1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek...

56
1 F F inite Element inite Element Method Method FEM FOR 2D SOLIDS for readers of all backgrounds for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

Transcript of 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek...

Page 1: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

1

FFinite Element Methodinite Element Method

FEM FOR 2D SOLIDS

for readers of all backgroundsfor readers of all backgrounds

G. R. Liu and S. S. Quek

CHAPTER 7:

Page 2: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

2Finite Element Method by G. R. Liu and S. S. Quek

CONTENTSCONTENTS INTRODUCTION LINEAR TRIANGULAR ELEMENTS

– Field variable interpolation– Shape functions construction– Using area coordinates– Strain matrix– Element matrices

LINEAR RECTANGULAR ELEMENTS– Shape functions construction– Strain matrix– Element matrices– Gauss integration– Evaluation of me

Page 3: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

3Finite Element Method by G. R. Liu and S. S. Quek

CONTENTSCONTENTS

LINEAR QUADRILATERAL ELEMENTS– Coordinate mapping– Strain matrix– Element matrices– Remarks

HIGHER ORDER ELEMENTS COMMENTS (GAUSS INTEGRATION)

Page 4: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

4Finite Element Method by G. R. Liu and S. S. Quek

INTRODUCTIONINTRODUCTION

2D solid elements are applicable for the analysis of plane strain and plane stress problems.

A 2D solid element can have a triangular, rectangular or quadrilateral shape with straight or curved edges.

A 2D solid element can deform only in the plane of the 2D solid.

At any point, there are two components in the x and y directions for the displacement as well as forces.

Page 5: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

5Finite Element Method by G. R. Liu and S. S. Quek

INTRODUCTIONINTRODUCTION

For plane strain problems, the thickness of the element is unit, but for plane stress problems, the actual thickness must be used.

In this course, it is assumed that the element has a uniform thickness h.

Formulating 2D elements with a given variation of thickness is also straightforward, as the procedure is the same as that for a uniform element.

Page 6: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

6Finite Element Method by G. R. Liu and S. S. Quek

2D solids – plane stress and plane strain2D solids – plane stress and plane strain

fx

fy

x

y

x

y fx

z

Plane stress Plane strain

Page 7: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

7Finite Element Method by G. R. Liu and S. S. Quek

LINEAR TRIANGULAR LINEAR TRIANGULAR ELEMENTSELEMENTS

Less accurate than quadrilateral elementsUsed by most mesh generators for complex

geometryA linear triangular element:

x, u

y, v

1 (x1, y1) (u1, v1)

2 (x2, y2) (u2, v2)

3 (x3, y3) (u3, v3)

A fsx

fsy

Page 8: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

8Finite Element Method by G. R. Liu and S. S. Quek

Field variable interpolationField variable interpolation

( , ) ( , )hex y x yU N d

3 nodeat ntsdisplaceme

2 nodeat ntsdisplaceme

1 nodeat ntsdisplaceme

3

3

2

2

1

1

v

u

v

u

v

u

ed

31 2

31 2

Node 2Node 1 Node 3

00 0

00 0

NN N

NN N

N

where

x, u

y, v

1 (x1, y1) (u1, v1)

2 (x2, y2) (u2, v2)

3 (x3, y3) (u3, v3)

A fsx

fsy

(Shape functions)

Page 9: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

9Finite Element Method by G. R. Liu and S. S. Quek

Shape functions constructionShape functions construction

1 1 1 1N a b x c y

2 2 2 2N a b x c y

3 3 3 3N a b x c y

i i i iN a b x c y

Assume,

i= 1, 2, 3

1 T

T

i

i i

i

a

N x y b

c

p

p

or

Page 10: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

10Finite Element Method by G. R. Liu and S. S. Quek

Shape functions constructionShape functions construction

Delta function property:

1 for ( , )

0 for i j j

i jN x y

i j

1 1 1

1 2 2

1 3 3

( , ) 1

( , ) 0

( , ) 0

N x y

N x y

N x y

Therefore, 1 1 1 1 1 1 1 1

1 2 2 1 1 2 1 2

1 3 3 1 1 3 1 3

( , ) 1

( , ) 0

( , ) 0

N x y a b x c y

N x y a b x c y

N x y a b x c y

Solving, 2 3 3 2 2 3 3 21 1 1, ,

2 2 2e e e

x y x y y y x xa b c

A A A

Page 11: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

11Finite Element Method by G. R. Liu and S. S. Quek

Shape functions constructionShape functions construction

1 1

2 2 2 3 3 2 2 3 1 3 2 1

3 3

11 1 1

1 [( ) ( ) ( ) ]2 2 2

1e

x y

A x y x y x y y y x x x y

x y

P

Area of triangle Moment matrix

Substitute a1, b1 and c1 back into N1 = a1 + b1x + c1y:

1 2 3 2 3 2 2

1[( )( ) ( )( )]

2 e

N y y x x x x y yA

Page 12: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

12Finite Element Method by G. R. Liu and S. S. Quek

Shape functions constructionShape functions construction

Similarly,

2 1 1

2 2 2

2 3 3

( , ) 0

( , ) 1

( , ) 0

N x y

N x y

N x y

2 3 1 1 3 3 1 1 3

3 1 3 1 3 3

1[( ) ( ) ( ) ]

2

1[( )( ) ( )( )]

2

e

e

N x y x y y y x x x yA

y y x x x x y yA

3 1 1

3 2 2

3 3 3

( , ) 0

( , ) 0

( , ) 1

N x y

N x y

N x y

3 1 2 1 1 1 2 2 1

1 2 1 2 1 1

1[( ) ( ) ( ) ]

2

1[( )( ) ( )( )]

2

e

e

N x y x y y y x x x yA

y y x x x x y yA

Page 13: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

13Finite Element Method by G. R. Liu and S. S. Quek

Shape functions constructionShape functions construction

i i i iN a b x c y

1( )

2

1( )

2

1( )

2

i j k k je

i j ke

i k je

a x y x yA

b y yA

c x xA

where

i

jk

i= 1, 2, 3

J, k determined from cyclic permutation

i = 1, 2

j = 2, 3k = 3, 1

Page 14: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

14Finite Element Method by G. R. Liu and S. S. Quek

Using area coordinatesUsing area coordinates

Alternative method of constructing shape functions

i, 1 j, 2

k, 3

x

y

P

A1

1 2 2 2 3 3 2 2 3 3 2

3 3

11 1

1 [( ) ( ) ( ) ]2 2

1

x y

A x y x y x y y y x x x y

x y

11

e

AL

A

2-3-P:

Similarly, 3-1-P A2

1-2-P A3

22

e

AL

A

33

e

AL

A

Page 15: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

15Finite Element Method by G. R. Liu and S. S. Quek

Using area coordinatesUsing area coordinates

1 2 3 1L L L Partitions of unity:

3 2 2 32 21 2 3 1

e e e e

A A A AA AL L L

A A A A

Delta function property: e.g. L1 = 0 at if P at nodes 2 or 3

Therefore,1 1 2 2 3 3, , N L N L N L

( , ) ( , )hex y x yU N d

Page 16: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

16Finite Element Method by G. R. Liu and S. S. Quek

Strain matrixStrain matrix

xx

yy

xy

u

xv

y

u v

y x

LU where

0

0

x

y

y x

L

ee BdLNdLU

0

0

x

y

y x

B LN N1 2 3

1 2 3

1 1 2 2 3 3

0 0 0

0 0 0

a a a

b b b

b a b a b a

B

(constant strain element)

Page 17: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

17Finite Element Method by G. R. Liu and S. S. Quek

Element matricesElement matrices

0d ( d ) d d

e e e

hT T Te

V A A

V z A h A k B cB B cB B cB

Constant matrix T

e ehAk B cB

0d d d d

e e e

hT T Te

V A A

V x A h A m N N N N N N

Page 18: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

18Finite Element Method by G. R. Liu and S. S. Quek

Element matricesElement matrices

1 1 1 2 1 3

1 1 1 2 1 3

2 1 2 2 2 3

2 1 2 2 2 3

3 1 3 2 3 3

3 1 3 2 3 3

0 0 0

0 0 0

0 0 0d

0 0 0

0 0 0

0 0 0

e

e

A

N N N N N N

N N N N N N

N N N N N Nh A

N N N N N N

N N N N N N

N N N N N N

m

For elements with uniform density and thickness,

Apnm

pnmALLL pn

A

m 2)!2(

!!!d321

Eisenberg and Malvern (1973):

Page 19: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

19Finite Element Method by G. R. Liu and S. S. Quek

Element matricesElement matrices

2

02.

102

0102

10102

010102

12

sy

hAe

m

x, u

y, v

1 (x1, y1) (u1, v1)

2 (x2, y2) (u2, v2)

3 (x3, y3) (u3, v3)

A fsx

fsy

lf

fl

sy

sxe d ][

32

T

Nf

y

x

y

xe

f

f

f

fl

0

0

2

132fUniform distributed load:

Page 20: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

20Finite Element Method by G. R. Liu and S. S. Quek

LINEAR RECTANGULAR LINEAR RECTANGULAR ELEMENTSELEMENTS

Non-constant strain matrixMore accurate representation of stress and

strainRegular shape makes formulation easy

Page 21: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

21Finite Element Method by G. R. Liu and S. S. Quek

Shape functions constructionShape functions construction

x, u

y, v

1 (x1, y1) (u1, v1)

2 (x2, y2) (u2, v2)

3 (x3, y3) (u3, v3)

2a

fsy fsx

4 (x4, y4) (u4, v4)

2b

Consider a rectangular element

1

1

2

2

3

3

4

4

displacements at node 1

displacements at node 2

displacements at node 3

displacements at node 4

e

u

v

u

u

u

u

u

u

d

Page 22: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

22Finite Element Method by G. R. Liu and S. S. Quek

Shape functions constructionShape functions construction

x, u

y, v

1 (x1, y1) (u1, v1)

2 (x2, y2) (u2, v2)

3 (x3, y3) (u3, v3)

2a

fsy fsx

4 (x4, y4) (u4, v4)

2b

1 ( 1, 1) (u1, v1)

2 (1, 1) (u2, v2)

3 (1, +1) (u3, v3)

2a

4 ( 1, +1) (u4, v4)

2b

, byax

( , ) ( , )hex y x yU N d 31 2 4

31 2 4

Node 2 Node 3Node 1 Node 4

00 0 0

00 0 0

NN N N

NN N N

N

where

(Interpolation)

Page 23: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

23Finite Element Method by G. R. Liu and S. S. Quek

Shape functions constructionShape functions construction

)1)(1(

)1)(1(

)1)(1(

)1)(1(

41

4

41

3

41

2

41

1

N

N

N

N

113 4at node 1 1

113 4at node 2 1

113 4at node 3 1

113 4at node 4 1

(1 )(1 ) 0

(1 )(1 ) 0

(1 )(1 ) 1

(1 )(1 ) 0

N

N

N

N

Delta function property

4

1 2 3 41

14

14

[(1 )(1 ) (1 )(1 ) (1 )(1 ) (1 )(1 )]

[2(1 ) 2(1 )] 1

ii

N N N N N

Partition of unity

)1)(1(41 jjjN

1 ( 1, 1) (u1, v1)

2 (1, 1) (u2, v2)

3 (1, +1) (u3, v3)

2a

4 ( 1, +1) (u4, v4)

2b

Page 24: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

24Finite Element Method by G. R. Liu and S. S. Quek

Strain matrixStrain matrix

abababab

bbbb

aaaa

11111111

1111

1111

0000

0000

LNB

Note: No longer a constant matrix!

Page 25: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

25Finite Element Method by G. R. Liu and S. S. Quek

Element matricesElement matrices

, byax dxdy = ab dd

Therefore,

ddd T1

1

1

1

T cBBcBBk habAhA

e

dddddd1

1

1

10NNNNNNNNm TT

A

T

A

hT

V

e abhAhAxV

Page 26: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

26Finite Element Method by G. R. Liu and S. S. Quek

Element matricesElement matrices

lf

fl

sy

sxe d ][

32

T

Nf

x, u

y, v

1 (x1, y1) (u1, v1)

2 (x2, y2) (u2, v2)

3 (x3, y3) (u3, v3)

2a

fsy fsx

4 (x4, y4) (u4, v4)

2b

For uniformly distributed load,

0

0

0

0

y

x

y

x

e

ff

f

f

bf

Page 27: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

27Finite Element Method by G. R. Liu and S. S. Quek

Gauss integrationGauss integration

For evaluation of integrals in ke and me (in practice)

In 1 direction: )()d(1

1

1 jj

m

j

fwfI

m gauss points gives exact solution of polynomial integrand of n = 2m - 1

1 1

1 11 1

( , )d d ( , )yx

nn

i j i ji j

I f w w f

In 2 directions:

Page 28: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

28Finite Element Method by G. R. Liu and S. S. Quek

Gauss integrationGauss integrationm j wj Accuracy n

1 0 2 1

2 -1/3, 1/3 1, 1 3

3 -0.6, 0, 0.6 5/9, 8/9, 5/9 5

4 -0.861136, -0.339981, 0.339981, 0.861136

0.347855, 0.652145, 0.652145, 0.347855

7

5 -0.906180, -0.538469, 0,

0.538469, 0.906180

0.236927, 0.478629, 0.568889, 0.478629, 0.236927

9

6 -0.932470, -0.661209,

-0.238619, 0.238619, 0.661209, 0.932470

0.171324, 0.360762, 0.467914, 0.467914, 0.360762, 0.171324

11

Page 29: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

29Finite Element Method by G. R. Liu and S. S. Quek

Evaluation of Evaluation of mmee

4

04.

204

0204

10204

010204

2010204

02010204

9

sy

habe

m

Page 30: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

30Finite Element Method by G. R. Liu and S. S. Quek

Evaluation of Evaluation of mmee

E.g.

)1)(1(4

)1)(1()1)(1(16

31

31

1

1

1

1

1

1

1

1

jiji

jiji

jiij

hab

ddhab

ddNNhabm

94)111)(111(

4 31

31

33

habhabm

Note: In practice, Gauss integration is often used

Page 31: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

31Finite Element Method by G. R. Liu and S. S. Quek

LINEAR QUADRILATERAL LINEAR QUADRILATERAL ELEMENTSELEMENTS

Rectangular elements have limited applicationQuadrilateral elements with unparallel edges are

more useful Irregular shape requires coordinate mapping

before using Gauss integration

Page 32: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

32Finite Element Method by G. R. Liu and S. S. Quek

Coordinate mappingCoordinate mapping

2 (x2, y2)

y

x 1 (1, 1) 2 (1, 1)

3 (1, +1) 4 (1, +1)

3 (x3, y3) 4 (x4, y4)

1 (x1, y1)

Physical coordinates Natural coordinates

( , ) ( , )he U N d (Interpolation of displacements)

( , ) ( , ) e X N x (Interpolation of coordinates)

Page 33: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

33Finite Element Method by G. R. Liu and S. S. Quek

Coordinate mappingCoordinate mapping

( , ) ( , ) e X N x

wherex

y

X ,

1

1

2

2

3

3

4

4

coordinate at node 1

coordinate at node 2

coordinate at node 3

coordinate at node 4

e

x

y

x

y

x

y

x

y

x

)1)(1(

)1)(1(

)1)(1(

)1)(1(

41

4

41

3

41

2

41

1

N

N

N

N

iii

xNx ),(4

1

iii

yNy ),(4

1

Page 34: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

34Finite Element Method by G. R. Liu and S. S. Quek

Coordinate mappingCoordinate mapping

Substitute 1 into iii

xNx ),(4

1

2 (x2, y2)

y

x 1 ( 1, 1) 2 (1, 1)

3 (1, +1) 4 ( 1, +1)

3 (x3, y3) 4 (x4, y4)

1 (x1, y1)

321

221

321

221

)1()1(

)1()1(

yyy

xxx

or

)()(

)()(

2321

3221

2321

3221

yyyyy

xxxxx

Eliminating , )()}({)(

)(322

1322

1

23

23 yyxxxyy

xxy

Page 35: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

35Finite Element Method by G. R. Liu and S. S. Quek

Strain matrixStrain matrix

y

y

Nx

x

NN

y

y

Nx

x

NN

iii

iii i i

ii

N N

xNNy

Jor

x y

x y

Jwhere (Jacobian matrix)

1 131 2 4

2 2

3 331 2 4

4 4

x yNN N N

x y

x yNN N N

x y

JSince ( , ) ( , ) e X N x ,

Page 36: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

36Finite Element Method by G. R. Liu and S. S. Quek

Strain matrixStrain matrix

1

ii

i i

NN

xN Ny

JTherefore,

NLNB

xy

y

x

0

0

Replace differentials of Ni w.r.t. x and y with differentials of Ni w.r.t. and

(Relationship between differentials of shape functions w.r.t. physical coordinates and differentials w.r.t. natural coordinates)

Page 37: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

37Finite Element Method by G. R. Liu and S. S. Quek

Element matricesElement matrices

Murnaghan (1951) : dA=det |J | dd

1 1 T

1 1det d de h

k B cB J

dddet

dddd

1

1

1

1

0

JNN

NNNNNNm

T

T

A

T

A

hT

V

e

h

AhAxV

Page 38: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

38Finite Element Method by G. R. Liu and S. S. Quek

RemarksRemarks

Shape functions used for interpolating the coordinates are the same as the shape functions used for interpolation of the displacement field. Therefore, the element is called an isoparametric element.

Note that the shape functions for coordinate interpolation and displacement interpolation do not have to be the same.

Using the different shape functions for coordinate interpolation and displacement interpolation, respectively, will lead to the development of so-called subparametric or superparametric elements.

Page 39: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

39Finite Element Method by G. R. Liu and S. S. Quek

HIGHER ORDER ELEMENTSHIGHER ORDER ELEMENTS

Higher order triangular elements

i (I,J,K)

(p,0,0) (0,p,0)

(0,0,p)

(p 1,1,0)

L1

L3

L2

(0,p 1,1)

(0,1,p 1) (1,0,p 1)

(2,0,p 2)

nd = (p+1)(p+2)/2

I J K p Node i,

Argyris, 1968 :

1 2 3( ) ( ) ( )I J Ki I J KN l L l L l L

0 1 ( 1)

0 1 ( 1)

( )( ) ( )( )

( )( ) ( )I I I

L L L L L Ll L

L L L L L L

Page 40: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

40Finite Element Method by G. R. Liu and S. S. Quek

HIGHER ORDER ELEMENTSHIGHER ORDER ELEMENTS

Higher order triangular elements (Cont’d)

x , u

y , v

1

2

3

4

5 6

1 2 2 1 1( 2 1 )N N N L L

4 5 6 1 24N N N L L

x , u

y , v

1

2

3

4 5

6

7 8

9 1 0

1 2 3 1 1 1

1( 3 1 ) ( 3 2 )

2N N N L L L

4 9 1 2 1

9( 3 1 )

2N N L L L

1 0 1 2 32 7N L L L

Cubic element

Quadratic element

Page 41: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

41Finite Element Method by G. R. Liu and S. S. Quek

HIGHER ORDER ELEMENTSHIGHER ORDER ELEMENTS

Higher order rectangular elements

(0,0)

0

(n,0)

(0,m) (n,m)

i(n,m)

Lagrange type:

1 1 ( ) ( )D D n mi I J I JN N N l l

0 1 1 1

0 1 1 1

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )n k k nk

k k k k k k k n

l

[Zienkiewicz et al., 2000]

Page 42: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

42Finite Element Method by G. R. Liu and S. S. Quek

HIGHER ORDER ELEMENTSHIGHER ORDER ELEMENTS

Higher order rectangular elements (Cont’d)

1 2

3 4

5

6

7

8 9

1 11 1 1

1 12 2 1

1 13 2 2

1 14 1 2

1( ) ( ) (1 ) (1 )

41

( ) ( ) (1 ) (1 )4

1( ) ( ) (1 )(1 )

41

( ) ( ) (1 )(1 )4

D D

D D

D D

D D

N N N

N N N

N N N

N N N

1 15 3 1

1 16 2 3

1 17 3 2

1 18 1 1

1 1 2 29 3 3

1( ) ( ) (1 )(1 )(1 )

21

( ) ( ) (1 )(1 )(1 )21

( ) ( ) (1 )(1 )(1 )2

1( ) ( ) (1 )(1 )

2

( ) ( ) (1 )(1 )

D D

D D

D D

D D

D D

N N N

N N N

N N N

N N N

N N N

(nine node quadratic element)

Page 43: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

43Finite Element Method by G. R. Liu and S. S. Quek

HIGHER ORDER ELEMENTSHIGHER ORDER ELEMENTS

Higher order rectangular elements (Cont’d)

Serendipity type:

1 2

3 4

5

6

7

8 0

=1

= 1

14

212

212

(1 )(1 )( 1) 1, 2, 3, 4

(1 )(1 ) 5, 7

(1 )(1 ) 6,8

j j j j j

j j

j j

N j

N j

N j

(eight node quadratic element)

Page 44: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

44Finite Element Method by G. R. Liu and S. S. Quek

HIGHER ORDER ELEMENTSHIGHER ORDER ELEMENTS

Higher order rectangular elements (Cont’d)

1 2

3 4

5 6

7

8

9 10

11

12

2 2132

2932

13

2932

(1 )(1 )(9 9 10)

for corner nodes 1, 2, 3, 4

(1 )(1 )(1 9 )

for side nodes 7, 8, 11, 12 where 1 and

(1 )(1 )(1

j j j

j j j

j j

j j

N

j

N

j

N

13

9 )

for side nodes 5, 6, 9, 10 where and 1

j

j jj

(twelve node cubic element)

Page 45: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

45Finite Element Method by G. R. Liu and S. S. Quek

ELEMENT WITH CURVED ELEMENT WITH CURVED EDGESEDGES

4

2

3

8

1 5

7

6

1 4 2

5

3

6

1

2

3

4

5 6

1 2

3 4

5

6

7

8

Page 46: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

46Finite Element Method by G. R. Liu and S. S. Quek

COMMENTS (GAUSS COMMENTS (GAUSS INTEGRATION)INTEGRATION)

When the Gauss integration scheme is used, one has to decide how many Gauss points should be used.

Theoretically, for a one-dimensional integral, using m points can give the exact solution for the integral of a polynomial integrand of up to an order of (2m1).

As a general rule of thumb, more points should be used for

a higher order of elements.

Page 47: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

47Finite Element Method by G. R. Liu and S. S. Quek

COMMENTS (GAUSS COMMENTS (GAUSS INTEGRATION)INTEGRATION)

Using a smaller number of Gauss points tends to counteract the over-stiff behaviour associated with the displacement-based method.

Displacement in an element is assumed using shape functions. This implies that the deformation of the element is somehow prescribed in a fashion of the shape function. This prescription gives a constraint to the element. The so-constrained element behaves stiffer than it should. It is often observed that higher order elements are usually softer than lower order ones. This is because using higher order elements gives fewer constraint to the elements.

Page 48: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

48Finite Element Method by G. R. Liu and S. S. Quek

COMMENTS ON GAUSS COMMENTS ON GAUSS INTEGRATIONINTEGRATION

Two Gauss points for linear elements, and two or three points for quadratic elements in each direction should be sufficient for most cases.

Most of the explicit FEM codes based on explicit formulation tend to use one-point integration to achieve the best performance in saving CPU time.

Page 49: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

49Finite Element Method by G. R. Liu and S. S. Quek

CASE STUDYCASE STUDY

Side drive micro-motor

Page 50: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

50Finite Element Method by G. R. Liu and S. S. Quek

CASE STUDYCASE STUDY

Elastic Properties of Polysilicon

Young’s Modulus, E 169GPa

Poisson’s ratio, 0.262

Density, 2300kgm-3

10N/m

10N/m

10N/m

Page 51: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

51Finite Element Method by G. R. Liu and S. S. Quek

CASE STUDYCASE STUDY

Analysis no. 1: Von Mises stress distribution using 24 bilinear

quadrilateral elements (41 nodes)

Page 52: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

52Finite Element Method by G. R. Liu and S. S. Quek

CASE STUDYCASE STUDY

Analysis no. 2: Von Mises stress distribution using 96 bilinear

quadrilateral elements (129 nodes)

Page 53: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

53Finite Element Method by G. R. Liu and S. S. Quek

CASE STUDYCASE STUDY

Analysis no. 3: Von Mises stress distribution using 144 bilinear

quadrilateral elements (185 nodes)

Page 54: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

54Finite Element Method by G. R. Liu and S. S. Quek

CASE STUDYCASE STUDY

Analysis no. 4: Von Mises stress distribution using 24 eight-nodal, quadratic elements (105 nodes)

Page 55: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

55Finite Element Method by G. R. Liu and S. S. Quek

CASE STUDYCASE STUDY

Analysis no. 5: Von Mises stress distribution using 192 three-nodal,

triangular elements (129 nodes)

Page 56: 1 Finite Element Method FEM FOR 2D SOLIDS for readers of all backgrounds G. R. Liu and S. S. Quek CHAPTER 7:

56Finite Element Method by G. R. Liu and S. S. Quek

CASE STUDYCASE STUDYAnalysis

no.Number / type of

elements

Total number of nodes in

model

Maximum Von Mises

Stress (GPa)

124 bilinear,

quadrilateral 41 0.0139

296 bilinear, quadrilateral

129 0.0180

3144 bilinear, quadrilateral

185 0.0197

424 quadratic, quadrilateral

105 0.0191

5 192 linear, triangular

129 0.0167