve case-control analysis of 2002 running injuries. British Journal of Sports

Medicine, 36, 95-101.

Tenenhouse, A., Joseph, L., Kreiger, N., Poliquin, S., Murray, T., Blondeau, L. et al. (2000).

Estimation of the prevalence of low bone density in Canadian women and men using a

population-specific DXA reference standard: the Canadian Multicentre Osteoporosis

Study (CaMos). Osteoporosis International, 11, 897-904.

Thompson, A., House, R., Krajnak, K., & Eger, T. (2010). Vibration-white foot: a case report.

Occupational Medicine London (Epub ahead of print).

Torvinen, S., Kannus, P., Sievanen, H., Jarvinen, T. A., Pasanen, M., Kontulainen, S. et al. (2003).

Effect of 8-month vertical whole body vibration on bone, muscle performance, and body

balance: a randomized controlled study. Journal of Bone and Mineral Research, 18, 876-

884.

Totosy de Zepetnek, J., Giangregorio, L., & Craven, C. (2009). Whole-body vibration as potential

intervention for people with low bone mineral density and osteoporosis: A review.

Journal of Rehabilitation Research and Development, 46, 529-542.

Tucker, K., Chen H, Hannan MT, Cupples LA, Wilson PW, Felson D et al. (2002). Bone mineral

density and dietary patterns in older adults: the Framingham Osteoporosis Study.

American Journal of Clinical Nutrition, 76, 245-252.

188

Turner, C. H., Owan, I., & Takano, Y. (1995). Mechanotransduction in bone: role of strain rate.

American Journal of Physiology - Endocrinology and Metabolism, 269, E438-E442.

Turner, C. (2005). The biomechanics of hip fracture. Lancet, 366, 98-99.

Usui, Y., Zerwekh, J. E., Vanharanta, H., Ashman, R. B., & Mooney, V. (1989). Different effects of

mechanical vibration on bone ingrowth into porous hydroxyapatite and fracture healing

in a rabbit model. Journal of Orthopaedic Research, 7, 559-567.

Vainionpää, A., Korpelainen, R., Leppäluoto, J., & Jämsä, T. (2005). Effects of high-impact

exercise on bone mineral density: a randomized controlled trial in premenopausal

women. Osteoporosis International, 16, 191-197.

van Gent, R., Siem, D., van Middelkoop, M., van Os, A., Bierma-Zeinstra, S., & Koes, B. (2007).

Incidence and determinants of lower extremity running injuries in long distance runners:

a systematic review. British Journal of Sports Medicine, 41, 469-480.

van Mechelen, W. (1992). Running injuries. A review of the epidemiological literature. Sports

Medicine, 14, 320-325.

Verschueren, S. M., Roelants, M., Delecluse, C., Swinnen, S., Vanderschueren, D., & Boonen, S.

(2004). Effect of 6-month whole body vibration training on hip density, muscle strength,

and postural control in postmenopausal women: a randomized controlled pilot study.

Journal of Bone and Mineral Research, 19, 352-359.

189

Vickers, A. J. (2001). The use of percentage change from baseline as an outcome in a controlled

trial is statistically inefficient: a simulation study. BMC Medical Research Methodology,

1, 1-4.

von Stengel, S., Kemmler, W., Engelke, K., & Kalender, W. (2010a). Effects of whole body

vibration on bone mineral density and falls: results of the randomized controlled ELVIS

study with postmenopausal women. Osteoporosis International (Epub ahead of print).

von Stengel, S., Kemmler, W., Kalender, W., & Engelke, K. (2010b). Effects of whole body

vibration on vertical versus rotational devices on osteoporotic risk factors - preliminary

results of the Elvis II study (P888). Osteoporosis International, 21, S380-S381.

Wallace, B. & Cumming, R. (2000). Systematic review of randomized trials of the effect of

exercise on bone mass in pre- and postmenopausal women. Calcified Tissue

International, 67, 10-18.

Wapniarz, M., Lehmann, R., Randerath, O., Baedeker, S., John, W., Klein, K. et al. (1994).

Precision of dual x-ray absorptiometry and peripheral computed tomography using

mobile densitometry units. Calcified Tissue International, 54, 219-223.

Ward, K., Alsop, C., Caulton, J., Rubin, C., Adams, J., & Mughal, Z. (2004). Low magnitude

mechanical loading is osteogenic in children with disabling conditions. Journal of Bone

and Mineral Research, 19, 360-369.

190

Ward, K. A., Roberts, S. A., Adams, J. E., Lanhan-New, S., & Mughal, M. Z. (2007). Calcium

supplementation and weight bearing physical activity--do they have a combined effect

on the bone density of pre-pubertal children? Bone, 41, 496-504.

Wikimedia Foundation Inc (2009). Whole-body vibration (Accessed June 2009). Wikipedia The

Free Encyclopedia [On-line]. Available:

http://en.wikipedia.org/wiki/Whole_body_vibration

Wiktorowicz, M., Goeree, R., Papaioannou, A., Adachi, J., & Papadimitropoulos, E. (2001).

Economic implications of hip fracture: health service use, institutional care and cost in

Canada. Osteoporosis International, 12, 271-278.

Williams, F. & Spector , T. (2006). Recent advances in the genetics of osteoporosis. Journal of

Musculoskeletal Neuronal Interactions, 6, 27-35.

Wilson, H. W. (1997). Minnesota Leirure-Time Physical Activity Questionnaire. Medicine and

Science in Sports & Exercise, 29, S62-S72.

Wolff, J. (1986). The Law of Bone Remodeling. Berlin: Springer.

World Health Organization (1994). Assessment of Fracture Risk and Its Application to Screening

for Postmenopausal Osteoporosis. Geneva, Switzerland.

World Health Organization (2010). FRAX (R) WHO Fracture Risk Assessment Tool (Accessed

September 2010). World Health Organization Collaborating Centre for Metabolic Bone

Diseases, University of Sheffield, UK [On-line]. Available: http://www.shef.ac.uk/

191

Wren, T., Liu, X., Pitukcheewanont, P., & Gilsanz, V. (2005). Bone acquisition in healthy children

and adolescents: comparisons of dual-energy x-ray absorptiometry and computed

tomography measures. Clinical Endocrinology and Metabolism, 90, 1925-1928.

Wu, C., Lu, Y., Fuerst, T., Hans, D., & Genant, H. (1998). Ultrasound Characterization of Bone

Demineralization. Calcified Tissue International, 2, 133-139.

Xie, L., Jacobson, J., Choi, E. S., Busa, B., Donahue, L. R., Miller, L. M. et al. (2006). Low-level

mechanical vibrations can influence bone resorption and bone formation in the growing

skeleton. Bone, 39, 1059-1066.

Xie, L., Rubin, C., & Judex, S. (2008). Enhancement of the adolescent murine musculoskeletal

system using low-level mechanical vibrations. Journal of Applied Physiology, 104, 1056-

1062.

You, L., Cowin, S. C., Schaffler, M. B., & Weinbaum, S. (2001). A model for strain amplification in

the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. Journal of

Biomechanics, 34, 1375-1386.

192

TECHNICAL APPENDIX

193

CHAPTER ONE: STANDARDIZED DATA COLLECTION FORMS

WBV systematic evaluation: standardized RCT inclusion/exclusion criteria 

 Primary author ___________________________ Year _____________________________  Publication type:    Yes   No   Unclear  Acceptable publication type (check one): 

 Peer‐reviewed full‐text articles: no language or publication year restrictions   Abstracts: ≤5 years old and satisfactory information regarding eligibility criteria   Unpublished studies: data collection completed and results and protocol available   Dissertations/theses: include  Reviews, commentaries, and letter to editors: only if contain original data 

 Study design:    Yes   No   Unclear    RCT or quasi‐RCT (cross over and cluster randomization allowed) 

 Participants:   Yes   No   Unclear  Ambulatory or able to walk with limited support (exclude quadric‐ or paraplegics).  

 Intervention:    Yes   No   Unclear  Acceptable WBV (check all):  

 Vertical (up‐and‐down or reciprocating) or horizontal displacements   Transmitted through feet to whole‐body (exclude local vibration)  Erect, erect intermittent with exercises (e.g., squads), or supine  Powered by motors or acoustic waves (exclude ultrasound or electrical stimuli)   Duration ≥6 months 

 Control intervention:   Yes   No   Unclear  Appropriate control intervention(check one): 

      No treatment       Placebo       Exercise       Bone medications    Yes   No   Unclear  Group matching based on or exclusion of major confounders (check all):  

      Medications affecting bone metabolism       Disease affecting bone metabolism  Outcomes:   Yes   No   Unclear  At least one of the specified primary BMD outcomes available.  

    NOTES: 

Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
194

 

WBV systematic evaluation: standardized RCT quality checklist  

 Primary author ___________________________ Year _____________________________    Selection bias present (check as present if at least one “no” or “unclear” is present): Yes    No     Unclear  True random study‐arm allocation performed  Yes    No     Unclear    Concealed study‐arm allocation performed 

  Performance bias (check as present if at least one “no” or “unclear” is present): Groups were matched baseline based on minor confounders:  Yes    No     Unclear    Calcium intakes  Yes    No     Unclear    Age at baseline  Yes    No     Unclear    Menstrual status at baseline  Yes    No     Unclear    BMD at baseline  Yes    No     Unclear    Body mass at baseline 

  Detection bias present (check as present if at least one “no” or “unclear” is present):  Yes     No      Unclear    Blinding of those assessing BMD outcomes  

  Attrition bias present (check as present if at least one “no” or “unclear” is present): Yes     No      Unclear    Only intention‐to‐treat analysis performed 

 Other considerations:  

   Yes        No        Unclear  Adequate calcium and vitamin D intakes ensured   NOTE: If criterion is unclear and determines whether or not the particular bias is present or absent, attempt to confirm with the authors of the study. If answer is not provided consider it as “no”.    NOTES:  

Luba
Typewritten Text
195

WBV

 systematic evaluation: stand

ardized da

ta extraction form

 QUALITY/SEN

SITIVITY 

INTERV

ENTION 

 Selection 

bias 

(y/n/u) 

Performan

ce 

bias (y/n/u) 

Detection

 bias (y/n/u) 

Attrition

 bias 

(y/n/u) 

Loss to 

follo

w‐

up (%

) Adh

eren

ce 

(%) 

n TR

T (at 

analysis) 

n CO

N (a

t an

alysis) 

Ca 

Regimen

 du

ration

 (m

onths) 

Platform

 mod

el 

Freq

uency 

(hz) 

Magnitude

 (cm/m

m or 

g) 

prescribed

 # 

Sessions 

Session du

ration

 (m

in/session

prescribed

 Volum

e (# 

sessions*d

uration) 

Gusi, 20

06 

    

    

    

    

    

    

    

    

  

Iwam

oto, 2005 

    

    

    

    

    

    

    

    

  

Rubin, 2004 (n=56) 

    

    

    

    

    

    

    

    

  

Verschu

eren

, 2004 (tot) 

    

    

    

    

    

    

    

    

  

Russo, 2003 

    

    

    

    

    

    

    

    

  

Torvinen

, 2003 

    

    

    

    

    

    

    

    

  

Ward, 2004 (tibia PP) 

    

    

    

    

    

    

    

    

  

Ward, 2004 (spine

 PP) 

    

    

    

    

    

    

    

    

  

Gilsan

z, 200

6 (PP) 

    

    

    

    

    

    

    

    

  

ITT 

    

    

    

    

    

    

    

    

  

Rubin, 2004 (n=70) 

    

    

    

    

    

    

    

    

  

Gilsan

z, 200

6 (ITT) 

    

    

    

    

    

    

    

    

  

 PA

RTICIPANTS 

CONTR

OL INTERV

ENTION 

INSTUMEN

 Life stage                         

(post‐men

opau

sal; 

child

ren/ad

olesen

ts; adu

lts; elderly) 

Sex 

(m/f/m

f) 

Age ran

ge 

comprom

ised

 bon

e he

alth (y/n) 

if yes de

scribe

 ond

ition 

No 

treatm

ent 

(y/n) 

placeb

o (y/n) 

Exercise (y/n; if 

yes de

scribe

) Bo

ne m

edications 

(y/n; if yes describe) 

DXA

 mod

el 

QCT

 mod

el 

Gusi, 20

06 

    

    

    

    

    

  

Iwam

oto, 2005 

    

    

    

    

    

  

Rubin, 2004 (n=56) 

    

    

    

    

    

  

Verschu

eren

, 2004 (tot) 

   

    

    

    

    

  

Russo, 2003 

    

    

    

    

    

  

Torvinen

, 2003 

    

    

    

    

    

  

Ward, 2004 (tibia PP) 

    

    

    

    

    

  

Ward, 2004 (spine

 PP) 

    

    

    

    

    

  

Gilsan

z, 200

6 (PP) 

    

    

    

    

    

  

ITT 

    

    

    

    

    

  

Rubin, 2004 (n=70) 

    

    

    

    

    

  

Gilsan

z, 200

6 (ITT) 

    

    

    

    

    

  

 

Luba
Typewritten Text
196

 OUTC

OMES ‐ BM

D SPINE (g/cm2) 

OUTC

OMES ‐ BM

D HIP (g/cm2) 

OUTC

OMES ‐ QCT

 TRABE

CULA

R BM

D (m

g/cm

3) 

 

treatm

ent  

control  

estimate 

site 

treatm

ent  

control  

estimate 

site 

treatm

ent  

control  

estimate 

site 

  mg/cm

2 mg/cm

2 mean 

SD 

mg/cm

2 mg/cm

2 mean 

SD 

    

   

   

mg/cm

2 mg/cm

2 mean 

SD 

mg/cm

2 mg/cm

2 mean 

SD 

 % 

SD 

mean 

SD 

SD 

mean 

SD 

 

Gusi, 20

06 

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

Iwam

oto, 2005 

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

Rubin, 2004 (n=56) 

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

Verschu

eren

, 2004 (tot) 

   

    

    

    

    

    

    

    

    

    

    

    

    

    

    

Russo, 2003 

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

Torvinen

, 2003 

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

Ward, 2004 (tibia PP) 

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

Ward, 2004 (spine

 PP) 

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

Gilsan

z, 200

6 (PP) 

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

ITT 

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

Rubin, 2004 (n=70) 

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

Gilsan

z, 200

6 (ITT) 

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

   

Luba
Typewritten Text
197

198

CHAPTER ONE: HANDLING MISSING DATA

   

WBV Meta‐analysis: Contacting the original authors for missing data 

 We contacted the original authors of all of the included trials to obtain missing information, and we obtained 100% response rate. The mean absolute change in BMD was not reported in a number of original publications (Iwamoto, 2005; Verschueren, 2004; Rubin, 2004; Russo, 2003; Torvinen, 2003).  After contacting all of the original authors, Iwamoto et al. (2005) and Verschueren et al. (2004) provided us with the missing mean absolute change in BMD. However, since the original data were no longer available to Rubin et al. (2004), Russo et al. (2003) and Torvinen et al. (2003), some estimations and statistical manipulations were performed to obtain the correct BMD outcome.  

 

WBV Meta‐analysis: estimations of missing data 

Where BMD data were reported only as the baseline and final means the mean absolute change in BMD was obtained by subtracting the final from the baseline mean (Russo, 2003; Torvinen, 2003). The standard deviation (SD) corresponding to the absolute BMD change was estimated using the Follmann’s method as described in the Cochrane Handbook for Systematic Reviews of Interventions Version 5.0.1. (Higgins, 2008). The correlation coefficient value (r) of 0.95 was used in all Follmann’s calculations. Based on the 12‐month follow‐up data collected in our laboratory, we obtained r values ranging from 0.94 to 0.97 for the total hip, femoral neck and L1‐L4 aBMD change in 440 postmenopausal women receiving either placebo or vitamin K treatment (Cheung, 2008). Prior meta‐analysis utilized an even higher correlation coefficient value (r = 0.99) in their Follmann’s calculations (Martyn‐St James, 2006). Therefore, an r of 0.95 seemed to be a conservative value to use in our calculations.   

A trial of Rubin et al. (Rubin, 2004) required special attention in the determination of the aBMD outcomes. Neither the absolute mean change in aBMD nor the final aBMD was available to us. Instead, baseline aBMD was reported for 56 participants with all follow‐up data out of the 70 originally enrolled participants. Also, the mean percent change in aBMD for the ITT (n=70) and per‐protocol data was reported. The mean percent change for the per‐protocol data was only reported for different adherence groups but not for the 56 participants with the baseline aBMD. The adherence group with the largest sample size (n=33) consisted of at least 60% adherent participants. Therefore, for our primary analysis of the per‐protocol data we utilized the baseline aBMD data (n=56) and the percent change aBMD data (n=33) to estimate an 

Luba
Typewritten Text
199

absolute change in BMD. Alternatively, for our sensitivity analysis of the ITT data we utilized the baseline BMD data (n=56) and the percent change aBMD data (n=70) to estimate an absolute change in aBMD. Finally, the SD corresponding to the mean absolute change in aBMD was imputed from another trial (Gusi, 2006) for each study group (i.e., control and vibration) and each measurement site (i.e., L2‐L4 and femoral neck). This trial (Gusi, 2006) was used, because it is the most similar to the Rubin’s al. (2004) trial in terms of its study sample size, populations type, and measurement type.  

 

WBV Meta‐analysis: other statistical manipulations 

Where confidence intervals (Gusi, 2006) or standard errors (Russo, 2003) were reported only, statistical formulas were used to convert these measurements to SDs. Where BMD data for more than one arm were pooled into one arm (Verschueren, 2004) the mean absolute change was obtained using the “weighted mean” formula and the corresponding SD was obtained using the “pooled or weighted SD” formula. Where raw data were provided in the original publication (Ward, 2004) or in our email communication with the original authors (Iwamoto, 2005), appropriate descriptive statistics were used to obtain the mean absolute change and the corresponding SD. 

 

Luba
Typewritten Text
200

201

CHAPTERS TWO AND THREE: A PRIORI PROTOCOL

The Effect of Daily Whole-Body Vibration on Tibial Trabecular Bone Mineral Density in

Osteopenic Postmenopausal Women (Vibration Study)

Study Protocol

28-Apr-2008

Luba
Typewritten Text
202

TABLE OF CONTENTS

INTRODUCTION................................................................................................................................... 1

BACKGROUND AND RATIONALE .................................................................................................. 1 BONE MECHANICAL STIMULUS ................................................................................................... 1 WHOLE BODY VIBRATION ............................................................................................................. 1

Brief description: .......................................................................................................................... 1 Effects on bone in animal models: ................................................................................................ 1 Effects on bone in humans: ........................................................................................................... 2

OBJECTIVES AND HYPOTHESES ................................................................................................... 2 Primary objective:......................................................................................................................... 2 Secondary objectives: ................................................................................................................... 3

METHODOLOGY ................................................................................................................................. 3 SUBJECTS ........................................................................................................................................... 3 EXPERIMENTAL DESIGN ................................................................................................................ 4 MEASUREMENTS OF BMD AND BONE MICROARCHITECTURE............................................. 4 WHOLE BODY VIBRATION REGIMEN .......................................................................................... 4

Regimen duration, interval frequency and interval duration: ...................................................... 5 Vibration magnitude and frequency: ............................................................................................ 5

SAFETY CONSIDERATIONS ............................................................................................................ 5 STATISTICAL ANALYSIS................................................................................................................. 6

REFERENCES........................................................................................................................................ 7

Luba
Typewritten Text
203

The Effect of Daily Whole-Body Vibration on Tibial Trabecular Bone Mineral Density in Osteopenic Postmenopausal Women INTRODUCTION Exercise is believed to produce bone growth in adults only during relatively high-impact activities; moderate exercise regimens have not been shown to compensate for early postmenopausal bone loss1,2. However, vigorous physical activity has low compliance, and can increase risk of musculoskeletal injuries in the elderly1,2. Recently, low-magnitude high-frequency mechanical vibration has been shown to produce anabolic effects on animal skeleton3-10. However, studies of the influence of similar vibration stimulus on human bones in vivo have produced variable results11-16. One of the confounding variables may be the frequency of vibration signals. BACKGROUND AND RATIONALE BONE MECHANICAL STIMULUS According to the conventional premise of mechanical loading effects on the skeleton, only large-magnitude strains arising from high-intensity impact activities are capable of tissue microdamage and growth in bone16. This conventional wisdom has been recently challenged by disuse osteopenia turkey models in vivo in which low-magnitude high-frequency mechanical vibration applied directly to ulnae resulted in smaller reductions in cross-sectional bone area4 and increased bony implant ingrowth3. Further, similar stimulus administered non-invasively through whole-body-vibration (WBV) resulted in various anabolic bone changes in animals6-10 and can increase bone mineral density (BMD) in humans13,15,16. Therefore, it seems that mechanical stimuli are not only osteogenic at high, but also at low magnitudes, possibly due to their high frequency6,13. It has been recently proposed that small mechanical signals may be amplified by by-products of bone material deformation, specifically fluid flow17 and intramedullary pressure18 in relation to their frequency. This may be a one plausible mechanism by which the skeletal system perceives and responds to low-magnitude, high-frequency vibration13,16. Further, vibration noise may indirectly regulate bone anabolic response through neuromuscular feedback amplified through stochastic resonance13,16. Perturbations in stochastic threshold in the neuromuscular system occur when subthreshold mechanical stimuli become detectable in the presence of noise. This results in small membrane potentials which bring neuromuscular cells closer to depolarization and to firing of action potentials19. WHOLE BODY VIBRATION Brief description: While standing on a vibrating platform, WBV affects all body parts and tissues of the exposed person. The vibration stimulus is imposed noninvasively through ground-based vertical accelerations. These are believed to result in mechanical signals within the weight-bearing bones from reflexive muscle contractions of the adjacent musculature13,16. The intensity of WBV is defined by magnitude and frequency, where magnitude is expressed as the vertical acceleration (g, where 1g = 9.8 m/s2 acceleration due to gravity) or vertical displacement. Two types of WBV systems are currently available20: one uses reciprocal vertical displacements on the left and right side of the fulcrum, thrusting alternatively the right and left leg upwards (these devices can produce high (1 to 15g) and low (<1g) magnitude vibration at high frequencies (20-45 Hz)); and the other produces uniform oscillation of the whole plate up and down at low magnitudes (0.2 & 0.3g) and high or very high frequencies (30 & 90 Hz). Effects on bone in animal models: Up to date, all animal models of WBV have observed anabolic changes in various species, including rabbits10, rats8,9, sheep7, mice6. In sheep, trabecular BMD was found to preferentially adapt due to increased trabecular number and decreased trabecular spacing in proximal and distal femur7,21. Further, vibration caused increased trabecular BMD in sheep femur but

Version: 28-Apr-2008 Page 1

Luba
Typewritten Text
204

The Effect of Daily Whole-Body Vibration on Tibial Trabecular Bone Mineral Density in Osteopenic Postmenopausal Women not in radius, suggesting that the benefits may be limited to the weight-bearing skeleton7. Finally, data in rats also suggest that there may be greater bone responses to these vibration stimuli when bone mass is low as compared to normal8. Effects on bone in humans: Six available studies of WBV in humans have shown increased13,15,16 or no change in BMD11,12,14. No changes in BMD of cortical or trabecular bones were found in young healthy adults. In postmenopausal women, two studies12,14 found no change in BMD while one study observed increased BMD in the total hip15 and another in the lumbar spine13. The latter observed these changes only in highly compliant and low body weight women13. In pre- and pubertal disabled children, BMD of trabecular but not cortical bone increased16. Limitations of the these studies include small sample size11-15, different study populations11,16 (i.e., adults with normal bone or children with high bone formation), and confounding issues such as the inclusion of bone medications12. Since a wide variety of WBV regimens was utilized, it is not known what the optimal effective training schedule and vibration intensity is for the prevention of bone loss. Similar to animal models6,8-10, relatively brief WBV exposures of 6 months produced increases in BMD in children and post-menopausal women15,16. Further, various interval frequencies (number of times per week) and durations (number of minutes per session) have been used with no observable trends with osteogenic effects. With respect to WBV intensity, both high (>1g)8,10,13,16 and low (1g)6,7,9,11,12,14,15 magnitudes and various frequencies within the 12-90 Hz range produced osteogenic effects in animal models and humans with lack of any clear trends. Previous authors postulated that it was the high-frequency (30-45 Hz) and not the high-magnitude (2-5g) of vibration that played a key role in their study, because no BMD effects were observed with high-impact exercises on the WBV platform15. Further, an undisturbed sinusoidal loading waveform may be necessary to observe osteogenic benefits making the vibration acceleration that exceeds 1g insufficient. High-magnitude vibration prevents subject from standing steadily on the platform thereby causing intermittent loading and disturbed waveform11. Theoretically, the higher the frequency the greater the osteogenic effects of the low-magnitude mechanical stimuli, since the relevant physiological mechanisms (i.e., changes in bone fluid flow and intramedullary pressure) are frequency dependent13,16. To date, it has not been examined whether different frequencies within the high-frequency range of WBV affect bone differently. Thus, we propose an exploratory study to examine the effects of different vibrational frequencies on BMD in postmenopausal women. OBJECTIVES AND HYPOTHESES The objective of our study is to explore the effects of low-magnitude (0.3g) WBV at very high (90 Hz) and high (30 Hz) frequencies versus no vibration on trabecular bone mineral density of the lower tibia in non-osteoporotic postmenopausal women. Primary objective: To evaluate whether there are statistically significant differences in the longitudinal changes in trabecular BMD of the lower tibia (using peripheral quantitative computed tomography; pQCT) between very high-frequency vibration group (VHG), high-frequency vibration group (HG) and control group (CG). Primary hypothesis: Significantly larger increases in trabecular BMD will be found in VHG and HG when compared to CG groups, with greater differences occurring between VHG vs. CG in comparison to HG vs. CG groups.

Version: 28-Apr-2008 Page 2

Luba
Typewritten Text
205

The Effect of Daily Whole-Body Vibration on Tibial Trabecular Bone Mineral Density in Osteopenic Postmenopausal Women Secondary objectives: To examine whether there are statistically significant differences in the longitudinal changes in: 1. total BMD of the lower tibia (using pQCT) 2. cortical BMD and cortical thickness of the lower tibia (using pQCT) 3. trabecular thickness, separation, and number of the lower tibia (using pQCT) 4. total BMD of the distal radius (using pQCT) 5. cortical BMD and cortical thickness of the distal radius (using pQCT) 6. trabecular BMD and thickness, separation, and number of the distal radius (using pQCT) 7. BMD at the total hip (using dual x-ray absorptiometry; DXA) 8. BMD at the femoral neck (using DXA) 9. BMD lumbar spine (using DXA) 10. Speed of sound and broadband ultrasound attenuation at the calcaneus (using quantitative

ultrasound; QUS). Secondary hypotheses: Significantly larger increases in all secondary outcomes will be found in VHG and HG when compared to CG groups, with greater differences occurring between VHG vs. CG in comparison to HG vs. CG groups. METHODOLOGY SUBJECTS Subjects will be 200 healthy, osteopenic, postmenopausal women, recruited via media advertisements and posted announcements. This study will include women who are postmenopausal, with the lowest BMD T-score at L1 to L4, femoral neck or total hip being ≤-1.0 and ≥-2.0 regardless of age or being ≤-1.0 and >-2.5 up to and inclusive age 70. Postmenopausal status will be defined as the last menstruation occurring more than one year ago based on personal menstrual history. Exclusion criteria will include: use of HRT in the past 12 months, use of raloxifene or parathyroid hormone in the past 6 months, use of bisphosphonates or fluoride in the past 3 months or ever taken for ≥3 months, current use of calcitonin, use of other medications that may indirectly affect bone metabolism, presence of metabolic bone disease or diseases that indirectly affect bone metabolism, occurrence of fragility fracture over 40 years of age, presence of unhealed non-fragility fracture (i.e., occurring less then 6 months ago), having body mass ≤28 kg and ≥90 kg, having knee or hip joint replacements and spine implants, having poor balance (assessed by Timed-Up-and-Go; TUG22,23), presence of other medical risks for the study, inability to stand erect daily for 20 minutes, and planned vacation or other activities that would prevent one from using the platform for ≥1 month. Participation in physical activity will be acceptable, as long as subjects are willing and able to maintain approximately the same physical activity levels throughout the study. Physical activity levels will be determined using the Minnesota Leisure-Time Physical Activity Questionnaire which has been validated for women aged 21 to 74 years24. Decision about study participation will be consulted with the principal investigator or personal physician for individuals with the following conditions/devices: congestive heart failure, joint implants, pre-existing deep vein thrombosis, thrombophlebitis, pulmonary embolism, severe diabetic neuropathy, poor somatosensory receptor sensitivity on the soles of the feet, sensitivity to motion sickness, known retinal condition, pacemakers and implantable cardioverter defibrillators, known neurological conditions. The study protocol and consent form is approved by the University Health Network Research Ethics Board, and all subjects will provide written informed consent.

Version: 28-Apr-2008 Page 3

Luba
Typewritten Text
206

The Effect of Daily Whole-Body Vibration on Tibial Trabecular Bone Mineral Density in Osteopenic Postmenopausal Women EXPERIMENTAL DESIGN Subjects will be randomly assigned to VHG, HG, or CG. All subjects will participate in 1) screening visit, 2) baseline visit, 3) follow-up visits at 6 months, and 4) study completion visit at 12 months. During the screening visit, inclusion/exclusion criteria will be reviewed, and BMD at lumbar spine, total hip and femoral neck (using DXA), anthropometric measurements (body mass), and TUG will be obtained for the purposes of inclusion/exclusion. During baseline, demographics (date of birth, education, and racial origin), anthropometric measurements (body mass, height, and BMI), general health history (menstrual history, medications, conditions, and lifestyle habits such as smoking and alcohol intake), physical activity levels, calcium and vitamin D dietary intakes, and pQCT and QUS bone parameters will be obtained, as well as the first 20-minute WBV treatment will be administered in the presence of study staff. Baseline may be performed on the same day as or within 1 month after the screening visit. During the follow-up visit at 6 months, compliance, anthropometric measurements (body mass, body height, and BMI), general health history (changes in lifestyle habits), medications use, adverse events, physical activity levels, calcium and vitamin D dietary intakes will be obtained. During the study completion visit at 12 months, compliance, anthropometric measurements (body mass, body height, and BMI), general health history (changes in lifestyle habits), medications use, adverse events, physical activity levels, and calcium and vitamin D dietary intakes will be obtained, as well as all bone parameters will be assessed using DXA, pQCT and QUS. Subjects will be expected to take calcium and vitamin D supplements for the duration of the study. Their calcium and vitamin D dietary intakes will be determined at baseline, using a recall-questionnaire of a typical 7-day diet. Subjects’ baseline dietary intakes will be used to calculate a supplement dose that will produce total daily calcium and vitamin D intakes (i.e., from diet plus supplements) to 1000-12000 mg and 800-1000 IU, respectively. This dietary recall-questionnaire will be repeated during the 6- and 12-month visits to ensure that no significant changes in calcium and vitamin D intakes occurred. MEASUREMENTS OF BMD AND BONE MICROARCHITECTURE In both animal models and humans, greater increases were observed in trabecular volumetric BMD (vBMDt) 7,16,21 and in weight-bearing bones15,16. Therefore, when considering outcome measurements, vBMDt of the lower left tibia as measured by high resolution pQCT (XtremeCT, Scanco Medical AG, Bassersdorf, Switzerland; described elsewhere25) was selected for this study. Additional pQCT measurements will include total volumetric BMD (vBMDtot), cortical volumetric BMD (vBMDc), cortical thickness (CrT), trabecular thickness (TbT), trabecular separation (TbS), and trabecular number (TbN) of the lower left tibia. As well, all of the above pQCT measurements will be repeated at the distal non-dominant radius. BMD at the total hip and femoral neck (unilateral; left side), and the lumbar spine will be determined using DXA (Hologic DiscoveryA; Hologic, Bedford, MA). Further, QUS (Hologic Sahara; Hologic, Bedford, MA) will be used to determine speed of sound (SOS) and broadband ultrasound attenuation (BUA) at the left calcaneus. All densitometric measurements will be performed by a single trained technologist to minimize measurement error. Coefficients of variation for in vivo measurements with repositioning in our laboratory are: 1.5% at the tibia and radius for pQCT, 1.01% at L1 to L4, 1.08% at the total hip and 1.44% at femoral neck for DXA, 1.5% for QUS. WHOLE BODY VIBRATION REGIMEN Subjects in the CG will not receive WBV. VHG and HG subjects will take home a Juvent 1000 WBV device (Juvent Ltd, Waterford, Ireland; described elsewhere13) for the duration of the study. Subjects will be asked to stand erect and barefoot on the platform for 20 minutes per day, 7 days per week for 12 months. Study compliance will be determined at 6 and 12 months from recorded time, date, and interval duration by an electronic monitor built-in in the WBV device, and confirmed by a personal

Version: 28-Apr-2008 Page 4

Luba
Typewritten Text
207

The Effect of Daily Whole-Body Vibration on Tibial Trabecular Bone Mineral Density in Osteopenic Postmenopausal Women compliance log that will be filled out by each subject and phone compliance log maintained by study staff. Subjects in the VHG and HG will undergo WBV at 0.3g (~50 micrometers), with VHG receiving vibration at 90 Hz and HG receiving vibration at 30 Hz. Regimen duration, interval frequency and interval duration: Since exposures of 6 months increased vBMDt in disabled children15,16 and in BMD in postmenopausal women15,16, 12-month WBV regimen is considered sufficient for this study. In a study that utilized two 10-min daily intervals, changes in BMD were only seen in postmenopausal women that were >86% compliant. This regimen resulted in only 37% of subjects completing the study being at least 80% compliant13. Reducing the interval frequency to one daily 10-min interval resulted in 83% of the proposed number of days being actually attended by elderly postmenopausal women26. When considering the safety of interval duration, 20 minutes of vibration per day (35-40 Hz, 2.28-5.09g) did not result in any adverse events in postmenopausal women15. According to the International Organization for Standardization (ISO) 2631, daily allowable exposure for frequencies in the range of 25 to 31.5 Hz is 4 hr at 0.6g13. Therefore, daily 20-min WBV regimen utilized by this study should produce favorable balance between compliance and treatment effect. Vibration magnitude and frequency: Generally, the lower the magnitude of WBV, the lower the health risks involved, with 0.8g being established by the ISO 2631 as the discomfort level for vibration in the 30 Hz range27-29. Further, since high-magnitude (>1g) of WBV is not believed to play a key role in producing anabolic effects on human bone11,15, magnitudes below 1g should produce optimally safe and effective stimulus in the prevention of bone loss. With respect to frequency, deleterious range is between 1 to 20 Hz, with tolerance increasing with increasing frequency 30. Theoretically, osteogenic effects of low magnitude mechanical stimuli should also increase with increasing frequency, since the relevant physiological mechanisms (i.e., changes in bone fluid flow and intramedullary pressure) are related to frequency13,16. For the purposes of this study, 30 Hz and 90 Hz should provide a safe stimuli at the two extremes of current WBV high-frequency spectrum, thereby allowing for sufficient comparisons. SAFETY CONSIDERATIONS In general, low-magnitude high-frequency WBV is very well tolerated26. Few non-serious adverse events of shorter term (<1year) exposures to WBV devices have been reported, including itching and erythema of the lower legs, mild inflammation of the forefoot, and feeling of dizziness 12,14,26,28,31-33. In total ten11-13,15,16,32,34-37 of fifteen 11-16,26,28,31-37 present studies of whole-body vibration found no adverse events. Six to 12 months of WBV for four to 7 minutes per day at high magnitude (>1g) and frequencies between 18 to 20 Hz have been shown to alleviate lower back pain in the elderly with chronic lower back pain12,32. This is in contrast to previous observational studies in occupational environments which found that long-term exposures to WBV have been commonly associated with low back pain13,27. However, in common occupational environments WBV exposures are generally long-term (>1 y), with relatively low frequencies (<15 Hz) and high magnitudes (>1g)28. People are most sensitive to WBV within the frequency range of 1 to 20 Hz with tolerance increasing with higher frequencies30. The human resonate frequency of the spine is between 5 to 15 Hz28,38. Further, generally the higher magnitudes the greater the health risks, with most health risks occurring at vibration above 0.5g27-29. Both pQCT (XtremeCT; 2 tibial and 2 radial scans) and DXA (2 scans) measurements will expose the subjects to very low dose radiation. Each scan is approximately 1-3 microSieverts. For the whole 12-month study, participants will be exposed to the dose equivalent to a chest radiograph. SAMPLE SIZE CALCULATION

Version: 28-Apr-2008 Page 5

Luba
Typewritten Text
208

The Effect of Daily Whole-Body Vibration on Tibial Trabecular Bone Mineral Density in Osteopenic Postmenopausal Women Original sample size determination: For our original sample size calculations, we used a statistically significant difference in a 12-month mean percent change in vBMDt (1.08 %) between the experimental and control groups, and an average SD for the change in vBMDt for the experimental and control groups (1.26 %). These values were reported in a prospective non-randomized intervention study of healthy post-menopausal Chinese women19. The experimental group consisted of 17 self-selected regular Tai Chi Chuan exercisers and the control group included 17 age- and gender-matched non-exercising controls. The pQCT instrument used in this study was produced by the same manufacturer (Scanco Medical, Zurich, Switzerland), but was an older model (Densiscan 1000) of our laboratory’s HR-pQCT (XtremeCT). At the time of the original submission, this was the best estimate that we had. Using a within group SD of 1.26% and significant between-group difference of +1.08% for longitudinal changes in vBMDt produced a minimum sample size estimate of approximately 30 per group (80% power and an alpha level of p < 0.05). Using the drop out rate of 20% obtained from a similar RCT that examined the effect of 12-month WBV on BMD in postmenopausal women25. Rubin et al. (2004)25, we estimated that we needed a sample size of 40 subjects per group (i.e., total of 120 participants). New sample size determination: Since our original sample size calculations, several pieces of information became available to us that improved our sample size determination. First, our research group conducted a short-term precision study involving two repeat-measurements of vBMDt on the same day using the XtremeCT5, the same instrument used in our study for the assessment of our primary outcome. This study included twenty-five women and six men (age range: 20-69) and the least significant change (LSC) for vBMDt was calculated to be 1.1%. This value is the smallest meaningful clinical change based on the precision of the instrument. Second, a 12-month RCT examining the effect of denosumab or alendronate compared to placebo in postmenopausal women was recently completed. The study population was similar to ours (mostly Caucasian women with osteopenia). Over 12 months, the placebo group (~80 postmenopausal women) had approximately a 2% loss in vBMDt (unpublished data). The SD in this study was 3.1% (unpublished data). Third, based on our initial experience in this study, we estimate a drop-out rate of 0.4 participants per month. Fourth, we calculated our adherence rate based on our first 14 months of data collection. Using these 4 new estimates, we estimate that we need approximately 202 subjects for our vibration study at 80% power and an alpha level of p < 0.05. STATISTICAL ANALYSIS A one-way ANOVA will be used to test for baseline differences in the BMD, body mass, BMI, age, and age from menopause between groups. For the primary and secondary analyses, comparisons of bone parameters will be performed with repeated measures two-way ANOVA with study group being one variable (between-group comparisons; VHG x HG x CG) and time being the other variable (within-group comparisons; baseline x 6 months x 12 months). To examine whether baseline BMD, body mass, age from menopause, and compliance influence the effectiveness of WBV, repeated measures two-way ANCOVA (study group x time) will be performed with controlling for these variables. Values for all statistical tests will be considered significant if p < 0.05.

Version: 28-Apr-2008 Page 6

Luba
Typewritten Text
209

The Effect of Daily Whole-Body Vibration on Tibial Trabecular Bone Mineral Density in Osteopenic Postmenopausal Women

REFERENCES 1. Chesnut, C. H., Bone mass and exercise. American Journal of Medicine 95, 34S-36S (1993). 2. Kohrt, W. M., et al., American College of Sports Medicine position stand: Physical activity and

bone health. Medicine & Science in Sports & Exercise 36, 1985-1996 (2004). 3. Rubin, C. T. & McLeod, K., Promotion of bony ingrowth by frequency-specific, low amplitude

mechanical strain. Clinical Orthopaedics & Related Research 298, 165-174 (1994). 4. Qin, Y. X., Rubin, C. T., & McLeod, K., Nonlinear dependence of loading intensity and cycle

number in the maintenance of bone mass and morphology. Journal of Orthopaedic Research 16, 482-489 (1998).

5. Rubin, C., et al., Anabolism. Low mechanical signals strengthen long bones. Nature 412, 603-604 (2001).

6. Judex, S., et al., Mechanical modulation of molecular signals which regulate anabolic and catabolic activity in bone tissue. Journal of Cellular Biochemistry 94, 982-994 (2005).

7. Rubin, C., et al., Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone. Bone 30, 445-452 (2002).

8. Flieger, J., et al., Mechanical stimulation in the form of vibration prevents postmenopausal bone loss in ovariectomized rats. Calcified Tissue International 63, 510-514 (1998).

9. Rubin, C., Xu, G., & Judex, S., The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli. FASEB Journal 15, 2225-2229 (2001).

10. Usui, Y., et al., Different effects of mechanical vibration on bone ingrowth into porous hydroxyapatite and fracture healing in a rabbit model. Journal of Orthopaedic Research 7, 559-567 (1989).

11. Torvinen, S., et al., Effect of 8-month vertical whole body vibration on bone, muscle performance, and body balance: a randomized controlled study. Journal of Bone & Mineral Research 18, 876-884 (2003).

12. Iwamoto, J., et al., Effect of whole-body vibration exercise on lumbar bone mineral density, bone turnover, and chronic back pain in post-menopausal osteoporotic women treated with alendronate. Aging-Clinical & Experimental Research 17, 157-163 (2005).

13. Rubin, C., et al., Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. Journal of Bone & Mineral Research 19, 343-351 (2004).

14. Russo, C. R., et al., High-frequency vibration training increases muscle power in postmenopausal women. Archives of Physical Medicine & Rehabilitation 84, 1854-1857 (2003).

15. Verschueren, S. M., et al., Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study. Journal of Bone & Mineral Research 19, 352-359 (2004).

16. Ward, K., et al., Low magnitude mechanical loading is osteogenic in children with disabling conditions. Journal of Bone & Mineral Research 19, 360-369 (2004).

17. You, L., et al., A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. Journal of Biomechanics 34, 1375-1386 (2001).

18. Qin, Y. X., Lin, W., & Rubin, C., The pathway of bone fluid flow as defined by in vivo intramedullary pressure and streaming potential measurements. Annals of Biomedical Engineering 30, 693-702 (2002).

19. Gravelle, D. C., et al., Noise-enhanced balance control in older adults. Neuroreport 13, 1853-1856 (2002).

20. Cardinale, M. & Wakeling, J., Whole body vibration exercise: are vibrations good for you? British Journal of Sports Medicine 39, 585-589 (2005).

Version: 28-Apr-2008 Page 7

Luba
Typewritten Text
210

The Effect of Daily Whole-Body Vibration on Tibial Trabecular Bone Mineral Density in Osteopenic Postmenopausal Women

21. Rubin, C., et al., Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention. Journal of Bone & Mineral Research 17, 349-357 (2002).

22. Isles, R., et al., Normal values of balance tests in women aged 20-80. Journal of American Geriatrics Society 52, 1367-1372 (2004).

23. Bischoff, H., et al., Identifying a cut-off point for normal mobility: a comparison of the timed 'up and go' test in community-dwelling and institutionalised elderly women. Age and Ageing 32, 315-320 (2003).

24. Wilson, H. W., Minnesota Leirure-Time Physical Activity Questionnaire. Medicine & Science in Sports & Exercise 29, S62-S72 (1997).

25. Boutroy, S., et al., In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. Journal of Clinical Endocrinology & Metabolism 90, 6508-6515 (2005).

26. Hannan, M. T., et al., Establishing the compliance in elderly women for use of a low level mechanical stress device in a clinical osteoporosis study. Osteoporosis International 15, 918-926 (2004).

27. Mansfield, N. J., Whole-Body Vibration,in Human Response to Vibration.,(CRC Press LLC, London, 2005), pp.11-52.

28. Rubin, C., et al., Transmissibility of 15-hertz to 35-hertz vibrations to the human hip and lumbar spine: determining the physiologic feasibility of delivering low-level anabolic mechanical stimuli to skeletal regions at greatest risk of fracture because of osteoporosis. Spine 28, 2621-2627 (2003).

29. Seidel, H. & Heide, R., Long-term effects of whole-body vibration: a critical survey of the literature. International Archives of Occupational and Environmental Health 58, 1-26 (1986).

30. Lings, S., Leboeuf-Yde, & C, Whole-body vibration and low back pain: A systematic, critical review of the epidimiological literature 1992-1999. International Archives of Occupational and Environmental Health 73, 290-297 (2000).

31. Runge, M. & Resnicek, R. E., Balance training and exercise in geriatric patients. Journal of Musculoskeletal Neuronal Interactions 1, 61-65 (2000).

32. Rittweger, J., et al., Treatment of chronic lower back pain with lumbar extension and whole-body vibration exercise. Spine 27, 1829-1834 (2006).

33. Rittweger, J., Beller, G., & Felsenberg, D., Acute physiological effects of exhaustive whole-body vibration exercise in man. Clinical Physiology 20, 134-142 (2000).

34. Torvinen, S., et al., Effect of four-month vertical whole body vibration on performance and balance. Medicine & Science in Sports & Exercise 34, 1523-1528 (2002).

35. Delecluse, C., Roelants, M., & Verschueren, S., Strength increase after whole-body vibration compared with resistance training. Medicine & Science in Sports & Exercise 35, 1033-1041 (2003).

36. de Ruiter, C. J., et al., The effects of 11 weeks whole body vibration training on jump height, contractile properties and activation of human knee extensors. European Journal of Applied Physiology 90, 595-600 (2003).

37. Roelants, M., Delecluse, C., & Verschueren, S. M., Whole-body-vibration training increases knee-extension strength and speed of movement in older women. Journal of the American Geriatrics Society 52, 901-908 (2004).

38. Wilder, D. G., The biomechanics of vibration and low back pain. American Journal of Industrial Medicine 23, 577-588 (1993).

39. Qin, L., et al., Regular Tai Chi Chuan exercise may retard bone loss in postmenopausal women: A case-control study. Archives of Physical Medicine & Rehabilitation 83, 1355-1359 (2002).

Version: 28-Apr-2008 Page 8

Luba
Typewritten Text
211

212

CHAPTERS TWO AND THREE: STANDARDIZED DATA COLLECTION FORMS

VIBRATION STUDY Patient Name:________________________ Date:__ __/__ __ __/ __ __ __ __

SCREENING VISIT

Page 1

Informed Consent Date: __ __/__ __ __/ __ __ __ __ Inclusion Criteria: 1. Postmenopausal Yes No 2. BMD T-score -1.0 to -2.4 if ≤70 years or to -2.0 >70 years Yes No

at L1 to L4, total hip and femoral neck Exclusion Criteria: 1. Taking bone medications Yes No 2. Taking other medications that indirectly affect bone metabolism Yes No 3. Having bone disease Yes No 4. Having a disease that indirectly affects bone metabolism Yes No 5. Having had fragility fracture Yes No 6. Having unhealed fracture Yes No 7. Having body mass ≤28 kg and ≥90 kg Yes No 8. Having joint replacements or spine implants Yes No 9. Having poor balance (TUG score > 12 s) Yes No 10. Being unable to stand erect daily for 20 minutes Yes No 11. Participating in other studies that conflict with current study Yes No 12. Planning to travel for ≥1 month at a time Yes No 13. Significantly changing physical activity Yes No 14. Being at poor medical or psychiatric risk Yes No Precautions: 1. Congestive heart failure Yes No 2. Pre-existing deep vein thrombosis Yes No 3. Thrombophlebitis Yes No 4. Pulmonary embolism Yes No 5. Diabetic neuropathy Yes No 6. Poor somatosensory receptor sensitivity on the soles of the feet Yes No 7. Sensitivity to motion sickness Yes No 8. Known retinal condition Yes No 9. Pacemakers and implantable cardioverter defibrillators Yes No 10. Known neurological conditions Yes No

Excluded or deferred: No Yes: _________________________________________________________ Date of birth: __ __/__ __ __/__ __ __ __ Menstrual history: Age at menarche (years): _________________ Have you ever had your uterus removed? No Unknown Yes: Year___________________ Have you ever had your ovaries removed? No Unknown Yes: ONE BOTH Year________________ Last menstrual period: __ __/__ __ __/__ __ __ __ Age from menopause (years): _________ FSH:_______________ Anthropometric measurements: Weight (kg):___________Height (m):____________BMI (kg/m2):_______________ Balance: TUG score (s): #1_____ #2_____ #3_____ >12 seconds: Yes No Notes: _______________________________________________________________________________________________

Luba
Typewritten Text
Luba
Typewritten Text
213

VIBRATION STUDY Patient Number __ __ __ Participant Initials __ __ __ Date __ __/__ __ __/__ __ __ __

CRF 1: BASELINE

Page 1

Demographics: Date of birth: __ __/__ __ __/__ __ __ __ Education: Elementary Secondary College University undergraduate University graduate Racial origin: Caucasian Afro-Caribbean East Asian West Asian Hispanic Other:_________________ Marital status: Married Separated Divorced Widowed Never married Other:_______________________ Anthropometric measurements: Weight (kg):___________Height (m):____________BMI (kg/m2):_______________ Menstrual history: Age at menarche (years): _________________ Have you ever had your uterus removed? No Unknown Yes: Year___________________ Have you ever had your ovaries removed? No Unknown Yes: one both Year________________ Last menstrual period: __ __/__ __ __/__ __ __ __ Age from menopause (years): _________ FSH:_______________________ General health history: Alcohol consumption? No Yes, currently Yes, previously

If yes: Servings per week:__________ Duration (y):_________ Year stopped:_________ Type:_____________ Do you drink coffee or tea? No Yes: Servings per week: _______/_______ Duration(y)________/_________ Are you on a special diet (e.g., high-protein): No Yes:________________________________________________ Have you ever smoked? No Yes, currently Yes, previously

If yes: Cigarettes per week:___________ Duration (y):______________ Year stopped smoking:_____________

Have you ever been exposed to second-hand smoking? No Yes, currently Yes, previously

If yes: Cigarettes per week:___________ Duration (y):____________ Year stopped exposure:______________ Family history of osteoporosis? No Yes: Relationship:_____________/______________ Age: _______/________

Type: _________________/____________________ Location: ____________________/__________________ Family history of fracture? No Yes: Relationship:_____________/_____________ Age: ___________/___________

Type: _________________/____________________ Location: ___________________/___________________ Have you had a fall in the past 12 months? No Yes: How:_________________________/_____________________ Did it result in an injury? No Yes: Injury:_________/__________ Treatment: ____________/__________

Balance: TUG score (s): #1_____ #2_____ #3_____ >12 seconds: Yes No

Luba
Typewritten Text
214

VIBRATION STUDY Patient Number __ __ __ Participant Initials __ __ __ Date __ __/__ __ __/__ __ __ __

CRF 1: BASELINE

Page 2

Vibration treatment details: 30 Hz Trial:

Duration (min): ______________________

Immediate rating: Unpleasant Neutral Pleasant

Immediate side effects: _____________________________________________________________________

Immediate sensation (e.g. tingling and location): _________________________________________________ Juvent platform serial number: ______________________ Group allocation: ______________________ Date of first treatment: __ __/__ __ __/__ __ __ __ Bone mineral density and microarchitecture measurements: pQCT: Date: __ __/__ __ __/ __ __ __ __ Notes: ___________________________________________________ QUS: Date: __ __/__ __ __/ __ __ __ __ Notes: ___________________________________________________ DXA: Date: __ __/__ __ __/ __ __ __ __ Notes: ___________________________________________________ NOTES:

Luba
Typewritten Text
215

VIBRATION STUDY Patient Number __ __ __ Participant Initials __ __ __ Date __ __/__ __ __/__ __ __ __

CRF 1: BASELINE

Page 3

Past treatments: Calcium: No Yes Vitamin D: No Yes Vitamin K: No Yes

Description Start Date dd-mmm-yyyy

End date

dd-mmm-yyyy

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

Luba
Typewritten Text
Luba
Typewritten Text
216

VIBRATION STUDY Patient Number __ __ __ Participant Initials __ __ __ Date __ __/__ __ __/__ __ __ __

CRF 1: BASELINE

Page 4

Past morbidities:

No Yes Fracture No Yes Back pain

No Yes Legs swelling/redness No Yes Feet swelling/redness

No Yes Dizziness No Yes Motion Sickness

Description

Start Date dd/mmm/yyyy

End date dd/mmm/yyyy

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

__ __-__ __ __-__ __ __ __

Luba
Typewritten Text
217

VIBRATION STUDY Patient Number __ __ __ Participant Initials __ __ __ Date __ __/__ __ __/__ __ __ __

CRF 2: 6-MONTH FOLLOW-UP

Page 1

Compliance: 6 months Notes: Total number of treatments: ____________ ____________________________________________ Expected number of treatments: ____________ ____________________________________________ Number of treatments missed: ____________ ____________________________________________ Compliance (%): __________

Anthropometric measurements: Weight (kg):___________Height (m):____________BMI (kg/m2):_______________ General health history: Since last visit have you significantly changed: Alcohol intake? No Yes: Servings per week:_____ Duration (m):_______Month stopped:________ Type:________

Coffee/ tea intake? No Yes: Servings per week:____/____ Duration(m)____/____ Month stopped:______/______ Smoking habits? No Yes: Cigarettes per week: _______ Duration (m):_______ Month stopped:______________ Second-hand smoking exposure? No Yes: Cigarettes per week: _____Duration (m):_____ Month stopped:_______ Diet? (e.g., to high-protein): No Yes:_____________________________________________________________

Physical levels? No Yes: ______________________________________________________________________ Have you had a fall? No Yes: How:______________________________________________________________ Did it result in an injury? No Yes: Injury:_______________________ Treatment: _______________________ NOTES:

Luba
Typewritten Text
218

VIBRATION STUDY Patient Number __ __ __ Participant Initials __ __ __ Date __ __/__ __ __/__ __ __ __

CRF 3: END-OF-STUDY VISIT

Page 1

Compliance: A Total number of treatments: ____________ Expected number of treatments: ____________ Number of treatments missed: ____________ Compliance A (%): __________

B Total treatment time (min): ___________ Expected treatment time (min): ___________ Missed treatment time (min): ___________ Compliance B (%): _________

Compliance notes:________________________________________________________________________________ Anthropometric measurements: Weight (kg):___________Height (m):____________BMI (kg/m2):_______________ General health history: Since last visit have you changed: Alcohol intake? No Yes: Servings per week:_____ Duration (m):_______Month stopped:________ Type:________

Coffee/ tea intake? No Yes: Servings per week:____/____ Duration(m)____/____ Month stopped:______/______ Smoking habits? No Yes: Cigarettes per week: _______ Duration (m):_______ Month stopped:______________ Second-hand smoking exposure? No Yes: Cigarettes per week: _____Duration (m):_____ Month stopped:_______ Have you radically changed your diet? (e.g., to high-protein): No Yes:___________________________________ Have you had a fall? No Yes: How:______________________________________________________________ Did it result in an injury? No Yes: Injury:_______________________ Treatment: _______________________ Balance: TUG score (s): #1_____ #2_____ #3_____ >12 seconds: Yes No Bone mineral density and microarchitecture measurements: pQCT: Date: __ __/__ __ __/ __ __ __ __ Notes: ___________________________________________________ QUS: Date: __ __/__ __ __/ __ __ __ __ Notes: ___________________________________________________ DXA: Date: __ __/__ __ __/ __ __ __ __ Notes: ___________________________________________________ WBV: Serial #___________________ Group: ______________ Correct group allocation confirmed? Yes No Footwear:_______________________________________ Surface: _________________________________________ Ethnic/cultural background (describe):______________________________________________________________ Vitamin D measurement: Yes _________________________ No NOTES:

Luba
Typewritten Text
219

VIBRATION STUDY Patient Number __ __ __ Participant Initials __ __ __ Date __ __/__ __ __/__ __ __ __

END-OF-STUDY QUESTIONNAIRE

Version: 12-Jul-07 Page 1

1. By putting a cross on the line below, indicate what percent of the time did you take calcium and vitamin D supplements as prescribed?

Not applicable 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% >100% I______I______I______I______I______I______I______I______I______I______I______I

2. If you were in the vibration group, which speed of vibration do you think you received?

Not applicable 30 Hz (fast: 30 times per second) 90 Hz (very fast: 90 times per second)

3. Were there any causes of dissatisfaction with the vibration platform use?

No Yes (please check one or more of the items below)

It was too time consuming. Comment:_________________________________________________

It was too large and/and or heavy to use. Comment:_____________________________________

It was difficult to operate. Comment: _________________________________________________

It caused the following long-term health concerns:_______________________________________

It caused the following immediate discomforts:__________________________________________

It was irritable due to noise:_________________________________________________________

Other:__________________________________________________________________________

4. Were there any causes of satisfaction with the vibration platform use?

No Yes (please check one or more of the items below)

It was easy to fit in my schedule. Comment:____________________________________________

It came in a convenient size and weight. Comment: _____________________________________

It was easy to operate. Comment: ___________________________________________________

It improved the following long-term health concerns:_____________________________________

It had pleasant immediate sensation:_________________________________________________

It was relatively quiet to use. Comment:_______________________________________________

Other:__________________________________________________________________________

5. By putting a cross on the line below, indicate what was your overall satisfaction with the platform use?

Very satisfied Satisfied Neutral Unsatisfied Very unsatisfied I_________________ I_________________ I_________________ I_________________I

Luba
Typewritten Text
220

Calcium and Vitamin D Intake Calculator Patient Number __ __ __ Patient Initials __ __ __ Visit ______________

Version: 12-Jan-07

Calcium-Rich Foods Portion Size

mg/portion No portions /week

Calcium (mg)

Vitamin D (IU)

DAIRY PRODUCTS Milk - skim, 1%, 2%, whole, buttermilk or chocolate

1 cup 300 mg 100 IU (D)

Yogurt, plain (reg. or low fat) 3/4 cup 300 mg Yogurt, fruit flavoured (reg. or low fat) 3/4 cup 250 mg Processed cheese slices (reg. or low fat) 1 slice 125 mg Soft and semi-soft cheese such as feta, mozzarella, camembert (reg. or low fat)

1 1/4" cube 150 mg

Firm cheese such as cheddar, swiss, gouda (reg. or low fat)

1 1/4" cube 250 mg

Parmesan cheese 1 Tbsp. 75 mg Cottage cheese (regular or low fat) 1/2 cup 75 mg Skim milk powder 1/3 cup 300 mg

VEGETABLES AND LEGUMES Broccoli 3/4 cup 50 mg Bok choy or Kale, cooked 1 cup 150 mg Chickpeas 1 cup 75 mg Kidney beans, Lima beans, Lentils 1 cup 50 mg Baked beans, Soybeans, White beans 1 cup 150 mg

DESERTS Ice cream 1/2 cup 75 mg Pudding, made with milk 1/2 cup 150 mg Pancakes or Waffles, made with milk 3 medium 150 mg Ice milk, Frozen yogurt (reg. or low fat) 1/2 cup 150 mg

OTHER Bread 1 slice 25 mg Almonds 1/4 cup 75 mg Tofu 3 oz. 150 mg Salmon or Sardines, canned with bones 1/2 can 250 mg Soup, made with milk 1 cup 150 mg Tahini 1 Tbsp. 25 mg Orange (fruit, not juice) 1 medium 50 mg Calcium-fortified beverages (e.g. soy, orange juice, rice)

1 cup 300 mg

Mineral water (carbonated) 1 cup 50mg CALCIUM Total Ca (mg) from diet:_________ mg ÷ 7 = ________ mg/day Total Ca (mg) from own supplements: ________ mg/day Total Ca (mg) from own multivitamin: ________ mg/day Study Ca provided ________mg/day _____tab/day ___bottles_________________type TOTAL Ca ________ mg/day VITAMIN D Total D (IU) from diet:_________ IU ÷ 7 = ________ IU/day Total D (IU) from own supplements: ________ IU/day Total D (IU) from own multivitamin: ________ IU/day Study D provided ________ IU/day _____tab/day ___bottles_________________type TOTAL D ________ iu/day

Luba
Typewritten Text
221

VIBRATION STUDY

MLTPAQ AMI Calculations

Subject #: __ __ __ Subject Initials:__ __ __ Visit: ________________ Person calculating: _______________________________________________

ALL BONE

Light AMI

Moderate AMI

Heavy AMI

TOTAL

Luba
Typewritten Text
222

Interviewer initials: __ __ __ Patient # __ __ __ Patient Initials: __ __ __ Study visit:____________________

Luba
Typewritten Text
223

Interviewer initials: __ __ __ Patient # __ __ __ Patient Initials: __ __ __ Study visit:____________________

Luba
Typewritten Text
224

V

IBR

ATI

ON

STU

DY

A

dver

se E

vent

s

Pat

ient

# _

_ __

__

Par

ticip

ant I

nitia

ls _

_ __

__

Line

#

A

E di

agno

sis

or s

yndr

ome

(if k

now

n)

OR

Sig

n(s)

/Sym

ptom

(s)

Li

st o

ne p

er li

ne

C

ode

D

id A

E

star

t pr

ior t

o ba

selin

e?

D

ate

Star

ted

D

ate

Ende

d,

Cha

nged

in

Seve

rity

Check if event continuing

S

ever

ity

(reco

rd o

ne

code

)*

01=m

ild

02=M

oder

ate

03=S

ever

e 04

=Life

th

reat

enin

g 05

=Fat

al

R

elat

ions

hip

Is th

ere

a re

ason

able

po

ssib

ility

that

the

even

t may

hav

e be

en c

ause

d by

st

udy

treat

men

t.

Act

ion

Take

n fo

r thi

s A

E

(reco

rd a

ll th

at

appl

y)

01=N

o ac

tion

take

n 02

=Stu

dy

treat

men

t dur

atio

n or

freq

uenc

y al

tere

d or

with

held

03

=Med

icat

ion

take

n 04

=Hos

pita

lizat

ion

05=R

emov

ed fr

om

stud

y 06

=Stu

dy

treat

men

t di

scon

tinue

d 08

=Oth

er p

roto

col

drug

alte

red

or

with

held

88

=Oth

er (p

ecify

)

W

as

even

t S

erio

us

( gra

des

4 an

d 5)

?

N

Y

D

ay

dd

Mon

th

mm

m

Year

yy

yy

Day

dd

M

onth

m

mm

Ye

ar

yyyy

N

Y

N

Y

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

01-M

ild: m

inor

, no

spec

ific

med

ical

inte

rven

tion

02-

Mod

erat

e: m

inim

al/lo

cal/n

onin

vasi

ve m

edic

al in

terv

entio

n 0

3-S

ever

e: s

igni

fican

t sym

ptom

s re

quiri

ng h

ospi

taliz

atio

n or

inva

sive

med

ical

inte

rven

tion

04-

Life

-thre

aten

ing:

nee

d in

tens

ive

care

or e

mer

gent

inva

sive

05

Dea

th

Luba
Typewritten Text
Luba
Typewritten Text
225

V

IBR

ATI

ON

STU

DY

C

urre

nt N

on-In

vest

igat

iona

l Tre

atm

ents

P

atie

nt #

__

__ _

_ P

artic

ipan

t Ini

tials

__

__ _

_

Ple

ase

reco

rd a

ny d

rugs

, vita

min

s, m

iner

als,

sup

plem

ents

, her

bs, n

euro

mus

cula

r tre

atm

ents

(chi

ropr

acto

r, ph

ysio

ther

apy)

, alte

rnat

ive

treat

men

ts (a

cupu

nctu

re,

hom

eopa

th, n

atur

opat

h), a

nd o

pera

tions

/sur

gerie

s fro

m b

asel

ine

until

the

stud

y co

mpl

etio

n.

Li

ne

#

Tr

eatm

ent

Li

st o

ne p

er li

ne

Type

D

=dru

g V

=vita

min

M

=min

eral

S

=sup

plem

ents

H

=her

bs

NM

=

neur

omus

cula

r A

=alte

rnat

ive

O=o

pera

tions

Did

m

edic

atio

n us

e st

art

befo

re fi

rst

treat

men

t ad

min

istra

tion

(i.e

., pr

ior t

o ba

selin

e)?

D

ate

Star

ted

D

ate

Ende

d,

Cha

nged

in D

osin

g

Check if event continuing

D

osin

g

R

easo

ns fo

r tak

ing

med

icat

ion

Des

crip

tion

C

ode

N

o Ye

s D

ay

dd

Mon

th

mm

m

Year

yy

yy

Day

dd

M

onth

m

mm

Ye

ar

yyyy

mg

per

dose

D

ose

per

day

Oth

er

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Luba
Typewritten Text
226

227

CHAPTERS TWO AND THREE: A PRIORI DATA ANALYSIS PLAN

  Vibration Study’s Analysis Plan 

       

  

Purpose ..................................................................................................................................................... 2

Trial Flow .................................................................................................................................................. 2

Baseline Characteristics ........................................................................................................................... 3

Main WBV Effect: Between‐Group Differences in Bone Outcomes........................................................ 4

Potential Covariates ................................................................................................................................. 5

Sensitivity Analysis ................................................................................................................................... 6

References ................................................................................................................................................ 7      

Luba
Typewritten Text
Luba
Typewritten Text
228

Purpose 

Vibration Study is a randomized controlled trial (RCT) designed to examine effects of whole‐body vibration on bone. Our trial’s main objective is to examine whether there are statistically significant differences between study groups (90 Hz WBV group versus 30 HZ WBV group versus control group; 90Hz versus 30Hz versus CON) in absolute pre‐post change in all bone outcomes.  The purpose of this analysis plan is to outline and describe a priori analyses (i.e., specified prior to examining the main effect: between‐group differences  in bone outcomes), so that our trial’s withdrawal and reporting bias can be reduced1.  Bone Outcomes ‐ HR‐pQCT volumetric trabecular (vBMDt), cortical (vBMDc) and total (vBMDtot) BMD, cortical thickness (CTh), 

and trabecular thickness, separation, number and bone volume fraction (TTh, TSp, TN, BV/TV) at the distal tibia and distal radius 

‐ DXA areal BMD at the total hip, femoral neck, and lumbar spine (aBMDh, aBMDf, aBMDs) ‐ Calcaneal QUS BUA, SOS, QUI  Primary Outcome  vBMDt at the distal tibia  Hypothesis Significantly smaller reductions in the above bone outcomes are expected to be found in 90Hz and 30Hz versus CON, with greater differences occurring between 90Hz versus CON in comparison to 30Hz versus CON. TSp is expected to change in the opposite direction.   

Trial Flow 

Adapted version of the CONSORT flow diagram below will be used to outline our trial’s progression from recruitment to analysis and will serve as Figure 1 in our main publication.         

 

 

 

 

Luba
Typewritten Text
229

Baseline Characteristics 

 Purpose ‐To examine whether potential covariates are evenly distributed between 90Hz, 30Hz and CON at baseline   ‐To describe 90Hz, 30Hz and CON at baseline in terms of relevant clinical and demographic characteristics    Study sample All randomized participants   Variable selection Potential covariates and relevant study population characteristics   Statistical analyses  Descriptive statistics:  Counts and percentages will be obtained for categorical variables. Mean and standard deviations will be obtained for continuous variables; data dispersion, outliers, and data distribution will also be examined.    Inferential statistics:  One‐way ANOVA will assess between‐group differences (90Hz x 30Hz x CON) in continuous baseline variables. Levene’s test for homogeneity of variances will be conducted, and if significant Welch’s ANOVA p value will be noted. X2 statistic will assess between‐group differences (90Hz x 30Hz x CON) in categorical baseline variables (predictor = study group; outcome = categorical baseline variable). Fisher’s exact test will be reported for variables with <5 entries per cell.    Reporting The below table summary of baseline characteristics will serve as Table 1 in our main publication.  Baseline Characteristics  

Category  90Hz  (n=) 

30Hz (n=) 

CON (n=) 

Continuous baseline characteristic, mean (SD)  ‐       …   ‐       Categorical baseline characteristic, n (%)  Category A         Category B       ….          

Luba
Typewritten Text
230

Main WBV Effect: Between‐Group Differences in Bone Outcomes  Purpose ‐To examine between‐group differences in 12‐month change in all bone outcomes   Study sample Intention‐to‐treat (ITT) and per‐protocol data sets   Variable selection All bone outcomes  Statistical analyses Descriptive statistics: Mean and standard deviations will be obtained. Data dispersion and outliers will be inspected.  Data distribution will be examined using Shapiro‐Wilk test.    Inferential statistics: One‐way ANOVA with contrasts will assess between‐group (90Hz x 30Hz x CON), all pair‐wise (90Hz x 30Hz, 30Hz x CON, 90Hz x CON), and 90Hz plus 30Hz versus CON group (90Hz + 30Hz x CON) differences in absolute 12‐month change (final minus baseline) in all bone outcomes. Levene’s test for homogeneity of variances will be conducted, and if significant Welch’s ANOVA p value will be noted.   Reporting  The following table summary of all bone outcomes in the ITT and per‐protocol data sets will serve as Table 2 in the main publication.       Intention‐to‐treat (n=)  Per‐protocol (n=) Bone Outcomes:  Absolute Pre‐Post Change 

90 Hz WBV  

30 Hz WBV  

Control     

90 Hz  

30 Hz   

Control     

                                        Etc… 

Version: April 2010 4

Luba
Typewritten Text
231

Potential Covariates  

 Purpose ‐ To examine effects of potential covariates on between‐group differences in 12‐month change in all bone outcomes   Study sample Per‐protocol data set   Variables selection All bone outcomes and the following potential covariates1 will be examined:   1) Adherence to WBV: Bones of ≥80% adherent participants are expected to respond more to WBV3.  2) Baseline body mass: Significant WBV effect was previously found, but only in a subgroup analysis of 

postmenopausal women <65kg in mass3. Fat tissue may dissipate WBV in the body.  3) Serum vitamin D levels: Vitamin D is necessary for bone metabolism, as it assists with skeletal calcium 

absorption. Stronger WBV effect on bone is expected with higher serum vitamin D levels. 4) Age: Muscle mass decreases with age. Due to their larger muscle mass, younger postmenopausal 

women’s bones would be expected to respond more to WBV4. 5) Age from menopause: Higher bone metabolism occurs for up to ~10 years after menopause5, during 

which time WBV effect would be expected to be stronger than when the skeleton is less active.  6) Physical activity levels: Physical stimulus due to exercise can increase bone accrual in postmenopausal 

women6, and as such could compete with WBV effect on bone.    Statistical analyses Descriptive statistics: Mean and standard deviations will be obtained. Data dispersion and outliers will be inspected.  Data distribution will be examined using Shapiro‐Wilk test.    Subgroup analyses: One‐way ANOVA with contrasts will assess differences between groups (90Hz x 30Hz x CON; 90Hz x 30Hz, 30Hz x CON, 90Hz x CON; 90Hz + 30Hz x CON) in absolute pre‐post change (final minus baseline) in all bone outcomes using the following subgroups: 1) ≥80% adherent to WBV, 2) <65 kg in mass, 3) ≤60 years‐old, and 4) ≤5 years and ≤10  years since menopause (one will be reported)  ANCOVA analysis: One‐way ANCOVA with contrasts will assess differences between groups (90Hz x 30Hz x CON; 90Hz x 30Hz, 30Hz x CON, 90Hz x CON; 90Hz + 30Hz x CON) in absolute pre‐post change (final minus baseline) in all bone outcomes, where each of the following potential covariates will be adjusted for separately: 1) serum 25‐hydroxy vitamin D level, and 2) baseline change in physical activity level.  Reporting All potential covariates analyses will be reported in‐text.  

1Potential covariate is a source of variation that is not controlled for in the design of a RCT. It is associated with the predictor (study group) and outcome (bone change), and should not correlate highly with another covariate. 

Version: April 2010 5

Luba
Typewritten Text
232

Sensitivity Analysis 

 Purpose ‐ To examine whether excluding participants with potential causes for compromised study conduct, bone measurement or bone metabolism alters the main effect findings  Study sample Per‐protocol data set, with participants excluded due to following pre‐specified sensitivity reasons:   1) Potential causes for compromised study conduct  

a. Unknown true adherence to WBV due to digital clock malfunction b. Improper WBV administration (e.g., sitting or wearing shoes) c. Other   

2) Potential causes for compromised bone measurement  a. Late (>120 days) final bone measurement  b. Poorly matched (<80%) baseline and final HR‐pQCT bone scans c. Other 

 3) Potential causes for compromised bone metabolism during study 

a. Questionable bone history revealed after study participation (e.g., prior bisphosphonate use) b. Taking medications during study that may have altered bone metabolism c. Ankle or wrist immobilization due to fracture and wearing a cast during study d. Other 

 Variable selection All bone outcomes  Statistical analyses Descriptive statistics: Mean and standard deviations will be obtained. Data dispersion and outliers will be inspected.  Data distribution will be examined using Shapiro‐Wilk test.    Inferential statistics: One‐way ANOVA with contrasts will assess differences between groups (90Hz x 30Hz x CON; 90Hz x 30Hz, 30Hz x CON, 90Hz x CON; 90Hz + 30Hz x CON) in absolute pre‐post change (final minus baseline) in all bone outcomes. Levene’s test for homogeneity of variances will be conducted, and if significant Welch’s ANOVA p value will be noted.   Reporting  Sensitivity analysis will be summarized in‐text.  

Version: April 2010 6

Luba
Typewritten Text
233

 References 

 1.  Jadad AR, Enkin MW. Chapter 3: Bias in RCTs. Randomized Controlled Trials: Questions, Answers, and Musings (2nd Ed). Malden: USA: Blackwell Publishing; 2007:38‐9. 2.  Vickers AJ. The use of percentage change from baseline as an outcome in a controlled trial is statistically inefficient: a simulation study. BMC Med Res Method. 2001;1:1‐4. 3.  Rubin C, Recker R, Cullen D, Ryaby J, McCabe J, McLeod K. Prevention of postmenopausal bone loss by a low‐magnitude, high‐frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res. 2004;19:343‐351. 4.  Torvinen S, Kannus P, Sievanen H et al. Effect of 8‐month vertical whole body vibration on bone, muscle performance, and body balance: a randomized controlled study. J Bone Miner Res. 2003;18:876‐884. 5.  Reid IR. Menopause. In: Favus MJ, ed.  Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, 7th edn. Washington: American Society for Bone and Mineral Research; 2006:68‐70. 6.  Chan K, Qin L, Lau M et al. A randomized, prospective study of the effects of Tai Chi Chun Exercise on Bone Mineral Density in Postmenopausal Women. Archives of Physical Medicine & Rehabilitation. 2004;85:717‐722.   

Version: April 2010 7

Luba
Typewritten Text
234

235

CHAPTER TWO: SAS CODES

1

*************************************************************************************************************************

PRIMARY ANALYSIS OF VIBRATION STUDY HR-PQCT AND DXA OUTCOMES

*************************************************************************************************************************;

TITLE VIBRATION STUDY DATA FILE; r

un;

libname lubalib 'Z:\_LUBA_\2_VIBRATION STUDY\Data Analysis\SAS'; d

ata cov1; set lubalib.cov1;

run;

libname lubalib 'Z:\_LUBA_\2_VIBRATION STUDY\Data Analysis\SAS'; d

ata covadd; set lubalib.covadd;

run;

libname lubalib 'Z:\_LUBA_\2_VIBRATION STUDY\Data Analysis\SAS'; d

ata dxa1; set lubalib.dxa1;

run;

libname lubalib 'Z:\_LUBA_\2_VIBRATION STUDY\Data Analysis\SAS'; d

ata pqct1tib; set lubalib.pqct1tib;

run;

libname lubalib 'Z:\_LUBA_\2_VIBRATION STUDY\Data Analysis\SAS'; d

ata pqct1rad; set lubalib.pqct1rad;

run;

data cov1A; set cov1;

B_bmi= B_mass/(B_height**2); F_bmi= F_mass/(F_height**2);

B_age= (bsldate-dob)/3

65.2

5;

B_pat= (B_pal+B_pam+B_pah)*5

2/36

5.25; F_pat= (F_pal+F_pam+F_pah)*5

2/36

5.25;

y1=year(B_lastperiod); y2=year(bsldate); PMage=y2-y1;

if hys='y' or ova='y' then mp='surgical';

if id='005' or id='044' or id='138' or id='187' or id='197' then mp='natural'; /*these had only 1 ovary removed*/

if hys='n' and ova='n' then mp='natural';

if B_alcservwk = 0 then alcohol='none'; if B_alcservwk > 7 then alcohol='>1d'; if B_alcservwk >

0 and B_alcservwk <= 7 then

alcohol='=<1d';

if ethnicity='AFRO-CARIBBEAN' or ethnicity='HISPANIC' or ethnicity='WEST-ASIAN' then ethnicity='OTHER';

if marital='OTHER' or marital='MARRIED' then marital='MARR/COMMON';

if marital='DIVORCED' or marital='SEPARATED' or marital='WIDOWED' then marital='DIV/SEP/WID';

if education='ELEMENTARY' or education='SECONDARY' then education='SEC/ELE';

if education='COLLEGE' or education='UNDERGRADUATE' then education='UNDERGRAD/COLLEGE';

x_ca=(b_castudy-b_calin); x_vitd=(b_vitdstudy-B_vitdin); x_mass=(f_mass-B_mass); x_BMI= (f_bmi-b_bmi); x_pat=(f_pat-b_pat);

keep id group dob B_age menarche PMage mp B_mass B_height B_bmi ethnicity education marital osteofamhx alcohol smokehx

B_calin B_vitdin B_pat Dlevel X_ca x_vitd x_mass x_BMI x_pat;

run;

data dxa1A; set dxa1;

x_aBMDf=(F_aBMDf-B_aBMDf);x_aBMDh=(F_aBMDh-B_aBMDh);x_aBMDs=(F_aBMDs-B_aBMDs);

keep id b_aBMDf x_aBMDf b_aBMDh x_aBMDh b_aBMDs x_aBMDs ;r

un;

data pqct1tibA; set pqct1tib;

X_vBMDtt=(F_vBMDt-B_vBMDt);X_vBMDct=(F_vBMDc-B_vBMDc);X_vBMD100t=(F_vBMD100-B_vBMD100);X_CTht=(F_CTh-B_CTh);

X_TTht=(F_TTh-B_TTh);X_TNt=(F_TN-B_TN);X_TSpt=(F_TSp-B_TSp);X_BVTVt=(F_TBV_TV-B_TBV_TV);

keep id

B_vBMDt B_vBMDc B_vBMD100 B_CTh B_TTh B_TN B_TSp B_TBV_TV areatot commregion sliceshift

x_vBMDtt x_vBMDct x_vBMD100t x_CTht x_TTht x_TNt x_TSpt x_BVTVt ;

rename

B_CTh=B_CTht B_TBV_TV=B_BVTVt B_TN=B_TNt B_TSp=B_TSpt B_TTh=B_TTht B_vBMD100=B_vBMD100t B_vBMDc=B_vBMDct

B_vBMDt=B_vBMDtt areatot=areatott commregion=commregiont sliceshift=sliceshiftt; r

un;

data pqct1radA; set pqct1rad;

X_vBMDtr=(F_vBMDt-B_vBMDt);X_vBMDcr=(F_vBMDc-B_vBMDc);X_vBMD100r=(F_vBMD100-B_vBMD101);X_CThr=(F_CTh-B_CTh);

X_TThr=(F_TTh-B_TTh);X_TNr=(F_TN-B_TN);X_TSpr=(F_TSp-B_TSp);X_BVTVr=(F_TBV_TV-B_TBV_TV);

keep id

B_vBMDt B_vBMDc B_vBMD101 B_CTh B_TTh B_TN B_TSp B_TBV_TV areatot commregion sliceshift

x_vBMDtr x_vBMDcr x_vBMD100r x_CThr x_TThr x_TNr x_TSpr x_BVTVr ;

rename

B_CTh=B_CThr B_TBV_TV=B_BVTVr B_TN=B_TNr B_TSp=B_TSpr B_TTh=B_TThr B_vBMD101=B_vBMD100r B_vBMDc=B_vBMDcr

B_vBMDt=B_vBMDtr areatot=areatotr commregion=commregionr sliceshift=sliceshiftr; r

un;

data vib; merge cov1A covadd dxa1A pqct1tibA pqct1radA; by id; r

un;

proc s

ort data=vib out=vibsort; by group;

run;

2

TITLE BASELINE ANALYSES;

proc g

lm data=vib;

class group; model B_mass=group;

means group;

run;

proc g

lm data=vib;

class group; model B_height=group; means group;

run;

proc g

lm data=vib;

class group; model B_bmi=group;

means group;

run;

proc g

lm data=vib;

class group; model B_age=group;

means group;

run;

proc g

lm data=vib;

class group; model menarche=group; means group;

run;

proc g

lm data=vib;

class group; model B_pat=group;

means group;

run;

proc g

lm data=vib;

class group; model B_calin=group; means group;

run;

proc g

lm data=vib;

class group; model B_vitdin=group; means group;

run; q

uit;

data surgical;set vib; if mp='surgical'; r

un;

data natural; set vib; if mp='natural';

run;

proc g

lm data=surgical;class group; model PMage=group;

means group;

run;

proc g

lm data=natural; class group; model PMage=group;

means group;

run;

quit;

proc f

req data=vib; tables ethnicity*group

/chisq exact;r

un;

proc f

req data=vib; tables education*group

/chisq exact;r

un;

proc f

req data=vib; tables marital*group /chisq exact;r

un;

proc f

req data=vib; tables osteofamhx*group /chisq exact;r

un;

proc f

req data=vib; tables alcohol*group /chisq exact;r

un;

proc f

req data=vib; tables smokehx*group /chisq exact;r

un;

proc f

req data=vib; tables bfall*group /chisq exact; r

un;

proc g

lm data=vib;

class group; model B_aBMDf=group; means group;

run;

proc g

lm data=vib;

class group; model B_aBMDh=group; means group;

run;

proc g

lm data=vib;

class group; model B_aBMDs=group; means group;

run;

libname lubalib 'Z:\_LUBA_\2_VIBRATION STUDY\Data Analysis\SAS'; d

ata bslT; set lubalib.bslT;

run;/*unadjusted baseline*/

libname lubalib 'Z:\_LUBA_\2_VIBRATION STUDY\Data Analysis\SAS'; d

ata bslR; set lubalib.bslR;

run;

proc g

lm data=bslT;

class group; model B_vBMDt=group; means group;

run;

proc g

lm data=bslT;

class group; model B_vBMDc=group; means group;

run;

proc g

lm data=bslT;

class group; model B_vBMD100=group; means group;

run;

proc g

lm data=bslT;

class group; model B_CTh=group;

means group;

run;

proc g

lm data=bslT;

class group; model B_TTh=group;

means group;

run;

proc g

lm data=bslT;

class group; model B_TN=group;

means group;

run;

proc g

lm data=bslT;

class group; model B_TSp=group;

means group;

run;

proc g

lm data=bslT;

class group; model B_TBV_TV=group; means group;

run;

proc g

lm data=bslR;

class group; model B_vBMDt=group; means group;

run;

proc g

lm data=bslR;

class group; model B_vBMDc=group; means group;

run;

proc g

lm data=bslR;

class group; model B_vBMD100=group; means group;

run;

proc g

lm data=bslR;

class group; model B_CTh=group;

means group;

run;

proc g

lm data=bslR;

class group; model B_TTh=group;

means group;

run;

proc g

lm data=bslR;

class group; model B_TN=group;

means group;

run;

proc g

lm data=bslR;

class group; model B_TSp=group;

means group;

run;

proc g

lm data=bslR;

class group; model B_TBV_TV=group; means group;

run; q

uit;

3

title OTHER NON-BASELINE COVARIATES;

data vibadh; set vib; if group='C' then delete;

proc t

test data=vibadh; class group; var adherence1 adherence2 adherence3 ;

run;

proc g

lm data=vib;class group; model adhcd=group; means group/hovtest=levene welch;r

un;

proc g

lm data=vib;class group; model x_ca=group; means group/hovtest=levene welch;

run;

proc g

lm data=vib;class group; model x_vitd=group; means group/hovtest=levene welch;

run;

proc g

lm data=vib;class group; model x_mass=group; means group/hovtest=levene welch;

run;

proc g

lm data=vib;class group; model x_bmi=group; means group/hovtest=levene welch;r

un;

proc g

lm data=vib;class group; model x_pat=group; means group/hovtest=levene welch;r

un;

proc g

lm data=vib;class group; model dlevel=group; means group/hovtest=levene welch;

run; q

uit;

title AEs AND FALLS;

proc f

req data=vib; tables ae*group /chisq exact;r

un;

proc f

req data=vib; tables sae*group /chisq exact; r

un;

data leg; set vib; if leg>

1 then leg=1;p

roc

freq data=leg; tables leg*group /chisq exact;

run;

data back; set vib; if back='p' then back='z'; r

un;

proc f

req data=back; tables back*group /chisq exact; r

un;

data back2; set back; if back='z' then delete; r

un;

proc f

req data=back2; tables back*group /chisq exact;

run;

data fall; set vib; if sfall>

1 then sfall=2;

proc f

req data=fall; tables sfall*group /chisq exact; r

un;

data fall2; set vib; if sfall>

1 then sfall=1;

proc f

req data=fall2; tables sfall*group /chisq exact; r

un;

title ITT ANALYSIS single imputation/group mean; *7 drop outs imputed from the original data without d/o and with HRT;

pr

oc m

eans data=vibsort mean n nmiss; by group; var X_aBMDf X_aBMDh X_aBMDs

X_vBMDtt X_vBMDct X_vBMD100t X_CTht X_TTht X_TNt X_TSpt X_BVTVt X_vBMDtr X_vBMDcr X_vBMD100r X_CThr X_TThr X_TNr X_TSpr

X_BVTVr;

run;

data vibITT; set vib;

if group='A' and X_aBMDf='.' then X_aBMDf=-

0.00

498; if group='A' and X_aBMDh='.' then X_aBMDh=-0

.003

54;if group='A'

and X_aBMDs='.' then X_aBMDs=-

0.00

655;

if group='A' and x_vBMDtt='.' then X_vBMDtt=

0.39

846; if group='A' and X_vBMDct='.' then X_vBMDct=-

10.9

2615;

if group='A' and X_vBMD100t='.' then X_vBMD100t=-1

.369

23;if group='A' and X_CTht='.' then X_CTht=0

.000

15; if group='A'

and X_TTht='.' then X_TTht=-0

.003

14;

if group='A' and X_TNt='.' then X_TNt=0

.070

46; if group='A' and X_TSpt='.' then X_TSpt=-

0.02

240; if group='A'

and X_BVTVt='.' then X_BVTVt=0

.000

31;

if group='A' and X_vBMDtr='.' then X_vBMDtr=-2

.165

63; if group='A' and X_vBMDcr='.' then X_vBMDcr=-

14.7

8594;

if group='A' and X_vBMD100r='.' then X_vBMD100r=-5

.150

0; if group='A' and X_CThr='.' then X_CThr=-

0.00

719; if group='A'

and X_TThr='.' then X_TThr=-0

.001

80;

if group='A' and X_TNr='.' then X_TNr=0

.030

62; if group='A' and X_TSpr='.' then X_TSpr=-

0.00

230; if group='A'

and X_BVTVr='.' then X_BVTVr=-

0.00

178 ;

/*group=A Variable Mean N Miss

x_aBMDf -0.0049763 65 2

x_aBMDh -0.0035387 65 2

x_aBMDs -0.0065544 65 2

4

X_vBMDtt

0.3984615 65 2

X_vBMDct -10.9261538 65 2

X_vBMD100t -1.3692308 65 2

X_CTht 0.000153846 65 2

X_TTht -0.0031385 65 2

X_TNt 0.0704615 65 2

X_TSpt -0.0224000 65 2

X_BVTVt 0.000307692 65 2

X_vBMDtr -2.1656250 64 3

X_vBMDcr -14.7859375 64 3

X_vBMD100r -5.1500000 64 3

X_CThr -0.0071875 64 3

X_TThr -0.0017969 64 3

X_TNr 0.0306250 64 3

X_TSpr -0.0022969 64 3

X_BVTVr -0.0017812 64 3*/

if group='B' and X_aBMDf='.' then X_aBMDf=-

0.00

549; if group='B' and X_aBMDh='.' then X_aBMDh=-0

.001

60;if group='B'

and X_aBMDs='.' then X_aBMDs=-

0.00

823;

if group='B' and x_vBMDtt='.' then X_vBMDtt=-0

.100

0; if group='B' and x_vBMDct='.' then X_vBMDct=-

10.4

3968;

if group='B' and x_vBMD100t='.' then X_vBMD100t=-2

.293

65;if group='B' and x_CTht='.' then X_CTht=-

0.00

635; if group='B'

and x_TTht='.' then X_TTht=-0

.003

73;

if group='B' and x_TNt='.' then X_TNt=0

.078

10; if group='B' and x_TSpt='.' then X_TSpt=-

0.02

270; if group='B'

and x_BVTVt='.' then X_BVTVt=-

0.00

005;

if group='B' and X_vBMDtr='.' then X_vBMDtr=-1

.550

79; if group='B' and X_vBMDcr='.' then X_vBMDcr=-

10.3

6032;

if group='B' and X_vBMD100r='.' then X_vBMD100r=-3

.753

97;if group='B' and X_CThr='.' then X_CThr=-

0.00

556; if group='B'

and X_TThr='.' then X_TThr=-0

.002

13;

if group='B' and X_TNr='.' then X_TNr=0

.035

71; if group='B' and X_TSpr='.' then X_TSpr=-

0.01

041; if group='B'

and X_BVTVr='.' then X_BVTVr=-

0.00

135;

/*group=B Variable Mean N Miss

x_aBMDf -0.0054864 65 3

x_aBMDh -0.0016012 65 3

x_aBMDs -0.0082332 65 3

X_vBMDtt -0.1000000 63 5

X_vBMDct -10.4396825 63 5

X_vBMD100t -2.2936508 63 5

X_CTht -0.0063492 63 5

X_TTht -0.0037302 63 5

X_TNt 0.0780952 63 5

X_TSpt -0.0226984 63 5

X_BVTVt -0.000047619 63 5

X_vBMDtr -1.5507937 63 5

X_vBMDcr -10.3603175 63 5

X_vBMD100r -3.7539683 63 5

X_CThr -0.0055556 63 5

X_TThr -0.0021270 63 5

X_TNr 0.0357143 63 5

X_TSpr -0.0104127 63 5

Luba
Typewritten Text
236

5

X_BVTVr -

0.0013492 63 5*/

if group='C' and X_aBMDf='.' then X_aBMDf=-

0.00

146; if group='C' and X_aBMDh='.' then X_aBMDh=-0

.002

36;if group='C'

and X_aBMDs='.' then X_aBMDs=-

0.00

669;

if group='C' and x_vBMDtt='.' then X_vBMDtt=-0

.241

54; if group='C' and x_vBMDct='.' then X_vBMDct=-

9.16

462;

if group='C' and x_vBMD100t='.' then X_vBMD100t=-1

.718

46;if group='C' and x_CTht='.' then X_CTht=0

.000

77; if group='C'

and X_TTht='.' then X_TTht=-0

.002

54;

if group='C' and X_TNt='.' then X_TNt=0

.056

31; if group='C' and X_TSpt='.' then X_TSpt=-

0.01

775; if group='C'

and X_BVTVt='.' then X_BVTVt=-

0.00

020;

if group='C' and X_vBMDtr='.' then X_vBMDtr=-1

.000

0; if group='C' and X_vBMDcr='.' then X_vBMDcr=-

12.9

6563;

if group='C' and X_vBMD100r='.' then X_vBMD100r=-5

.210

94;if group='C' and X_CThr='.' then X_CThr=-

0.01

359; if group='C'

and X_TThr='.' then X_TThr=-0

.001

39;

if group='C' and X_TNr='.' then X_TNr=0

.023

75; if group='C' and X_TSpr='.' then X_TSpr=-

0.00

795; if group='C'

and X_BVTVr='.' then X_BVTVr=-0

.000

84;r

un;

/*group=C Variable Mean N Miss

x_aBMDf -0.0014627 65 2

x_aBMDh -0.0023598 65 2

x_aBMDs -0.0066935 65 2

X_vBMDtt -0.2415385 65 2

X_vBMDct -9.1646154 65 2

X_vBMD100t -1.7184615 65 2

X_CTht 0.000769231 65 2

X_TTht -0.0025385 65 2

X_TNt 0.0563077 65 2

X_TSpt -0.0177538 65 2

X_BVTVt -0.000200000 65 2

X_vBMDtr -1.0000000 64 3

X_vBMDcr -12.9656250 64 3

X_vBMD100r -5.2109375 64 3

X_CThr -0.0135937 64 3

X_TThr -0.0013906 64 3

X_TNr 0.0237500 64 3

X_TSpr -0.0079531 64 3

X_BVTVr -0.000843750 64 3*/

pr

oc g

lm data=vibITT; class group; model X_aBMDf=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibITT; class group; model X_aBMDh=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibITT; class group; model X_aBMDs=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

6

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibITT; class group; model X_vBMDtt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibITT; class group; model X_vBMDct=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibITT; class group; model X_vBMD100t=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibITT; class group; model X_CTht=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibITT; class group; model X_TTht=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibITT; class group; model X_TNt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibITT; class group; model X_TSpt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibITT; class group; model X_BVTVt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibITT; class group; model X_vBMDtr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibITT; class group; model X_vBMDcr=group;

means group/hovtest=levene welch;

7

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibITT; class group; model X_vBMD100r=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibITT; class group; model X_CThr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibITT; class group; model X_TThr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibITT; class group; model X_TNr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibITT; class group; model X_TSpr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibITT; class group; model X_BVTVr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

8

title PER-PROTOCOL ANALYSIS drop-outs and HRT excluded;

/*EXCLUDED n=9*/

data vibPP; set vib; if id='021' or id='065' or id='100' or id='111' or id='140' or id='158' or id='163' OR id='053' or

id='116' then delete;

proc g

lm data=vibPP; class group; model X_aBMDf=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_aBMDh=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_aBMDs=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_vBMDtt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_vBMDct=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_vBMD100t=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_CTht=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_TTht=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_TNt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

Luba
Typewritten Text
Luba
Typewritten Text
237

9

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_TSpt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_BVTVt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_vBMDtr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_vBMDcr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_vBMD100r=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_CThr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_TThr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_TNr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_TSpr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_BVTVr=group;

means group/hovtest=levene welch;

10

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

title SUBGROUP =>8

0% cummulative WBV duration (adherence1); /*using per-protocol dataset*/

data vib801; set vibPP; if group='C' then adherence1=1

00; if adherence1>=8

0;ru

n;

proc g

lm data=vib801; class group; model X_aBMDf=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib801; class group; model X_aBMDh=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib801; class group; model X_aBMDs=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib801; class group; model X_vBMDtt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib801; class group; model X_vBMDct=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib801; class group; model X_vBMD100t=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib801; class group; model X_CTht=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib801; class group; model X_TTht=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

11

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib801; class group; model X_TNt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib801; class group; model X_TSpt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib801; class group; model X_BVTVt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib801; class group; model X_vBMDtr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib801; class group; model X_vBMDcr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib801; class group; model X_vBMD100r=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib801; class group; model X_CThr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib801; class group; model X_TThr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib801; class group; model X_TNr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

12

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib801; class group; model X_TSpr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib801; class group; model X_BVTVr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

title SUBGROUP =>8

0% number of WBV days (adherence2); /*using per-protocol dataset*/

data vib802; set vibPP; if group='C' then adherence2=1

00; if adherence2>=8

0;ru

n;

proc g

lm data=vib802; class group; model X_aBMDf=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib802; class group; model X_aBMDh=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib802; class group; model X_aBMDs=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib802; class group; model X_vBMDtt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib802; class group; model X_vBMDct=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib802; class group; model X_vBMD100t=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
238

13

pr

oc g

lm data=vib802; class group; model X_CTht=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib802; class group; model X_TTht=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib802; class group; model X_TNt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib802; class group; model X_TSpt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib802; class group; model X_BVTVt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib802; class group; model X_vBMDtr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib802; class group; model X_vBMDcr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib802; class group; model X_vBMD100r=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib802; class group; model X_CThr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib802; class group; model X_TThr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

14

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib802; class group; model X_TNr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib802; class group; model X_TSpr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib802; class group; model X_BVTVr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

title SUBGROUP =>8

0% WBV full-treatment count (adherence3); /*using per-protocol dataset*/

data vib803; set vibPP; if group='C' then adherence3=1

00; if adherence3>=8

0;ru

n;

proc g

lm data=vib803; class group; model X_aBMDf=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib803; class group; model X_aBMDh=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib803; class group; model X_aBMDs=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib803; class group; model X_vBMDtt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib803; class group; model X_vBMDct=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

15

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib803; class group; model X_vBMD100t=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib803; class group; model X_CTht=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib803; class group; model X_TTht=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib803; class group; model X_TNt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib803; class group; model X_TSpt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib803; class group; model X_BVTVt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib803; class group; model X_vBMDtr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib803; class group; model X_vBMDcr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib803; class group; model X_vBMD100r=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

16

pr

oc g

lm data=vib803; class group; model X_CThr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib803; class group; model X_TThr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib803; class group; model X_TNr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib803; class group; model X_TSpr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib803; class group; model X_BVTVr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

title SUBGROUP <

65kg; /*using per-protocol dataset*/

data vib65; set vibpp; if b_mass<6

5; r

un;

proc g

lm data=vib65; class group; model X_aBMDf=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib65; class group; model X_aBMDh=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib65; class group; model X_aBMDs=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib65; class group; model X_vBMDtt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
Luba
Typewritten Text
239

17

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib65; class group; model X_vBMDct=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib65; class group; model X_vBMD100t=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib65; class group; model X_CTht=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib65; class group; model X_TTht=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib65; class group; model X_TNt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib65; class group; model X_TSpt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib65; class group; model X_BVTVt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib65; class group; model X_vBMDtr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib65; class group; model X_vBMDcr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

18

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib65; class group; model X_vBMD100r=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib65; class group; model X_CThr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib65; class group; model X_TThr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib65; class group; model X_TNr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib65; class group; model X_TSpr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib65; class group; model X_BVTVr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

title SUBGROUP =<6

0yrs; /*using per-protocol dataset*/

data vib60; set vibpp; if b_age=<6

0; r

un;

proc g

lm data=vib60; class group; model X_aBMDf=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib60; class group; model X_aBMDh=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

19

pr

oc g

lm data=vib60; class group; model X_aBMDs=group; means

group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib60; class group; model X_vBMDtt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib60; class group; model X_vBMDct=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib60; class group; model X_vBMD100t=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib60; class group; model X_CTht=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib60; class group; model X_TTht=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib60; class group; model X_TNt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib60; class group; model X_TSpt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib60; class group; model X_BVTVt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib60; class group; model X_vBMDtr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

20

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib60; class group; model X_vBMDcr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib60; class group; model X_vBMD100r=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib60; class group; model X_CThr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib60; class group; model X_TThr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib60; class group; model X_TNr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib60; class group; model X_TSpr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib60; class group; model X_BVTVr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

title SUBGROUP =<1

0PMage; /*using per-protocol dataset*/

data vib10; set vibpp; if PMage=<1

0;ru

n;

proc g

lm data=vib10; class group; model X_aBMDf=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

Luba
Typewritten Text
240

21

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib10; class group; model X_aBMDh=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib10; class group; model X_aBMDs=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib10; class group; model X_vBMDtt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib10; class group; model X_vBMDct=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib10; class group; model X_vBMD100t=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib10; class group; model X_CTht=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib10; class group; model X_TTht=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib10; class group; model X_TNt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib10; class group; model X_TSpt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

22

pr

oc g

lm data=vib10; class group; model X_BVTVt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib10; class group; model X_vBMDtr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib10; class group; model X_vBMDcr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib10; class group; model X_vBMD100r=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib10; class group; model X_CThr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib10; class group; model X_TThr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib10; class group; model X_TNr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib10; class group; model X_TSpr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vib10; class group; model X_BVTVr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

23

title ANCOVA - BASELINE PHYSICAL ACTIVITY;/*using per-

protocol dataset*/

proc g

lm data=vibPP; class group; model X_aBMDf=B_pat group; lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_aBMDh=B_pat group; lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_aBMDs=B_pat group; lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_vBMDtt=B_pat group;

lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_vBMDct=B_pat group;

lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_vBMD100t=B_pat group; lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_CTht=B_pat group;

lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_TTht=B_pat group;

lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_TNt=B_pat group;

lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_TSpt=B_pat group;

lsmeans group;

24

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_BVTVt=B_pat group;

lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_vBMDtr=B_pat group;

lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_vBMDcr=B_pat group;

lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_vBMD100r=B_pat group; lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_CThr=B_pat group;

lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_TThr=B_pat group;

lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_TNr=B_pat group;

lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_TSpr=B_pat group;

lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_BVTVr=B_pat group;

lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

Luba
Typewritten Text
241

25

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

title ANCOVA - VITAMIN D; /*using per-protocol dataset*/

proc g

lm data=vibPP; class group; model X_aBMDf=Dlevel group; lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_aBMDh=Dlevel group; lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_aBMDs=Dlevel group; lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_vBMDtt=Dlevel group;

lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_vBMDct=Dlevel group;

lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_vBMD100t=Dlevel group; lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_CTht=Dlevel group;

lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_TTht=Dlevel group;

lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

26

pr

oc g

lm data=vibPP; class group; model X_TNt=Dlevel group;

lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_TSpt=Dlevel group;

lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_BVTVt=Dlevel group;

lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_vBMDtr=Dlevel group;

lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_vBMDcr=Dlevel group;

lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_vBMD100r=Dlevel group; lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_CThr=Dlevel group;

lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_TThr=Dlevel group;

lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_TNr=Dlevel group;

lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_TSpr=Dlevel group;

lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

27

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibPP; class group; model X_BVTVr=Dlevel group;

lsmeans group;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

title SENSITIVITY ANALYSIS excluded flagged participants from per-protocol;

/*using per-protocol dataset*/

data vibSEN; set vibPP;

if id='046' or id='031' or id='134' or id='059' or id='129' or id='132' or id='181' or id='152' or id='175' or id='177' or

id='058' or

id='103' or id='161' or id='117' or id='124' or id='125' or id='040' or id='099' then delete; /*all bone outcomes

affected*/

if id='083' then x_aBMDh= -0

.011

8952

97; if id='083' then x_aBMDf= -0

.012

1818

79; /*DXA outcomes affected*/

if id='013' or id='131' or id='144' or id='188' or id='136' or id='185' or id='193' then X_vBMDtr='.';

if id='013' or id='131' or id='144' or id='188' or id='136' or id='185' or id='193' then X_vBMDcr='.';

if id='013' or id='131' or id='144' or id='188' or id='136' or id='185' or id='193' then X_vBMD100r='.';

if id='013' or id='131' or id='144' or id='188' or id='136' or id='185' or id='193' then X_CThr='.';

if id='013' or id='131' or id='144' or id='188' or id='136' or id='185' or id='193' then X_TThr='.';

if id='013' or id='131' or id='144' or id='188' or id='136' or id='185' or id='193' then X_TNr='.';

if id='013' or id='131' or id='144' or id='188' or id='136' or id='185' or id='193' then X_TSpr='.';

if id='013' or id='131' or id='144' or id='188' or id='136' or id='185' or id='193' then X_BVTVr='.'; /*Radius pqct outcomes

affected*/

proc g

lm data=vibSEN; class group; model X_aBMDf=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibSEN; class group; model X_aBMDh=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibSEN; class group; model X_aBMDs=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibSEN; class group; model X_vBMDtt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

28

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibSEN; class group; model X_vBMDct=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibSEN; class group; model X_vBMD100t=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibSEN; class group; model X_CTht=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibSEN; class group; model X_TTht=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibSEN; class group; model X_TNt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibSEN; class group; model X_TSpt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibSEN; class group; model X_BVTVt=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibSEN; class group; model X_vBMDtr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibSEN; class group; model X_vBMDcr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibSEN; class group; model X_vBMD100r=group; means group/hovtest=levene welch;

Luba
Typewritten Text
242

29

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibSEN; class group; model X_CThr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibSEN; class group; model X_TThr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibSEN; class group; model X_TNr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibSEN; class group; model X_TSpr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

proc g

lm data=vibSEN; class group; model X_BVTVr=group;

means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group

1 -1

0;

contrast 'A>B>C: B vs C'

group

0 1 -

1;

contrast 'A>B>C: C vs A'

group

1 0 -

1;

contrast 'A=B>C: A+B vs C'

group

1 1 -

2; r

un;

quit;

TITLE DESCRIBING IMPORTANT VARIABLES;

title x_vBMDtt;

proc u

niva

riat

e data=vibsort normal plot; id id; by group; var x_vBMDtt;

histogram/cfill=ligr VSCALE=count normal (color=blue) kernel(color=red) cv=black; inset n mean std max min nmiss skewness

kurtosis;

run;

title x_aBMDf; p

roc

univ

aria

te data=vibsort normal plot; id id; by group; var x_aBMDf;

histogram/cfill=ligr VSCALE=count normal (color=blue) kernel(color=red) cv=black; inset n mean std max min nmiss skewness

kurtosis;

run;

title x_aBMDh; p

roc

univ

aria

te data=vibsort normal plot; id id; by group; var x_aBMDh;

histogram/cfill=ligr VSCALE=count normal (color=blue) kernel(color=red) cv=black; inset n mean std max min nmiss skewness

kurtosis;

run;

title x_aBMDs; p

roc

univ

aria

te data=vibsort normal plot; id id; by group; var x_aBMDs;

histogram/cfill=ligr VSCALE=count normal (color=blue) kernel(color=red) cv=black; inset n mean std max min nmiss skewness

kurtosis;

run;

30

title adherence1;

proc u

niva

riat

e data=vibsort normal plot;

id id; by group; var adherence1;

histogram/cfill=ligr VSCALE=count normal (color=blue) kernel(color=red) cv=black; inset n nmiss mean std median min max

qrange;

run;

title adherence2;

proc u

niva

riat

e data=vibsort normal plot; id id; by group; var adherence2;

histogram/cfill=ligr VSCALE=count normal (color=blue) kernel(color=red) cv=black; inset n nmiss mean std median min max

qrange;

run;

title adherence3;

proc u

niva

riat

e data=vibsort normal plot; id id; by group; var adherence3;

histogram/cfill=ligr VSCALE=count normal (color=blue) kernel(color=red) cv=black; inset n nmiss mean std median min max

qrange;

run;

proc m

eans data=vib n mean min max std; var b_age PMage b_mass b_calin b_vitdin commregiont commregionr; r

un;

proc m

eans data=vibsort n mean median qrange min max; by group; var adhcd; r

un;

data vibppp; set vibpp;

PX_aBMDf=(X_aBMDf/B_aBMDf)*1

00; PX_aBMDh=(X_aBMDh/B_aBMDh)*1

00; PX_aBMDs=(X_aBMDs/B_aBMDs)*1

00;

PX_vBMDtt=(X_vBMDtt/B_vBMDtt)*

100; PX_vBMDct=(X_vBMDct/B_vBMDct)*1

00;

PX_vBMD100t=(X_vBMD100t/B_vBMD100t)*

100;PX_CTht=(X_CTht/B_CTht)*

100;

PX_TTht=(X_TTht/B_TTht)*

100; PX_TNt=(X_TNt/B_TNt)*

100; PX_TSpt=(X_TSpt/B_TSpt)*1

00; PX_BVTVt=(X_BVTVt/B_BVTVt)*1

00;

PX_vBMDtr=(X_vBMDtr/B_vBMDtr)*

100; PX_vBMDcr=(X_vBMDcr/B_vBMDcr)*1

00; PX_vBMD100r=(X_vBMD100r/B_vBMD100r)*

100;

PX_CThr=(X_CThr/B_CThr)*

100;

PX_TThr=(X_TThr/B_TThr)*

100; PX_TNr=(X_TNr/B_TNr)*

100; PX_TSpr=(X_TSpr/B_TSpr)*1

00; PX_BVTVr=(X_BVTVr/B_BVTVr)*1

00;

run;

proc s

ort data=vibppp; by group; p

roc

mean

s data=vibppp; by group; var PX_aBMDf PX_aBMDh PX_aBMDs PX_vBMDtt PX_vBMDct

PX_vBMD100t

PX_CTht PX_TTht PX_TNt PX_TSpt PX_BVTVt PX_vBMDtr PX_vBMDcr PX_vBMD100r PX_CThr PX_TThr PX_TNr PX_TSpr PX_BVTVr; r

un;

TITLE DATA CHECKING;

proc c

onte

nts data=vib;r

un;

proc p

rint data=vib; var adherence1 adherence2 adherence3 adhcd sfall X_ca x_vitd x_mass x_BMI x_pat;

run;

proc p

rint data=vibPP; var id group x_aBMDs x_vBMDtt x_BVTVr;

run;

proc p

rint data=vib801; var id group adherence1 x_aBMDs x_vBMDtt x_BVTVr;

run;

proc p

rint data=vib802; var id group adherence2 x_aBMDs x_vBMDtt x_BVTVr;

run;

proc p

rint data=vib803; var id group adherence3 x_aBMDs x_vBMDtt x_BVTVr;

run;

proc p

rint data=vib65; var id group b_mass x_aBMDs x_vBMDtt x_BVTVr; r

un;

proc p

rint data=vib60; var id group b_age x_aBMDs x_vBMDtt x_BVTVr;

run;

proc p

rint data=vib10; var id group PMage x_aBMDs x_vBMDtt x_BVTVr;

run;

proc p

rint data=vibSEN; var id group x_aBMDh x_vBMDtt x_BVTVr; r

un;

Luba
Typewritten Text
243

244

CHAPTER TWO: ADDITIONAL RESULTS

Chapter 2 appendix table 1: Summary of missing cases.  

MISSING/COMPROMISED REASON  PARTICIPANTS MISSING 

PARTICIPANTS (#) 

  90Hz  30Hz  CON   Drop‐outs    2  3  2  021, 065, 100, 111, 140, 158, 163 HRT during study    1    1  053, 116 Not evaluable HR‐pQCT tibia scans 

Baseline    1    090 

  Final    1    099 Not evaluable HR‐pQCT radius  scans 

Baseline  1    1  091, 186 

  Final    2    040, 099,  Suspected compromised study conduct  

Improper WBV use  3  4    031, 046, 059, 129, 132, 134, 181 

  Unknown adherence  3  1    152, 163, 175, 177   Potentially compromised bone 

metabolism during study   2  3  040, 058, 099, 103, 161 

  Late final visit (>3 months)  1  1  2  116, 117, 124, 125   Left ankle fracture    1    059   Left wrist  or arm fracture  3      131, 144, 188   <80% matched region for HR‐

pQCT radius scans 1  1  2  136, 185, 188, 193 

  Large/unexplained loss in radius HR‐pQCT measurements 

1      013 

Unknown WBV adherence 

Unreturned platform    1    163 

  Digital clock malfunction  3      152, 175, 177 Vitamin D – no recent medical record  

  5  4  6  003, 042, 053, 086, 092, 097, 104, 115, 117, 119, 120, 145, 151, 153, 196 

Abbreviations: 90Hz, 90 Hz group, 30Hz, 30 Hz group, CON, controls.    Chapter 2 appendix table 2: Post‐baseline characteristics of vibration study participants. Study Characteristic  Category  90Hz  30Hz  CON Changes after baseline, mean (SD)  Calcium intakes (mg)*  ‐63 (632)  18 (621)  102 (570)   Vitamin D intake (IU)* 11 (504)  68 (540)  86 (508)   Physical activity  AMI (kcal/day)** ‐24 (208)  ‐12 (150)  ‐30 (189)   Mass (kg)** 0.2 (2.8)  0.0 (2.3)  0.5 (2.8)   BMI (kg∙m‐2)** 0.1 (1.1)  0.0 (0.9)  0.2 (1.1) Vitamin D (nmol/L), mean (SD)   Serum 25‐hydroxy  94 (26)  94 (33)  90 (27) Adherence (%), mean (median)  WBV cumulative duration  65 (79)  66 (77)  na   WBV days count  58 (70)  60 (65)  na   WBV full‐treatment count  64 (78)  65 (77)  na   Calcium and vitamin D   90 (98)  89 (98)  89 (96) Falls, n (%)  One   11  6  17   Two or more  10  6  7 Abbreviations: 90Hz, 90 Hz group, 30Hz, 30 Hz group, CON, controls, SD, standard deviation; AMI, activity metabolic index; BMI, body mass index; calcium and vitamin D supplements; SAE, serious adverse events. *Absolute change in total calcium and vitamin D intakes (diet plus supplements intakes) from baseline (prior to study supplementation) to the first day of WBV treatment and calcium and vitamin D supplementation (Day 1 – baseline) **Change from baseline to 12‐months (final – baseline) 

Luba
Typewritten Text
245

 Chapter 2 appendix table 3: Percent 12‐month change for DXA and HR‐pQCT parameters in the per‐protocol approach.   Per‐protocol approach (n=193) Bone Outcomes:  Percent 12 months Change 

90Hz  (n = 64) 

30Hz  (n = 65) 

CON    (n = 64) 

DXA       aBMDf (%)  ‐0.7 (2.6)  ‐0.8 (3.4)  ‐0.1 (2.9) aBMDh (%)  ‐0.4 (1.7)  ‐0.2 (2.0)  ‐0.3 (1.8) aBMDs (%)  ‐0.6 (3.2)  ‐0.9 (2.3)  ‐0.8 (2.3) HR‐pQCT distal tibia       vBMDt (%)  0.4 (2.8)  ‐0.1 (2.6)  ‐0.2 (2.4) vBMDc (%)  ‐1.3 (1.5)  ‐1.3 (1.8)  ‐1.1 (1.4) vBMDtot (%)  ‐0.4 (2.2)  ‐0.8 (2.0)  ‐0.6 (1.7) CTh (%)  0.1 (3.2)  ‐0.6 (4.1)  0.1 (2.9) TTh (%)  ‐3.6 (7.7)  ‐4.2 (8.8)  ‐3.1 (7.6) TN (%)  4.8 (8.9)  5.0 (9.7)  3.7 (8.8) TSp (%)  ‐3.9 (8.2)  ‐4.0 (8.6)  ‐2.9 (7.8)  BV/TV (%)  0.4 (2.8)  ‐0.0 (2.8)  ‐0.2 (2.3) vBMDt (%)  ‐1.3 (7.0)  ‐1.1 (3.8)  ‐0.6 (3.2) HR‐pQCT distal radius       vBMDc (%)  ‐1.7 (2.0)  ‐1.2 (2.2)  ‐1.5 (2.1) vBMDtot (%)  ‐1.6 (3.8)  ‐1.3 (2.7)  ‐1.5 (3.2) CTh (%)  ‐0.9 (4.9)  ‐0.8 (4.2)  ‐1.6 (5.9) TTh (%)  ‐2.6 (8.6)  ‐2.9 (8.3)  ‐1.9 (9.4) TN (%)  2.3 (12.0)  2.4 (7.9)  2.1 (9.7) TSp (%)  ‐0.2 (18.1)  ‐1.6 (7.8)  ‐1.1 (9.6)  BV/TV (%)  ‐1.3 (6.9)  ‐1.2 (3.8)  ‐0.6 (3.2) Abbreviations: 90Hz, 90 Hz group, 30Hz, 30 Hz group, CON, controls, DXA, dual‐energy x‐ray absorptiometry; HR‐pQCT, high‐resolution peripheral quantitative computed tomography; WBV, whole‐body vibration; SD, standard deviation; BMI, body mass index; BMD, bone mineral density; aBMDf, areal BMD at the femoral neck; aBMDh, areal BMD at the total hip; aBMDs, areal BMD at the lumbar spine L1‐L4; vBMDt, trabecular volumetric BMD;  vBMDc, cortical volumetric BMD; vBMDtot, total volumetric BMD; CTh, cortical thickness; TTh,  trabecular thickness; TN,  trabecular number; TSp, trabecular separation; BV/TV, trabecular bone volume fraction.     Chapter 2 appendix table 4: Percent 12‐month change for DXA and HR‐pQCT parameters in the per‐protocol approach. 

Cause for dissatisfaction with WBV use  Number of 90Hz/30Hz participants agreed 

Found 20 minutes of WBV a day too time consuming   39 Found WBV too heavy and bulky  57 Found WBV too difficult to use  3 Experienced unpleasant chronic symptom perceived as WBV‐related  4 Experienced unpleasant transient symptom perceived as WBV‐related  17 Found WBV irritable due to its  noisiness  3 Abbreviations: WBV, whole‐body vibration, 90Hz, 90 Hz group, 30Hz, 30 Hz group, 

Luba
Typewritten Text
Luba
Typewritten Text
246

247

CHAPTER THREE: SAS CODES

*************************************************************************************************************************

SECONDARY ANALYSIS OF QUS OUTCOMES

*************************************************************************************************************************;

title QUS DATA FILE; run;

libname lubalib 'Z:\_LUBA_\2_VIBRATION STUDY\Data Analysis\SAS'; data qus1; set lubalib.qus1;run;

libname lubalib 'Z:\_LUBA_\2_VIBRATION STUDY\Data Analysis\SAS'; data cov1; set lubalib.cov1;run;

data mergequs; merge qus1 cov1; by id;

keep id

group B_qui B_bua B_sos F_qui F_bua F_sos bsldate dob B_lastperiod B_mass B_pal B_pam B_pah Dlevel

adherence1 adherence2 adherence3; run;

data qus; set mergequs;

x_sos=(f_sos-b_sos); x_bua=(f_bua-b_bua); x_qui=(f_qui-b_qui);

B_age= (bsldate-dob)/365.25;

B_pat= (B_pal+B_pam+B_pah)*52/365.25;

y1=year(B_lastperiod); y2=year(bsldate); PMage=y2-y1; run;

title BASELINE ANALYSIS;

proc glm data=qus; class group; model B_sos=group; means group/hovtest=levene welch; run;

proc glm data=qus; class group; model B_bua=group; means group/hovtest=levene welch; run;

proc glm data=qus; class group; model B_qui=group; means group/hovtest=levene welch; run;

proc glm data=qus; class group; model PMage=group; means group/hovtest=levene welch; run; quit;

title ITT ANALYSIS single imputation/population mean; *27 missing and compromised outcomes imputed from per-protocol;

proc sort data=qus out=qussort; by group; run;

proc means data=qussort n mean; by group; var x_sos x_bua x_qui; run;

/*group=A ---------------------------------------------

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

x_sos 59 -1.9271186

x_bua 59 -0.7135593

x_qui 59 -1.0864407

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

group=B ---------------------------------------------

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

x_sos 60 -1.6900000

x_bua 60 -0.7450000

x_qui 60 -0.9783333

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

group=C ---------------------------------------------

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

x_sos 58 -0.6396552

x_bua 58 1.3241379

x_qui 58 0.2672414*/

data qusitt; set qus;

if id='053' or id='116' then x_sos='.';/*HRT participants*/

if id='053' or id='116' then x_bua='.';

if id='053' or id='116' then x_qui='.';

if x_sos='.' and group='A' then x_sos=-1.9271186;

if x_bua='.' and group='A' then x_bua=-0.7135593;

if x_qui='.' and group='A' then x_qui=-1.0864407;

if x_sos='.' and group='B' then x_sos=-1.6900000;

if x_bua='.' and group='B' then x_bua=-0.7450000;

if x_qui='.' and group='B' then x_qui=-0.9783333;

if x_sos='.' and group='C' then x_sos=-0.6396552;

if x_bua='.' and group='C' then x_bua=1.3241379;

if x_qui='.' and group='C' then x_qui=0.2672414; run;

proc glm data=qusitt;class group; model x_sos=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

proc glm data=qusitt;class group; model x_bua=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

proc glm data=qusitt;class group; model x_qui=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

title PER PROTOCOL ANALYSIS; *27 missing and compromised QUS outcomes excluded;

data quspp; set qus; if id='053' or id='116' then delete;

proc glm data=quspp; class group; model x_sos=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

proc glm data=quspp; class group; model x_bua=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

proc glm data=quspp; class group; model x_qui=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

title SUBGROUP =>80% cummulative WBV duration (adherence1);

data qus801; set quspp; if group='C' then adherence1=100; if adherence1>=80;run;

proc glm data=qus801;class group; model x_sos=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

proc glm data=qus801;class group; model x_bua=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

proc glm data=qus801;class group; model x_qui=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

title SUBGROUP =>80% number of WBV days (adherence2);

data qus802; set quspp; if group='C' then adherence2=100; if adherence2>=80;run;

proc glm data=qus802;class group; model x_sos=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

proc glm data=qus802;class group; model x_bua=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

proc glm data=qus802;class group; model x_qui=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

title SUBGROUP =>80% WBV full-treatment count (adherence3);

data qus803; set quspp; if group='C' then adherence3=100; if adherence3>=80;run;

proc glm data=qus803;class group; model x_sos=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

proc glm data=qus803;class group; model x_bua=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

proc glm data=qus803;class group; model x_qui=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

title SUBGROUP <65kg;

data qus65; set quspp; if b_mass<65;run;

proc glm data=qus65;class group; model x_sos=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

proc glm data=qus65;class group; model x_bua=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

proc glm data=qus65;class group; model x_qui=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

title SUBGROUP =<60yrs;

data qus60; set quspp; if b_age=<60;run;

proc glm data=qus60;class group; model x_sos=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

proc glm data=qus60;class group; model x_bua=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

proc glm data=qus60;class group; model x_qui=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

Luba
Typewritten Text
248

title SUBGROUP =<10PMage;

data qus10; set quspp; if PMage=<10;run;

proc glm data=qus10;class group; model x_sos=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

proc glm data=qus10;class group; model x_bua=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

proc glm data=qus10;class group; model x_qui=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

title ANCOVA ANALYSES;

proc glm data=quspp; class group; model x_sos=b_pat group; lsmeans group;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

proc glm data=quspp; class group; model x_bua=b_pat group; lsmeans group;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

proc glm data=quspp; class group; model x_qui=b_pat group; lsmeans group;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

proc glm data=quspp; class group; model x_sos=dlevel group; lsmeans group;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

proc glm data=quspp; class group; model x_bua=dlevel group; lsmeans group;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

proc glm data=quspp; class group; model x_qui=dlevel group; lsmeans group;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

title SENSITIVITY ANALYSIS; *16 participants with potentially compromised study conduct excluded (177 already excluded);

data qussen; set quspp;

if id='046' or id='031' or id='134' or id='129' or id='132' or id='181' or id='152' or id='175' or id='177' or id='058'

or id='103' or id='161' or id='040' or id='099' or id='117' or id='124' or id='125' then x_bua='.';

if id='046' or id='031' or id='134' or id='129' or id='132' or id='181' or id='152' or id='175' or id='177' or id='058'

or id='103' or id='161' or id='040' or id='099' or id='117' or id='124' or id='125' then x_sos='.';

if id='046' or id='031' or id='134' or id='129' or id='132' or id='181' or id='152' or id='175' or id='177' or id='058'

or id='103' or id='161' or id='040' or id='099' or id='117' or id='124' or id='125' then x_qui='.'; run;

proc glm data=qussen;class group; model x_sos=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

proc glm data=qussen;class group; model x_bua=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

proc glm data=qussen;class group; model x_qui=group; means group/hovtest=levene welch;

contrast 'A>B>C: A vs B'

group 1 -1 0;

contrast 'A>B>C: A vs C'

group 1 0 -1;

contrast 'A>B>C: B vs C'

group 0 1 -1;

contrast 'A=B>C: A+B vs C'

group 1 1 -2; run; quit;

title DESCRIBING IMPORTANT VARIABLES;

proc means data=qussort n nmiss mean std median min max; by group; var adherence1 adherence2 adherence3 b_mass b_age PMage

b_pat dlevel; run;

proc sort data=quspp out=qusppsort; by group; run;

proc univariate data=qusppsort normal plot; id id; by group; var x_bua;

title x_sos; proc univariate data=qusppsort normal plot; id id; by group; var x_sos;

histogram/cfill=ligr VSCALE=count normal (color=blue) kernel(color=red) cv=black; inset n mean std max min nmiss skewness

kurtosis;

qqplot/normal(mu=est sigma=est color=red); run;

title x_bua; proc univariate data=qusppsort normal plot; id id; by group; var x_bua;

histogram/cfill=ligr VSCALE=count normal (color=blue) kernel(color=red) cv=black; inset n mean std max min nmiss skewness

kurtosis;

qqplot/normal(mu=est sigma=est color=red); run;

title x_qui; proc univariate data=qusppsort normal plot; id id; by group; var x_qui;

histogram/cfill=ligr VSCALE=count normal (color=blue) kernel(color=red) cv=black; inset n mean std max min nmiss skewness

kurtosis;

qqplot/normal(mu=est sigma=est color=red); run;

data quspercent; set qusppsort; px_sos=(x_sos/b_sos)*100; px_bua=(x_bua/b_bua)*100; px_qui=(x_qui/b_qui)*100; run;

proc means data=quspercent; var px_sos px_bua px_qui; run;

title DATA CHECKING;

proc contents data=qus; run;

proc print data=quspp; id id; var id group F_sos b_sos x_sos F_bua b_bua x_bua F_qui b_qui x_qui;

run;

proc print data=quspp; id id; var id group b_age PMage B_pat; run;

proc print data=qus801; id id; var id group adherence1 x_sos x_bua x_qui; run;

proc print data=qus802; id id; var id group adherence2 x_sos x_bua x_qui; run;

proc print data=qus803; id id; var id group adherence3 x_sos x_bua x_qui; run;

proc print data=qus65;var id group b_mass x_sos x_bua x_qui; run;

proc print data=qus60;var id group b_age x_sos x_bua x_qui; run;

proc print data=qus10;var id group PMage x_sos x_bua x_qui; run;

proc print data=qussen; id id; var id group x_sos x_bua x_qui; run;

Luba
Typewritten Text
249

250

CHAPTER THREE: QUS QC – CALIBRATION LOG

Month/Year    ASSESING BUA QC RANGE (QAB)  ASSESING SOS QC RANGE (QAS)       WIDE  NARROW  NARROW  WIDE  WIDE  NARROW  NARROW  WIDE  Day  QAB  QAB>=0.7  QAB>=0.87 QAB=<1.14 QAB=<1.30 QAS QAS=>0.97 QAS=>0.987 QAS<=1.014 QAS<=1.03

NOVEMBER 2009   

     

 3  1.08  TRUE  TRUE TRUE TRUE 0.994 TRUE  TRUE  TRUE TRUE 4  1.08  TRUE  TRUE TRUE TRUE 0.992 TRUE  TRUE  TRUE TRUE 6  1.09  TRUE  TRUE TRUE TRUE 0.99 TRUE  TRUE  TRUE TRUE 13  1.1  TRUE  TRUE TRUE TRUE 0.991 TRUE  TRUE  TRUE TRUE 17  1.11  TRUE  TRUE TRUE TRUE 0.99 TRUE  TRUE  TRUE TRUE

OCTOBER 2009  

1  1.12  TRUE  TRUE TRUE TRUE 0.994 TRUE  TRUE  TRUE TRUE

 7  1.13  TRUE  TRUE TRUE TRUE 0.994 TRUE  TRUE  TRUE TRUE 9  1.14  TRUE  TRUE TRUE TRUE 0.991 TRUE  TRUE  TRUE TRUE 13  1.15  TRUE  TRUE FALSE TRUE 0.993 TRUE  TRUE  TRUE TRUE 14  1.16  TRUE  TRUE FALSE TRUE 0.992 TRUE  TRUE  TRUE TRUE 15  1.17  TRUE  TRUE FALSE TRUE 0.989 TRUE  TRUE  TRUE TRUE 19  1.18  TRUE  TRUE FALSE TRUE 0.993 TRUE  TRUE  TRUE TRUE 23  1.19  TRUE  TRUE FALSE TRUE 0.995 TRUE  TRUE  TRUE TRUE 26  1.2  TRUE  TRUE FALSE TRUE 0.992 TRUE  TRUE  TRUE TRUE 28  1.21  TRUE  TRUE FALSE TRUE 0.99 TRUE  TRUE  TRUE TRUE

SEPTEMBER 2009  

3  1.22  TRUE  TRUE FALSE TRUE 0.994 TRUE  TRUE  TRUE TRUE

 8  1.23  TRUE  TRUE FALSE TRUE 0.993 TRUE  TRUE  TRUE TRUE 11  1.24  TRUE  TRUE FALSE TRUE 0.994 TRUE  TRUE  TRUE TRUE 21  1.25  TRUE  TRUE FALSE TRUE 0.979 TRUE  FALSE  TRUE TRUE 28  1.26  TRUE  TRUE FALSE TRUE 0.995 TRUE  TRUE  TRUE TRUE

AUGUST 2009  4  1.27  TRUE  TRUE FALSE TRUE 0.994 TRUE  TRUE  TRUE TRUE 11  1.28  TRUE  TRUE FALSE TRUE 0.994 TRUE  TRUE  TRUE TRUE 13  1.29  TRUE  TRUE FALSE TRUE 0.994 TRUE  TRUE  TRUE TRUE 28  1.3  TRUE  TRUE FALSE TRUE 0.993 TRUE  TRUE  TRUE TRUE

JULY 2009  21  1.31  TRUE  TRUE FALSE FALSE 0.994 TRUE  TRUE  TRUE TRUE 22  1.32  TRUE  TRUE FALSE FALSE 0.995 TRUE  TRUE  TRUE TRUE 23  1.33  TRUE  TRUE FALSE FALSE 0.992 TRUE  TRUE  TRUE TRUE 27  1.34  TRUE  TRUE FALSE FALSE 0.993 TRUE  TRUE  TRUE TRUE 29  1.35  TRUE  TRUE FALSE FALSE 0.995 TRUE  TRUE  TRUE TRUE 31  1.36  TRUE  TRUE FALSE FALSE 0.995 TRUE  TRUE  TRUE TRUE

JUNE 2009  2  1.12  TRUE  TRUE TRUE TRUE 0.995 TRUE  TRUE  TRUE TRUE 12  1.07  TRUE  TRUE TRUE TRUE 0.989 TRUE  TRUE  TRUE TRUE 22  1.08  TRUE  TRUE TRUE TRUE 0.991 TRUE  TRUE  TRUE TRUE 23  1.1  TRUE  TRUE TRUE TRUE 0.993 TRUE  TRUE  TRUE TRUE 25  1.09  TRUE  TRUE TRUE TRUE 0.991 TRUE  TRUE  TRUE TRUE

MAY 2009  25  1.11  TRUE  TRUE TRUE TRUE 0.994 TRUE  TRUE  TRUE TRUE 28  1.12  TRUE  TRUE TRUE TRUE 0.995 TRUE  TRUE  TRUE TRUE

APRIL 2009  6  1.13  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE 13  1.13  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE 28  1.08  TRUE  TRUE TRUE TRUE 0.988 TRUE  TRUE  TRUE TRUE

MARCH 2009  9  1.12  TRUE  TRUE TRUE TRUE 0.995 TRUE  TRUE  TRUE TRUE 25  1.12  TRUE  TRUE TRUE TRUE 0.994 TRUE  TRUE  TRUE TRUE

FEB 2009  6  1.11  TRUE  TRUE TRUE TRUE 0.995 TRUE  TRUE  TRUE TRUE 7  1.08  TRUE  TRUE TRUE TRUE 0.995 TRUE  TRUE  TRUE TRUE 18  1.02  TRUE  TRUE TRUE TRUE 0.992 TRUE  TRUE  TRUE TRUE 20  1.15  TRUE  TRUE FALSE TRUE 0.993 TRUE  TRUE  TRUE TRUE 24  1.11  TRUE  TRUE TRUE TRUE 0.995 TRUE  TRUE  TRUE TRUE

JANUARY 2009  6  1.09  TRUE  TRUE TRUE TRUE 0.995 TRUE  TRUE  TRUE TRUE 9  1.16  TRUE  TRUE FALSE TRUE 0.992 TRUE  TRUE  TRUE TRUE 16  1.11  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 19  1.13  TRUE  TRUE TRUE TRUE 0.995 TRUE  TRUE  TRUE TRUE 21  1.12  TRUE  TRUE TRUE TRUE 0.99 TRUE  TRUE  TRUE TRUE 23  1.11  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE 30  1.11  TRUE  TRUE TRUE TRUE 0.994 TRUE  TRUE  TRUE TRUE

lslatkov
Text Box
251

DECEMBER 2008 

1  1.09  TRUE  TRUE TRUE TRUE 0.993 TRUE  TRUE  TRUE TRUE

 4  1.07  TRUE  TRUE TRUE TRUE 0.993 TRUE  TRUE  TRUE TRUE 9  1.1  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE 16  1.1  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 19  1.09  TRUE  TRUE TRUE TRUE 0.995 TRUE  TRUE  TRUE TRUE

NOVEMBER 2008 

1  1.08  TRUE  TRUE TRUE TRUE 0.994 TRUE  TRUE  TRUE TRUE

 6  1.08  TRUE  TRUE TRUE TRUE 0.991 TRUE  TRUE  TRUE TRUE 17  1.09  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE 24  1.06  TRUE  TRUE TRUE TRUE 0.994 TRUE  TRUE  TRUE TRUE 25  1.08  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE 28  1.16  TRUE  TRUE FALSE TRUE 0.995 TRUE  TRUE  TRUE TRUE

OCTOBER 2008  1  1.05  TRUE  TRUE TRUE TRUE 0.995 TRUE  TRUE  TRUE TRUE 2  1.05  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE 3  1.07  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE 6  1.05  TRUE  TRUE TRUE TRUE 0.994 TRUE  TRUE  TRUE TRUE 7  1.09  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE 8  1.09  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE 10  1.06  TRUE  TRUE TRUE TRUE 0.992 TRUE  TRUE  TRUE TRUE 11  1.06  TRUE  TRUE TRUE TRUE 0.992 TRUE  TRUE  TRUE TRUE 14  1.05  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE 17  1.06  TRUE  TRUE TRUE TRUE 0.994 TRUE  TRUE  TRUE TRUE 21  1.07  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 22  1.09  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 23  1.06  TRUE  TRUE TRUE TRUE 0.994 TRUE  TRUE  TRUE TRUE 24  1.1  TRUE  TRUE TRUE TRUE 0.995 TRUE  TRUE  TRUE TRUE 27  1.08  TRUE  TRUE TRUE TRUE 0.993 TRUE  TRUE  TRUE TRUE 28  1.1  TRUE  TRUE TRUE TRUE 0.995 TRUE  TRUE  TRUE TRUE 31  1.09  TRUE  TRUE TRUE TRUE 0.991 TRUE  TRUE  TRUE TRUE    1.03  TRUE  TRUE TRUE TRUE 0.991 TRUE  TRUE  TRUE TRUE    1.06  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE

SEPTEMBER 2008 

2  1.07  TRUE  TRUE TRUE TRUE 0.995 TRUE  TRUE  TRUE TRUE

 3  1.06  TRUE  TRUE TRUE TRUE 0.995 TRUE  TRUE  TRUE TRUE 18  1.06  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 22  1.04  TRUE  TRUE TRUE TRUE 0.994 TRUE  TRUE  TRUE TRUE 23  1.04  TRUE  TRUE TRUE TRUE 0.994 TRUE  TRUE  TRUE TRUE 25  1.05  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE 30  1.06  TRUE  TRUE TRUE TRUE 0.993 TRUE  TRUE  TRUE TRUE

AUGUST 2008  18  1.04  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE 21  1.07  TRUE  TRUE TRUE TRUE 0.995 TRUE  TRUE  TRUE TRUE 22  1.07  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 26  1.06  TRUE  TRUE TRUE TRUE 0.994 TRUE  TRUE  TRUE TRUE 27  1.07  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE 29  1.07  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE

JULY 2008  10  1.04  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE 14  1.1  TRUE  TRUE TRUE TRUE 0.995 TRUE  TRUE  TRUE TRUE 17  1.07  TRUE  TRUE TRUE TRUE 0.992 TRUE  TRUE  TRUE TRUE 21  1.07  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE 22  1.08  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 25  1.1  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE 28  1.09  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE 30  1.1  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE 31  1.1  TRUE  TRUE TRUE TRUE 0.995 TRUE  TRUE  TRUE TRUE

JUNE 2008  6  1.08  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 11  1.13  TRUE  TRUE TRUE TRUE 0.993 TRUE  TRUE  TRUE TRUE 13  1.12  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 16  1.08  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE 18  1.09  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE 23  1.11  TRUE  TRUE TRUE TRUE 0.995 TRUE  TRUE  TRUE TRUE 25  1.11  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE

lslatkov
Text Box
252

MAY 2008  2  1.12  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 5  1.12  TRUE  TRUE TRUE TRUE 0.999 TRUE  TRUE  TRUE TRUE 6  1.12  TRUE  TRUE TRUE TRUE 0.999 TRUE  TRUE  TRUE TRUE 7  1.03  TRUE  TRUE TRUE TRUE 0.993 TRUE  TRUE  TRUE TRUE 8  1.12  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 9  1.11  TRUE  TRUE TRUE TRUE 0.999 TRUE  TRUE  TRUE TRUE 12  1.09  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 13  1.12  TRUE  TRUE TRUE TRUE 1 TRUE  TRUE  TRUE TRUE 20  1.12  TRUE  TRUE TRUE TRUE 0.999 TRUE  TRUE  TRUE TRUE 22  1.12  TRUE  TRUE TRUE TRUE 0.993 TRUE  TRUE  TRUE TRUE 23  1.13  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE 26  1  TRUE  TRUE TRUE TRUE 1.12 TRUE  TRUE  FALSE FALSE 30  1.12  TRUE  TRUE TRUE TRUE 0.999 TRUE  TRUE  TRUE TRUE

APRIL 2008  1  1.1  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 14  1.11  TRUE  TRUE TRUE TRUE 0.999 TRUE  TRUE  TRUE TRUE 16  1.12  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 18  1.13  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE 21  1.13  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE 30  1.13  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE

MARCH 2008  14  1.1  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 17  1.12  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 18  1.06  TRUE  TRUE TRUE TRUE 0.993 TRUE  TRUE  TRUE TRUE 19  1.1  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 20  1.08  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE 26  1.1  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 28  1.1  TRUE  TRUE TRUE TRUE 0.999 TRUE  TRUE  TRUE TRUE

FEBRUARY 2008  4  1.11  TRUE  TRUE TRUE TRUE 1 TRUE  TRUE  TRUE TRUE 5  1.09  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE 6  1.1  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE 7  1.12  TRUE  TRUE TRUE TRUE 1 TRUE  TRUE  TRUE TRUE 13  1.1  TRUE  TRUE TRUE TRUE 0.994 TRUE  TRUE  TRUE TRUE 15  1.13  TRUE  TRUE TRUE TRUE 0.999 TRUE  TRUE  TRUE TRUE 20  1.12  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE 22  1.11  TRUE  TRUE TRUE TRUE 0.999 TRUE  TRUE  TRUE TRUE 26  1.13  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE 29  1.13  TRUE  TRUE TRUE TRUE 0.999 TRUE  TRUE  TRUE TRUE

JANUARY 2008  4  1.13  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE 7  1.13  TRUE  TRUE TRUE TRUE 1 TRUE  TRUE  TRUE TRUE 8  1.08  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 9  1.08  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE 10  1.09  TRUE  TRUE TRUE TRUE 1 TRUE  TRUE  TRUE TRUE 11  1.1  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE 14  1.08  TRUE  TRUE TRUE TRUE 0.91 FALSE  FALSE  TRUE TRUE 15  1.11  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE 16  1.11  TRUE  TRUE TRUE TRUE 0.994 TRUE  TRUE  TRUE TRUE 17  1.12  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE 18  1.1  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE 23  1.13  TRUE  TRUE TRUE TRUE 1 TRUE  TRUE  TRUE TRUE 24  1.13  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 28  1.13  TRUE  TRUE TRUE TRUE 0.999 TRUE  TRUE  TRUE TRUE 31  1.13  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE

DECEMBER 2007 

4  1.11  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE

 6  1.12  TRUE  TRUE TRUE TRUE 0.99 TRUE  TRUE  TRUE TRUE 7  1.12  TRUE  TRUE TRUE TRUE 0.992 TRUE  TRUE  TRUE TRUE 10  1.12  TRUE  TRUE TRUE TRUE 0.988 TRUE  TRUE  TRUE TRUE 11  1.12  TRUE  TRUE TRUE TRUE 0.999 TRUE  TRUE  TRUE TRUE 12  1.13  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE 14  1.11  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 17  1.12  TRUE  TRUE TRUE TRUE 0.995 TRUE  TRUE  TRUE TRUE 18  1.12  TRUE  TRUE TRUE TRUE 0.994 TRUE  TRUE  TRUE TRUE 19  1.12  TRUE  TRUE TRUE TRUE 0.999 TRUE  TRUE  TRUE TRUE

lslatkov
Text Box
lslatkov
Text Box
253

 20  1.13  TRUE  TRUE TRUE TRUE 1 TRUE  TRUE  TRUE TRUENOVEMBER 2007 

5  1.12  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE

 7  1.06  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 8  1.08  TRUE  TRUE TRUE TRUE 0.999 TRUE  TRUE  TRUE TRUE 12  1.07  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE 16  1.06  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE 19  1.04  TRUE  TRUE TRUE TRUE 0.987 TRUE  TRUE  TRUE TRUE 20  1.05  TRUE  TRUE TRUE TRUE 0.989 TRUE  TRUE  TRUE TRUE 21  1.05  TRUE  TRUE TRUE TRUE 0.987 TRUE  TRUE  TRUE TRUE 22  1.05  TRUE  TRUE TRUE TRUE 0.987 TRUE  TRUE  TRUE TRUE 23  1.11  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE 26  1.09  TRUE  TRUE TRUE TRUE 0.999 TRUE  TRUE  TRUE TRUE 27  1.06  TRUE  TRUE TRUE TRUE 0.987 TRUE  TRUE  TRUE TRUE 28  1.09  TRUE  TRUE TRUE TRUE 0.991 TRUE  TRUE  TRUE TRUE 29  1.06  TRUE  TRUE TRUE TRUE 0.987 TRUE  TRUE  TRUE TRUE 30  1.1  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE    1.11  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE

OCTOBER 2007  1  1.03  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 2  1.06  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE 3  1.04  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE 4  1.01  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE 9  1.04  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 15  1.07  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 23  1.07  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE 24  1.04  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE 25  1.09  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE 26  1.07  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE 29  1.09  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE

SEPTEMBER 2007 

10  1.03  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE

 13  1.03  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 18  1.02  TRUE  TRUE TRUE TRUE 0.995 TRUE  TRUE  TRUE TRUE 19  1.04  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE

AUGUST 2007  7  1.03  TRUE  TRUE TRUE TRUE 0.987 TRUE  TRUE  TRUE TRUE 8  1.02  TRUE  TRUE TRUE TRUE 0.994 TRUE  TRUE  TRUE TRUE 14  1.01  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE 15  1.01  TRUE  TRUE TRUE TRUE 0.994 TRUE  TRUE  TRUE TRUE 16  1.02  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE 21  1.03  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 27  1.02  TRUE  TRUE TRUE TRUE 0.995 TRUE  TRUE  TRUE TRUE 28  1.02  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE

JULY 2007  5  1.03  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE 16  1.03  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE 25  1.02  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE

JUNE 2007  1  1.01  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 5  1.03  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 7  1.01  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE 8  1  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE 12  0.96  TRUE  TRUE TRUE TRUE 0.987 TRUE  TRUE  TRUE TRUE 13  0.97  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 14  1.06  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 20  1.02  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 23  1.02  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE 27  1.04  TRUE  TRUE TRUE TRUE 0.995 TRUE  TRUE  TRUE TRUE

MAY 2007  2  1.04  TRUE  TRUE TRUE TRUE 0.988 TRUE  TRUE  TRUE TRUE 15  1.03  TRUE  TRUE TRUE TRUE 0.991 TRUE  TRUE  TRUE TRUE 16  1.07  TRUE  TRUE TRUE TRUE 0.99 TRUE  TRUE  TRUE TRUE 18  1.09  TRUE  TRUE TRUE TRUE 0.999 TRUE  TRUE  TRUE TRUE 23  1  TRUE  TRUE TRUE TRUE 0.988 TRUE  TRUE  TRUE TRUE 25  0.98  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE 28  1.01  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE

lslatkov
Text Box
254

 29  1.02  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 30  1.02  TRUE  TRUE TRUE TRUE 0.999 TRUE  TRUE  TRUE TRUE 31  1  TRUE  TRUE TRUE TRUE 0.995 TRUE  TRUE  TRUE TRUE

APRIL 2007  10  1.06  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE 11  1.06  TRUE  TRUE TRUE TRUE 0.999 TRUE  TRUE  TRUE TRUE 13  1.08  TRUE  TRUE TRUE TRUE 0.992 TRUE  TRUE  TRUE TRUE 16  1.07  TRUE  TRUE TRUE TRUE 0.992 TRUE  TRUE  TRUE TRUE 17  1.08  TRUE  TRUE TRUE TRUE 0.999 TRUE  TRUE  TRUE TRUE 18  1.07  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 23  1.19  TRUE  TRUE FALSE TRUE 0.999 TRUE  TRUE  TRUE TRUE 24  1.09  TRUE  TRUE TRUE TRUE 0.999 TRUE  TRUE  TRUE TRUE 25  1.04  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE 26  1.06  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE

MARCH 2007  5  1.08  TRUE  TRUE TRUE TRUE 0.987 TRUE  TRUE  TRUE TRUE 7  1.07  TRUE  TRUE TRUE TRUE 0.988 TRUE  TRUE  TRUE TRUE 9  1.03  TRUE  TRUE TRUE TRUE 0.988 TRUE  TRUE  TRUE TRUE 11  1.03  TRUE  TRUE TRUE TRUE 0.989 TRUE  TRUE  TRUE TRUE 13  1.02  TRUE  TRUE TRUE TRUE 1 TRUE  TRUE  TRUE TRUE 14  1.04  TRUE  TRUE TRUE TRUE 0.993 TRUE  TRUE  TRUE TRUE 15  1.11  TRUE  TRUE TRUE TRUE 0.999 TRUE  TRUE  TRUE TRUE 16  1.1  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 19  1.1  TRUE  TRUE TRUE TRUE 0.999 TRUE  TRUE  TRUE TRUE 26  1.07  TRUE  TRUE TRUE TRUE 0.995 TRUE  TRUE  TRUE TRUE 27  1.08  TRUE  TRUE TRUE TRUE 0.988 TRUE  TRUE  TRUE TRUE 28  1.11  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE

FEBRUARY 2007  1  1.08  TRUE  TRUE TRUE TRUE 0.996 TRUE  TRUE  TRUE TRUE 2  1.1  TRUE  TRUE TRUE TRUE 1.002 TRUE  TRUE  TRUE TRUE 5  1.11  TRUE  TRUE TRUE TRUE 1 TRUE  TRUE  TRUE TRUE 6  1.1  TRUE  TRUE TRUE TRUE 1 TRUE  TRUE  TRUE TRUE 7  1.09  TRUE  TRUE TRUE TRUE 0.999 TRUE  TRUE  TRUE TRUE 8  1.11  TRUE  TRUE TRUE TRUE 1.001 TRUE  TRUE  TRUE TRUE 12  1.07  TRUE  TRUE TRUE TRUE 1.001 TRUE  TRUE  TRUE TRUE 14  1.08  TRUE  TRUE TRUE TRUE 1 TRUE  TRUE  TRUE TRUE 15  1.1  TRUE  TRUE TRUE TRUE 1 TRUE  TRUE  TRUE TRUE 20  1.05  TRUE  TRUE TRUE TRUE 0.988 TRUE  TRUE  TRUE TRUE 21  1.07  TRUE  TRUE TRUE TRUE 1.001 TRUE  TRUE  TRUE TRUE 22  1.09  TRUE  TRUE TRUE TRUE 0.999 TRUE  TRUE  TRUE TRUE 26  1.07  TRUE  TRUE TRUE TRUE 0.988 TRUE  TRUE  TRUE TRUE 27  1.07  TRUE  TRUE TRUE TRUE 0.987 TRUE  TRUE  TRUE TRUE 28  1.09  TRUE  TRUE TRUE TRUE 0.999 TRUE  TRUE  TRUE TRUE

JANUARY 2007  2  1.06  TRUE  TRUE TRUE TRUE 0.997 TRUE  TRUE  TRUE TRUE 4  1.08  TRUE  TRUE TRUE TRUE 1.001 TRUE  TRUE  TRUE TRUE 5  1.08  TRUE  TRUE TRUE TRUE 0.999 TRUE  TRUE  TRUE TRUE 9  1.09  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE 10  1.07  TRUE  TRUE TRUE TRUE 1.002 TRUE  TRUE  TRUE TRUE 11  1.06  TRUE  TRUE TRUE TRUE 1.001 TRUE  TRUE  TRUE TRUE 12  1.08  TRUE  TRUE TRUE TRUE 1 TRUE  TRUE  TRUE TRUE 13  1.04  TRUE  TRUE TRUE TRUE 0.989 TRUE  TRUE  TRUE TRUE 19  1.06  TRUE  TRUE TRUE TRUE 0.999 TRUE  TRUE  TRUE TRUE 22  1.04  TRUE  TRUE TRUE TRUE 1 TRUE  TRUE  TRUE TRUE 23  1.08  TRUE  TRUE TRUE TRUE 1.002 TRUE  TRUE  TRUE TRUE 24  1.07  TRUE  TRUE TRUE TRUE 0.987 TRUE  TRUE  TRUE TRUE 26  1.11  TRUE  TRUE TRUE TRUE 1.004 TRUE  TRUE  TRUE TRUE 31  1.08  TRUE  TRUE TRUE TRUE 0.998 TRUE  TRUE  TRUE TRUE

DECEMBER 2006 

1  1.08  TRUE  TRUE TRUE TRUE 1.002 TRUE  TRUE  TRUE TRUE

 5  1.05  TRUE  TRUE TRUE TRUE 0.989 TRUE  TRUE  TRUE TRUE 6  1.07  TRUE  TRUE TRUE TRUE 1.002 TRUE  TRUE  TRUE TRUE 7  1.09  TRUE  TRUE TRUE TRUE 1.002 TRUE  TRUE  TRUE TRUE 8  1.08  TRUE  TRUE TRUE TRUE 0.988 TRUE  TRUE  TRUE TRUE 11  1.06  TRUE  TRUE TRUE TRUE 0.987 TRUE  TRUE  TRUE TRUE 14  1.02  TRUE  TRUE TRUE TRUE 0.988 TRUE  TRUE  TRUE TRUE

lslatkov
Text Box
255

 15  1.06  TRUE  TRUE TRUE TRUE 0.999 TRUE  TRUE  TRUE TRUE 18  1.05  TRUE  TRUE TRUE TRUE 1.002 TRUE  TRUE  TRUE TRUE 19  1.04  TRUE  TRUE TRUE TRUE 0.988 TRUE  TRUE  TRUE TRUE 20  1.07  TRUE  TRUE TRUE TRUE 0.987 TRUE  TRUE  TRUE TRUE 21  1.08  TRUE  TRUE TRUE TRUE 0.988 TRUE  TRUE  TRUE TRUE

NOVEMBER 2006 

8  1.03  TRUE  TRUE TRUE TRUE 0.988 TRUE  TRUE  TRUE TRUE

 13  1.02  TRUE  TRUE TRUE TRUE 0.987 TRUE  TRUE  TRUE TRUE 14  1.05  TRUE  TRUE TRUE TRUE 0.987 TRUE  TRUE  TRUE TRUE 15  1.05  TRUE  TRUE TRUE TRUE 0.99 TRUE  TRUE  TRUE TRUE 16  1.02  TRUE  TRUE TRUE TRUE 0.989 TRUE  TRUE  TRUE TRUE 17  1.02  TRUE  TRUE TRUE TRUE 0.987 TRUE  TRUE  TRUE TRUE 20  1.03  TRUE  TRUE TRUE TRUE 1.001 TRUE  TRUE  TRUE TRUE 21  1.05  TRUE  TRUE TRUE TRUE 1.001 TRUE  TRUE  TRUE TRUE 22  1  TRUE  TRUE TRUE TRUE 0.987 TRUE  TRUE  TRUE TRUE 23  1.01  TRUE  TRUE TRUE TRUE 0.989 TRUE  TRUE  TRUE TRUE 24  1.06  TRUE  TRUE TRUE TRUE 0.987 TRUE  TRUE  TRUE TRUE 27  1.02  TRUE  TRUE TRUE TRUE 0.988 TRUE  TRUE  TRUE TRUE 28  1.02  TRUE  TRUE TRUE TRUE 0.987 TRUE  TRUE  TRUE TRUE 29  1.06  TRUE  TRUE TRUE TRUE 1.001 TRUE  TRUE  TRUE TRUE 30  1.01  TRUE  TRUE TRUE TRUE 0.999 TRUE  TRUE  TRUE TRUE              MEAN 1.09    (~0.93‐1.07) 0.995      (~0.993‐1.007)  SD 0.06    (~0.05) 0.009      (~0.005)

lslatkov
Text Box
256

257

CHAPTER THREE: ADDITIONAL RESULTS

Chapter 3 appendix table 1:  Summary of missing or compromised QUS outcomes MISSING/COMPROMISED REASON  PARTICIPANTS 

MISSING PARTICIPANTS (#) 

  90Hz  30Hz  CON   Drop‐outs    2  3  2  021, 065, 100, 111, 140, 158, 163 HRT during study    1    1  053, 116 Not evaluable QUS scans  Uncalibrated  3  1  3  004, 034, 149, 150, 160, 177, 186   Invalid measurement    4  3  030, 032, 036, 059, 084, 092, 147   Unattained final scan  3    1  078, 096, 104, 115 Suspected compromised study conduct  

Improper WBV use  3  4    031, 046, 059, 129, 132, 134, 181 

  Unknown adherence  3  1    152, 163, 175, 177   Potentially compromised bone 

metabolism during study   2  3  040, 058, 099, 103, 161 

  Late final visit (>3 months)  1  1  2  116, 117, 124, 125 Unknown WBV adherence  Unreturned platform    1    163   Digital clock malfunction  3      152, 175, 177 Vitamin D – no recent medical record  

  5  4  6  003, 042, 053, 086, 092, 097, 104, 115, 117, 119, 120, 145, 151, 153, 196 

Abbreviations: 90Hz, 90 Hz WBV group; 30Hz, 30 Hz WBV group; CON, control group.     Chapter 3 appendix table 2:  ANCOVA analyses summary 

    Adjusted least‐mean squares for BUA change (dB∙MHz‐1)*

Adjusted comparisons (p) 

Adjusted variable  n  90Hz  

30Hz  CON  90Hz x 30Hz x CON  

90Hz x CON  

30Hz x CON 

90Hz + 30Hz x CON 

Baseline physical activity level  175  ‐0.4  ‐0.7  1.3  0.126  0.115  0.056  0.045 

Vitamin D level  164  ‐0.6  ‐0.9  1.2  0.100  0.083  0.048  0.033 

Abbreviations: 90Hz, 90 Hz WBV group; 30Hz, 30 Hz WBV group; CON, control group.  *Unadjusted per‐protocol means (n=175): 90Hz, ‐0.4 dB∙MHz‐1; 30Hz, ‐0.7 dB∙MHz‐1; CON, 1.3 dB∙MHz‐1       Chapter 3 appendix table 3: Sensitivity analyses 

    Absolute change in BUA (dB∙MHz‐1),  mean (SD) 

Main comparison 

(p) 

Significant contrasts (p) 

  N   90Hz  

30Hz  CON    90Hz x CON  

30Hz x CON 

90Hz + 30Hz x CON 

Excluded due to compromised study conduct  

159  ‐0.5 (6.0) 

‐1.0 (6.3) 

1.4 (5.0) 

0.083  ‐  0.034  0.029 

ITT  ‐ single imputation based on population mean 

202  ‐0.3 (5.5) 

‐0.6 (5.7) 

1.1 (4.5) 

0.108  ‐  0.047  0.038 

CON upper outlier excluded from per‐protocol2

174  ‐0.4 (5.9) 

‐0.7 (4.7) 

1.1 (4.5) 

0.173  ‐  ‐  ‐ 

CON upper outlier excluded from adherence (duration)  ≥80%2

112  ‐1.3 (4.5) 

 ‐0.7 (4.7) 

1.1 (4.5) 

0.052  0.026  ‐  0.018 

BUA change outliers removed from per‐protocol analysis 

167  ‐0.9 (4.2) 

‐0.4 (5.0) 

1.1 (4.5) 

0.056  0.021  ‐  0.020 

Included compromised BUA measurements2

188  ‐0.7 (6.3) 

‐1.2 (6.6) 

1.1 (4.7) 

0.078  ‐  0.030  0.028 

Excluded QC BUA outside of range3 152  ‐0.9 (5.4) 

‐1.3 (6.2) 

1.3 (4.7) 

0.037  0.039  0.018  0.011 

Abbreviations: 90Hz, 90 Hz WBV group; 30Hz, 30 Hz WBV group; CON, control group.  1CON upper outlier: Participant 052 was the only outlier for BUA change in the CON group (75yo, 21y PM, 55 kg, vitamin D 111 nmol/L, no significant change in exercise) 2Uncalibratied and invalid BUA measurements and fractured participant with ankle swelling. 3See Technical Appendix: QUS QC calibration log for those who were indicated as false (i.e., outside of BUA QC range; July 2009  to October 2009) 

Luba
Typewritten Text
258