The Impact of Synchrotron Radiation in the LHC · 2013. 1. 14. · Critical energy of SR eV 7 105...

42
O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000 The Impact of Synchrotron Radiation in the LHC O. Gröbner CERN-LHC

Transcript of The Impact of Synchrotron Radiation in the LHC · 2013. 1. 14. · Critical energy of SR eV 7 105...

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    The Impact of SynchrotronRadiation in the LHC

    O. GröbnerCERN-LHC

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Credits

    • LHC Vacuum Group and SL/AP Group– V, Baglin, O. Brüning, I.R. Collins, P. Cruikshank, C. Gruenhagel,

    B. Henrist, N. Hilleret,. B. Jenninger, M. Jimenez, N. Kos, J.-M. Laurent,F. Le Pimpec, P. Lepeule,M. Pivi, O. B. Malychev, G. Moulard, A. Rossi,F. Ruggiero, G. Schneider, P. Strubin, R. Veness, F. Zimmermann

    • BINP– V.V. Anashin, R. V. Dostovalov, N.V. Fedorov, N.A. Gorbunova,

    I.A. Koop, A.A. Krasnov, O. B. Malychev, V.P.Naz’mov, V.N. Osipov,V.F. Pindyurin, E.E. Pyata

    • LBL (SSC)– W. Turner

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Synchrotron Radiation Effects• S.R. Power deposition on cryogenic system• Photon stimulated outgassing -> dynamic pressure increase• Photoelectron production -> electron cloud effect

    – Power dissipation by bunched beam– Beam Induced Multipacting (BIM)– Electron stimulated outgassing

    • Beneficial effects of S.R. :– Cleaning of the vacuum system (beam cleaning effect)– Reduction of secondary electron coefficient by photons/electrons

    • (beam scrubbing)– For the VLHC : Radiation damping -> Increase of Luminosity

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Comparison of S.R. Characteristics

    LEP200 LHC SSC HERA VLHC

    Beam particle e+ e- p p p p

    Circumference km 26.7 26.7 82.9 6.45 95

    Beam energy TeV 0.1 7 20 0.82 50

    Beam curre nt A 0.006 0.54 0.072 0.05 0.125

    Critical energy of SR eV 7 105 44 284 0.34 3000

    SR power (total) kW 1.7 104 7.5 8.8 3 10-4 800

    Linear power density W/m 882 0.22 0.14 8 10-5 4

    Desorbing photons s-1 m-1 2.4 1016 1 1017 6.6 1015 none 3 1016

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Heat load contributions in the LHC

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Beam induced heat loads

    1) Resistive lossesP ∝ ρw I

    2 ≤ 0.05(W /m)

    2) Synchrotron radiation, (s.r.)

    P(W /m) = 1.24⋅103 E4(TeV) I( A)

    ρ2(m)3) Photoelectrons

    s.r. creates an electron cloud ->Without secondary electrons P ~ Nb3

    with secondary electrons -> limited by space charge

    4) Nuclear scattering

    P(W /m) = 0.93I (A) E (TeV)

    τ(h)Beam screen removes #1, #2 and #3 and #4 sets a limit forthe beam lifetime

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Beam screen inside a Cryo-magnet cold bore

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    LHC-beam screen withpumping holes and coppercoating (0.05 mm).

    Cooling capillaries areprovided to remove beam-induced power:-> Synchrotron radiation-> Beam image currents-> Photo-electrons

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    LHC Twin-aperture cryomagnet

    Beam vacuumBeam screen

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Beam line at DCI and EPA forSR-induced molecular desorption studies

    RGA

    P2

    P1P3

    Ti/SP

    B.A. Gauge

    Gas inlet

    Calibratedconductance

    B.A. Gauge

    Photon beam

    Test chamber

    Photoelectroncollector

    Collimator

    Ti-sublimation+ Ion pump

    Shutter

    Valve

    Turbo +Rotary-Pump

    DCIRing

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Cryogenic experiment at BINP on VEPP2-M

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Cold bore experiment (COLDEX) at CERN

    LHe < 3 K

    Bea m sc re en

    Cold bore ve ss el

    The rma l scre e n

    V

    LHe @ 4 .2 K

    GHe @ 4 .2 - 6 0 K

    GHe @ 4 .2 K

    Gat e va lve

    Collim at or

    SR ligh t

    He at er sVa lve s

    Pumping unit s

    Va cuum ga uge s

    Le ve l s ensorsTe mpe ra ture se ns ors

    Supports w ith t ransla tion ta b le (la te ra l m ove me nt to align be am sc re en t o s ync hr o tron ra dia t ion be am )

    Expe rim ent al cr yost a t

    Phas e Se par at or

    LHe Dewar

    Ga s sh ie lde d LHe - tra nsfe r line ( 3 4 m )

    va cuum insu lat e d tra nsfe r line (2 m)

    Inside EPAOuts ide EPA

    Helium re co ve ry ne t work

    Ma ss spe ct rome t er

    Conduc ta nce

    F F

    Buff er

    Experim e nt a l vac uum (be a m va cuum)

    V

    V

    Insu la tion va cuum

    Be am shutt e r

    V

    V

    M

    M

    M

    V

    Mass flow met e rs

    VVV

    V

    P

    PP

    P

    Pr es sure s ensors

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    COLDEX in EPA beam line

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    10-6

    10-5

    10-4

    10-3

    10-2

    1018 1019 1020 1021 1022Dose (photons/m)

    H2

    CO

    CO2CH4

    0.0001

    0.001

    0.01

    0.1

    1

    1015 1016 1017 1018 1019 1020

    CO2 ~68K CO2 5.5-20KCO 5.5-15KCH4 5.5-20K

    H2 3KH2 [4]H2 [3]

    Average coverage (molecules/cm2)

    Primary photo-desorption coefficient and re-cycling coefficientof physisorbed gas molecules

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Molecular desorption yield vrs desorbed gas load

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-5 10-4 10-3 10-2 10-1 100

    etaH2etaCH4etaCOetaCO2E

    TA

    (mol

    ecul

    es /

    phot

    on)

    Desorbed molecules (Torr l / m)

    OFHC copper, baked. With 3.75 keV critical energy synchrotron radiation

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Variation of the desorption yield with critical photon energyof synchrotron radiation spectrum.

    10-5

    10-4

    10-3

    10-2

    10-1

    101 102 103 104 105 106

    EPAINPDCILEP

    Des

    orpt

    ion

    yiel

    d (a

    rbitr

    ary

    units

    )

    Critical photon energy (eV)

    Data compiled for different materials (Al, OFHC copper and stainless steel) and for different machines

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Molecular desorption yield

    oo

    o

    oo

    1x10-5

    1x10-4

    1x10-3

    1x10-2

    0 2 4 6 8 10 12 14Beam energy (TeV)

    o H2CO

    CO2

    Photon induced moleculardesorption yield as afunction of the LHC beamenergy.

    Data obtained withunbaked, electroplatedcopper on stainless steel.Measured at roomtemperature in the photonbeam line at EPA in CERN

    EVC 95, Uppsala

    LHC

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Dynamic Vacuum model for the LHC

    Vdndt

    = q − a n + b θ Fdθdt

    = c n − b θ

    a =14

    v F (s + f )

    b = F νo e−

    E

    kT + κ Ý Γ

    c =14

    v s F θ =cb

    n =14 v s F

    Fνo e− E kT +κ Ý Γ

    n

    q photon induced desorption ratea pumping by the wall and by the pumping holesb physisorbed molecules desorb thermally and by photonsc adsorption rate proportional to sticking probability, s

    and

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    0.E+00

    1.E-10

    2.E-10

    3.E-10

    4.E-10

    5.E-10

    0.E+00 1.E+21 2.E+21 3.E+21 4.E+21 5.E+21 6.E+21 7.E+21

    Dose (Photons/m)

    To 52 K

    H2

    CO

    CO20.E+00

    1.E-08

    2.E-08

    3.E-08

    4.E-08

    -2 0 2 4 6 8 10 12

    Time (h)

    ~ 3.2 10 15 H2/cm2

    ~ 1.6 10 15 H 2/cm2

    0.E+00

    2.E-10

    4.E-10

    6.E-10

    8.E-10

    1.E-09

    0.0E+00 5.0E+20 1.0E+21 1.5E+21 2.0E+21 2.5E+21

    Dose (Photons/m)

    Without holes

    With holes

    COLDEX-Results at EPA between 3K to 20 K

    With pumpingholes

    withoutpumping holes

    Pre-condensed H2

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Hydrogen vapour pressure

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    10-6

    0 1 2 3 4 5 6 7

    P 4.17kP 3.6KP 3.37KP 3.07KP 2.79KP 2.3K

    Pre

    ssur

    e (T

    orr)

    Coverage (H2 molecules cm -2 10 15 )

    4.71 K

    3.6 K

    3.37 K

    3.07 K

    2.79 K

    2.3 K

    C. Benvenuti, R. Calder

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Hydrogen vapour pressure

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Effect of temperature variations on the pressureCOLDEX #50 30-31/8/2000, 194 eV, 217.7 mA,

    Cu BS no holes. BS = 7.0 K + oscillations, CB = 141.0 K

    1.E-10

    1.E-09

    1.E-08

    1.E-07

    1.E-06

    0 0.5 1 1.5 2 2.5 3

    Time (h)

    0

    10

    20

    V. Baglin, CERN LHC-VAC

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Hydrogen vapour pressure due to room temperature radiation

    C. Benvenuti, R. Calder, G. Passardi, J.Vac. Sci. Technol.,Vol 13, No. 6, Nov./Dec. 1976, 1172

    LHC beam screen andat nominal conditions :synchrotron radiation ->~0.15 mW/cm2

    For the LHC: the densitylimit of 1015 H2 m-3 wouldcorrespond at 2.3 K to alimit pressure of

    Plimit = 2.4 10-10 Torr

    LHC cold bore mustbe screened fromsynchrotron radiationto cryo-sorb a largecoverage of hydrogenwith a low vapourpressure

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Electron cloud generated heat loadand outgassing in the LHC beam screen

    δ(E,φ)

    Y(E,φ)

    γ

    Reflection

    Secondary electrons

    Key parametersSynchrotron radiation intensity,Y(E,φ) photoelectric yieldδ(E,φ) secondary electron yield, Emax, δmaxEnergy distribution of secondary electronsPhoton reflectivity (magnetic field)Beam screen shape and diameterBunch intensity and spacingExternal fields (magnetic, electric, spacecharge)

    Qcloud = kηe Plin

    < Ecloud >Outgassing:k converts molecules to pressure average energyηe molecular desorption yieldPlin (W/m) linear power deposition

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Energy deposition by the electron cloud

    • Beam induced power must beintercepted by the activelycooled beam screen

    • Electron cloud effect– Beam blow-up– Multipacting -> BIM

    Energy gain of electrons by the passageof an LHC bunch as a function of theradial position in the beam pipe.

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Effect of a dipole magnetic field

    B

    φF

    Primary SR photons strike in themedian plane. Here photoelectrons aresuppressed by the magnetic field.

    Reflected/scattered photons reach topand bottom of the beam pipeLow photon reflectivity is desirable toreduce the photoelectrons which canmove freely along the field lines.

    Electron

    Cyclotron oscillations/bunch ~120Cyclotron radius ~ 6 µm for 200 eV

    F is the electric force excerted by theproton bunch. on the electron.

    ElectronBeam

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Electron cloud in a dipole magnetic field

    LHC beam screen(quadrant)

    Average energy of theelectrons as a function of thehorizontal position from thebeam in an LHC dipole.

    Pumping slots

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Beam scrubbing in a dipole field

    Secondary electron yieldBefore and after scrubbing

    Averaged yield vrs. Radial positionfor different bunch intensities

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Beam screen pumping slot pattern

    Power deposited on cold bore:Inner row at 5 mmOuter row at 9 mm from center line

    60 slots/m with an average length of 8mmRepresenting a transparency of ~ 0.48

    At nominal beam parameters :Inner row ~ 5%Outer row ~ 2% of the energy deposited uniformly by the electron cloudmay be reach the cold bore.

    Hence, for 0.5 W/m -> 35 mW/m

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Beam Induced Multipacting (BIM)

    – Pressure Increase due to Multipacting• Electron stimulated gas desorption has been

    observed in several machines : first in ISR in1977 recently in KEK-B, PEP-2, SPS withLHC-type beams.

    • Gas load, Qcloud is directly related to the powerdeposited by the electrons, Plin, to themolecular desorption yield,

    • ηe and to the average energy of the electronsin the cloud, Ecloud .

    Qcloud=kηePlin

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Electron stimulated molecular desorption

    K. Kennedy, LBL,unpublished note, 1986

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Beam Induced Multipactingwith an LHC-type beam in the SPS

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    0.0E+00 1.0E+12 2.0E+12 3.0E+12 4.0E+12 5.0E+12 6.0E+12 7.0E+12Number of protons

    mba

    r in

    crea

    se

    VG50660 Dipole magnetic fieldVG51880 No magnetic field

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Reduction of BIM in the SPS with running time

    y = 12e-0.9 x

    1

    10

    100

    0:00 12:00 24:00 36:00 48:00 60:00Running hours

    VG50660

    VG52260

    y = 10e-0.9 x

    Gauges placed between dipoles

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Secondary electron yield

    • Secondary electron yield oftechnical copper and aluminiumsurfaces

    • Due to dosing with electronsand photons, the yield decreasesto between 1 to 1.4

    • Secondary electron yield forCu, initial values and after aphoton dose of 1.5 1020photons/m at 194 eV criticalenergy.

    • Emax and δmax are input forsimulation

    0.00

    0.50

    1.00

    1.50

    2.00

    2.50

    3.00

    3.50

    4.00

    0 500 1000 1500 2000

    Aluminium

    Copper OFHC

    Seco

    ndar

    y el

    ectr

    on y

    ield

    Energy (eV)

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Reduction of the secondary electron yield by photonscrubbing

    MAX SEY vs photon dose at EPACritical energy 194 eV

    0.00

    0.50

    1.00

    1.50

    2.00

    2.50

    1.E+18 1.E+19 1.E+20 1.E+21 1.E+22 1.E+23 1.E+24

    Photon dose (ph/m)

    100 V

    -45 V

    350 V

    Sample at - 45 V

    Sample at + 100 V

    Sample at + 350 V

    ~ 1 year of nominal LHC operation

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Compilation of photoelectric yields and ofphoton reflectivities

    308 MeV 500 MeVDate Tube status R (%) Y*(e/ph) R (%) Y*(e/Ph)7/2/97 Cu roll bonded Unbaked 80.9 0.114 77 0.318

    8/28/97 Cu electroplated Unbaked 5 0.084 6.9 0.0789/17/97 Cu roll bonded air baked Unbaked 21.7 0.096 18.2 0.18011/13/97 Cu "macro" ribbed Unbaked 1.8 0.053 - -11/14/97 150, 9 hours 1.3 0.053 1.2 0.05211/17/97 150, 24 hours 1.3 0.040 1.2 0.04011/18/97 Ti Zr Unbaked 20.3 0.055 17.1 0.07811/19/97 120, 12 hours 19.5 0.048 16.7 0.07211/20/97 250, 9 hours 19.9 0.026 17.4 0.04011/25/97 350, 10 hours 20.6 0.015 16.9 0.028

    11/28/97350, 10 h aftersaturation with5E15 CO/cm2

    20.7 0.016 - -

    12/1/99 Cu colaminated sawtooth Unbaked - 0.029 6 0.038

    I beam current, R forward reflectivity of photonsFcoll = 0.46 at 308 MeV and 0.65 at 500 MeV due to photon collimationLhit = 3.414 m, Lcollected = 0.5 m calculated

    Γ.

    [photons.s -1 ] = 1.0029 10 15 IBeam [mA] E Beam [GeV]Y* [e.photon -1] = I

    q

    Γ.

    FCollimator (1 - R)

    LHitLCollected

    V. Baglin, LHC-VAC

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Reduction of photoelectric yield by photon scrubbing

    1.5 10 -2

    2.0 10 -2

    2.5 10 -2

    3.0 10 -2

    3.5 10 -2

    4.0 10 -2

    1019 1020 1021 1022 1023 1024

    Phot

    olec

    tric

    yie

    ld (e

    lecr

    ons/

    phot

    on)

    Photon dose (photons/m)

    Exposures to N2

    Copper with 'saw-tooth' structure194 eV critical energy

    V. Baglin, LHC-VAC

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    “Saw-tooth” surface inprinted into Cu layer

    Grazing angle of incidence of photons in the LHC arc: 2 to 3 mrad

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Experimental setup in INP

    Set-up to measure the distribution of reflected Photons as well as photo electron production from a test beam screenIn the presence of a magnetic dipole field

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Reduction of the secondary electron yield bybeam scrubbing in LHC

    Required scrubbing time t =2π rp D

    e Rγ ΓD scrubbing dose [C/m2]rp beam pipe radiuse unit chargeR photon reflectivity, (in magnetic field)γ photoelectric yieldΓ linear photon flux

    Scrubbing dose for δmax

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Nominal heat loads on LHC beam screen

    Without Sawtooth

    With Sawtooth

    Initial Final Initial Final

    Electron CloudImage CurrentsSynchrotron RadiationHeat Inleaks

    0

    1

    2

    3

    4

    5

    6

  • O. Gröbner CERN-LHC/VAC VLHC Workshop 18 - 20 Sept. 2000

    Summary for LHC

    • Design of the LHC vacuum system is strongly influencedby s.r. effects.

    • Primary and secondary desorption effects• Total quantity of desorbed gas -> saturated vapour pressure• Physisorbed gas molecules must be screened from effects

    of the beam (s.r. but also (photo-)electrons and ions)• Temperature fluctuations of cryosorbing surfaces (beam

    screen) must be avoided or minimised• Secondary desorption -> re-distribution of cryosorbed gas

    and important transient effects.• S.R. produces large number of photoelectrons -> e-cloud

    effects.