The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

56
The F The F inite Element inite Element Method Method A Practical Course A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

Transcript of The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

Page 1: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

The FThe Finite Element Methodinite Element Method A Practical CourseA Practical Course

FEM FOR 2D SOLIDS

CHAPTER 5:

Page 2: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

CONTENTSCONTENTS INTRODUCTION LINEAR TRIANGULAR ELEMENTS

– Field variable interpolation– Shape functions construction– Using area coordinates– Strain matrix– Element matrices

LINEAR RECTANGULAR ELEMENTS– Shape functions construction– Strain matrix– Element matrices– Gauss integration– Evaluation of me

Page 3: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

CONTENTSCONTENTS

LINEAR QUADRILATERAL ELEMENTS– Coordinate mapping– Strain matrix– Element matrices– Remarks

HIGHER ORDER ELEMENTS COMMENTS (GAUSS INTEGRATION) CASE STUDY

Page 4: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

INTRODUCTIONINTRODUCTION

2D solid elements are applicable for the analysis of plane strain and plane stress problems.

A 2D solid element can have a triangular, rectangular or quadrilateral shape with straight or curved edges.

2D solid element can deform only in the plane of the 2D solid.

At any point, there are two components in x and y directions for the displacement as well as forces.

Page 5: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

INTRODUCTIONINTRODUCTION

For plane strain problems, the thickness of the element is unit, but for plane stress problems, the actual thickness must be used.

In this course, it is assumed that the element has a uniform thickness h.

Formulating 2-D elements with given variation of thickness is also straightforward, as the procedure is the same as that for a uniform element.

Page 6: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

22D solids – plane stress and plane strainD solids – plane stress and plane strain

fx

fy

x

y

x

y fx

z

Plane stress Plane strain

Page 7: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

LINEAR TRIANGULAR ELEMENTSLINEAR TRIANGULAR ELEMENTS

Less accurate than quadrilateral elementsUsed by most mesh generators for complex

geometryLinear triangular element

x, u

y, v

1 (x1, y1) (u1, v1)

2 (x2, y2) (u2, v2)

3 (x3, y3) (u3, v3)

A fsx

fsy

Triangular elements Nodes

Page 8: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

Field variable interpolationField variable interpolation

( , ) ( , )hex y x yU N d

3 nodeat ntsdisplaceme

2 nodeat ntsdisplaceme

1 nodeat ntsdisplaceme

3

3

2

2

1

1

v

u

v

u

v

u

ed

31 2

31 2

Node 2Node 1 Node 3

00 0

00 0

NN N

NN N

N

where

(Shape functions)

x, u

y, v

1 (x1, y1) (u1, v1)

2 (x2, y2) (u2, v2)

3 (x3, y3) (u3, v3)

A fsx

fsy

Page 9: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

Shape functions constructionShape functions construction

1 1 1 1N a b x c y

2 2 2 2N a b x c y

3 3 3 3N a b x c y

i i i iN a b x c y

Assume,

i= 1, 2, 3

1 T

T

i

i i

i

a

N x y b

c

p

p

or

Page 10: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

Shape functions constructionShape functions construction

Delta function property:

1 for ( , )

0 for i j j

i jN x y

i j

1 1 1

1 2 2

1 3 3

( , ) 1

( , ) 0

( , ) 0

N x y

N x y

N x y

Therefore, 1 1 1 1 1 1 1 1

1 2 2 1 1 2 1 2

1 3 3 1 1 3 1 3

( , ) 1

( , ) 0

( , ) 0

N x y a b x c y

N x y a b x c y

N x y a b x c y

Solving, 2 3 3 2 2 3 3 21 1 1, ,

2 2 2e e e

x y x y y y x xa b c

A A A

Page 11: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

Shape functions constructionShape functions construction

1 1

2 2 2 3 3 2 2 3 1 3 2 1

3 3

11 1 1

1 [( ) ( ) ( ) ]2 2 2

1e

x y

A x y x y x y y y x x x y

x y

P

Area of triangle Moment matrix

Substitute a1, b1 and c1 back into N1 = a1 + b1x + c1y:

1 2 3 2 3 2 2

1[( )( ) ( )( )]

2 e

N y y x x x x y yA

Page 12: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

Shape functions constructionShape functions construction

Similarly,

2 1 1

2 2 2

2 3 3

( , ) 0

( , ) 1

( , ) 0

N x y

N x y

N x y

2 3 1 1 3 3 1 1 3

3 1 3 1 3 3

1[( ) ( ) ( ) ]

2

1[( )( ) ( )( )]

2

e

e

N x y x y y y x x x yA

y y x x x x y yA

3 1 1

3 2 2

3 3 3

( , ) 0

( , ) 0

( , ) 1

N x y

N x y

N x y

3 1 2 1 1 1 2 2 1

1 2 1 2 1 1

1[( ) ( ) ( ) ]

2

1[( )( ) ( )( )]

2

e

e

N x y x y y y x x x yA

y y x x x x y yA

Page 13: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

Shape functions constructionShape functions construction

i i i iN a b x c y

1( )

2

1( )

2

1( )

2

i j k k je

i j ke

i k je

a x y x yA

b y yA

c x xA

where

i

jk

i= 1, 2, 3

J, k determined from cyclic permutation

i = 1, 2

j = 2, 3k = 3, 1

Page 14: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

Using area Using area coordinatescoordinatesAlternative method of constructing shape

functions

i, 1 j, 2

k, 3

x

y

P

A1

1 2 2 2 3 3 2 2 3 3 2

3 3

11 1

1 [( ) ( ) ( ) ]2 2

1

x y

A x y x y x y y y x x x y

x y

11

e

AL

A

2-3-P:

Similarly, 3-1-P A2

1-2-P A3

22

e

AL

A

33

e

AL

A

Page 15: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

Using area coordinatesUsing area coordinates

1 2 3 1L L L Partitions of unity:

3 1 2 31 21 2 3 1

e e e e

A A A AA AL L L

A A A A

Delta function property: e.g. L1 = 0 at if P at nodes 2 or 3

Therefore,1 1 2 2 3 3, , N L N L N L

( , ) ( , )hex y x yU N d

Page 16: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

Strain matrixStrain matrix

xx

yy

xy

u

xv

y

u v

y x

LU where

0

0

x

y

y x

L

ee BdLNdLU

0

0

x

y

y x

B LN N1 2 3

1 2 3

1 1 2 2 3 3

0 0 0

0 0 0

b b b

c c c

c b c b c b

B

(constant strain element)

Page 17: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

Element matricesElement matrices

0d ( d ) d d

e e e

hT T Te

V A A

V z A h A k B cB B cB B cB

Constant matrix T

e ehAk B cB

0d d d d

e e e

hT T Te

V A A

V z A h A m N N N N N N

Page 18: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

Element matricesElement matrices

1 1 1 2 1 3

1 1 1 2 1 3

2 1 2 2 2 3

2 1 2 2 2 3

3 1 3 2 3 3

3 1 3 2 3 3

0 0 0

0 0 0

0 0 0d

0 0 0

0 0 0

0 0 0

e

e

A

N N N N N N

N N N N N N

N N N N N Nh A

N N N N N N

N N N N N N

N N N N N N

m

For elements with uniform density and thickness,

Apnm

pnmALLL pn

A

m 2)!2(

!!!d321

Eisenberg and Malvern (1973):

Page 19: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

Element Element matricesmatrices

2

02.

102

0102

10102

010102

12

sy

hAe

m

T

2 3 d

sxe l

sy

fl

f

f N

y

x

y

xe

f

f

f

fl

0

0

2

132fUniform distributed load:

x, u

y, v

1 (x1, y1) (u1, v1)

2 (x2, y2) (u2, v2)

3 (x3, y3) (u3, v3)

A fsx

fsy

Page 20: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

LINEAR RECTANGULAR LINEAR RECTANGULAR ELEMENTSELEMENTS

Non-constant strain matrixMore accurate representation of stress and

strainRegular shape makes formulation easy

Page 21: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

Shape functions Shape functions constructionconstruction

x, u

y, v

1 (x1, y1) (u1, v1)

2 (x2, y2) (u2, v2)

3 (x3, y3) (u3, v3)

2a

fsy fsx

4 (x4, y4) (u4, v4)

2b

Consider a rectangular element

1

1

2

2

3

3

4

4

displacements at node 1

displacements at node 2

displacements at node 3

displacements at node 4

e

u

v

u

v

u

v

u

v

d

Page 22: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

Shape functions constructionShape functions construction

x, u

y, v

1 (x1, y1) (u1, v1)

2 (x2, y2) (u2, v2)

3 (x3, y3) (u3, v3)

2a

fsy fsx

4 (x4, y4) (u4, v4)

2b

1 ( 1, 1) (u1, v1)

2 (1, 1) (u2, v2)

3 (1, +1) (u3, v3)

2

4 ( 1, +1) (u4, v4)

2

2 1 2 1( ) / 2 ( ) / 2,

x x x y y y

a b

( , ) ( , )hex y x yU N d 31 2 4

31 2 4

Node 2 Node 3Node 1 Node 4

00 0 0

00 0 0

NN N N

NN N N

N

where

Page 23: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

Shape functions constructionShape functions construction

)1)(1(

)1)(1(

)1)(1(

)1)(1(

41

4

41

3

41

2

41

1

N

N

N

N

113 4at node 1 1

113 4at node 2 1

113 4at node 3 1

113 4at node 4 1

(1 )(1 ) 0

(1 )(1 ) 0

(1 )(1 ) 1

(1 )(1 ) 0

N

N

N

N

Delta function property

4

1 2 3 41

14

14

[(1 )(1 ) (1 )(1 ) (1 )(1 ) (1 )(1 )]

[2(1 ) 2(1 )] 1

ii

N N N N N

Partition of unity

)1)(1(41 jjjN

1 ( 1, 1) (u1, v1)

2 (1, 1) (u2, v2)

3 (1, +1) (u3, v3)

2

4 ( 1, +1) (u4, v4)

2

Page 24: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

Strain matrixStrain matrix

1 1 1 1

1 1 1 1

1 1 1 1 1 1 1 1

0 0 0 01

0 0 0 04

a a a a

b b b b

a a a ab b b b

B LN

Note: No longer a constant matrix!

Page 25: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

Element matricesElement matrices

, byax dxdy = ab dd

Therefore,

ddd T1

1

1

1

T cBBcBBk habAhA

e

1 1

0 1 1d d d d d d

hT T T Te

V A A

V z A h A abh

m N N N N N N N N

Page 26: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

Element matricesElement matrices

T

2 3 d

sxe l

sy

fl

f

f N

x, u

y, v

1 (x1, y1) (u1, v1)

2 (x2, y2) (u2, v2)

3 (x3, y3) (u3, v3)

2a

fsy fsx

4 (x4, y4) (u4, v4)

2b

For uniformly distributed load,

0

0

0

0

y

x

y

x

e

ff

f

f

bf

Page 27: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

Gauss integrationGauss integration

For evaluation of integrals in ke and me (in practice)

In 1 direction: )()d(1

1

1 jj

m

j

fwfI

m gauss points gives exact solution of polynomial integrand of n = 2m - 1

1 1

1 11 1

( , )d d ( , )yx

nn

i j i ji j

I f w w f

In 2 directions:

Page 28: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

Gauss integrationGauss integration

m Gauss Point j Gauss Weight wj Accuracy order n

1 0 2 1

2 -1/3, 1/3 1, 1 3

3 -0.6, 0, 0.6 5/9, 8/9, 5/9 5

4 -0.861136, -0.339981, 0.339981, 0.861136

0.347855, 0.652145, 0.652145, 0.347855

7

5 -0.906180, -0.538469, 0,

0.538469, 0.906180

0.236927, 0.478629, 0.568889, 0.478629, 0.236927

9

6 -0.932470, -0.661209,

-0.238619, 0.238619, 0.661209, 0.932470

0.171324, 0.360762, 0.467914, 0.467914, 0.360762, 0.171324

11

Page 29: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

Evaluation of Evaluation of mmee

4

04.

204

0204

10204

010204

2010204

02010204

9

sy

habe

m

Page 30: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

Evaluation of Evaluation of mmee

E.g.

)1)(1(4

)1)(1()1)(1(16

31

31

1

1

1

1

1

1

1

1

jiji

jiji

jiij

hab

ddhab

ddNNhabm

94)111)(111(

4 31

31

33

habhabm

Note: In practice, gauss integration is often used

Page 31: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

LINEAR QUADRILATERAL LINEAR QUADRILATERAL ELEMENTSELEMENTS

Rectangular elements have limited applicationQuadrilateral elements with unparallel edges are

more useful Irregular shape requires coordinate mapping

before using Gauss integration

Page 32: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

Coordinate mappingCoordinate mapping

2 (x2, y2)

y

x 1 (1, 1) 2 (1, 1)

3 (1, +1) 4 (1, +1)

3 (x3, y3) 4 (x4, y4)

1 (x1, y1)

Physical coordinates Natural coordinates

( , ) ( , )he U N d (Interpolation of displacements)

( , ) ( , ) e X N x (Interpolation of coordinates)

Page 33: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

Coordinate mappingCoordinate mapping

( , ) ( , ) e X N x

wherex

y

X ,

1

1

2

2

3

3

4

4

coordinate at node 1

coordinate at node 2

coordinate at node 3

coordinate at node 4

e

x

y

x

y

x

y

x

y

x

)1)(1(

)1)(1(

)1)(1(

)1)(1(

41

4

41

3

41

2

41

1

N

N

N

N

iii

xNx ),(4

1

iii

yNy ),(4

1

Page 34: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

Coordinate mappingCoordinate mapping

Substitute 1 into iii

xNx ),(4

1

2 (x2, y2)

y

x 1 ( 1, 1) 2 (1, 1)

3 (1, +1) 4 ( 1, +1)

3 (x3, y3) 4 (x4, y4)

1 (x1, y1)

1 12 32 2

1 12 32 2

(1 ) (1 )

(1 ) (1 )

x x x

y y y

or

)()(

)()(

2321

3221

2321

3221

yyyyy

xxxxx

Eliminating ,3 2 1 1

2 3 2 32 23 2

( ){ ( )} ( )

( )

y yy x x x y y

x x

Page 35: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

Strain matrixStrain matrix

y

y

Nx

x

NN

y

y

Nx

x

NN

iii

iii i i

ii

N N

xNNy

Jor

x y

x y

Jwhere (Jacobian matrix)

1 131 2 4

2 2

3 331 2 4

4 4

x yNN N N

x y

x yNN N N

x y

JSince ( , ) ( , ) e X N x ,

Page 36: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

Strain matrixStrain matrix

1

ii

i i

NN

xN Ny

JTherefore,

NLNB

xy

y

x

0

0

Replace differentials of Ni w.r.t. x and y with differentials of Ni w.r.t. and

(Relationship between differentials of shape functions w.r.t. physical coordinates and differentials w.r.t. natural coordinates)

Page 37: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

Element matricesElement matrices

Murnaghan (1951) : dA=det |J | dd

1 1 T

1 1det d de h

k B cB J

dddet

dddd

1

1

1

1

0

JNN

NNNNNNm

T

T

A

T

A

hT

V

e

h

AhAxV

Page 38: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

RemarksRemarks

Shape functions used for interpolating the coordinates are the same as the shape functions used for the interpolation of the displacement field. Therefore, the element is called isoparametric element.

Note that the shape functions for coordinate interpolation and displacement interpolation do not have to be the same.

Using the different shape functions for coordinate interpolation and displacement interpolation, respectively, will lead to the development of so-called subparametric or superparametric elements.

Page 39: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

HIGHER ORDER ELEMENTSHIGHER ORDER ELEMENTS

Higher order triangular elements

i (I,J,K)

(p,0,0) (0,p,0)

(0,0,p)

(p 1,1,0)

L1

L3

L2

(0,p 1,1)

(0,1,p 1) (1,0,p 1)

(2,0,p 2)

nd = (p+1)(p+2)/2

I J K p Node i,

Argyris, 1968 :

1 2 3( ) ( ) ( )I J Ki I J KN l L l L l L

0 1 ( 1)

0 1 ( 1)

( )( ) ( )( )

( )( ) ( )

L L L L L Ll L

L L L L L L

Page 40: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

HIGHER ORDER ELEMENTSHIGHER ORDER ELEMENTS

Higher order triangular elements (Cont’d)

x , u

y , v

1

2

3

4

5 6

1 1 1( 2 1 )N L L

4 1 24N L L

x , u

y , v

1

2

3

4 5

6

7 8

9 1 0

1 1 1 1

1( 3 1 ) ( 3 2 )

2N L L L

4 1 2 1

9( 3 1 )

2N L L L

1 0 1 2 32 7N L L L

Cubic element

Quadratic element

Page 41: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

HIGHER ORDER ELEMENTSHIGHER ORDER ELEMENTS

Higher order rectangular elements

(0,0)

0

(n,0)

(0,m) (n,m)

i(I,J)

Lagrange type:

1 1 ( ) ( )D D n mi I J I JN N N l l

0 1 1 1

0 1 1 1

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )n k k nk

k k k k k k k n

l

(Zienkiewicz et al., 2000)

Page 42: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

HIGHER ORDER ELEMENTSHIGHER ORDER ELEMENTS

Higher order rectangular elements(Cont’d)

1 2

3 4

5

6

7

8 9

I=0 I=1 I=2

J=0

J=1

J=2

1 11 0 0

1 12 2 0

1 13 2 2

1 14 0 2

1( ) ( ) (1 ) (1 )

41

( ) ( ) (1 ) (1 )4

1( ) ( ) (1 )(1 )

41

( ) ( ) (1 )(1 )4

D D

D D

D D

D D

N N N

N N N

N N N

N N N

1 15 1 0

1 16 2 1

1 17 1 2

1 18 0 1

1 1 2 29 1 1

1( ) ( ) (1 )(1 )(1 )

21

( ) ( ) (1 )(1 )(1 )21

( ) ( ) (1 )(1 )(1 )2

1( ) ( ) (1 )(1 )

2

( ) ( ) (1 )(1 )

D D

D D

D D

D D

D D

N N N

N N N

N N N

N N N

N N N

(9 node quadratic element)

Page 43: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

HIGHER ORDER ELEMENTSHIGHER ORDER ELEMENTS

Higher order rectangular elements(Cont’d)

Serendipity type:

1 2

3 4

5

6

7

8 0

=1

= 1

14

212

212

(1 )(1 )( 1) 1, 2, 3, 4

(1 )(1 ) 5, 7

(1 )(1 ) 6,8

j j j j j

j j

j j

N j

N j

N j

(eight node quadratic element)

Page 44: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

HIGHER ORDER ELEMENTSHIGHER ORDER ELEMENTS

Higher order rectangular elements(Cont’d)

1 2

3 4

5 6

7

8

9 10

11

12

2 2132

2932

13

2932

(1 )(1 )(9 9 10)

for corner nodes 1, 2, 3, 4

(1 )(1 )(1 9 )

for side nodes 7, 8, 11, 12 where 1 and

(1 )(1 )(1

j j j

j j j

j j

j j

N

j

N

j

N

13

9 )

for side nodes 5, 6, 9, 10 where and 1

j

j jj

(twelve node cubic element)

Page 45: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

ELEMENT WITH CURVED ELEMENT WITH CURVED EDGESEDGES

4

2

3

8

1 5

7

6

1 4 2

5

3

6

1

2

3

4

5 6

1 2

3 4

5

6

7

8

Page 46: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

COMMENTS (GAUSS INTEGRATION)COMMENTS (GAUSS INTEGRATION)

When the Gauss integration scheme is used, one has to decide how many Gauss points should be used.

Theoretically, for a one-dimensional integral, using m points can give the exact solution for the integral of a polynomial integrand of up to an order of (2m1).

As a general rule of thumb, more points should be used for

higher order of elements.

Page 47: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

COMMENTS (GAUSS COMMENTS (GAUSS INTEGRATION)INTEGRATION)

Using smaller number of Gauss points tends to counteract the over-stiff behaviour associated with the displacement-based method.

Displacement in an element is assumed using shape functions. This implies that the deformation of the element is somehow prescribed in a fashion of the shape function. This prescription gives a constraint to the element. The so-constrained element behaves stiffer than it should be. It is often observed that higher order elements are usually softer than lower order ones. This is because using higher order elements gives less constraint to the elements.

Page 48: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

COMMENTS (GAUSS COMMENTS (GAUSS INTEGRATION)INTEGRATION)

Two gauss points for linear elements, and two or three points for quadratic elements in each direction should be sufficient for many cases.

Most of the explicit FEM codes based on explicit formulation tend to use one-point integration to achieve the best performance in saving CPU time.

Page 49: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

CASE STUDYCASE STUDY

Side drive micro-motor

Page 50: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

CASE STUDYCASE STUDY

Elastic Properties of Polysilicon

Young’s Modulus, E 169GPa

Poisson’s ratio, 0.262

Density, 2300kgm-3

10N/m

10N/m

10N/m

Page 51: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

CASE STUDYCASE STUDY

Analysis no. 1: Von Mises stress distribution using 24 bilinear

quadrilateral elements (41 nodes)

Page 52: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

CASE STUDYCASE STUDY

Analysis no. 2: Von Mises stress distribution using 96 bilinear

quadrilateral elements (129 nodes)

Page 53: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

CASE STUDYCASE STUDY

Analysis no. 3: Von Mises stress distribution using 144 bilinear

quadrilateral elements (185 nodes)

Page 54: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

CASE STUDYCASE STUDY

Analysis no. 4: Von Mises stress distribution using 24 eight-nodal, quadratic elements (105 nodes)

Page 55: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

CASE STUDYCASE STUDY

Analysis no. 5: Von Mises stress distribution using 192 three-nodal,

triangular elements (129 nodes)

Page 56: The Finite Element Method A Practical Course FEM FOR 2D SOLIDS CHAPTER 5:

CASE STUDYCASE STUDYAnalysis

no.Number / type of

elements

Total number of nodes in

model

Maximum Von Mises

Stress (GPa)

124 bilinear,

quadrilateral 41 0.0139

296 bilinear, quadrilateral

129 0.0180

3144 bilinear, quadrilateral

185 0.0197

424 quadratic, quadrilateral

105 0.0191

5 192 linear, triangular

129 0.0167