The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The...

37
The evolutionary and biogeographic history of the armoured harvestmen Laniatores phylogeny based on ten molecular markers, with the description of two new families of Opiliones (Arachnida) Prashant P. Sharma A,B and Gonzalo Giribet A A Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA. B Corresponding author. Email: [email protected] Abstract. We investigated the internal phylogeny of Laniatores, the most diverse suborder of Opiliones, using sequence data from 10 molecular loci: 12S rRNA, 16S rRNA, 18S rRNA, 28S rRNA, cytochrome c oxidase subunit I (COI), cytochrome b, elongation factor-1a, histones H3 and H4, and U2 snRNA. Exemplars of all previously described families of Laniatores were included, in addition to two families Petrobunidae, fam. nov. and Tithaeidae, fam. nov. that we erect herein. Data analyses were based on maximum likelihood and Bayesian approaches on static alignments, and included phylogenetic tree estimation, molecular dating, and biogeographic analysis of ancestral area reconstruction. The results obtained include the monophyly of Laniatores and the infraorder Grassatores the focus of this study as well as support for numerous interfamilial relationships. The two new families described cluster with other South-east Asian families (Podoctidae and Epedanidae). Diversication of Laniatores is estimated at ~348 Mya, and origin of most Grassatores superfamilies occurs in a ~25 million year span of time immediately after the end-Permian mass extinction (254 Mya). Ancestral range reconstruction of the clade (Samooidea + Zalmoxoidea) suggests that the ancestral range of Samooidea comprises West Tropical Gondwana (West Africa + Neotropics), whereas that of Zalmoxoidea is exclusively Neotropical. The following additional taxonomic changes are proposed: (1) Remyus is transferred to Phalangodidae, and (2) Escadabiidae and Kimulidae are transferred to Zalmoxoidea. Additional keywords: biogeography, Briggsidae, Grassatores, Guasiniidae, Insidiatores, molecular dating, Petrobunidae, Tithaeidae. Introduction Of the four suborders of Opiliones (Arachnida), the largely Tropical Laniatores harbours nearly two-thirds (over 4000 species) of described opilionid diversity (Kury 2006). Commonly known as the armoured harvestmen, laniatorids typically bear spiny, raptorial pedipalps (the name is derived from the Latin laniatoror butcher) and comprise most of the orders striking exemplars of morphological, behavioural and ecological diversity (Fig. 1). Sexual dimorphism is common in Laniatores, with males of myriad species bearing embellished colours, tumid appendages, phalanxes of scutal and appendicular spines, or combinations thereof. Ethological studies of Neotropical species have suggested that the ornate falciform weaponry of Laniatores may be linked to reproductive behaviour (Willemart et al. 2009; Zatz et al. 2011), which is in turn quite diverse, with multiple origins of parental (and even paternal) care (Martens 1993; Hara et al. 2003; Machado et al. 2004; Hunter et al. 2007). Currently, 27 families of Laniatores are recognised (Giribet et al. 2010), divided between two tenuous infraorders, Insidiatores Loman, 1900 and Grassatores Kury, 2003. The former is likely a paraphyletic entity, whereas the latter is an asymmetrically diverse clade that includes over half of all described Opiliones species (reviewed by Giribet and Kury 2007). However, with a few exceptions, phylogenetic study of armoured harvestmen has been restricted to species groups or related genera, mostly from South America (e.g. Kury 1993; Pinto-da-Rocha 1997; Pinto-da-Rocha and Kury 2003a; Pérez González 2006; Thomas and Hedin 2008; DaSilva and Gnaspini 2009; Sharma and Giribet 2009; Yamaguti and Pinto-da- Rocha 2009; DaSilva and Pinto-da-Rocha 2010; Derkarabetian et al. 2010). Previous efforts towards a molecular phylogeny of Opiliones have undersampled or omitted key lineages of Laniatores (Giribet et al. 1999, 2002; Shultz and Regier 2001). Propitiously, a recent assessment of Opiliones phylogeny (Giribet et al. 2010) based on ve molecular loci included in its sampling 24 of the 26 families of Laniatores recognised Ó CSIRO 30 September 2011 10.1071/IS11002 1445-5226/11/020106 CSIRO PUBLISHING www.publish.csiro.au/journals/is Invertebrate Systematics, 2011, 25, 106142

Transcript of The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The...

Page 1: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

The evolutionary and biogeographic history of the armouredharvestmen ndash Laniatores phylogeny based on ten molecularmarkers with the description of two new families of Opiliones(Arachnida)

Prashant P SharmaAB and Gonzalo GiribetA

AMuseum of Comparative Zoology Department of Organismic and Evolutionary BiologyHarvard University 26 Oxford Street Cambridge MA 02138 USA

BCorresponding author Email psharmafasharvardedu

Abstract We investigated the internal phylogeny of Laniatores the most diverse suborder of Opiliones using sequencedata from 10 molecular loci 12S rRNA 16S rRNA 18S rRNA 28S rRNA cytochrome c oxidase subunit I (COI)cytochrome b elongation factor-1a histones H3 and H4 and U2 snRNA Exemplars of all previously described families ofLaniatores were included in addition to two families ndash Petrobunidae fam nov and Tithaeidae fam nov ndash that we erectherein Data analyses were based on maximum likelihood and Bayesian approaches on static alignments and includedphylogenetic tree estimation molecular dating and biogeographic analysis of ancestral area reconstruction The resultsobtained include themonophyly of Laniatores and the infraorder Grassatores ndash the focus of this study ndash as well as support fornumerous interfamilial relationships The two new families described cluster with other South-east Asian families(Podoctidae and Epedanidae) Diversification of Laniatores is estimated at ~348Mya and origin of most Grassatoressuperfamilies occurs in a ~25million year span of time immediately after the end-Permian mass extinction (254Mya)Ancestral range reconstruction of the clade (Samooidea + Zalmoxoidea) suggests that the ancestral range of Samooideacomprises West Tropical Gondwana (West Africa +Neotropics) whereas that of Zalmoxoidea is exclusively NeotropicalThe following additional taxonomic changes are proposed (1)Remyus is transferred to Phalangodidae and (2) Escadabiidaeand Kimulidae are transferred to Zalmoxoidea

Additional keywords biogeography Briggsidae Grassatores Guasiniidae Insidiatores molecular dating PetrobunidaeTithaeidae

Introduction

Of the four suborders of Opiliones (Arachnida) thelargely Tropical Laniatores harbours nearly two-thirds(over 4000 species) of described opilionid diversity (Kury2006) Commonly known as the lsquoarmoured harvestmenrsquolaniatorids typically bear spiny raptorial pedipalps (the nameis derived from the Latin lsquolaniatorrsquo or lsquobutcherrsquo) and comprisemost of the orderrsquos striking exemplars of morphologicalbehavioural and ecological diversity (Fig 1) Sexualdimorphism is common in Laniatores with males of myriadspecies bearing embellished colours tumid appendagesphalanxes of scutal and appendicular spines or combinationsthereof Ethological studies of Neotropical species havesuggested that the ornate falciform weaponry of Laniatoresmay be linked to reproductive behaviour (Willemart et al2009 Zatz et al 2011) which is in turn quite diversewith multiple origins of parental (and even paternal) care(Martens 1993 Hara et al 2003 Machado et al 2004 Hunteret al 2007)

Currently 27 families of Laniatores are recognised (Giribetet al 2010) divided between two tenuous infraordersInsidiatores Loman 1900 and Grassatores Kury 2003 Theformer is likely a paraphyletic entity whereas the latter is anasymmetrically diverse clade that includes over half of alldescribed Opiliones species (reviewed by Giribet and Kury2007) However with a few exceptions phylogenetic study ofarmoured harvestmen has been restricted to species groups orrelated genera mostly from South America (eg Kury 1993Pinto-da-Rocha 1997 Pinto-da-Rocha and Kury 2003a PeacuterezGonzaacutelez 2006 Thomas and Hedin 2008 DaSilva and Gnaspini2009 Sharma and Giribet 2009 Yamaguti and Pinto-da-Rocha 2009 DaSilva and Pinto-da-Rocha 2010 Derkarabetianet al 2010) Previous efforts towards a molecular phylogeny ofOpiliones have undersampled or omitted key lineages ofLaniatores (Giribet et al 1999 2002 Shultz and Regier 2001)

Propitiously a recent assessment of Opiliones phylogeny(Giribet et al 2010) based on five molecular loci included inits sampling 24 of the 26 families of Laniatores recognised

CSIRO 30 September 2011 101071IS11002 1445-522611020106

CSIRO PUBLISHING

wwwpublishcsiroaujournalsis Invertebrate Systematics 2011 25 106ndash142

theretofore (all except for Briggsidae (formerly Pentanychidae)and Guasiniidae) ndash a most promising prospect for theelucidation of laniatorid phylogeny However whereas othersuborders particularly Cyphophthalmi had well resolved andsupported internal phylogenies in that study the internalresolution of Laniatores was beset with a large number ofunsupported nodes and unstable clades occluding interfamilialrelationships (Fig 2) The systematic validity of Laniatoressuperfamilies (sensu Giribet and Kury 2007) remainedespecially ambiguous

The instability within the Laniatores subtree may have beendue in part to missing data Whereas other groups such asCyphophthalmi were represented by a data submatrix thatwas over 90 complete (by sequence length) Laniatores wasrepresented by a submatrix that was less than 60 completeFurthermore low density of taxonomic sampling in Laniatoresmay have contributed to phylogenetic instability and low nodalsupport some diverse lineages (eg Assamiidae andEpedanidae)were represented by few exemplars in the Giribet et al (2010)phylogeny Consequently the internal phylogeny of Laniatoresremains largely undefined

To facilitate ongoing studies of Laniatores biology wehave reassessed the phylogeny of the armoured harvestmenimplementing three strategies to improve phylogeneticestimation First we added to available nuclear ribosomalsequence data (complete 18S rRNA and nearly complete28S rRNA sequences) Second we doubled the number ofmolecular loci sampled Third we added new lineages to theanalysis altogether particularly augmenting the sampling ofAssamiidae Biantidae and Epedanidae sensu lato One of thenew lineages included is formally described herein as a newfamily of Grassatores and another previously described lineageis elevated to family status Our taxon sampling encompassesfor the first time all families of Laniatores described heretoforeincluding the enigmatic Guasiniidae and Briggsidae

Materials and methods

Taxonomy

Examined specimens have been deposited in the followinginstitutions MHNG (Museacuteum drsquohistoire naturelle Ville de

Fig 1 Live habitus of Laniatores exemplars Top row left to right Lacurbs sp (Biantidae) from Ototomo forest Cameroonphotographed 3 June 2009 Algidia sp (Triaenonychidae) from Arthurrsquos Pass National Park South Island New Zealandphotographed 3 February 2003 Pyramidops sp (Pyramidops group) from Ototomo forest Cameroon photographed 5 June2009Middle row left to rightChilon undulatus (Assamiidae) fromMountKoupeacuteCameroon photographed 12 June 2009Nsorkiadorsicana (Assamiidae) from ParqueNacional de los Altos de Nsork Equatorial Guinea photographed 4 August 2003Rhaucus sp(Cosmetidae) from Santuario de Flora y Faune Iguaque Colombia photographed 1 November 2004 Bottom row left to rightGnomulus javanicus (Sandokanidae) from Cibodas Botanical Gardens Java Indonesia photographed 12 June 2006 Zalmoxis sp(Zalmoxidae) from Bukit Linggua Sulawesi Indonesia photographed 17 June 2006 undescribed female of Cranainae (Cranaidae)from Santuario de Flora y Faune Iguaque photographed 1 November 2004 Photos by G Giribet

Molecular phylogeny of Laniatores Invertebrate Systematics 107

Genegraveve Switzerland) and MCZ (Museum of ComparativeZoology Harvard University Cambridge MA USA)

The holotype and a female paratype of the new species werephotographed in dorsal ventral and lateral positions using aJVC KY-F70B digital camera mounted on a Leica MZ 125stereomicroscope A series of images (from 5 to 15) was taken atdifferent focal planes and assembled with the dedicated softwarepackage Auto-Montage Pro Version 5000271 (Syncroscopy

Frederick MD USA) Multiple specimens (for each species)were examined with a Zeiss EVO 50 scanning electronmicroscope (SEM) The genitalia of one to two male andfemale paratypes were also examined with the Zeiss EVO 50SEM Specimens previously used for DNA extraction areindicated as such among the type material Methodsconcerning molecular sequence data obtained from thesespecimens are described below Material used for comparison

Fig 2 Cladogram of the Laniatores subtree from Giribet et al (2010) Nodes that are unsupportedandor conflicting across analyses have been collapsed

108 Invertebrate Systematics P P Sharma and G Giribet

encompassed three morphospecies (not described at present) andspecimens of Zalmoxida gibbera Suzuki 1970 all of these wereincluded in the molecular phylogeny

All measurements are given in millimetres unless otherwiseindicated Nomenclature on cuticular ornamentation followsMurphree (1988)

Species samplingSpecimens of Laniatores were collected by several individualsover multiple collecting trips including by P P S duringcollecting trips to New Caledonia (2007) Fiji (2008) andPalau (2010) and by G G during collecting trips to Indonesia(2006) In addition data collected in a previous study (Giribetet al 2010) were accessed from GenBank andor updated withnew sequences Collected specimens were preserved in 96EtOH and stored at 80C The list of specimens includingvoucher numbers GenBank accession codes and collectiondetails is found in Appendix 1

Molecular methodsTotalDNAwas extracted from the legs of animals usingQiagenrsquosDNEasy tissue kit (Valencia CA USA) Purified genomicDNA was used as a template for PCR amplification Molecularmarkers consisted of two nuclear ribosomal genes (18S rRNAand 28S rRNA) two mitochondrial ribosomal genes (12SrRNA and 16S rRNA) three nuclear protein-encoding genes(elongation factor-1a histone H3 and histone H4) twomitochondrial protein-encoding genes (cytochrome c oxidasesubunit I and cytochrome b) and one nuclear non-coding gene(U2 snRNA) Primer sequences and fragment lengths areindicated in Table 1

Polymerase chain reaction (PCR) visualisation by agarosegel electrophoresis and direct sequencing were conducted asdescribed by Sharma and Giribet (2009) Chromatogramsobtained from the automatic sequencer were read andsequences assembled using the sequence editing softwareSequencher (Gene Codes Corporation Ann Arbor MI USA)Sequence data were edited in Se-Al ver 20a11 (Rambaut 1996)

Phylogenetic analysisMaximum likelihood (ML) and Bayesian inference (BI) analyseswere conducted on static alignments which were inferred asfollows Sequences of ribosomal and snRNA genes were alignedusing MUSCLE ver 36 (Edgar 2004) with default parametersand subsequently treated with GBlocks ver 091b (Castresana2000) to cull positions of ambiguous homology For thesegenes gaps were permitted within blocks Sequences ofprotein-encoding genes were aligned using MUSCLE ver 36with default parameters as well but alignments were confirmedusing protein sequence translations before treatment withGBlocks ver 091b and no gaps were permitted withinblocks The size of data matrices for each gene prior andsubsequent to treatment with GBlocks ver 091b is providedin Table 2

Maximum likelihood analysis was conducted usingRAxML ver 727 (Stamatakis 2006) through the CIPRESver 3 gateway using the Abe Dell Intel 64 Linux teragridcluster housed at the National Center for Supercomputing

Applications (University of Illinois) A unique GTR model ofsequence evolution (Tavareacute 1986) with corrections for a discretegamma distribution (GTR+G) was specified for each datapartition (Yang 1996) Nodal support was estimated via therapid bootstrap algorithm (1000 replicates) using the GTR-CAT model (Stamatakis et al 2008)

Bayesian inference analysis was performed using MrBayesver 312 (Huelsenbeck and Ronquist 2005) with a uniqueGTR model of sequence evolution with corrections for adiscrete gamma distribution and a proportion of invariant sites(GTR+G + I) specified for each partition as selected inModeltest ver 37 (Posada and Crandall 1998 Posada 2005)under the Akaike information criterion (Posada and Buckley2004) Default priors were used starting with random treesand three hot and one cold Markov chains were run until theaverage deviation of split frequencies reached lt001 (10 000 000generations) After burn-in samples were discarded sampledtrees were combined in a single majority consensus topologyand the percentage of nodes was taken as posterior probabilities

Estimation of divergence timesAgesof cladeswere inferredusingBEASTver 161 (Drummondet al 2006 Drummond and Rambaut 2007) We specified aunique GTR model of sequence evolution with corrections fora discrete gamma distribution and a proportion of invariant sites(GTR+G + I) for each partition and we further separated sitemodels for first second and third codon positions for all fiveprotein-encoding genes

Fossil taxa were used to calibrate divergence times as inprevious studies (Giribet et al 2010) We constrained the ageof Eupnoi to 410Mya using the Devonian harvestmanEophalangium sheari Dunlop Anderson Kerp amp Hass 2004(see Dunlop et al 2003 2004 Dunlop and Anderson 2005)a normal distribution with a standard deviation of 5million yearswas applied to this node to account for uncertainty in estimationof fossil age Dyspnoi were constrained using a normaldistribution with a mean of 300Mya and a standard deviationof 10million years on the basis of the Carboniferous fossilsEotrogulus fayoli Thevenin 1901 and Nemastomoides elaverisThevenin 1901 (see Dunlop 2007)

An uncorrelated lognormal clock model was inferred for eachpartition and a Yule speciation process was assumed for the treeprior We selected the uncorrelated lognormal model because itsaccuracy is comparable to an uncorrelated exponential modelbut it has narrower 95 highest posterior density intervalsAdditionally the variance of the uncorrelated lognormalmodel can better accommodate data that are already clock-like(Drummond et al 2006) Priors were sequentially optimised in aseries of iterative test runs (data not shown) Markov chains wererun for 50 000 000generations sampling every 5000generationsConvergence diagnostics were assessed using Tracer ver 15(Rambaut and Drummond 2009)

Ancestral range reconstructionLikelihood analysis of range evolution of (Samooidea +Zalmoxoidea) was conducted using the program Lagrange(Ree et al 2005 Ree and Smith 2008) We isolated the datedsubtree of the clade (Zalmoxoidea + Samooidea) from

Molecular phylogeny of Laniatores Invertebrate Systematics 109

BEAST analysis and coded the ranges of terminals asAfrotropical Neotropical or Indo-Pacific We implementedstratified dispersal constraint matrices for three spans of time(1) 0ndash35Mya (disconnection of all three landmasses) (2)35ndash110Mya (transantarctic connections between theAustralian plate and temperate South America disconnectionof South America and West Africa) and (3) 110ndash206Mya(connection of all three landmasses) Geological events usedto delimit the time spans follow Sanmartiacuten and Ronquist(2004) The maximum number of areas in ancestral ranges washeld at two (this convention reflects empirical observationsof Laniatores species the majority of which are narrowlydistributed endemics) and dispersal constraints were set toeither 10 (if landmasses were connected) or 01 (if landmasseswere disjunct)

Table 1 List of primer sequences used for amplification and sequencing with original references of primer sequences

12S rRNA12Sai 50-AAA CTA GGA TTA GAT ACC CTA TTA T-30 Kocher et al (1989)12Sr Opi 50-AAG AGC GAC GGG CGA TGT GTA CAT-30 This study

16S rRNA16Sa 50-CGC CTG TTT ATC AAA AAC AT-30 Xiong and Kocher (1991)16Sb 50-CTC CGG TTT GAA CTC AGA TCA-30 Edgecombe et al (2002)

18S rRNA1F 50-TAC CTG GTT GAT CCT GCC AGT AG-30 Giribet et al (1996)3F 50-GTT CGA TTC CGG AGA GGG A-30 Giribet et al (1996)5R 50-CTT GGC AAA TGC TTT CGC-30 Giribet et al (1996)9R 50-GAT CCT TCC GCA GGT TCA CCT AC-30 Giribet et al (1996)18Sa20 50-ATG GTT GCA AAG CTG AAA C-30 Whiting et al (1997)18Sbi 50-GAG TCT CGT TCG TTA TCG GA-30 Whiting et al (1997)

28S rRNA28Sa 50-GAC CCG TCT TGA AAC ACG GA-30 Whiting et al (1997)28S D1F 50-GGG ACT ACC CCC TGA ATT TAA GCAT-30 Park and Oacute Foighil (2000)28Srd4b 50-CCT TGG TCC GTG TTT CAA GAC-30 Edgecombe and Giribet (2006)28Srd5b 50-CCA CAG CGC CAG TTC TGC TTA C-30 Schwendinger and Giribet (2005)28Srd48a 50-ACC TAT TCT CAA ACT TTA AAT GG-30 Schwendinger and Giribet (2005)28Srd7b1 50-GAC TTC CCT TAC CTA CAT-30 Schwendinger and Giribet (2005)28S F2012 50-CCA AGG TKA RYA GCC TCT RG-30 Giribet et al (2010)28S R2762 50-CCG CCC CAG CCA AAC TCC CC-30 Giribet et al (2010)28S F2762 50-GGG GAG TTT GGC TGG GGC GG-30 Giribet et al (2010)28S OR2r 50-TTC TGA CTT AGA GGC GTT CAG-30 Giribet et al (2010)

COILCO1490 50-GGT CAA CAA ATC ATA AAG ATA TTG G-30 Folmer et al (1994)HCOoutout 50-GTA AAT ATA TGR TGD GCT C-30 Prendini et al (2005)

Cytochrome bCytB F-Lan 50-TAG GTT ATG TGT TAC CTT GAG GWC AAA TAT CTT TTT G-30 This study modified from Schoumlnhofer

and Martens (2008)CytB R-Lan 50-CCA CCT AAT TTA TTT GGA ATT GAT TG-30 This study

EF-1aEF OP3 50-TTT GAR GAA ATC CAR AAR GAA GT-30 Hedin et al (2010)EF OPRC4 Leio 50-GAA CTT GCA AGC AAT GTG AGC-30 Hedin et al (2010)

Histone H3H3aF 50-ATG GCT CGT ACC AAG CAG ACV GC-30 Colgan et al (1998)H3aR 50-ATA TCC TTR GGC ATR ATR GTG AC-30 Colgan et al (1998)

Histone H4H4F2S 50-TSC GIG AYA ACA TYC AGG GIA TCA C-30 Pineau et al (2005)H4F2er 50-CKY TTI AGI GCR TAI ACC ACR TCC AT-30 Pineau et al (2005)

U2 snRNAU2F 50-TCT CGG CCT WWT GGC TAA-30 Colgan et al (1998)U2R 50-GMG GTA STG CAA TAC CGG-30 Colgan et al (1998)

Table 2 Length of gene partition alignment prior and subsequent totreatment with GBlocks ver 091b

Partitions Original length ofalignment (bp)

Fraction retainedby GBlocks ()

Final length ofalignment (bp)

12S rRNA 382 44 17116S rRNA 656 64 36418S rRNA 1784 98 175228S rRNA 3438 70 2405COI 795 81 648CytB 421 100 421EF-1a 584 96 566H3 327 100 327H4 160 100 160U2 snRNA 131 100 131

110 Invertebrate Systematics P P Sharma and G Giribet

Taxonomy

Order OPILIONES Sundevall 1833

Suborder LANIATORES Thorell 1876

Family PETROBUNIDAE fam nov

Type genus Petrobunus gen nov

Type species Petrobunus schwendingeri sp nov

Genera included Petrobunus gen nov Zalmoxida Roewer 1912 newfamilial assignment

Diagnosis

Small to medium-sized Grassatores with a low oculariumremoved from anterior margin of carapace with a medianocularial tubercle in some species but distinguished fromEpedanidae in the lack of a large median spine Mesotergumsmooth indistinctly divided into five areas scutal areas I and IInot fused as opposed to Epedanidae Chelicerae with a sexuallymonomorphic prominent bulla basal segment not enlarged asopposed toEpedanidae Palpus robust and strongly spined palpalpatella armed with single distinct spine-bearing tubercle onmedial-distal portion It can be differentiated from Podoctidaein lacking spines in leg I and in lacking a sexually dimorphicocularium Femur of leg III sexually monomorphic and arcuateMale leg IV sexually dimorphic and spined Tarsi III and IV withunmodified double claws scopulae absent as opposed to mostSamooidea It can be distinguished from Sandokanidae andPodoctidae in the tarsal formula which is not reduced inPetrobunidae Pars distalis of penis either shaped as the headof a javelin (Petrobunus) or with a rounded apical margin(Zalmoxida) and spoon-shaped in dorsal aspect without cleftin ventral plate (as opposed to Tithaeidae and Podoctidae) or aring of setae surrounding a capsula interna (as opposed toEpedanidae) variable number of setae on lateroventral andlaterodorsal surfaces glans free in apical part and simple withparastylar lobe small (Zalmoxida) or elongate and extendingproximally (Petrobunus) Ovipositor composed of two apicallobes each bearing two dorsal setae one ventral seta and twoapical setae bases of ventral pair of setae either in contact(Zalmoxida) or set apart (Petrobunus) distal surfaces ofapical lobes either finely denticulate (Zalmoxida) or smooth(Petrobunus) (Appendix 2)

Remarks

The morphology of Petrobunidae is not readily indicative ofphylogenetic affinities The sexually dimorphic fourth walkingleg and apophyses of the opisthosomal sternites suggest arelationship to Zalmoxidae or Escadabiidae respectively (orsome distant relationship to Zalmoxoidea) the indistinctdivision of the mesotergum to Samoidae and the spoon-shaped pars distalis of the penis to erecanine Assamiidae orPhalangodidae Molecular sequence data similarly do notsupport the placement of Petrobunidae either within or sister toa single family disfavouring its inclusion in a previouslydescribed lineage However in most analyses Petrobunidaeclusters with other South-east Asian families namelyEpedanidae and Podoctidae (discussed below)

Etymology

The name refers to the appearance of males of this genuswhich appear to have tiny pebbles attached to the proximalpart of the fourth leg when observed with the naked eyedue to the greatly enlarged trochanter IV Derived from Greeklsquopetrarsquo (ptra) meaning lsquostonersquo or lsquopebblersquo and lsquo-bunusrsquoa common suffix in Opiliones taxonomy (eg HadrobunusTriaenobunus Dibunus) It is also wordplay as the typespecies is named after an individual with the given namelsquoPeterrsquo

a

b

050 mm

050 mm

050 mm

c

Fig 3 Petrobunus schwendingeri sp novmale holotype (a) Dorsal view(b) lateral view and (c) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 111

Genus Petrobunus gen nov

Type species Petrobunus schwendingeri sp nov

Diagnosis

Small Grassatores (body length lt2mm) distinct from otherpetrobunids in the following combination of characters coxaand trochanter of male leg IV greatly incrassate with trochanterIV sub-rectangular in lateral aspect Tarsal formula 3 5 5 5ndash6Pars distalis of penis shaped as the head of a javelin two to threepairs of setae on ventral plate and four setae on each lateralmargin glans free in apical part with parastylar lobe extendingproximally Ovipositor with two ventral setae (one per apicallobe) set apart from one another by a distance equal toapproximately one-third the width of the ovipositor

Distribution

The newly described species are known only from the Philippineislands of Palawan and Panay an undescribed morphospecies

(included in molecular phylogeny as MCZ DNA102668 andMCZ DNA102669) is known from Taiwan

Petrobunus schwendingeri sp nov

(Figs 3ndash6 Tables 3 4)

Material examined

Holotype Male (MHNG) Philippines Panay Sibaliw primary forest450m alt leg E Curio 13i2008 (ex MCZ DNA103572)

Paratypes 1lt (mounted on three SEMstubs [MCZ100872ndash100874] anddissected for genitalia) 2 (1 extracted for DNA [MCZ 100875 MCZDNA103572] 1 dissected for genitalia [MCZ100881]) same collectingdata as holotype 4 same collecting data as holotype (MHNG)

Additional material studied 1 lt juvenile same collecting data asholotype

Diagnosis

Small petrobunid with unarmed ocularium Distinct from otherspecies in the genus in the mesotergum with transverse bands of

a b

c

100 microm

100 microm

100 microm

Fig 4 Petrobunus schwendingeri sp novmale paratype (a) Dorsal view of prosoma andmesotergum (b) posteriorview of opisthosoma with dotted reconstructions of spination based on holotype specimen and (c) dorsal view ofanterior margin of carapace

112 Invertebrate Systematics P P Sharma and G Giribet

a

100 microm

100 microm

100 microm

200 microm

100 microm

100 microm

100 microm

100 microm

200 microm

b

c

d

e

h

i

g

f

Fig 5 Petrobunus schwendingeri sp nov (a) Left chelicer of male paratype (b) left palp of male paratype (c) left leg I of maleparatype (d) left leg II of male paratype (e) left leg III of male paratype ( f ) left leg IV of male paratype (g) left leg IV of femaleparatype (h) trochanter of left leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 113

pigmentation and in the armature of the opisthosomal sternites(two pairs of tubercles on sternite 7 and one pair on sternite 8)Proximal region of femora of all legs with single blunt peg Penis

more elongate than in congeners in the shape of a spear bladewith two pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100875] inparentheses) 168 (164) greatest width of prosoma 076 (076)greatest width of opisthosoma 126 (124) length-to-width ratio133 (132) (Figs 3 6) Body campaniform yellow to darkorange (in alcohol depending on incidence of light) almostentirely with a dense microgranulate surface microstructureEyes present on low well developed ocularium withoutmedian ocularial tubercle Ocularium 012 (012) long and024 (019) wide removed from anterior margin of carapaceAnterior margin of carapace with two pairs of blunt pegs abovecoxae of leg I with outer pair of sub-rectangular shape (Fig 4)Scutal grooves of mesotergum indistinct with mesotergal areasdistinguishable only by transverse bands of pigmentation Freetergites without large tubercles

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged with setosetubercles on anterior margin Genital operculum sub-triangularSpiracles not concealed adjacent to row of tuberclesOpisthosomal sternite 7 with two pairs of large tuberclesdisplaced away from midline Opisthosomal sternite 8 withone pair of smaller tubercles flanking midline Anal plateunarmed (Fig 4)

Chelicerae (Fig 5) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassatefree of ornamentation with dorsal margin bearing several setaeDistal article with delicate dentition free of ornamentation

Palpi (Fig 5) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setae Palpalfemur with two proximal ventral spines in a row and two paireddistal spines (one ventral one mesoventral) Palpal patella with asingle spine directed inward Palpal tibiawith twopairs of spinesand a small basal setose tubercle Palpal tarsus with two pairs ofspines Palpal claw nearly as long as palpal tarsus

Legs IndashIV (Fig 5) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge ventral tubercle and three smaller mesodorsal tuberclesFemora IndashIV with one basal peg on ventral surface with peg freeof granulation Femur III arcuate in males and females free oftubercles Femur IVandpatella IVofmalewith two irregular rowsof mesalmesoventral tubercles Tibia IV of male with multipleirregular rows of tubercles with ventral tubercles enlarged andbulbous distally ventral tubercles enlarged but conical in shapeMetatarsi IndashIV divided distally with distal portion lackingornamentation metatarsus IV of male with two rows of mesalmesoventral tubercles Tarsus IV unornamented Femaletrochanter IV not enlarged leg IV free of tubercles Tarsalclaws IndashIV smooth unmodified Tarsal segmentation 3 5 5 5

Penis (Fig 6) elongate narrow and slender in the shape ofa spear blade Lateral margins gradually coalescing dorsallyresulting in spoon shape in dorsal aspect Ventral surface withtwo pairs of setae lateral margins with four setae each Glans

a

b

c d

050 mm

050 mm

100 microm100 microm

Fig 6 Petrobunus schwendingeri sp nov (a) Female paratype dorsalview (b) female paratype ventral view (c) pars distalis of penis lateral viewand (d) ovipositor dorsal view (one of four dorsal setae broken duringmounting process)

114 Invertebrate Systematics P P Sharma and G Giribet

free in apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 6) composedof twoapical lobes eachbearingtwo dorsal setae one ventral seta and two apical setae Distalsurfaces of apical lobes smooth Bases of dorsal setae in contactBases of ventral setae set apart by a distance approximately equalto one-third the width of the ovipositor

Distribution

Known only from type locality

Etymology

The specific epithet honours Dr Peter J Schwendinger curator atthe MHNG for his inspiration and tireless efforts to advanceknowledge of South-east Asian arachnid fauna

Petrobunus spinifer sp nov

(Figs 7ndash10 Tables 5 6)

Material examined

Holotype Male (MHNG) Philippines Palawan El Nido RegionBulalacao Waterfall primary forest 200ndash450 alt (111304100N1192800000E) leg A Schulz 30xi2009 (ex MHNG PAL-0905)

Paratypes 12 lt 21 (MHNG) same collecting data as holotype (exMHNG PAL-0905) 3 lt (1 dissected for genitalia [MCZ 100888] andmounted on one SEM stub [MCZ 100886] 2 in ethanol [MCZ100877ndash100878]) 3 (1 dissected for genitalia [MCZ 100889] 2 inethanol [MCZ 100879ndash100880]) same collecting data as holotype (exMHNGPAL-0905) 2lt (1mountedononeSEMstub [MCZ100882] 1mounted on two SEM stubs [MCZ 100884ndash100885]) PhilippinesPalawan El Nido Region Mt Singkukan primary forest 300ndash400alt (111300700N 1192805100E) leg A Schulz 26xi2009 (exMHNG PAL-0904)

Additional material studied 6 juveniles same collecting data as holotype(MHNG PAL-0905) 1 lt Philippines Palawan El Nido Region MtSingkukan primary forest 400ndash600 alt (111303800N 1192805500E)leg A Schulz 24xi2009 (MHNG PAL-0903) 6 lt 8 PhilippinesPalawan El Nido Region Mt Singkukan primary forest 300ndash400 alt(111300700N 1192805100E) leg A Schulz 26xi2009 (MHNG PAL-0904)

Diagnosis

Small petrobunidwith unarmedoculariumwithmesotergum freeof pigmentation Distinct from congeners in the armature of thefreeopisthosomal tergites andanal plate (setose tubercules) andofthe opisthosomal sternites (sternites 3ndash6 with single tubercle oneach side forming a line under each coxa IV sternite 7 with twolarge spines directly anteroventrally and sternite 8with an evenlydistributed belt of eight smaller spines) Femur IV of male with asingle tubercle basoventrally Penis narrow in the shapeof a spearblade with three pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100879] inparentheses) 130 (115) greatest width of prosoma 058 (056)greatest width of opisthosoma 079 (080) length-to-width ratio165 (144) (Figs 5 8) Body campaniform yellow (in alcoholdepending on incidence of light) almost entirely with a densemicrogranulate surface microstructure Eyes present on lowwell developed ocularium without median ocularial tubercleOcularium 012 (010) long 018 (016) wide removed fromanterior margin of carapace Anterior margin of carapace withtwo pairs of conical pegs above coxae of leg I Scutal grooves ofmesotergum indistinct free of transverse bands of pigmentationFree tergites with regular belts of setose tubercles (Fig 5)

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged withsetose tubercules on anterior margin Genital operculumsub-triangular Spiracles not concealed anterior to row oftubercules Opisthosomal sternites 3ndash6 each with belt of smallregular tubercles Opisthosomal sternite 7 with two large setosespines directly anteroventrally Opisthosomal sternite 8 withbelt of regular tubercles Two rows of tubercles alignedanteroposteriorly under outer limit of coxae IV Anal platearmed with tubercles (Fig 6)

Chelicerae (Fig 7) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassate

Table 3 Leg measurements of Petrobunus schwendingeri holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 013012 049009 028014 034011 051005 042007 217Leg II 017016 069010 029014 055010 058005 079007 307Leg III 015016 054013 028017 046013 052007 047006 242Leg IV 045045 075014 037020 071019 090009 054007 372

Table 4 Leg measurements of Petrobunus schwendingeri female paratype (ex MCZ DNA103572) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 012015 049012 027013 034010 044006 038007 204Leg II 013018 069011 031013 053010 054006 069006 289Leg III 013017 051012 028015 040012 047007 046006 225Leg IV 024023 061012 031017 050012 071008 052008 289

Molecular phylogeny of Laniatores Invertebrate Systematics 115

free of ornamentation with dorsal margin bearing severalsetae Distal article with delicate dentition free of ornamentation

Palpi (Fig 7) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setaePalpal femur with two proximal ventral spines in a row andtwo paired distal spines (one ventral one mesoventral) Palpalpatella with a single spine directed inward Palpal tibia with twopairs of spines and a small basal setose tubercle Palpal tarsuswith two pairs of spines Palpal claw nearly as long as palpaltarsus

Legs IndashIV (Fig 7) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge setose tubercle ventrally Femora IndashIV without basalpegs femur IV with one large tubercle ventrally Femur IIIarcuate in males and females free of tubercles Femur IV andpatella IV of male with irregular rows of mesalmesoventraltubercles Tibia IV of male with multiple irregular rows oflarge tubercles distally ventral tubercles small not bulbousMetatarsi IndashIV divided distally with distal portion lackingornamentation metatarsus IV of male with two rows ofmesalmesoventral tubercles Tarsus IV unornamented Femaletrochanter IV not enlarged leg IV free of tubercles Tarsal clawsIndashIV smooth unmodified Tarsal segmentation 3 5 5 6

Penis (Fig 8) narrow and slender in the shape of a spearblade Lateral margins gradually coalescing dorsally resultingin spoon shape in dorsal aspect Ventral surface with threepairs of setae lateral margins with four setae each Glans freein apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 8) composedof twoapical lobes eachbearingtwo dorsal setae one ventral seta and two apical setae Distalsurfaces of apical lobes smooth Bases of dorsal setae in contactBases of ventral setae set apart by a distance approximately equalto one-third the width of the ovipositor

a

b

c

050 mm

050 mm

050 mm

Fig 7 Petrobunus spinifer sp nov male holotype (a) Dorsal view (b)lateral view and (c) ventral view

a

b

200 microm

100 microm

Fig 8 Petrobunus spinifer sp nov male paratype (a) Ventral view and(b) dorsal view of anterior margin of carapace

116 Invertebrate Systematics P P Sharma and G Giribet

a

b

c

d

e

h

i

g

f

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

Fig 9 Petrobunus schwendingeri sp nov (a) Left chelicer ofmaleparatype (b) left palp ofmale paratype (c) left leg I ofmale paratype (d) left leg II ofmale paratype (e) right leg III ofmale paratype ( f ) right leg IV ofmale paratype (g) left legIV of female paratype (h) trochanter of right leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 117

Distribution

Known only from type locality and additional localities reportedhere

Etymology

The specific epithet an invariable noun in apposition refers to theenlarged belts of tubercles on the free tergites and opisthosomalsternites of this species Derived from Latin lsquospinarsquo meaninglsquospearrsquo or lsquodartrsquo and lsquoferrersquo meaning lsquoto carry or bearrsquo

Petrobunus torosus sp nov

(Figs 11ndash14 Tables 7 8)

Material examined

Holotype Male (MHNG) Philippines Palawan Puerto Princesa RegionSabang Underground National Park Daylight Hole and Lions Caveprimary forest 100ndash200 alt (100900600N1185301000E) legA Schulz6ndash8xii2009 (ex MHNG PAL-0907)

Paratypes 6 lt 13 (MHNG) same collecting data as holotype(ex MHNG PAL-0907) 3 lt (1 dissected for genitalia and mountedon three SEM stubs [MCZ 100894ndash100896] 2 in ethanol [MCZ100890ndash100891]) 3 (1 dissected for genitalia [MCZ 100902] andmounted on one SEM stub [MCZ 100897] 2 in ethanol [MCZ100892ndash100893]) same collecting data as holotype (ex MHNGPAL-0907) 1 lt (mounted on one SEM stub [MCZ100899]) and 3 (dissected for genitalia [MCZ 100901] and mounted on one SEM stub[MCZ 100898]) Philippines Palawan Puerto Princesa Region SabangUnderground National Park jungle trail (101105500N 1185405900E)leg A Schulz 4xii2009 (ex MHNG PAL-0906)

Additional material studied 6 juveniles same collecting data as holotype(MHNG PAL-0907) 12 lt 3 2 juveniles Philippines PalawanPuerto Princesa Region Sabang Underground National Park jungletrail (101105500N 1185405900E) leg A Schulz 4xii2009 (MHNGPAL-0906)

Diagnosis

Distinct from congeners in the well developed ocularium armedwith median tubercle Mesotergum free of pigmentation as inP spinifer but opisthosomal sternites without large spines(sternites 7ndash9 armed only with small low tubercles) Proximalregion of femora of all legs with single blunt peg Penis widenedin the base of the pars distalis stocky in the shapeof a spear bladewith three pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100892] inparentheses) 152 (150) greatest width of prosoma 070 (068)greatest width of opisthosoma 104 (108) length-to-width ratio

a

b

c d

050 mm

050 mm

20 microm

100 microm

Fig 10 Petrobunus spinifer sp nov (a) Female paratype dorsal view(b) female paratype ventral view (c) pars distalis of penis lateral view and(d) ovipositor dorsal view

Table 5 Leg measurements of Petrobunus spinifer holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011009 032008 022011 024008 034005 036005 159Leg II 011011 046008 018012 036009 040005 068005 219Leg III 014015 044012 024014 032013 043005 041004 198Leg IV 032038 050014 025017 050014 062008 028004 247

118 Invertebrate Systematics P P Sharma and G Giribet

146 (139) (Figs 11 14) Body campaniform yellow to darkorange (in alcohol depending on incidence of light) almostentirely with a dense microgranulate surface microstructureEyes present on low well developed ocularium with medianocularial tubercle Ocularium 011 (011) long 020 (021) wideremoved from anterior margin of carapace Anterior margin ofcarapace with two pairs of blunt pegs above coxae of leg I withouter pair of sub-rectangular andor bifid shape Scutal grooves ofmesotergum indistinct free of transverse bands of pigmentationFree tergites without large tubercles or spines (Fig 12)

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged with setosetubercles on anterior margin Genital operculum sub-triangularSpiracles not concealed anterior to row of tuberclesOpisthosomal sternites with irregular belts of roundedtubercles Anal plate unarmed (Fig 12)

Chelicerae (Fig 13) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassatefree of ornamentation with dorsal margin bearing several setaeDistal article with delicate dentition free of ornamentation

Palpi (Fig 13) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setae Palpalfemur with two proximal ventral spines in a row and two paireddistal spines (one ventral one mesoventral) Palpal patella with asingle spine directed inward Palpal tibiawith twopairs of spinesand a small basal setose tubercle Palpal tarsus with two pairs ofspines Palpal claw as long as palpal tarsus

Legs IndashIV (Fig 13) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge ventral tubercle and three smaller mesodorsal tuberclesFemora IndashIV with one basal peg on ventral surface with peg freeof granulation Femur III arcuate in males and females free oftubercles Femur IVandpatella IVofmalewith two irregular rowsof mesalmesoventral tubercles Tibia IV of male with multipleirregular rows of tubercles with ventral row enlarged and conicaldistally distal-most ventral tubercle composed of two fusedtubercles Metatarsi IndashIV divided distally with distal portionlacking ornamentation metatarsus IV of male with two rows ofmesalmesoventral tubercles Female trochanter IV not enlargedleg IV free of tubercles Tarsal claws IndashIV smooth unmodifiedTarsal segmentation 3 5 5 6

Penis (Fig 14) narrow in the shape of a spear blade widenednear base Lateral margins gradually coalescing dorsallyresulting in spoon shape in dorsal aspect Ventral surface with

Table 6 Leg measurements of Petrobunus spinifer female paratype (ex MHNG PAL-0905) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 033007 021010 024007 025005 029005 143Leg II 013011 037006 023010 034007 026005 051005 184Leg III 014014 029009 022013 029010 027005 035004 156Leg IV 017015 049008 025014 034010 045006 043004 213

a

b

c

050 mm

050 mm

050 mm

Fig 11 Petrobunus torosus sp nov male holotype (a) Dorsal view(b) lateral view and (c) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 119

threepairs of setae lateralmarginswith four setae eachGlans freein apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 14) composed of two apical lobes eachbearing two dorsal setae one ventral seta and two apicalsetae Distal surfaces of apical lobes smooth Bases of dorsalsetae in contact Bases of ventral setae set apart by a distanceapproximately equal to one-third the width of the ovipositor

Distribution

Known only from type locality and additional locality reportedhere

Etymology

The specific epithet refers to the stocky and robust appearanceof the fourth leg in the males of this species Derived from Latinlsquotorosusrsquo meaning lsquomuscularrsquo or lsquobulgingrsquo

Family TITHAEIDAE fam nov

Type genusTithaeusThorell 1891 by present designation andmonotypy

Type species Tithaeus laevigatus Thorell 1891 by original designation

Genera included Tithaeus Thorell 1891 new familial assignmentMetatithaeus Suzuki 1969 new familial assignment

Diagnosis

Medium-sized Grassatores with a low ocularium removed fromthe anterior margin of carapace that differ from Epedanidae inlacking a median spine In some species slight to large hump

situated anterior of ocularium Scutal region divided into fiveareas areas I and II not fused as opposed to EpedanidaeChelicerae typical basal segment not enlarged (as opposed toEpedanidae)Distinct fromPodoctidae in the lack of spines on legI and in the lack of a sexually dimorphic ocularium Tarsalformula 5 8+ 5 6 not reduced (as opposed to Sandokanidaeand Podoctidae) Distitarsi of legs I and II typically with twotarsalia distinguished from Petrobunidae in the trochanter of legIV not enlarged inmales Tarsi III and IVwith unmodified doubleclaws scopulae absent (as opposed to most Samooidea) Distalmargin of ventral plate of penis usually with deep cleft (mostTithaeus) or widening distally into setiferous and conicalstructure (Metatithaeus) glans with simple membranous lobecovering the stylus terminus of stylus either a bifurcate orslightly inflatable lobe absence of prominent parastylar lobes(distinguishing it from Petrobunidae) absence of a ring of setaesurrounding a capsula interna (found in Epedanidae) Ovipositorlobes typically with a pair of ventral and dorsal setae

Remarks

One of dozens of genera placed in the subfamily Phalangodinae(Phalangodidae) by Roewer (1912 1923 1949) Tithaeus wassubsequently extricated and transferred to Epedanidae by Kury(1993 2003 2006) on the basis of the male genitalia althoughthe placement was ambiguous given the absence of typicalepedanid morphology such as elongate and armed pedipalpian erect ocularial spine (absent in Dibuninae) the fusion of scutalareas I and II side-branches in the posterior claws and stoutdentition of the cheliceral fingers (Lian et al 2008) However

a

b

100 microm

100 microm

100 microm

100 microm

c

d

Fig 12 Petrobunus torosus sp novmale paratype (a)Dorsolateral view (b) dorsolateral viewof anteriormargin of carapace(c) ventrolateral view and (d) ventrolateral view of prosomal complex

120 Invertebrate Systematics P P Sharma and G Giribet

comparisons of the male genitalia of a phalangodid (Texella) anepedanid (Kilungius Saracinicinae) and Tithaeus suggested acloser relationship between Epedanidae and Tithaeus in spite ofmarked differences in the stylar lobe and the extent of the basalsac (Lian et al 2008)

Our phylogenetic analyses corroborate a closer relationshipbetween Epedanidae and Tithaeuswith respect to Phalangodidae(which is sister to the remaining Grassatores and thereforedistantly related to both lineages) but the clade Tithaeus+Metatithaeus neither nests within nor is sister to Epedanidae

a

b

c

d

e

h

i

g

f

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

Fig 13 Petrobunus torosus sp nov (a) Left chelicer of male paratype (b) left palp of male paratype (c) left leg I of maleparatype (d) right leg II of male paratype (e) left leg III of male paratype (f) left leg IV of male paratype (g) left leg IV offemale paratype (h) trochanter of left leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 121

in any of the topologies we examinedMoreover the cleft ventralplate forming two prongs in the male genitalia of many Tithaeusspecies in addition to the absence of a ring of setae surroundingthe capsula interna (typical of Epedanidae) suggest that Tithaeus

and related genera (eg Istithaeus Metatithaeus Tithaeommaetc) are not true epedanids but may be more closely related toeither (1) Podoctidae a hypothesis that is supported in someanalyses (bootstrap frequency in ML [BS] = 59 posteriorclade probability given by MrBayes [PP] = 097) or (2) theclade (Podoctidae + Sandokanidae) recovered by the BEASTtopology (posterior clade probability given by BEAST[PPBEAST] = 100)

The inclusion of Tithaeus-like Grassatores in Epedanidaerenders the latter para- or diphyletic and obscures a cleardiagnosis of epedanids as the morphology of Tithaeus (andMetatithaeus) does not accord with many epedanidsynapomorphies Moreover inclusion of Tithaeus andorMetatithaeus within a broader Podoctidae is also unjustifiedbecause this violates many of the synapomorphies ofPodoctidae such as (1) tuberclesspines in dorsal and ventralrows on leg I (2) tubercular bridges (3) a sexually dimorphicbasichelicerite and (4) a sexually dimorphic ocularium

Consequently we erect the family name Tithaeidaeseparating Tithaeus and Metatithaeus from EpedanidaeTithaeidae likely includes the monotypic Roewerian generaIstithaeus Kondosus Sterrhosoma and Tithaeomma but thestatus of these genera requires further investigation and will beaddressed in a forthcoming study

Distribution

Distributed throughout Sundaland the Thai-Malay PeninsulaSumatra Java and Borneo Also reported from northern Vietnamand southern China One doubtful record from West Timor(see Lian et al 2008)

Results

Phylogenetic analysis

Less sequence data are presently available for Briggsusflavescens (partial 28S and COI Derkarabetian et al 2010)with respect to the rest of the data matrix Consequently twoML analyses were conducted including and excluding Briggsusflavescens The ML analysis with all taxa resulted in a treetopology with lnL= ndash8372597 Repeating the analysis withoutBriggsus resulted in a tree topology with lnL= ndash8336108 Thetwo topologies are identical save for the internal relationships ofTravunioidea which includes Briggsidae (Fig 15) Inclusion ofBriggsidae recovers a diphyletic Cladonychiidae with Briggsussister to Holoscotolemon but these relationships are notsupported Exclusion of Briggsidae results in higher nodalsupport frequencies within Travunioidea and recovers a sisterrelationship of Sclerobunidae and the remaining Travunioidea(BS = 75) and a monophyletic Cladonychiidae + Travuniidae(BS = 77) sister to Trojanella Including Briggsus in theanalysis does not affect topology or nodal support in otherparts of the phylogeny Monophyly of Travunioidea isstrongly supported (BS = 100) in either case

Runs of MrBayes ver 312 reached stationarity in 2 000 000generations 2 500 000 generations (25) were hence discardedas burn-in The BI analysis with all taxa resulted in a topologylargely similar to theMLtree (Fig 16)Notable differences are therelative placements of the clade (Gonyleptoidea + Stygnopsidae)

a

b

c d

050 mm

050 mm

20 microm

20 microm

Fig 14 Petrobunus torosus sp nov (a) female paratype dorsal view(b) female paratype ventral view (c) pars distalis of penis lateral view and(d) ovipositor dorsal view

122 Invertebrate Systematics P P Sharma and G Giribet

and the South-east Asian group of families Some differencesexist with respect to supported nodes within superfamilies

Estimation of divergence times

The run of BEAST reached stationarity after 6 000 000generations 10 000 000 generations (20) were discarded asburn-in The tree topology recovered by BEAST (Fig 17) differsfromML andBI topologies in (1) the placement of Sandokanidaeand (2) the relationships between superfamilies Diversificationof Laniatores is dated at ~348Mya Diversification of majorlineages is estimated as follows (Travunioidea+Triaenonychidae)299Mya Grassatores 302Mya Assamiidae +Pyramidopsgroup 232Mya Gonyleptoidea + Stygnopsidae 246MyaGonyleptoidea 230Mya Samooidea + Zalmoxoidea 206Myaand a South-east Asian clade (including Sandokanidae)249Mya These results largely corroborate previous estimatesof divergence times (Giribet et al 2010) but confidence intervalsfor estimated ages are more precise A tree file of estimated agesand 95highest posterior density (HPD) intervals for all nodes isprovided as an Accessory Publication on the InvertebrateSystematics website

Whereas the basal topology of Grassatores is unstable andunsupported most familial and superfamilial relationshipsare consistently recovered across analyses A consensus oftopologies across all analyses is shown in Fig 18

Discussion

A molecular phylogeny of the armoured harvestmen has longproven elusive Laniatores comprises entire genera and familiesthat are endemic to particular provinces of the world In somecases higher taxonomic ranks do not even occur beyond specificislands (eg the New Zealand family SynthetonychiidaeForster 1954) Moreover Laniatores includes the majority ofall described Opiliones species (and over half of all describedfamilies) and new lineages continue to be discoveredConsequently previous efforts to assess Laniatores phylogenyhave been prone to undersampling numerous lineages such asAssamiidae Epedanidae and the superfamilies Samooidea and

Zalmoxoidea (eg Giribet et al 1999 2002 Shultz and Regier2001)

The present study with the inclusion of all families ofarmoured harvestmen described heretofore enables detailedinvestigation of internal relationships of Laniatores Ofprincipal interest are the phylogenetic placement of the twonew families of Laniatores erected herein and the systematicvalidity of defined superfamilies Many of the relationshipsrecovered in our analyses are consistent with traditionalhypotheses based on morphological studies but there are someunexpected results We discuss these in turn

Insidiatores

Within a monophyletic Laniatores recovered in all analyses(BS = 100 PP = 093) the constituent lineages of Insidiatoresform a paraphyletic grade with respect to Grassatores WhileTriaenonychoidea and Travunioidea do form a clade (albeit withlow nodal support) the New Zealand endemic familySynthetonychiidae is recovered as sister to all remainingLaniatores (BS = 78 PP = 100) consistent with the resultsof a recent study (Giribet et al 2010) However the inclusionof more data in fact lowers the nodal support for this sisterrelationship relative to the previous studyrsquos ML analysislikely due to the influence of missing data (in particular only~300 bp out of a targeted 3400 bp of 28S rRNA are presentlyavailable for Synthetonychia) Consequently we do not treat theplacement of Synthetonychiidae as definitive

In all analyses the southern hemisphere Triaenonychidaeform a strongly supported clade that diversified ~200Mya(BS = 100 PP = 100) Their distribution and the age of thiscladersquos diversification are similar to that of the temperateGondwanan cyphophthalmid family Pettalidae (estimated tohave diversified ~183ndash221Mya Giribet et al 2010)suggesting a parallel biogeographical process in these lineagesThe North American triaenonychid Fumontana deprehendorShear 1977 is sister to the southern hemisphere Triaenonychidaein all analyses consistent with previous classification (Giribetand Kury 2007 Thomas and Hedin 2008) but support fora monophyletic Triaenonychoidea is limited and sensitiveto analytical parameters (BS = 57 PP lt 050 PPBEAST = 066)

Table 7 Leg measurements of Petrobunus torosus holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011011 039005 026012 028008 036006 040007 180Leg II 014013 061008 029010 043007 042006 072005 261Leg III 015015 051010 019015 037011 045006 046005 213Leg IV 034035 059012 034017 054015 067007 052006 300

Table 8 Leg measurements of Petrobunus torosus female paratype (ex MHNG PAL-0907) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 041008 022011 028010 037005 035006 174Leg II 010009 052007 023008 033007 037006 069005 224Leg III 014016 046010 025024 036012 042007 041005 204Leg IV 018017 054011 029016 049012 058007 048006 256

Molecular phylogeny of Laniatores Invertebrate Systematics 123

Fig 15 Phylogenetic relationships of Laniatores inferred from maximum likelihood analysis of all molecular data (ln L= ndash8372597) Inset topology ofTravunioidea excluding Briggsidae (ln L= ndash8336108) Numbers on nodes indicate bootstrap resampling frequencies

124 Invertebrate Systematics P P Sharma and G Giribet

We recovered a monophyletic Travunioidea which includesBriggsidae in all analyses (BS = 100PP = 100) corroboratingthe superfamilial placement of briggsids Briggsidae isrecovered sister to either Trojanella (ML) or Holoscotolemon(BI) or part of a grade with both of these taxa (BEAST) butthese placements are not supported (BS lt 50 PPBEAST = 085and PP = 051 respectively) Missing data for Briggsidaedepresses nodal support in ML analyses within Travunioideaobscuring interfamilial relationships In the absence ofBriggsidae we recover a sister relationship betweenSclerobunidae (Zuma acuta Goodnight amp Goodnight 1942)and the remaining Travunioidea (BS = 75) and themonophyly of Travuniidae +Cladonychiidae (BS = 77)

A recent molecular dating of Travunioidea obtained muchyounger dates than estimated herein in spite of similar taxaand molecular loci In that study Derkarabetian et al (2010)investigated the evolution of troglobitism in Sclerobunidae(also referred to as the lsquoNorth American triaenonychidsrsquo)and used the cladonychiid fossil Protoholoscotolemon(38ndash54Mya Ubick and Dunlop 2005) to constrain theminimum age of Travunioidea in addition to calibration pointsderived from geological ages of strata These practicesaccord with the scope of the troglobitism study (thedivergences of interest were comparatively recent ndash Plioceneor younger) but we did not utilise Protoholoscotolemon in ourdating for two reasons (1) we do not obtain an unambiguouslymonophyletic Cladonychiidae in our analyses and (2) theDevonian and Carboniferous fossils we utilised as calibrationpoints are sufficiently old to obtain a result consistent with anEocene cladonychiid fossil The different calibration pointsimplemented in the respective studies therefore account forthe discrepancy in the dating In addition the morphologicalconservatism of Opiliones makes it doubtful that the age ofProtoholoscotolemon is the maximum age of the superfamily

Our sampling of Insidiatores lineages remains limited andbarring the inclusion of Briggsidae additions to taxonomicsampling largely concern Grassatores Consequently continuedsampling and systematic studies of Insidiatores (eg Mendesand Kury 2008 Thomas and Hedin 2008 Derkarabetian et al2010) are instrumental and imperative to addressing outstandingquestions of phylogenetic relationships and morphologicalevolution A phylogeny of Triaenonychidae is particularlywanting

Early diverging Grassatores Phalangodidaeand Sandokanidae

The recovery of a monophyletic Grassatores (supported inall analyses BS = 99 PP = 100) is consistent with severalmorphological synapomorphies uniting this diverse groupsuch as the presence of two tarsal claws on walking legs IIIand IV However the basal topology of Grassatores has longbeen contentious Previously two superfamilies of Grassatoreswere recognised Oncopodoidea (with the single familySandokanidae (formerly Oncopodidae)) and lsquoGonyleptoidearsquo(with the remaining families) (Martens 1976 1986 Martenset al 1981) This dichotomy was largely based upon theunique morphology of Sandokanidae ndash characters such as thescutum completum (fused opisthosomal tergites) reduced tarsal

articles and genitalic structures which are not found in theremaining Grassatores (Martens 1980 Giribet et al 2002Sharma and Giribet 2009) It was alternatively contended thatthese characters constituted autapomorphies of Sandokanidaewhich was nested within lsquoGonyleptoidearsquo itself (Kury 2003)

In all analyses we obtained an initial divergence betweenPhalangodidae and the remaining Grassatores (BS = 100PP = 096) refuting the traditional dichotomy betweenSandokanidae and lsquoGonyleptoidearsquo Therefore we hereindefine Gonyleptoidea as the taxon consisting of AgoristenidaeCosmetidae Cranaidae Gonyleptidae Manaosbiidae andStygnidae The split between Phalangodidae and the remainingGrassatores has been postulated to correspond to the rifting ofthe ancient supercontinents Laurasia and Gondwana as thedistribution of Phalangodidae was believed to be strictlyHolarctic (Giribet et al 2010) However the inclusion of theMadagascar genus Remyus previously placed in Zalmoxidae(Starega 1989) within a monophyletic Phalangodidae indicatesbroader distribution of phalangodids ndash complementing theTriaenonychidae-Fumontana case discussed above Moreoverthe origin of Phalangodidae is estimated to have occurred around302Mya (95 HPD 264ndash335Mya) greatly predating thebreakup of the supercontinents These results indicate thatPhalangodidae may be narrowly defined and we consequentlytransfer Remyus to Phalangodidae (new familial assignment)

The unusual family Sandokanidae has been postulated to besister toPodoctidae (SharmaandGiribet 2009Giribet et al 2010)or to form agradewith Phalangodidae (Kuryrsquos lsquoPhalangodoidearsquopartly) In the present study ML and BI topologies reconstructSandokanidae as sister to the remaining non-phalangodidGrassatores albeit with insignificant nodal support (BS = 21PP = 078) Curiously the topology obtained byBEAST recoversthe clade (Sandokanidae + Podoctidae) nested within a singleclade of South-east Asian families (PPBEAST = 085) Theseresults do not unambiguously favour one hypothesis overanother and the phylogenetic placement of Sandokanidae inthe Grassatores tree therefore remains debatable

Regardless of the inclusion of Sandokanidae within theSouth-east Asian group of families that the sister family to theremaining Grassatores is Phalangodidae not Sandokanidaeindicates that the peculiar morphology of sandokanids is theresult of multiple apomorphic reversals not the retention ofplesiomorphic characters (Martens and Schwendinger 1998)The large scutum and low tarsomere number found inSandokanidae also occur in Trogulidae and Dicranolasmatidae(suborder Dyspnoi) and all Cyphophthalmi and appear to haveevolved convergently This morphology may reflect adaptationsto a shared ecological niche all these groups inhabit leaf litterinclude no arboricolous species and are limited in vagility ndash

although these life history traits are also found in other groupsHowever this hypothesis has yet to be rigorously tested

Sandokanidae is presently one of few families of Grassatoresfor which a molecular phylogeny assessing intergenericrelationships is available (Sharma and Giribet 2009) andconsistent with earlier results the monophyly of Sandokanidaeis strongly supported (BS = 100 PP = 100) as is the initial splitbetweenMartensiellus and the remaining genera (an undescribedspecies was referred to as lsquogen sprsquo by Sharma and Giribet 2009but subsequent morphological investigation revealed this to be

Molecular phylogeny of Laniatores Invertebrate Systematics 125

Fig 16 Phylogenetic relationships of Laniatores inferred fromBayesian inference analysis of allmolecular data Numbers on nodes indicateposterior probabilities

126 Invertebrate Systematics P P Sharma and G Giribet

a miniature species of Martensiellus P J Schwendinger perscomm) (BS = 92 PP = 100) Intergeneric relationshipsof sandokanid genera are contingent upon analytical treatmentof molecular partitions (with additional sandokanid exemplarsdata not shown) reflecting conflict among datasets documentedby Sharma and Giribet (2009)

The other South-east Asian families

Epedanidae was postulated to be sister to Gonyleptoidea in acladistic analysis based on morphological characters (Kury1993) Subsequently Kury (2003) proposed that Epedanidaewas sister to the clade (Assamiidae (Stygnopsidae +Gonyleptoidea)) The single epedanid previously included in amolecular phylogeny was similarly unstable in placement eithernestingwithin Assamiidae or sister to the African lsquophalangodidsrsquo(Conomma and Maiorerus) in neither case with appreciablenodal support (Giribet et al 2010) Furthermore previousinclusion of several lineages (eg Tithaeus) within Epedanidaethat do not bear characters typical of true epedanids ndash sexuallydimorphic chelicera with heavy dentition elongate andspined pedipalpi male genitalia with setae surroundingthe capsula interna ndash has also made this family difficult todefine Consequently we included only Epedaninae (egPseudoepedanus Alloepedanus and Euepedanus) as exemplarsof true epedanids the systematic validity of the remaining threesubfamilies (and particularly the inclusion of Dibuninae) isbeyond the scope of this study and remains to be investigated

The monophyly of each of four South-east Asian families ndashEpedanidae (represented by epedanines) TithaeidaePetrobunidae and Podoctidae ndash is recovered with high nodalsupport (all BS = 100 PP = 100) These lineages are somehowrelated to each other and while they form a clade in bothML andBI analyses this result receives insignificant nodal support(PP = 077) In the topology recovered by BEAST the South-east Asian families form a clade that includes Sandokanidaea result consistent with the distribution of sandokanids albeitwithout support (PPBEAST = 085) Tithaeidae is probably closelyrelated to Podoctidae given the occurrence of a deeply cleftventral plate resulting in two flanking prongs in themale genitaliaof both families (Suzuki 1977 Lian et al 2008 Fig 19) Inaddition the clade (Podoctidae +Tithaeidae) is recovered withmoderate support in ML and BI analyses (BS = 59 PP = 097)In none of the analyses is Tithaeidae nested within or sister toEpedanidae sensu stricto

The morphology of Petrobunidae suggests some relationshipto previously described South-east Asian families oralternatively Phalangodidae but not inclusion within any ofthese (Fig 19) Molecular sequence data do not support anyspecificplacement ofPetrobunidae although it clusterswithotherSouth-east Asian families in all analyses and is recovered sisterto Epedanidae in two topologies (BI and BEAST)

Gonyleptoidea and Stygnopsidae

With over 2500 described species the superfamilyGonyleptoidea constitutes the most diverse and (arguably) themost charismatic lineage of Opiliones with most of this diversityconcentrated in Amazonia (some cosmetids occur as far north asthe mid-Atlantic states of the US) In a previous analysis

relationships of gonyleptoid families were unsupported andordid not accordwithmorphological studies (Giribet et al 2010) Inparticular the placement of the agoristenid exemplar Avimaalbiornata (Goodnight amp Goodnight 1947) ndash the putativesister family to the remaining Gonyleptoidea ndash within aparaphyletic Cranaidae was particularly suspect given thelimited availability of sequence data for Avima (complete 18SrRNA a300-bp fragmentof 28S rRNA andCOI) In addition thesister group of Gonyleptoidea was ambiguous and contingentupon analytical parameters

Redoubling sequencing efforts and addition of taxaparticularly in the case of Agoristenidae (currently sequencedfor 12S rRNA complete 18S rRNA a 2000-bp fragment of 28SrRNA COI H3 and EF-1a) improved the assessment ofgonyleptoid relationships A monophyletic Gonyleptoidea(BS = 58 PP = 066) is recovered sister to the familyStygnopsidae (BS = 57 PP = 100) Within Gonyleptoidea asplit between Agoristenidae and the remaining gonyleptoids isstrongly supported (BS = 100 PP = 100) followed by thedivergence of Stygnidae (BS = 71 PP = 099) Thisplacement of Agoristenidae is supported by morphologicalstudies (Pinto-da-Rocha and Kury 2007) although in aminority of tree topologies sampled in BI analysesAgoristenidae is sister to Stygnopsidae (hence lower nodalsupport for the monophyly of Gonyleptoidea in BI) Theplacement of Manaosbiidae is uncertain it is recoveredsister to either (Gonyleptidae +Cranaidae) (PP = 089) or toCosmetidae (PPBEAST = 092) but these results are notsupported Cranaidae is recovered as monophyletic (BS = 99PP = 100) and nested within a paraphyletic Gonyleptidae

The present sampling of Cosmetidae and Gonyleptidae doesnot do justice to the diversity of these lineages (~700 and 800described species respectively) A phylogenetic assessment ofall 16 subfamilies of Gonyleptidae alone constitutes the subjectof an arduous and exacting study Fortunately cladistic analysesof morphological characters continue to advance phylogeneticinvestigation of subfamilial lineages (eg BourguyiinaeYamaguti and Pinto-da-Rocha 2009 Goniosomatinae DaSilvaandGnaspini 2009HernandariinaeDaSilva andPinto-da-Rocha2010) Elucidating the phylogeny of Gonyleptoidea is one of themost exciting research topics in the study of Opiliones

The Afrotropical families

The third most diverse family of Laniatores Assamiidaeconstitutes the dominant opiliofauna of the African continent(excluding Madagascar) with some lineages occurring in SouthAsia the Indo-Malay Archipelago and Australia (Trionyxellinaeand Dampetrinae) Proposed to be related to EpedanidaeStygnopsidae andor Gonyleptoidea (Kury 2007) on the basisof genitalic structures assamiids were not recovered asmonophyletic in a previous study (paraphyly was induced byeither Epedanidae orAfricanBiantidae) and the placement of thesubfamily Trionyxellinae was particularly suspect (Giribet et al2010) Trionyxellinae was considered a separate family byMello-Leitatildeo (1949) though others considered it nested withinAssamiidae (eg Starega 1992) In our analyses the monophylyof Assamiidae is supported (BS = 79 PP = 100)lsquoTrionyxellinaersquo (Trionyxella and Mysorea both with a

Molecular phylogeny of Laniatores Invertebrate Systematics 127

Fig 17 Evolutionary time tree of Laniatores inferred fromBEASTanalysis of allmolecular data Coloured bars indicate 95highestposterior density (HPD) intervals for nodes of interest Numbers on nodes indicate posterior probabilities asterisks indicate posteriorprobability of 100

128 Invertebrate Systematics P P Sharma and G Giribet

pseudonychium on the third and fourth tarsi) is a diphyletic entitynested within the other Assamiidae (for the node renderingdiphyly BS = 100 PP = 100) disfavouring family status fortrionyxellines

The African lsquophalangodidsrsquo (sometimes called thelsquoPyramidops grouprsquo) were recognised as a new family byStarega (1992) but not formalised and included 13 genera(Conomma Pyramidops and related lineages) Consistentwith this hypothesis we recovered strong support for thePyramidops group (represented by Conomma and cfPyramidops) as a lineage separate from the true Phalangodidae(egBishopella and Scotolemon) recapitulating a previous result(Giribet et al 2010) The African lsquophalangodidsrsquowere recoveredas the sister lineage of Assamiidae although this relationshipis variably supported in our analyses (BS = 40 PP = 095PPBEAST = 100) A review and formal description of thePyramidops group as a new family lsquoPyramidopidaersquo ndash a namewidely available on the internet including GBIF but notformalised ndash is undertaken elsewhere (Sharma et al 2011)

While we have endeavoured to improve the sampling ofAssamiidae from South-east Asia the internal systematics ofthis family remain a high value target for phylogenetic researchHowever revision of assamiid systematics is inherently difficultfor two reasons (1) the family is peppered with questionablehierarchies and monotypic genera (~12 subfamilies and 250genera for less than 500 described species) and (2) occurs insome of the most inaccessible regions of the world namely sub-Saharan Africa

In all analyses the clade (Assamiidae + Pyramidopidae) issister to the clade (Zalmoxoidea + Samooidea) though this resultis only supported in one analysis (PP= 100) The divergence ofthese four lineages is estimated to have occurred 252Mya and isconsistent with diversification in West Tropical Gondwanaoccurring at least 140million years before the fragmentation ofthis terrane (~110Mya)

Zalmoxoidea

As currently defined the largely Neotropical superfamilyZalmoxoidea includes four families FissiphalliidaeGuasiniidae Icaleptidae and Zalmoxidae Guasiniidae hasnever before been included in a molecular phylogeny In thepresent study we sequenced a guasiniid for six genes and ouranalyses strongly support theplacement ofGuasiniidae as sister tothe samooid family Kimulidae (formerly Minuidae) (BS = 86PP = 098 PPBEAST = 099) and this clade in turn sister to anothersamooid family Escadabiidae (BS = 65 PP = 096PPBEAST = 100) The families Fissiphalliidae Icaleptidaeand Zalmoxidae in turn form a separate clade (BS = 100PP = 100 PPBEAST = 100) with strong support for the sisterrelationship of Zalmoxidae and Fissiphalliidae (BS = 99PP = 100 PPBEAST = 100) corroborating relationshipsproposed by morphological studies (Kury and Peacuterez G 2002Pinto-da-Rocha and Kury 2003b)

Previous analyses have suggested that Samooidea (discussedbelow) is a paraphyletic grade with respect to Zalmoxoidea(Giribet et al 2010) In the present analysis the cladeSamooidea + Zalmoxoidea is strongly supported (BS = 85PP = 100 PPBEAST = 100) as previously suggested by PeacuterezGonzaacutelez and Kury (2007) and by excluding Escadabiidae and

Kimulidae Samooidea is rendered a monophyletic entity albeitwith limited support (BS = 53 PP = 062 PPBEAST = 081) Thestrong support from molecular sequence data for the cladeincluding Escadabiidae Kimulidae and the four zalmoxoidfamilies (BS = 89 PP = 100 PPBEAST = 100) suggests thatthese may form a natural group

Re-examination of the morphology of these six families incomparisonwith true samooid lineages (Biantidae Samoidae andStygnommatidae) corroborates the exclusionofEscadabiidae andKimulidae from true Samooidea Escadabiidae and Kimulidae(1) lack the scopula characteristic of Samoidae and stenostygnineBiantidae (2) lack a sexually dimorphic metatarsus IIIcharacteristic of Samoidae Stygnommatidae and stenostygnineBiantidae and (3) lack a penial calyx characteristic of SamoidaeConsistent with placement within Zalmoxoidea EscadabiidaeandKimulidae (1) possess a small oculariumbearing the eyes thatis removed from the margin of the carapace (2) bear a wellmarked dorsal protuberance (bulla) on the proximal segmentof the chelicera that lacks armature and (3) possess sexuallydimorphic leg IV segments particularly the femur and tibiawhich may be variedly arcuate incrassate and spinedAdditionally Escadabiidae Fissiphalliidae and Zalmoxidae allpossess sexually dimorphic tegumental glandopeningson tibia IIwhereas Biantidae Samoidae and Stygnommatidae possessthese structures on metatarsus III (Willemart et al 2010)While data on tegumental gland openings are only availablefor a small handful of species these may constitute significantdiagnostic characters for species wherein sexual dimorphismdoes not manifest itself in the readily observable form ofenlarged and spiny segments

Given the results of our phylogenetic analyses maintainingSamooidea (as currently defined) renders it a paraphyletic gradewith respect to a diphyletic Zalmoxoidea (as currently defined)Consequently based on the aforementioned morphologicalcharacters and robust molecular phylogenetic signal wetransfer Escadabiidae and Kimulidae to Zalmoxoidea

Samooidea

A previous cladistic analysis based upon morphological datasuggested close relationship between six families ndash BiantidaeEscadabiidae Kimulidae Podoctidae Samoidae andStygnommatidae ndash thenceforth known as Samooidea (Kury1993) the only pantropical Laniatores superfamily HoweverPodoctidae does not have any obvious relationship to Samooideaand has subsequently been transferred (Kury 2007) in ouranalyses Podoctidae is sister to Tithaeidae or Sandokanidaeie distantly related to all samooid families Moreover ouranalyses strongly favour the exclusion of Escadabiidae andKimulidae from Samooidea

The remaining three families ndash Biantidae Samoidae andStygnommatidae ndash are distributed in the Neotropics and partsof Africa with a handful of suspect lineages in South-east AsiaRe-examination and reassignment of many Samoidae genera(eg the Indonesian lsquosamoidrsquo Waigeucola palpalis PeacuterezGonzaacutelez 2011) suggest that the range of Samoidae does notinclude South-east Asia Peacuterez Gonzaacutelez and Kury (2007) alsoobserved that the lsquosamoidsrsquo of Africa Madagascar and theSeychelles may not be true Samoidae either Similarlyinclusion of the genus Stygnomimus an Indonesian lineage

Molecular phylogeny of Laniatores Invertebrate Systematics 129

within Stygnommatidae is highly dubious as the twoIndonesian lsquostygnommatidsrsquo are either highly autapomorphic(Stygnomimus conopygus (Roewer 1927)) or described on the

basis of a generic female that is not readily distinguishable fromfemales of other species (Stygnomimus malayensis (Suzuki1970))

Fig 18 Strict consensus of tree topologies obtained by all phylogenetic analyses

130 Invertebrate Systematics P P Sharma and G Giribet

Previous efforts to assess the systematic validity of Samooideaby means of molecular sequence data were limited insofar asonly two Samoidae three Biantidae (all Metabiantes) and twoStygnommatidae were sampled (Giribet et al 2010) Thesampling of Samoidae was especially problematic only asingle Neotropical adult (Pellobunus) and one African juvenilesamoid (lsquoSamoidae gen sprsquo) were included The designation ofthe latter is suspect as juveniles of Samoidae are oftenindistinguishable from the juveniles of other lineages becausemany diagnostic secondary sexual characters in Grassatores(eg spines and incrassate appendages) are not acquired untilafter several postembryonic stages (Townsend et al 2009)

In the present study though the type genus of Samoidae(Samoa from Samoa) was not available we sequenced theclosely related genus Badessa (from Fiji collected byP P S) as well as additional Biantidae and StygnommatidaeOur analyses recovered a monophyletic Samooidea (excludingEscadabiidae and Kimulidae BS = 53 PP = 062) withSamoidae sensu stricto (Pellobunus +Badessa BS = 100PP = 100) nested within a paraphyletic Stygnommatidae aplacement that is supported (BS = 87 PP = 100) Bycontrast the African lsquosamoidrsquo is sister to the AfricanBiantidae a relationship that is also well supported(BS = 100 PP = 100) These relationships suggest a basal

Fig 19 Cladogram of male genitalic evolution in South-east Asian families superimposed upon a schematised molecular phylogeny based on ML and BIanalyses of all molecular data Exemplars (a) Pseudoepedanus doiensis Suzuki 1969 (redrawn from Suzuki 1969) dorsal view (b) Pseudoepedanus doiensisSuzuki 1969 (redrawn from Suzuki 1969) ventral view (c) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) ventral view(d) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) dorsal view (e) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki1976) dorsal view (f) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki 1976) ventral view (g) Petrobunus torosus lateral view (h) ZalmoxidagibberaSuzuki 1969 dorsal view (i)Zalmoxida sp (MCZDNA102677) dorsolateral view (j)Metatithaeus rubidusSuzuki 1969 (redrawn fromSuzuki 1969)ventral view (k)Tithaeus kokutnusSuzuki 1985 (redrawn fromSuzuki 1985) ventral view (l)Tithaeus similisSuzuki 1985 (redrawn fromSuzuki 1985) ventralview (m)DongmoaoshimensisSuzuki 1964 (redrawn fromSuzuki 1964) ventral view (n)Bonea longipalpisSuzuki 1977 (redrawn fromSuzuki 1977) ventralview (o) Santobius annulipes Soslashrensen 1886 (redrawn from Kury and Machado 2009) ventral view (p) Lomanius longipalpus mindanaoensis Suzuki 1977(redrawn from Suzuki 1977) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 131

dichotomy within Samooidea that corresponds to one groupof Neotropical and Pacific lineages and a second group ofAfrican lineages However as we were unable to samplestenostygnine (Neotropical) and Indo-Pacific Biantidae aswell as numerous monotypic genera dubiously placed inSamoidae biogeographical extrapolations for Samooidea aretenuous (discussed below)

The internal relationships of Samooidea suggest that themorphology of Samoidae may have evolved convergently Asthe African samoid is a juvenile (the same specimen previouslysequenced by Giribet et al 2010 now sequenced for additional28S rRNA and other genes) we cannot rule out the possibility ofa monophyletic Samoidae that includes African species (thespecimen in question could be a juvenile biantid) In any casethe paraphyly of Stygnommatidae and putative polyphyly ofSamoidae strongly advocate systematic revision of samooidfamilies as currently defined corroborating hypotheses of non-monophyly based on morphology (Peacuterez Gonzaacutelez 2007 PeacuterezGonzaacutelez and Kury 2007) Our sampling of these families isinsufficient to advocate specific taxonomic action but an ongoing

study of samooidean systematics will shed more light on thevalidity of constituent families (A Peacuterez Gonzaacutelez work inprogress)

Biogeography of Zalmoxoidea and Samooidea

While most superfamilies of Grassatores are restricted to aspecific part of the tropics (eg Neotropics South-east Asia)two are distributed in multiple biogeographical provincesSamooidea occurs in the Neotropics and Afrotropics withquestionable records from South-east Asia Zalmoxoidea isconcentrated in the Neotropics with the exception of oneIndo-Pacific lineage of Zalmoxidae (represented here byZalmoxis sp) The ages and distributions of Samooidea andZalmoxoidea suggest that their biogeography was influencedby the fragmentation of West Tropical Gondwana ndash causingthe former to diverge basally throughout West TropicalGondwanan terranes and the latter to become isolated to theNeotropics (with possible subsequent dispersal)

Fig 20 Ancestral range reconstructions for Samooidea +Zalmoxoidea inferred by Lagrange using stratified models corresponding to two vicariant events(indicated by dotted lines) Coloured squares at terminals indicate ranges occupied by sampled species Coloured squares on nodes indicate ranges reconstructedfor hypothetical ancestors Numbers on nodes indicate relative probability of ranges reconstructed

Fig 21 Best hypothesis of Laniatores relationships based on all available evidence Bracketed nodes indicate non-monophyletic entities Dashed line indicatesambiguity in the placement of Sandokanidae (alternatively placed as shown or as sister to Podoctidae) Exemplars of Laniatores diversity are Synthetonychiaoliveae (Synthetonychiidae) Equitius doriae (Triaenonychidae) Hadziana clavigera (Travuniidae) Erebomaster flavescens flavescens (Cladonychiidae)Scotolemon lespesi (Phalangodidae) Palaeoncopus gunung (Sandokanidae) Santobius sp (Podoctidae) Tithaeus sp (Tithaeidae) Petrobunus spinifer(Petrobunidae) Alloepedanus sp (Epedanidae) Hoplobunus sp (Stygnopsidae) Torreana spinata (Agoristenidae) Stygnoplus clavotibialis (Stygnidae)Metalibitia paraguayensis (Cosmetidae)Acutisoma longipes (Gonyleptidae)Conommaoedipus (Pyramidopsgroup)Mysorea thaiensis (Assamiidae)Lacurbssp (Biantidae) Stygnomma sp (Stygnommatidae) Badessa sp (Samoidae) Guasinia sp (Guasiniidae) Icaleptes sp (Icaleptidae) Fissiphallius chicoi(Fissiphalliidae) Zalmoxis sp (Zalmoxidae) Kimula goodnightiorum (Kimulidae)

132 Invertebrate Systematics P P Sharma and G Giribet

Molecular phylogeny of Laniatores Invertebrate Systematics 133

To test this hypothesis we conducted likelihood analysisof range evolution using the program Lagrange (Ree et al2005 Ree and Smith 2008) for the clade (Zalmoxoidea +Samooidea) The stratified analysis resulted in a globalmaximum likelihood of ndashlnL= 1556 outperforming anunconstrained analysis that did not include any dispersalconstraints (ndashlnL= 1676) Likelihood analysis of rangeoptimisation (Fig 20) indicates that the ancestral range ofSamooidea includes both the Afrotropics and the Neotropics(relative probability pr = 1000) but a subsequent split occursbetween an African lineage (pr = 1000) and a NeotropicalIndo-Pacific lineage with a Neotropical ancestral range (pr = 0986)Samoidea of the Indo-Pacific occur on young oceanic islands(eg Fiji Samoa) indicating recent transoceanic dispersal fromthe Neotropics

Ancestral range reconstructions for Samooidea are allconsistent with estimated divergence times for these clades(diversification of Samooidea predates the rifting of WestAfrica from northern South America) favouring an underlyingvicariant process for the basal topology with subsequent recentdispersal events However these results are contingent upon thepresent sampling which does not include all samooid lineages(eg stenostygnine Biantidae) but basal range reconstructionsare likely unaffected (eg Stenostygninae is exclusivelyNeotropical)

In contrast the ancestor of Zalmoxoidea is reconstructedas singularly Neotropical (pr = 0996) This is consistent withisolation of a zalmoxoid ancestor to Amazonia which thenradiated ~191Mya Subsequent ancestral ranges are alsoreconstructed as Neotropical with high relative probabilityHowever the ancestral range of the clade (Icaleptidae +Fissiphalliidae + Zalmoxidae) is ambiguously reconstructedas either Neotropical (pr = 0935) or Neotropical + Indo-Pacific(pr = 0064) as is the split between Fissiphalliidae andZalmoxidae (Neotropical pr = 0856 Neotropical + Indo-Pacific pr = 0141)

These results suggest that the Indo-Pacific lineage ofZalmoxidae which split from Neotropical Zalmoxidae ~83Myais likely the result of long-distance dispersal from the NeotropicsHowever due to the persistence of transantarctic connectionsbetween the Australian plate and temperate South America untilthe Tertiary a competing vicariant scenario cannot be ruled outwithout densely sampling zalmoxid diversity The biogeographyof Zalmoxidae is presently being explored in greater detail in aseparate study (P P Sharma unpubl data)

Finally the ancestral range of (Samooidea + Zalmoxoidea)includes both Africa and the Neotropics (pr = 0957) consistentwith a tropical West Gondwanan ancestor This resultlends circumstantial evidence to a sister relationship of theAfrotropical families (Assamiidae + Pyramidopidae) and theclade (Samooidea + Zalmoxoidea) recovered in all analyses

The diversification of Grassatores

While numerous interfamilial relationships are supported inthis study particularly among gonyleptoid and zalmoxoidfamilies some relationships between superfamilies ofGrassatores are not supported and are contingent upon

analytical treatments namely the deployment of substitutionmodels and data partitioning (Fig 21) The cause of thisinstability could be related to insufficient data particularly inthe EF-1a partition (the length of an intron which can exceed400 bp in some taxa makes this gene particularly difficult toamplify) However examination of clade divergence timessuggests that rapid diversification of Grassatores lineagescould in part augment phylogenetic uncertainty in basal partsof the topology

The split between Phalangodidae and the remainingGrassatores is estimated to have occurred ~302Mya but aseries of divergences resulted in the origin of all superfamiliallineages between 232 and 271Mya Relative to the estimatedage of Laniatores (348Mya) this 39-million-year period isremarkably narrow and inherently problematic as the amountof phylogenetic signal for a given stem subtending a node isdirectly proportional to the amount of time that the stem inquestion spans (Lanyon 1988 Rokas and Carroll 2006) Thesmall internal edge lengths of the stems corresponding to basaldivergences of non-phalangodid Grassatores (Figs 15 16)combined with the ancient age of lineages derived from thesedivergences result in relationships that are difficult to estimatewithout a large amount of sequence data andor the inclusion ofdata that are less afflicted by homoplasy (because longer edgelengths imply more indel and substitution events on edges)(Whitfield and Lockhart 2007)

We additionally observe that the origins of most Grassatoressuperfamilies occur in the wake of the end-Permian massextinction (~254Mya) Rapid radiation in the wake of a massextinction has occurred in multiple metazoan lineagesthe putative result of relaxed selection and opening ofpreviously occupied ecological niche space (Labandeira andSepkoski 1993 Sahney and Benton 2008) The rapiddiversification of early Grassatores lineages could be anexample of this phenomenon but this hypothesis is difficult totest in the absence of Mesozoic Grassatores fossils (reviewed byDunlop 2007)

Finally we observe that contrary to traditional hierarchiesproposed for Laniatores many of the clades recovered in ouranalyses correspond to geographical regions particularly in thecase of Grassatores For example the southern hemispheretriaenonychids are restricted to temperate Gondwananlandmasses Gonyleptoidea and their sister group Stygnopsidaeform a Neotropical (AmazonianMesoamericanAntillean) cladethat excludes Assamiidae which has been hypothesised to be amember of a broader Gonyleptoidea (Kury and Cokendolpher2000 Mendes and Kury 2007) In our analyses Assamiidae isin fact a member of a largely Afrotropical clade together withthe Pyramidopidae South-east Asian families usually form oneclade (at most two) albeit with limited support Samooideafamilies are divided into two clusters African and NeotropicalWith one exception (described above) Zalmoxoidea is restrictedto the Neotropics The ages that we estimate for Laniatoresradiations are consistent with ancient diversification beforethe fragmentation of Pangaea An ancient diversification inconjunction with the climatic stability of the tropics may in partexplain the comparatively greater diversity of the armouredharvestmen with respect to the other Opiliones suborders

134 Invertebrate Systematics P P Sharma and G Giribet

Acknowledgements

Weare indebted toPeter J Schwendingerwho collected andprovidedmost ofthe material for study from South-east Asia Some Thai and most of theNeotropical Laniatores were obtained from the TIGER (Thailand InventoryGroup for Entomological Research) and LLAMA (Leaf Litter Arthropods ofMeso-America) projects toC Lienhard and J Longino respectivelyMaterialfrom Madagascar was generously contributed by Charles Griswold and theCalifornia Academy of Sciences Jesse Czekanski-Moir in conjunction withthe Belau NationalMuseum contributed elusive specimens from Palau AbelPeacuterezGonzaacutelez identifiedmanyNeotropical species included in the study andcontributed specimens fromCubaRicardoPinto-da-Rocha identified someofthe live photographed animals from the Neotropics Discussions with RonaldMClouseAbelPeacuterezGonzaacutelezAdrianoBKury andCarlosEPrieto refinedmanyof the ideas presentedhereTwoanonymous reviewers and the associateeditor provided comments that helped to improve an earlier version ofthis manuscript Laura Leibensperger sorted and accessioned TIGER andLLAMA material as well as MCZ type material Adam Graham and theCenter forNanoscaleStudies atHarvardUniversityprovided support forSEMwork Collecting efforts in New Caledonia were greatly facilitated by theguidance of Herveacute Jourdan (Institut de rechercheacute pour de developpementNoumea) and his teammembers Collecting efforts in Fiji weremade possibleby Marika Tuiwawa (University of the South Pacific Suva) and his teammembers Hilda Waqa and Tokasaya lsquoToxrsquo Cakacaka we are especiallygrateful to Tox for his good company during fieldwork and to his familyfor graciously enabling a visit toOvalau SuzieYee Shawprovided invaluablelogistical support in Fiji and her sons Colin and Joshua Yee Shaw assistedwith sorting Fijian material Fieldwork in Indonesia and West Africa wassupported by two MCZ Putnam Expedition Grants awarded to RonaldM Clouse and G G (2006) and to G G (2009) respectively Fieldworkin New Caledonia was supported by the Goelet award the Kalathia FamilyTrust and the Explorers Club awarded to P P S in 2006 Fieldwork in Fijiand in Palauwas supported by twoMCZPutnamExpeditionGrants awardedto P P S (2008) and to Ronald M Clouse and P P S (2010) respectivelyP P S was supported by a Faculty of Arts and Sciences Graduate Fellowshipfrom Harvard University

References

Castresana J (2000) Selectionof conservedblocks frommultiple alignmentsfor their use in phylogenetic analysis Molecular Biology and Evolution17 540ndash552

Colgan D J McLauchlan A Wislon G D F Livingston S MacaranasJ Edgecombe G D Cassis G and Gray M R (1998) Molecularphylogenetics of the Arthropoda relationships based on histone H3and U2 snRNA DNA sequences Australian Journal of Zoology 46419ndash437 doi101071ZO98048

DaSilva M B and Gnaspini P (2009) A systematic revision ofGoniosomatinae (Arachnida Opiliones Gonyleptidae) with a cladisticanalysis and biogeographical notes Invertebrate Systematics 23530ndash624 doi101071IS09022

DaSilva M B and Pinto-da-Rocha R (2010) Systematic review andcladistic analysis of the Hernandariinae (Opiliones Gonyleptidae)Zoologia 27 577ndash642

Derkarabetian S Steinmann D B and Hedin M (2010) Repeatedand time-correlated morphological convergence in cave-dwellingharvestmen (Opiliones Laniatores) from montane western NorthAmerica PLoS ONE 5 e10388 doi101371journalpone0010388

Drummond A J and Rambaut A (2007) BEAST Bayesian evolutionaryanalysis by sampling trees BMC Evolutionary Biology 7 214doi1011861471-2148-7-214

Drummond A J Ho S Y W Phillips M J and Rambaut A (2006)Relaxed phylogenetics and dating with confidence PLoS Biology 4 e88doi101371journalpbio0040088

Dunlop J A (2007) Paleontology In lsquoHarvestmen The Biology ofOpilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 247ndash265 (Harvard University Press Cambridge MA USA)

Dunlop J A and Anderson L I (2005) A fossil harvestman (ArachnidaOpiliones) from theMississippian of East Kirkton Scotland The Journalof Arachnology 33 482ndash489 doi10163604-791

Dunlop JAAndersonL IKerpH andHassH (2003)Preservedorgansof Devonian harvestmen Nature 425 916 doi101038425916a

Dunlop J A Anderson L I Kerp H and Hass H (2004) A harvestman(Arachnida Opiliones) from the Early Devonian Rhynie chertsAberdeenshire Scotland Transactions of the Royal Society ofEdinburgh Earth Sciences 94 341ndash354

Edgar R C (2004) MUSCLE multiple sequence alignment with highaccuracy and high throughput Nucleic Acids Research 32 1792ndash1797doi101093nargkh340

Edgecombe G D and Giribet G (2006) A century laterndash a total evidencere-evaluation of scutigeromorph centipedes (Myriapoda Chilopoda)Invertebrate Systematics 20 503ndash525 doi101071IS05044

Edgecombe G D Giribet G and Wheeler W C (2002) Phylogeny ofHenicopidae (Chilopoda Lithobiomorpha) a combined analysis ofmorphology and five molecular loci Systematic Entomology 2731ndash64 doi101046j0307-6970200100163x

FolmerOBlackMHoehWLutzR andVrijenhoekRC (1994)DNAprimers for amplification ofmitochondrial cytochrome c oxidase subunit Ifrom diverse metazoan invertebrates Molecular Marine Biology andBiotechnology 3 294ndash299

Forster R R (1954) The New Zealand harvestmen (sub-order Laniatores)Canterbury Museum Bulletin 2 1ndash329

Giribet G and Kury A B (2007) Phylogeny and biogeography InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 62ndash87 (Harvard University PressCambridge MA USA)

Giribet G Carranza S Baguntildeagrave J Riutort M and Ribera C (1996) Firstmolecular evidence for the existence of a Tardigrada +Arthropoda cladeMolecular Biology and Evolution 13 76ndash84

Giribet G Rambla M Carranza S Baguntildeagrave J Riutort M and Ribera C(1999) Phylogeny of the arachnid order Opiliones (Arthropoda)inferred from a combined approach of complete 18S and partial 28Sribosomal DNA sequences and morphology Molecular Phylogeneticsand Evolution 11 296ndash307 doi101006mpev19980583

Giribet G Edgecombe G D Wheeler W C and Babbitt C (2002)Phylogeny and systematic position of Opiliones a combined analysis ofchelicerate relationships using morphological and molecular dataCladistics 18 5ndash70

Giribet G Vogt L PeacuterezGonzaacutelez A Sharma P andKury A B (2010)A multilocus approach to harvestman (Arachnida Opiliones) phylogenywith emphasis on biogeography and the systematics of LaniatoresCladistics 26 408ndash437

Hara M R Gnaspini P and Machado G (2003) Male egg guardingbehavior in the Neotropical harvestman Ampheres leucopheus (Mello-Leitatildeo 1922) (Opiliones Gonyleptidae) The Journal of Arachnology 31441ndash444 doi101636S02-32

Hedin M Derkarabetian S McCormack M and Richart C (2010) Thephylogenetic utility of the nuclear protein-encoding gene EF-1a forresolving recent divergences in Opiliones emphasizing intronevolution The Journal of Arachnology 38 9ndash20 doi101636HA09-491

Huelsenbeck J P and Ronquist F (2005) Bayesian analyses of molecularevolution using MrBayes In lsquoStatistical Methods in MolecularEvolutionrsquo (Ed R Nielsen) (Springer New York)

HunterRK ProundDNBurns JA Tibbetts JA andTownsendVR(2007) Parental care in the Neotropical harvestman Phareicranauscalcariferus (Opiliones Cranaidae) The Journal of Arachnology 35199ndash201 doi101636ST06-181

Molecular phylogeny of Laniatores Invertebrate Systematics 135

Kocher T D Thoma W K Meyer A Edwards S V Paumlaumlbo SVillablanca F X and Wilson A C (1989) Dynamics ofmitochondrial DNA evolution in animals amplification andsequencing with conserved primers Proceedings of the NationalAcademy of Sciences of the United States of America 86 6196ndash6200doi101073pnas86166196

Kury A B (1993) Anaacutelise filogeneacutetica de Gonyleptoidea (ArachnidaOpiliones Laniatores) PhD Thesis Universidade de Satildeo Paulo SatildeoPaulo Brazil

Kury A B (2003) Annotated catalogue of the Laniatores of the NewWorld (Arachnida Opiliones) Revista Ibeacuterica de AracnologiacuteaVolumen Especial Monograacutefico 1 1ndash337

Kury A B (2006) Checklist of valid genera of Opiliones of theWorld Museu NacionalUFRJ Available from httpwwwmuseunacionalufrjbrmndiAracnologiachecklaniatorhtm [Accessed1 February 2011]

Kury A B (2007) Podoctidae Roewer 1912 In lsquoHarvestmen The Biologyof Opilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 221ndash224 (Harvard University Press Cambridge MA USA)

Kury A B and Cokendolpher J C (2000) Opiliones In lsquoBiodiversidadTaxonomiacutea y Biogeografiacutea de Artoacutepodos de Meacutexico Hacia una Sintesisde su Conocimientorsquo vol 2 (Eds J E Llorente E Gonzaacutelez andN Papavero) pp 137ndash157 (Universidad Nacional Autoacutenoma deMexico Meacutexico DF Mexico)

Kury A B and Machado G (2009) Notes on Santobius from Vanuatu andFiji and the status of the eastern Melanesian Ibalonius (ArachnidaOpiliones Podoctidae) Zoological Studies 48 524ndash538

Kury A B and Peacuterez G A (2002) A new family of Laniatores fromnorthwestern South America (Arachnida Opiliones) Revista Ibeacuterica deAracnologiacutea 6 3ndash11

Labandeira C C and Sepkoski J J (1993) Insect diversity in the fossilrecord Science 261 310ndash315 doi101126science11536548

Lanyon S M (1988) The stochastic mode of molecular evolutionwhat consequences for systematic investigations The Auk 105565ndash573

Lian W-G Zhu M-S and Kury A B (2008) A new species of the genusTithaeus from China (Arachnida Laniatores Epedanidae) Zootaxa1841 53ndash60

Machado G Requena G S Buzatto B A Osses F and Rossetto L M(2004) Five new cases of paternal care in harvestmen (ArachnidaOpiliones) implications for the evolution of male guarding in theNeotropical family Gonyleptidae Sociobiology 44 577ndash598

Martens J (1976) Genitalmorphologie System und Phylogenie derWeberknechte (Arachnida Opiliones) Entomologica GermanicaZeitschrift fuumlr das Gesamtgebiet der Wissenschaftlichen Entomologie3 51ndash68

Martens J (1980) Versuch eines phylogenetischen Systems der OpilionesIn lsquoProceedings 8th International Congress of Arachnology ViennaVerhandlungenrsquo (Ed J Gruber) pp 355ndash360 (Vienna Austria)

Martens J (1986) Die Grossgliederung der Opiliones und die Evolutionder Ordnung (Arachnida) Actas del X Congreso Internacional deAracnologiacutea Jaca 1 289ndash310

Martens J (1993) Further cases of paternal care in Opiliones (Arachnida)Tropical Zoology 6 97ndash107

Martens J and Schwendinger P S (1998) A taxonomic revision ofthe family Oncopodidae I New genera and new species of GnomulusThorell (Opiliones Laniatores) Revue Suisse de Zoologie 105 499ndash555

Martens J Hoheisel U and Goumltze M (1981) Vergleichende Anatomieder Legeroumlhren der Opiliones als Beitrag zur Phylogenie der Ordnung(Arachnida) Zoologische Jahrbucher Abteilung fur Anatomie undOntogenie der Tiere 105 13ndash76

Mello-Leitatildeo C F (1949) Famiacutelias subfamiacutelia espeacutecies e gecircneros novos deopiliotildees e notas de sinoniacutemia Boletim do Museu Nacional Nova SeacuterieZoologia Rio de Janeiro 94 1ndash33

Mendes A C and Kury A B (2007) Stygnopsidae Soslashrensen 1932 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 232ndash234 (Harvard University PressCambridge MA USA)

Mendes A C and Kury A B (2008) Intercontinental Triaenonychidae ndashthe case of Ceratomontia (Opiliones Insidiatores) The Journal ofArachnology 36 273ndash279 doi101636CH07-931

Murphree C S (1988) Morphology of the dorsal integument of tenopilionid species (Arachnida Opiliones) The Journal of Arachnology16 237ndash252

Park J K andOacuteFoighilD (2000) Sphaeriid and corbiculid clams representseparate heterodont bivalve radiations into freshwater environmentsMolecular Phylogenetics and Evolution 14 75ndash88 doi101006mpev19990691

Peacuterez Gonzaacutelez A (2006) lsquoRevisatildeo Sistemaacutetica e Anaacutelise Filogeneacutetica deStygnommatidae (Arachnida Opiliones Laniatores)rsquo (Museu NacionalUniversidade Federal de Rio de Janeiro Rio de Janeiro Brazil)

Peacuterez Gonzaacutelez A (2007) Stygnommatidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 229ndash232 (Harvard University PressCambridge MA USA)

Peacuterez Gonzaacutelez A (2011) New familial assignment for two harvestmanspecies of the infraorder Grassatores (Arachnida Opiliones Laniatores)Zootaxa 2757 24ndash28

Peacuterez Gonzaacutelez A and Kury A B (2007) Samoidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 224ndash226 (Harvard University PressCambridge MA USA)

Pineau P Henry M Suspegravene R Marchio A Dettai A Debruyne RPetit T Leacutecu A Moisson P Dejean A Wain-Hobson S andVartanian J-P (2005) A universal primer set for PCR amplificationof nuclear histone H4 genes from all animal species Molecular Biologyand Evolution 22 582ndash588 doi101093molbevmsi053

Pinto-da-Rocha R (1997) Systematic review of the Neotropical familyStygnidae (Opiliones Laniatores Gonyleptoidea) Arquivos deZoologia 33 163ndash342

Pinto-da-Rocha R and Kury A B (2003a) Phylogenetic analysis ofSantinezia with description of five new species (Opiliones LaniatoresCranaidae) The Journal of Arachnology 31 173ndash208 doi1016360161-8202(2003)031[0173PAOSWD]20CO2

Pinto-da-Rocha R and Kury A B (2003b) Third species of Guasiniidae(Opiliones Laniatores) with comments on familial relationships TheJournal of Arachnology 31 394ndash399 doi101636H02-59

Pinto-da-Rocha R and Kury A B (2007) Agoristenidae Silhavy 1973 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 171ndash173 (Harvard University PressCambridge MA USA)

Posada D (2005) Modeltest 37 Program and documentation available athttpdarwinuvigoes [Accessed 28 May 2011]

Posada D and Buckley T (2004) Model selection and model averaging inphylogenetics advantages of Akaike information criterion and Bayesianapproaches over likelihood ratio tests Systematic Biology 53 793ndash808doi10108010635150490522304

Posada D and Crandall K A (1998) Modeltest testing the model ofDNA substitution Bioinformatics (Oxford England) 14 817ndash818doi101093bioinformatics149817

Prendini L Weygoldt P and Wheeler W C (2005) Systematics of theDamon variegates group of African whip spiders (ChelicerataAmblypygi) evidence from behaviour morphology and DNAOrganisms Diversity amp Evolution 5 203ndash236 doi101016jode200412004

Rambaut A E (1996) Se-Al sequence alignment editor University ofOxford UK Program and documentation available at httptreebioedacuksoftwarefigtree [Accessed 21 December 2009]

136 Invertebrate Systematics P P Sharma and G Giribet

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 2: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

theretofore (all except for Briggsidae (formerly Pentanychidae)and Guasiniidae) ndash a most promising prospect for theelucidation of laniatorid phylogeny However whereas othersuborders particularly Cyphophthalmi had well resolved andsupported internal phylogenies in that study the internalresolution of Laniatores was beset with a large number ofunsupported nodes and unstable clades occluding interfamilialrelationships (Fig 2) The systematic validity of Laniatoressuperfamilies (sensu Giribet and Kury 2007) remainedespecially ambiguous

The instability within the Laniatores subtree may have beendue in part to missing data Whereas other groups such asCyphophthalmi were represented by a data submatrix thatwas over 90 complete (by sequence length) Laniatores wasrepresented by a submatrix that was less than 60 completeFurthermore low density of taxonomic sampling in Laniatoresmay have contributed to phylogenetic instability and low nodalsupport some diverse lineages (eg Assamiidae andEpedanidae)were represented by few exemplars in the Giribet et al (2010)phylogeny Consequently the internal phylogeny of Laniatoresremains largely undefined

To facilitate ongoing studies of Laniatores biology wehave reassessed the phylogeny of the armoured harvestmenimplementing three strategies to improve phylogeneticestimation First we added to available nuclear ribosomalsequence data (complete 18S rRNA and nearly complete28S rRNA sequences) Second we doubled the number ofmolecular loci sampled Third we added new lineages to theanalysis altogether particularly augmenting the sampling ofAssamiidae Biantidae and Epedanidae sensu lato One of thenew lineages included is formally described herein as a newfamily of Grassatores and another previously described lineageis elevated to family status Our taxon sampling encompassesfor the first time all families of Laniatores described heretoforeincluding the enigmatic Guasiniidae and Briggsidae

Materials and methods

Taxonomy

Examined specimens have been deposited in the followinginstitutions MHNG (Museacuteum drsquohistoire naturelle Ville de

Fig 1 Live habitus of Laniatores exemplars Top row left to right Lacurbs sp (Biantidae) from Ototomo forest Cameroonphotographed 3 June 2009 Algidia sp (Triaenonychidae) from Arthurrsquos Pass National Park South Island New Zealandphotographed 3 February 2003 Pyramidops sp (Pyramidops group) from Ototomo forest Cameroon photographed 5 June2009Middle row left to rightChilon undulatus (Assamiidae) fromMountKoupeacuteCameroon photographed 12 June 2009Nsorkiadorsicana (Assamiidae) from ParqueNacional de los Altos de Nsork Equatorial Guinea photographed 4 August 2003Rhaucus sp(Cosmetidae) from Santuario de Flora y Faune Iguaque Colombia photographed 1 November 2004 Bottom row left to rightGnomulus javanicus (Sandokanidae) from Cibodas Botanical Gardens Java Indonesia photographed 12 June 2006 Zalmoxis sp(Zalmoxidae) from Bukit Linggua Sulawesi Indonesia photographed 17 June 2006 undescribed female of Cranainae (Cranaidae)from Santuario de Flora y Faune Iguaque photographed 1 November 2004 Photos by G Giribet

Molecular phylogeny of Laniatores Invertebrate Systematics 107

Genegraveve Switzerland) and MCZ (Museum of ComparativeZoology Harvard University Cambridge MA USA)

The holotype and a female paratype of the new species werephotographed in dorsal ventral and lateral positions using aJVC KY-F70B digital camera mounted on a Leica MZ 125stereomicroscope A series of images (from 5 to 15) was taken atdifferent focal planes and assembled with the dedicated softwarepackage Auto-Montage Pro Version 5000271 (Syncroscopy

Frederick MD USA) Multiple specimens (for each species)were examined with a Zeiss EVO 50 scanning electronmicroscope (SEM) The genitalia of one to two male andfemale paratypes were also examined with the Zeiss EVO 50SEM Specimens previously used for DNA extraction areindicated as such among the type material Methodsconcerning molecular sequence data obtained from thesespecimens are described below Material used for comparison

Fig 2 Cladogram of the Laniatores subtree from Giribet et al (2010) Nodes that are unsupportedandor conflicting across analyses have been collapsed

108 Invertebrate Systematics P P Sharma and G Giribet

encompassed three morphospecies (not described at present) andspecimens of Zalmoxida gibbera Suzuki 1970 all of these wereincluded in the molecular phylogeny

All measurements are given in millimetres unless otherwiseindicated Nomenclature on cuticular ornamentation followsMurphree (1988)

Species samplingSpecimens of Laniatores were collected by several individualsover multiple collecting trips including by P P S duringcollecting trips to New Caledonia (2007) Fiji (2008) andPalau (2010) and by G G during collecting trips to Indonesia(2006) In addition data collected in a previous study (Giribetet al 2010) were accessed from GenBank andor updated withnew sequences Collected specimens were preserved in 96EtOH and stored at 80C The list of specimens includingvoucher numbers GenBank accession codes and collectiondetails is found in Appendix 1

Molecular methodsTotalDNAwas extracted from the legs of animals usingQiagenrsquosDNEasy tissue kit (Valencia CA USA) Purified genomicDNA was used as a template for PCR amplification Molecularmarkers consisted of two nuclear ribosomal genes (18S rRNAand 28S rRNA) two mitochondrial ribosomal genes (12SrRNA and 16S rRNA) three nuclear protein-encoding genes(elongation factor-1a histone H3 and histone H4) twomitochondrial protein-encoding genes (cytochrome c oxidasesubunit I and cytochrome b) and one nuclear non-coding gene(U2 snRNA) Primer sequences and fragment lengths areindicated in Table 1

Polymerase chain reaction (PCR) visualisation by agarosegel electrophoresis and direct sequencing were conducted asdescribed by Sharma and Giribet (2009) Chromatogramsobtained from the automatic sequencer were read andsequences assembled using the sequence editing softwareSequencher (Gene Codes Corporation Ann Arbor MI USA)Sequence data were edited in Se-Al ver 20a11 (Rambaut 1996)

Phylogenetic analysisMaximum likelihood (ML) and Bayesian inference (BI) analyseswere conducted on static alignments which were inferred asfollows Sequences of ribosomal and snRNA genes were alignedusing MUSCLE ver 36 (Edgar 2004) with default parametersand subsequently treated with GBlocks ver 091b (Castresana2000) to cull positions of ambiguous homology For thesegenes gaps were permitted within blocks Sequences ofprotein-encoding genes were aligned using MUSCLE ver 36with default parameters as well but alignments were confirmedusing protein sequence translations before treatment withGBlocks ver 091b and no gaps were permitted withinblocks The size of data matrices for each gene prior andsubsequent to treatment with GBlocks ver 091b is providedin Table 2

Maximum likelihood analysis was conducted usingRAxML ver 727 (Stamatakis 2006) through the CIPRESver 3 gateway using the Abe Dell Intel 64 Linux teragridcluster housed at the National Center for Supercomputing

Applications (University of Illinois) A unique GTR model ofsequence evolution (Tavareacute 1986) with corrections for a discretegamma distribution (GTR+G) was specified for each datapartition (Yang 1996) Nodal support was estimated via therapid bootstrap algorithm (1000 replicates) using the GTR-CAT model (Stamatakis et al 2008)

Bayesian inference analysis was performed using MrBayesver 312 (Huelsenbeck and Ronquist 2005) with a uniqueGTR model of sequence evolution with corrections for adiscrete gamma distribution and a proportion of invariant sites(GTR+G + I) specified for each partition as selected inModeltest ver 37 (Posada and Crandall 1998 Posada 2005)under the Akaike information criterion (Posada and Buckley2004) Default priors were used starting with random treesand three hot and one cold Markov chains were run until theaverage deviation of split frequencies reached lt001 (10 000 000generations) After burn-in samples were discarded sampledtrees were combined in a single majority consensus topologyand the percentage of nodes was taken as posterior probabilities

Estimation of divergence timesAgesof cladeswere inferredusingBEASTver 161 (Drummondet al 2006 Drummond and Rambaut 2007) We specified aunique GTR model of sequence evolution with corrections fora discrete gamma distribution and a proportion of invariant sites(GTR+G + I) for each partition and we further separated sitemodels for first second and third codon positions for all fiveprotein-encoding genes

Fossil taxa were used to calibrate divergence times as inprevious studies (Giribet et al 2010) We constrained the ageof Eupnoi to 410Mya using the Devonian harvestmanEophalangium sheari Dunlop Anderson Kerp amp Hass 2004(see Dunlop et al 2003 2004 Dunlop and Anderson 2005)a normal distribution with a standard deviation of 5million yearswas applied to this node to account for uncertainty in estimationof fossil age Dyspnoi were constrained using a normaldistribution with a mean of 300Mya and a standard deviationof 10million years on the basis of the Carboniferous fossilsEotrogulus fayoli Thevenin 1901 and Nemastomoides elaverisThevenin 1901 (see Dunlop 2007)

An uncorrelated lognormal clock model was inferred for eachpartition and a Yule speciation process was assumed for the treeprior We selected the uncorrelated lognormal model because itsaccuracy is comparable to an uncorrelated exponential modelbut it has narrower 95 highest posterior density intervalsAdditionally the variance of the uncorrelated lognormalmodel can better accommodate data that are already clock-like(Drummond et al 2006) Priors were sequentially optimised in aseries of iterative test runs (data not shown) Markov chains wererun for 50 000 000generations sampling every 5000generationsConvergence diagnostics were assessed using Tracer ver 15(Rambaut and Drummond 2009)

Ancestral range reconstructionLikelihood analysis of range evolution of (Samooidea +Zalmoxoidea) was conducted using the program Lagrange(Ree et al 2005 Ree and Smith 2008) We isolated the datedsubtree of the clade (Zalmoxoidea + Samooidea) from

Molecular phylogeny of Laniatores Invertebrate Systematics 109

BEAST analysis and coded the ranges of terminals asAfrotropical Neotropical or Indo-Pacific We implementedstratified dispersal constraint matrices for three spans of time(1) 0ndash35Mya (disconnection of all three landmasses) (2)35ndash110Mya (transantarctic connections between theAustralian plate and temperate South America disconnectionof South America and West Africa) and (3) 110ndash206Mya(connection of all three landmasses) Geological events usedto delimit the time spans follow Sanmartiacuten and Ronquist(2004) The maximum number of areas in ancestral ranges washeld at two (this convention reflects empirical observationsof Laniatores species the majority of which are narrowlydistributed endemics) and dispersal constraints were set toeither 10 (if landmasses were connected) or 01 (if landmasseswere disjunct)

Table 1 List of primer sequences used for amplification and sequencing with original references of primer sequences

12S rRNA12Sai 50-AAA CTA GGA TTA GAT ACC CTA TTA T-30 Kocher et al (1989)12Sr Opi 50-AAG AGC GAC GGG CGA TGT GTA CAT-30 This study

16S rRNA16Sa 50-CGC CTG TTT ATC AAA AAC AT-30 Xiong and Kocher (1991)16Sb 50-CTC CGG TTT GAA CTC AGA TCA-30 Edgecombe et al (2002)

18S rRNA1F 50-TAC CTG GTT GAT CCT GCC AGT AG-30 Giribet et al (1996)3F 50-GTT CGA TTC CGG AGA GGG A-30 Giribet et al (1996)5R 50-CTT GGC AAA TGC TTT CGC-30 Giribet et al (1996)9R 50-GAT CCT TCC GCA GGT TCA CCT AC-30 Giribet et al (1996)18Sa20 50-ATG GTT GCA AAG CTG AAA C-30 Whiting et al (1997)18Sbi 50-GAG TCT CGT TCG TTA TCG GA-30 Whiting et al (1997)

28S rRNA28Sa 50-GAC CCG TCT TGA AAC ACG GA-30 Whiting et al (1997)28S D1F 50-GGG ACT ACC CCC TGA ATT TAA GCAT-30 Park and Oacute Foighil (2000)28Srd4b 50-CCT TGG TCC GTG TTT CAA GAC-30 Edgecombe and Giribet (2006)28Srd5b 50-CCA CAG CGC CAG TTC TGC TTA C-30 Schwendinger and Giribet (2005)28Srd48a 50-ACC TAT TCT CAA ACT TTA AAT GG-30 Schwendinger and Giribet (2005)28Srd7b1 50-GAC TTC CCT TAC CTA CAT-30 Schwendinger and Giribet (2005)28S F2012 50-CCA AGG TKA RYA GCC TCT RG-30 Giribet et al (2010)28S R2762 50-CCG CCC CAG CCA AAC TCC CC-30 Giribet et al (2010)28S F2762 50-GGG GAG TTT GGC TGG GGC GG-30 Giribet et al (2010)28S OR2r 50-TTC TGA CTT AGA GGC GTT CAG-30 Giribet et al (2010)

COILCO1490 50-GGT CAA CAA ATC ATA AAG ATA TTG G-30 Folmer et al (1994)HCOoutout 50-GTA AAT ATA TGR TGD GCT C-30 Prendini et al (2005)

Cytochrome bCytB F-Lan 50-TAG GTT ATG TGT TAC CTT GAG GWC AAA TAT CTT TTT G-30 This study modified from Schoumlnhofer

and Martens (2008)CytB R-Lan 50-CCA CCT AAT TTA TTT GGA ATT GAT TG-30 This study

EF-1aEF OP3 50-TTT GAR GAA ATC CAR AAR GAA GT-30 Hedin et al (2010)EF OPRC4 Leio 50-GAA CTT GCA AGC AAT GTG AGC-30 Hedin et al (2010)

Histone H3H3aF 50-ATG GCT CGT ACC AAG CAG ACV GC-30 Colgan et al (1998)H3aR 50-ATA TCC TTR GGC ATR ATR GTG AC-30 Colgan et al (1998)

Histone H4H4F2S 50-TSC GIG AYA ACA TYC AGG GIA TCA C-30 Pineau et al (2005)H4F2er 50-CKY TTI AGI GCR TAI ACC ACR TCC AT-30 Pineau et al (2005)

U2 snRNAU2F 50-TCT CGG CCT WWT GGC TAA-30 Colgan et al (1998)U2R 50-GMG GTA STG CAA TAC CGG-30 Colgan et al (1998)

Table 2 Length of gene partition alignment prior and subsequent totreatment with GBlocks ver 091b

Partitions Original length ofalignment (bp)

Fraction retainedby GBlocks ()

Final length ofalignment (bp)

12S rRNA 382 44 17116S rRNA 656 64 36418S rRNA 1784 98 175228S rRNA 3438 70 2405COI 795 81 648CytB 421 100 421EF-1a 584 96 566H3 327 100 327H4 160 100 160U2 snRNA 131 100 131

110 Invertebrate Systematics P P Sharma and G Giribet

Taxonomy

Order OPILIONES Sundevall 1833

Suborder LANIATORES Thorell 1876

Family PETROBUNIDAE fam nov

Type genus Petrobunus gen nov

Type species Petrobunus schwendingeri sp nov

Genera included Petrobunus gen nov Zalmoxida Roewer 1912 newfamilial assignment

Diagnosis

Small to medium-sized Grassatores with a low oculariumremoved from anterior margin of carapace with a medianocularial tubercle in some species but distinguished fromEpedanidae in the lack of a large median spine Mesotergumsmooth indistinctly divided into five areas scutal areas I and IInot fused as opposed to Epedanidae Chelicerae with a sexuallymonomorphic prominent bulla basal segment not enlarged asopposed toEpedanidae Palpus robust and strongly spined palpalpatella armed with single distinct spine-bearing tubercle onmedial-distal portion It can be differentiated from Podoctidaein lacking spines in leg I and in lacking a sexually dimorphicocularium Femur of leg III sexually monomorphic and arcuateMale leg IV sexually dimorphic and spined Tarsi III and IV withunmodified double claws scopulae absent as opposed to mostSamooidea It can be distinguished from Sandokanidae andPodoctidae in the tarsal formula which is not reduced inPetrobunidae Pars distalis of penis either shaped as the headof a javelin (Petrobunus) or with a rounded apical margin(Zalmoxida) and spoon-shaped in dorsal aspect without cleftin ventral plate (as opposed to Tithaeidae and Podoctidae) or aring of setae surrounding a capsula interna (as opposed toEpedanidae) variable number of setae on lateroventral andlaterodorsal surfaces glans free in apical part and simple withparastylar lobe small (Zalmoxida) or elongate and extendingproximally (Petrobunus) Ovipositor composed of two apicallobes each bearing two dorsal setae one ventral seta and twoapical setae bases of ventral pair of setae either in contact(Zalmoxida) or set apart (Petrobunus) distal surfaces ofapical lobes either finely denticulate (Zalmoxida) or smooth(Petrobunus) (Appendix 2)

Remarks

The morphology of Petrobunidae is not readily indicative ofphylogenetic affinities The sexually dimorphic fourth walkingleg and apophyses of the opisthosomal sternites suggest arelationship to Zalmoxidae or Escadabiidae respectively (orsome distant relationship to Zalmoxoidea) the indistinctdivision of the mesotergum to Samoidae and the spoon-shaped pars distalis of the penis to erecanine Assamiidae orPhalangodidae Molecular sequence data similarly do notsupport the placement of Petrobunidae either within or sister toa single family disfavouring its inclusion in a previouslydescribed lineage However in most analyses Petrobunidaeclusters with other South-east Asian families namelyEpedanidae and Podoctidae (discussed below)

Etymology

The name refers to the appearance of males of this genuswhich appear to have tiny pebbles attached to the proximalpart of the fourth leg when observed with the naked eyedue to the greatly enlarged trochanter IV Derived from Greeklsquopetrarsquo (ptra) meaning lsquostonersquo or lsquopebblersquo and lsquo-bunusrsquoa common suffix in Opiliones taxonomy (eg HadrobunusTriaenobunus Dibunus) It is also wordplay as the typespecies is named after an individual with the given namelsquoPeterrsquo

a

b

050 mm

050 mm

050 mm

c

Fig 3 Petrobunus schwendingeri sp novmale holotype (a) Dorsal view(b) lateral view and (c) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 111

Genus Petrobunus gen nov

Type species Petrobunus schwendingeri sp nov

Diagnosis

Small Grassatores (body length lt2mm) distinct from otherpetrobunids in the following combination of characters coxaand trochanter of male leg IV greatly incrassate with trochanterIV sub-rectangular in lateral aspect Tarsal formula 3 5 5 5ndash6Pars distalis of penis shaped as the head of a javelin two to threepairs of setae on ventral plate and four setae on each lateralmargin glans free in apical part with parastylar lobe extendingproximally Ovipositor with two ventral setae (one per apicallobe) set apart from one another by a distance equal toapproximately one-third the width of the ovipositor

Distribution

The newly described species are known only from the Philippineislands of Palawan and Panay an undescribed morphospecies

(included in molecular phylogeny as MCZ DNA102668 andMCZ DNA102669) is known from Taiwan

Petrobunus schwendingeri sp nov

(Figs 3ndash6 Tables 3 4)

Material examined

Holotype Male (MHNG) Philippines Panay Sibaliw primary forest450m alt leg E Curio 13i2008 (ex MCZ DNA103572)

Paratypes 1lt (mounted on three SEMstubs [MCZ100872ndash100874] anddissected for genitalia) 2 (1 extracted for DNA [MCZ 100875 MCZDNA103572] 1 dissected for genitalia [MCZ100881]) same collectingdata as holotype 4 same collecting data as holotype (MHNG)

Additional material studied 1 lt juvenile same collecting data asholotype

Diagnosis

Small petrobunid with unarmed ocularium Distinct from otherspecies in the genus in the mesotergum with transverse bands of

a b

c

100 microm

100 microm

100 microm

Fig 4 Petrobunus schwendingeri sp novmale paratype (a) Dorsal view of prosoma andmesotergum (b) posteriorview of opisthosoma with dotted reconstructions of spination based on holotype specimen and (c) dorsal view ofanterior margin of carapace

112 Invertebrate Systematics P P Sharma and G Giribet

a

100 microm

100 microm

100 microm

200 microm

100 microm

100 microm

100 microm

100 microm

200 microm

b

c

d

e

h

i

g

f

Fig 5 Petrobunus schwendingeri sp nov (a) Left chelicer of male paratype (b) left palp of male paratype (c) left leg I of maleparatype (d) left leg II of male paratype (e) left leg III of male paratype ( f ) left leg IV of male paratype (g) left leg IV of femaleparatype (h) trochanter of left leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 113

pigmentation and in the armature of the opisthosomal sternites(two pairs of tubercles on sternite 7 and one pair on sternite 8)Proximal region of femora of all legs with single blunt peg Penis

more elongate than in congeners in the shape of a spear bladewith two pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100875] inparentheses) 168 (164) greatest width of prosoma 076 (076)greatest width of opisthosoma 126 (124) length-to-width ratio133 (132) (Figs 3 6) Body campaniform yellow to darkorange (in alcohol depending on incidence of light) almostentirely with a dense microgranulate surface microstructureEyes present on low well developed ocularium withoutmedian ocularial tubercle Ocularium 012 (012) long and024 (019) wide removed from anterior margin of carapaceAnterior margin of carapace with two pairs of blunt pegs abovecoxae of leg I with outer pair of sub-rectangular shape (Fig 4)Scutal grooves of mesotergum indistinct with mesotergal areasdistinguishable only by transverse bands of pigmentation Freetergites without large tubercles

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged with setosetubercles on anterior margin Genital operculum sub-triangularSpiracles not concealed adjacent to row of tuberclesOpisthosomal sternite 7 with two pairs of large tuberclesdisplaced away from midline Opisthosomal sternite 8 withone pair of smaller tubercles flanking midline Anal plateunarmed (Fig 4)

Chelicerae (Fig 5) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassatefree of ornamentation with dorsal margin bearing several setaeDistal article with delicate dentition free of ornamentation

Palpi (Fig 5) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setae Palpalfemur with two proximal ventral spines in a row and two paireddistal spines (one ventral one mesoventral) Palpal patella with asingle spine directed inward Palpal tibiawith twopairs of spinesand a small basal setose tubercle Palpal tarsus with two pairs ofspines Palpal claw nearly as long as palpal tarsus

Legs IndashIV (Fig 5) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge ventral tubercle and three smaller mesodorsal tuberclesFemora IndashIV with one basal peg on ventral surface with peg freeof granulation Femur III arcuate in males and females free oftubercles Femur IVandpatella IVofmalewith two irregular rowsof mesalmesoventral tubercles Tibia IV of male with multipleirregular rows of tubercles with ventral tubercles enlarged andbulbous distally ventral tubercles enlarged but conical in shapeMetatarsi IndashIV divided distally with distal portion lackingornamentation metatarsus IV of male with two rows of mesalmesoventral tubercles Tarsus IV unornamented Femaletrochanter IV not enlarged leg IV free of tubercles Tarsalclaws IndashIV smooth unmodified Tarsal segmentation 3 5 5 5

Penis (Fig 6) elongate narrow and slender in the shape ofa spear blade Lateral margins gradually coalescing dorsallyresulting in spoon shape in dorsal aspect Ventral surface withtwo pairs of setae lateral margins with four setae each Glans

a

b

c d

050 mm

050 mm

100 microm100 microm

Fig 6 Petrobunus schwendingeri sp nov (a) Female paratype dorsalview (b) female paratype ventral view (c) pars distalis of penis lateral viewand (d) ovipositor dorsal view (one of four dorsal setae broken duringmounting process)

114 Invertebrate Systematics P P Sharma and G Giribet

free in apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 6) composedof twoapical lobes eachbearingtwo dorsal setae one ventral seta and two apical setae Distalsurfaces of apical lobes smooth Bases of dorsal setae in contactBases of ventral setae set apart by a distance approximately equalto one-third the width of the ovipositor

Distribution

Known only from type locality

Etymology

The specific epithet honours Dr Peter J Schwendinger curator atthe MHNG for his inspiration and tireless efforts to advanceknowledge of South-east Asian arachnid fauna

Petrobunus spinifer sp nov

(Figs 7ndash10 Tables 5 6)

Material examined

Holotype Male (MHNG) Philippines Palawan El Nido RegionBulalacao Waterfall primary forest 200ndash450 alt (111304100N1192800000E) leg A Schulz 30xi2009 (ex MHNG PAL-0905)

Paratypes 12 lt 21 (MHNG) same collecting data as holotype (exMHNG PAL-0905) 3 lt (1 dissected for genitalia [MCZ 100888] andmounted on one SEM stub [MCZ 100886] 2 in ethanol [MCZ100877ndash100878]) 3 (1 dissected for genitalia [MCZ 100889] 2 inethanol [MCZ 100879ndash100880]) same collecting data as holotype (exMHNGPAL-0905) 2lt (1mountedononeSEMstub [MCZ100882] 1mounted on two SEM stubs [MCZ 100884ndash100885]) PhilippinesPalawan El Nido Region Mt Singkukan primary forest 300ndash400alt (111300700N 1192805100E) leg A Schulz 26xi2009 (exMHNG PAL-0904)

Additional material studied 6 juveniles same collecting data as holotype(MHNG PAL-0905) 1 lt Philippines Palawan El Nido Region MtSingkukan primary forest 400ndash600 alt (111303800N 1192805500E)leg A Schulz 24xi2009 (MHNG PAL-0903) 6 lt 8 PhilippinesPalawan El Nido Region Mt Singkukan primary forest 300ndash400 alt(111300700N 1192805100E) leg A Schulz 26xi2009 (MHNG PAL-0904)

Diagnosis

Small petrobunidwith unarmedoculariumwithmesotergum freeof pigmentation Distinct from congeners in the armature of thefreeopisthosomal tergites andanal plate (setose tubercules) andofthe opisthosomal sternites (sternites 3ndash6 with single tubercle oneach side forming a line under each coxa IV sternite 7 with twolarge spines directly anteroventrally and sternite 8with an evenlydistributed belt of eight smaller spines) Femur IV of male with asingle tubercle basoventrally Penis narrow in the shapeof a spearblade with three pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100879] inparentheses) 130 (115) greatest width of prosoma 058 (056)greatest width of opisthosoma 079 (080) length-to-width ratio165 (144) (Figs 5 8) Body campaniform yellow (in alcoholdepending on incidence of light) almost entirely with a densemicrogranulate surface microstructure Eyes present on lowwell developed ocularium without median ocularial tubercleOcularium 012 (010) long 018 (016) wide removed fromanterior margin of carapace Anterior margin of carapace withtwo pairs of conical pegs above coxae of leg I Scutal grooves ofmesotergum indistinct free of transverse bands of pigmentationFree tergites with regular belts of setose tubercles (Fig 5)

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged withsetose tubercules on anterior margin Genital operculumsub-triangular Spiracles not concealed anterior to row oftubercules Opisthosomal sternites 3ndash6 each with belt of smallregular tubercles Opisthosomal sternite 7 with two large setosespines directly anteroventrally Opisthosomal sternite 8 withbelt of regular tubercles Two rows of tubercles alignedanteroposteriorly under outer limit of coxae IV Anal platearmed with tubercles (Fig 6)

Chelicerae (Fig 7) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassate

Table 3 Leg measurements of Petrobunus schwendingeri holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 013012 049009 028014 034011 051005 042007 217Leg II 017016 069010 029014 055010 058005 079007 307Leg III 015016 054013 028017 046013 052007 047006 242Leg IV 045045 075014 037020 071019 090009 054007 372

Table 4 Leg measurements of Petrobunus schwendingeri female paratype (ex MCZ DNA103572) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 012015 049012 027013 034010 044006 038007 204Leg II 013018 069011 031013 053010 054006 069006 289Leg III 013017 051012 028015 040012 047007 046006 225Leg IV 024023 061012 031017 050012 071008 052008 289

Molecular phylogeny of Laniatores Invertebrate Systematics 115

free of ornamentation with dorsal margin bearing severalsetae Distal article with delicate dentition free of ornamentation

Palpi (Fig 7) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setaePalpal femur with two proximal ventral spines in a row andtwo paired distal spines (one ventral one mesoventral) Palpalpatella with a single spine directed inward Palpal tibia with twopairs of spines and a small basal setose tubercle Palpal tarsuswith two pairs of spines Palpal claw nearly as long as palpaltarsus

Legs IndashIV (Fig 7) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge setose tubercle ventrally Femora IndashIV without basalpegs femur IV with one large tubercle ventrally Femur IIIarcuate in males and females free of tubercles Femur IV andpatella IV of male with irregular rows of mesalmesoventraltubercles Tibia IV of male with multiple irregular rows oflarge tubercles distally ventral tubercles small not bulbousMetatarsi IndashIV divided distally with distal portion lackingornamentation metatarsus IV of male with two rows ofmesalmesoventral tubercles Tarsus IV unornamented Femaletrochanter IV not enlarged leg IV free of tubercles Tarsal clawsIndashIV smooth unmodified Tarsal segmentation 3 5 5 6

Penis (Fig 8) narrow and slender in the shape of a spearblade Lateral margins gradually coalescing dorsally resultingin spoon shape in dorsal aspect Ventral surface with threepairs of setae lateral margins with four setae each Glans freein apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 8) composedof twoapical lobes eachbearingtwo dorsal setae one ventral seta and two apical setae Distalsurfaces of apical lobes smooth Bases of dorsal setae in contactBases of ventral setae set apart by a distance approximately equalto one-third the width of the ovipositor

a

b

c

050 mm

050 mm

050 mm

Fig 7 Petrobunus spinifer sp nov male holotype (a) Dorsal view (b)lateral view and (c) ventral view

a

b

200 microm

100 microm

Fig 8 Petrobunus spinifer sp nov male paratype (a) Ventral view and(b) dorsal view of anterior margin of carapace

116 Invertebrate Systematics P P Sharma and G Giribet

a

b

c

d

e

h

i

g

f

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

Fig 9 Petrobunus schwendingeri sp nov (a) Left chelicer ofmaleparatype (b) left palp ofmale paratype (c) left leg I ofmale paratype (d) left leg II ofmale paratype (e) right leg III ofmale paratype ( f ) right leg IV ofmale paratype (g) left legIV of female paratype (h) trochanter of right leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 117

Distribution

Known only from type locality and additional localities reportedhere

Etymology

The specific epithet an invariable noun in apposition refers to theenlarged belts of tubercles on the free tergites and opisthosomalsternites of this species Derived from Latin lsquospinarsquo meaninglsquospearrsquo or lsquodartrsquo and lsquoferrersquo meaning lsquoto carry or bearrsquo

Petrobunus torosus sp nov

(Figs 11ndash14 Tables 7 8)

Material examined

Holotype Male (MHNG) Philippines Palawan Puerto Princesa RegionSabang Underground National Park Daylight Hole and Lions Caveprimary forest 100ndash200 alt (100900600N1185301000E) legA Schulz6ndash8xii2009 (ex MHNG PAL-0907)

Paratypes 6 lt 13 (MHNG) same collecting data as holotype(ex MHNG PAL-0907) 3 lt (1 dissected for genitalia and mountedon three SEM stubs [MCZ 100894ndash100896] 2 in ethanol [MCZ100890ndash100891]) 3 (1 dissected for genitalia [MCZ 100902] andmounted on one SEM stub [MCZ 100897] 2 in ethanol [MCZ100892ndash100893]) same collecting data as holotype (ex MHNGPAL-0907) 1 lt (mounted on one SEM stub [MCZ100899]) and 3 (dissected for genitalia [MCZ 100901] and mounted on one SEM stub[MCZ 100898]) Philippines Palawan Puerto Princesa Region SabangUnderground National Park jungle trail (101105500N 1185405900E)leg A Schulz 4xii2009 (ex MHNG PAL-0906)

Additional material studied 6 juveniles same collecting data as holotype(MHNG PAL-0907) 12 lt 3 2 juveniles Philippines PalawanPuerto Princesa Region Sabang Underground National Park jungletrail (101105500N 1185405900E) leg A Schulz 4xii2009 (MHNGPAL-0906)

Diagnosis

Distinct from congeners in the well developed ocularium armedwith median tubercle Mesotergum free of pigmentation as inP spinifer but opisthosomal sternites without large spines(sternites 7ndash9 armed only with small low tubercles) Proximalregion of femora of all legs with single blunt peg Penis widenedin the base of the pars distalis stocky in the shapeof a spear bladewith three pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100892] inparentheses) 152 (150) greatest width of prosoma 070 (068)greatest width of opisthosoma 104 (108) length-to-width ratio

a

b

c d

050 mm

050 mm

20 microm

100 microm

Fig 10 Petrobunus spinifer sp nov (a) Female paratype dorsal view(b) female paratype ventral view (c) pars distalis of penis lateral view and(d) ovipositor dorsal view

Table 5 Leg measurements of Petrobunus spinifer holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011009 032008 022011 024008 034005 036005 159Leg II 011011 046008 018012 036009 040005 068005 219Leg III 014015 044012 024014 032013 043005 041004 198Leg IV 032038 050014 025017 050014 062008 028004 247

118 Invertebrate Systematics P P Sharma and G Giribet

146 (139) (Figs 11 14) Body campaniform yellow to darkorange (in alcohol depending on incidence of light) almostentirely with a dense microgranulate surface microstructureEyes present on low well developed ocularium with medianocularial tubercle Ocularium 011 (011) long 020 (021) wideremoved from anterior margin of carapace Anterior margin ofcarapace with two pairs of blunt pegs above coxae of leg I withouter pair of sub-rectangular andor bifid shape Scutal grooves ofmesotergum indistinct free of transverse bands of pigmentationFree tergites without large tubercles or spines (Fig 12)

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged with setosetubercles on anterior margin Genital operculum sub-triangularSpiracles not concealed anterior to row of tuberclesOpisthosomal sternites with irregular belts of roundedtubercles Anal plate unarmed (Fig 12)

Chelicerae (Fig 13) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassatefree of ornamentation with dorsal margin bearing several setaeDistal article with delicate dentition free of ornamentation

Palpi (Fig 13) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setae Palpalfemur with two proximal ventral spines in a row and two paireddistal spines (one ventral one mesoventral) Palpal patella with asingle spine directed inward Palpal tibiawith twopairs of spinesand a small basal setose tubercle Palpal tarsus with two pairs ofspines Palpal claw as long as palpal tarsus

Legs IndashIV (Fig 13) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge ventral tubercle and three smaller mesodorsal tuberclesFemora IndashIV with one basal peg on ventral surface with peg freeof granulation Femur III arcuate in males and females free oftubercles Femur IVandpatella IVofmalewith two irregular rowsof mesalmesoventral tubercles Tibia IV of male with multipleirregular rows of tubercles with ventral row enlarged and conicaldistally distal-most ventral tubercle composed of two fusedtubercles Metatarsi IndashIV divided distally with distal portionlacking ornamentation metatarsus IV of male with two rows ofmesalmesoventral tubercles Female trochanter IV not enlargedleg IV free of tubercles Tarsal claws IndashIV smooth unmodifiedTarsal segmentation 3 5 5 6

Penis (Fig 14) narrow in the shape of a spear blade widenednear base Lateral margins gradually coalescing dorsallyresulting in spoon shape in dorsal aspect Ventral surface with

Table 6 Leg measurements of Petrobunus spinifer female paratype (ex MHNG PAL-0905) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 033007 021010 024007 025005 029005 143Leg II 013011 037006 023010 034007 026005 051005 184Leg III 014014 029009 022013 029010 027005 035004 156Leg IV 017015 049008 025014 034010 045006 043004 213

a

b

c

050 mm

050 mm

050 mm

Fig 11 Petrobunus torosus sp nov male holotype (a) Dorsal view(b) lateral view and (c) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 119

threepairs of setae lateralmarginswith four setae eachGlans freein apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 14) composed of two apical lobes eachbearing two dorsal setae one ventral seta and two apicalsetae Distal surfaces of apical lobes smooth Bases of dorsalsetae in contact Bases of ventral setae set apart by a distanceapproximately equal to one-third the width of the ovipositor

Distribution

Known only from type locality and additional locality reportedhere

Etymology

The specific epithet refers to the stocky and robust appearanceof the fourth leg in the males of this species Derived from Latinlsquotorosusrsquo meaning lsquomuscularrsquo or lsquobulgingrsquo

Family TITHAEIDAE fam nov

Type genusTithaeusThorell 1891 by present designation andmonotypy

Type species Tithaeus laevigatus Thorell 1891 by original designation

Genera included Tithaeus Thorell 1891 new familial assignmentMetatithaeus Suzuki 1969 new familial assignment

Diagnosis

Medium-sized Grassatores with a low ocularium removed fromthe anterior margin of carapace that differ from Epedanidae inlacking a median spine In some species slight to large hump

situated anterior of ocularium Scutal region divided into fiveareas areas I and II not fused as opposed to EpedanidaeChelicerae typical basal segment not enlarged (as opposed toEpedanidae)Distinct fromPodoctidae in the lack of spines on legI and in the lack of a sexually dimorphic ocularium Tarsalformula 5 8+ 5 6 not reduced (as opposed to Sandokanidaeand Podoctidae) Distitarsi of legs I and II typically with twotarsalia distinguished from Petrobunidae in the trochanter of legIV not enlarged inmales Tarsi III and IVwith unmodified doubleclaws scopulae absent (as opposed to most Samooidea) Distalmargin of ventral plate of penis usually with deep cleft (mostTithaeus) or widening distally into setiferous and conicalstructure (Metatithaeus) glans with simple membranous lobecovering the stylus terminus of stylus either a bifurcate orslightly inflatable lobe absence of prominent parastylar lobes(distinguishing it from Petrobunidae) absence of a ring of setaesurrounding a capsula interna (found in Epedanidae) Ovipositorlobes typically with a pair of ventral and dorsal setae

Remarks

One of dozens of genera placed in the subfamily Phalangodinae(Phalangodidae) by Roewer (1912 1923 1949) Tithaeus wassubsequently extricated and transferred to Epedanidae by Kury(1993 2003 2006) on the basis of the male genitalia althoughthe placement was ambiguous given the absence of typicalepedanid morphology such as elongate and armed pedipalpian erect ocularial spine (absent in Dibuninae) the fusion of scutalareas I and II side-branches in the posterior claws and stoutdentition of the cheliceral fingers (Lian et al 2008) However

a

b

100 microm

100 microm

100 microm

100 microm

c

d

Fig 12 Petrobunus torosus sp novmale paratype (a)Dorsolateral view (b) dorsolateral viewof anteriormargin of carapace(c) ventrolateral view and (d) ventrolateral view of prosomal complex

120 Invertebrate Systematics P P Sharma and G Giribet

comparisons of the male genitalia of a phalangodid (Texella) anepedanid (Kilungius Saracinicinae) and Tithaeus suggested acloser relationship between Epedanidae and Tithaeus in spite ofmarked differences in the stylar lobe and the extent of the basalsac (Lian et al 2008)

Our phylogenetic analyses corroborate a closer relationshipbetween Epedanidae and Tithaeuswith respect to Phalangodidae(which is sister to the remaining Grassatores and thereforedistantly related to both lineages) but the clade Tithaeus+Metatithaeus neither nests within nor is sister to Epedanidae

a

b

c

d

e

h

i

g

f

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

Fig 13 Petrobunus torosus sp nov (a) Left chelicer of male paratype (b) left palp of male paratype (c) left leg I of maleparatype (d) right leg II of male paratype (e) left leg III of male paratype (f) left leg IV of male paratype (g) left leg IV offemale paratype (h) trochanter of left leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 121

in any of the topologies we examinedMoreover the cleft ventralplate forming two prongs in the male genitalia of many Tithaeusspecies in addition to the absence of a ring of setae surroundingthe capsula interna (typical of Epedanidae) suggest that Tithaeus

and related genera (eg Istithaeus Metatithaeus Tithaeommaetc) are not true epedanids but may be more closely related toeither (1) Podoctidae a hypothesis that is supported in someanalyses (bootstrap frequency in ML [BS] = 59 posteriorclade probability given by MrBayes [PP] = 097) or (2) theclade (Podoctidae + Sandokanidae) recovered by the BEASTtopology (posterior clade probability given by BEAST[PPBEAST] = 100)

The inclusion of Tithaeus-like Grassatores in Epedanidaerenders the latter para- or diphyletic and obscures a cleardiagnosis of epedanids as the morphology of Tithaeus (andMetatithaeus) does not accord with many epedanidsynapomorphies Moreover inclusion of Tithaeus andorMetatithaeus within a broader Podoctidae is also unjustifiedbecause this violates many of the synapomorphies ofPodoctidae such as (1) tuberclesspines in dorsal and ventralrows on leg I (2) tubercular bridges (3) a sexually dimorphicbasichelicerite and (4) a sexually dimorphic ocularium

Consequently we erect the family name Tithaeidaeseparating Tithaeus and Metatithaeus from EpedanidaeTithaeidae likely includes the monotypic Roewerian generaIstithaeus Kondosus Sterrhosoma and Tithaeomma but thestatus of these genera requires further investigation and will beaddressed in a forthcoming study

Distribution

Distributed throughout Sundaland the Thai-Malay PeninsulaSumatra Java and Borneo Also reported from northern Vietnamand southern China One doubtful record from West Timor(see Lian et al 2008)

Results

Phylogenetic analysis

Less sequence data are presently available for Briggsusflavescens (partial 28S and COI Derkarabetian et al 2010)with respect to the rest of the data matrix Consequently twoML analyses were conducted including and excluding Briggsusflavescens The ML analysis with all taxa resulted in a treetopology with lnL= ndash8372597 Repeating the analysis withoutBriggsus resulted in a tree topology with lnL= ndash8336108 Thetwo topologies are identical save for the internal relationships ofTravunioidea which includes Briggsidae (Fig 15) Inclusion ofBriggsidae recovers a diphyletic Cladonychiidae with Briggsussister to Holoscotolemon but these relationships are notsupported Exclusion of Briggsidae results in higher nodalsupport frequencies within Travunioidea and recovers a sisterrelationship of Sclerobunidae and the remaining Travunioidea(BS = 75) and a monophyletic Cladonychiidae + Travuniidae(BS = 77) sister to Trojanella Including Briggsus in theanalysis does not affect topology or nodal support in otherparts of the phylogeny Monophyly of Travunioidea isstrongly supported (BS = 100) in either case

Runs of MrBayes ver 312 reached stationarity in 2 000 000generations 2 500 000 generations (25) were hence discardedas burn-in The BI analysis with all taxa resulted in a topologylargely similar to theMLtree (Fig 16)Notable differences are therelative placements of the clade (Gonyleptoidea + Stygnopsidae)

a

b

c d

050 mm

050 mm

20 microm

20 microm

Fig 14 Petrobunus torosus sp nov (a) female paratype dorsal view(b) female paratype ventral view (c) pars distalis of penis lateral view and(d) ovipositor dorsal view

122 Invertebrate Systematics P P Sharma and G Giribet

and the South-east Asian group of families Some differencesexist with respect to supported nodes within superfamilies

Estimation of divergence times

The run of BEAST reached stationarity after 6 000 000generations 10 000 000 generations (20) were discarded asburn-in The tree topology recovered by BEAST (Fig 17) differsfromML andBI topologies in (1) the placement of Sandokanidaeand (2) the relationships between superfamilies Diversificationof Laniatores is dated at ~348Mya Diversification of majorlineages is estimated as follows (Travunioidea+Triaenonychidae)299Mya Grassatores 302Mya Assamiidae +Pyramidopsgroup 232Mya Gonyleptoidea + Stygnopsidae 246MyaGonyleptoidea 230Mya Samooidea + Zalmoxoidea 206Myaand a South-east Asian clade (including Sandokanidae)249Mya These results largely corroborate previous estimatesof divergence times (Giribet et al 2010) but confidence intervalsfor estimated ages are more precise A tree file of estimated agesand 95highest posterior density (HPD) intervals for all nodes isprovided as an Accessory Publication on the InvertebrateSystematics website

Whereas the basal topology of Grassatores is unstable andunsupported most familial and superfamilial relationshipsare consistently recovered across analyses A consensus oftopologies across all analyses is shown in Fig 18

Discussion

A molecular phylogeny of the armoured harvestmen has longproven elusive Laniatores comprises entire genera and familiesthat are endemic to particular provinces of the world In somecases higher taxonomic ranks do not even occur beyond specificislands (eg the New Zealand family SynthetonychiidaeForster 1954) Moreover Laniatores includes the majority ofall described Opiliones species (and over half of all describedfamilies) and new lineages continue to be discoveredConsequently previous efforts to assess Laniatores phylogenyhave been prone to undersampling numerous lineages such asAssamiidae Epedanidae and the superfamilies Samooidea and

Zalmoxoidea (eg Giribet et al 1999 2002 Shultz and Regier2001)

The present study with the inclusion of all families ofarmoured harvestmen described heretofore enables detailedinvestigation of internal relationships of Laniatores Ofprincipal interest are the phylogenetic placement of the twonew families of Laniatores erected herein and the systematicvalidity of defined superfamilies Many of the relationshipsrecovered in our analyses are consistent with traditionalhypotheses based on morphological studies but there are someunexpected results We discuss these in turn

Insidiatores

Within a monophyletic Laniatores recovered in all analyses(BS = 100 PP = 093) the constituent lineages of Insidiatoresform a paraphyletic grade with respect to Grassatores WhileTriaenonychoidea and Travunioidea do form a clade (albeit withlow nodal support) the New Zealand endemic familySynthetonychiidae is recovered as sister to all remainingLaniatores (BS = 78 PP = 100) consistent with the resultsof a recent study (Giribet et al 2010) However the inclusionof more data in fact lowers the nodal support for this sisterrelationship relative to the previous studyrsquos ML analysislikely due to the influence of missing data (in particular only~300 bp out of a targeted 3400 bp of 28S rRNA are presentlyavailable for Synthetonychia) Consequently we do not treat theplacement of Synthetonychiidae as definitive

In all analyses the southern hemisphere Triaenonychidaeform a strongly supported clade that diversified ~200Mya(BS = 100 PP = 100) Their distribution and the age of thiscladersquos diversification are similar to that of the temperateGondwanan cyphophthalmid family Pettalidae (estimated tohave diversified ~183ndash221Mya Giribet et al 2010)suggesting a parallel biogeographical process in these lineagesThe North American triaenonychid Fumontana deprehendorShear 1977 is sister to the southern hemisphere Triaenonychidaein all analyses consistent with previous classification (Giribetand Kury 2007 Thomas and Hedin 2008) but support fora monophyletic Triaenonychoidea is limited and sensitiveto analytical parameters (BS = 57 PP lt 050 PPBEAST = 066)

Table 7 Leg measurements of Petrobunus torosus holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011011 039005 026012 028008 036006 040007 180Leg II 014013 061008 029010 043007 042006 072005 261Leg III 015015 051010 019015 037011 045006 046005 213Leg IV 034035 059012 034017 054015 067007 052006 300

Table 8 Leg measurements of Petrobunus torosus female paratype (ex MHNG PAL-0907) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 041008 022011 028010 037005 035006 174Leg II 010009 052007 023008 033007 037006 069005 224Leg III 014016 046010 025024 036012 042007 041005 204Leg IV 018017 054011 029016 049012 058007 048006 256

Molecular phylogeny of Laniatores Invertebrate Systematics 123

Fig 15 Phylogenetic relationships of Laniatores inferred from maximum likelihood analysis of all molecular data (ln L= ndash8372597) Inset topology ofTravunioidea excluding Briggsidae (ln L= ndash8336108) Numbers on nodes indicate bootstrap resampling frequencies

124 Invertebrate Systematics P P Sharma and G Giribet

We recovered a monophyletic Travunioidea which includesBriggsidae in all analyses (BS = 100PP = 100) corroboratingthe superfamilial placement of briggsids Briggsidae isrecovered sister to either Trojanella (ML) or Holoscotolemon(BI) or part of a grade with both of these taxa (BEAST) butthese placements are not supported (BS lt 50 PPBEAST = 085and PP = 051 respectively) Missing data for Briggsidaedepresses nodal support in ML analyses within Travunioideaobscuring interfamilial relationships In the absence ofBriggsidae we recover a sister relationship betweenSclerobunidae (Zuma acuta Goodnight amp Goodnight 1942)and the remaining Travunioidea (BS = 75) and themonophyly of Travuniidae +Cladonychiidae (BS = 77)

A recent molecular dating of Travunioidea obtained muchyounger dates than estimated herein in spite of similar taxaand molecular loci In that study Derkarabetian et al (2010)investigated the evolution of troglobitism in Sclerobunidae(also referred to as the lsquoNorth American triaenonychidsrsquo)and used the cladonychiid fossil Protoholoscotolemon(38ndash54Mya Ubick and Dunlop 2005) to constrain theminimum age of Travunioidea in addition to calibration pointsderived from geological ages of strata These practicesaccord with the scope of the troglobitism study (thedivergences of interest were comparatively recent ndash Plioceneor younger) but we did not utilise Protoholoscotolemon in ourdating for two reasons (1) we do not obtain an unambiguouslymonophyletic Cladonychiidae in our analyses and (2) theDevonian and Carboniferous fossils we utilised as calibrationpoints are sufficiently old to obtain a result consistent with anEocene cladonychiid fossil The different calibration pointsimplemented in the respective studies therefore account forthe discrepancy in the dating In addition the morphologicalconservatism of Opiliones makes it doubtful that the age ofProtoholoscotolemon is the maximum age of the superfamily

Our sampling of Insidiatores lineages remains limited andbarring the inclusion of Briggsidae additions to taxonomicsampling largely concern Grassatores Consequently continuedsampling and systematic studies of Insidiatores (eg Mendesand Kury 2008 Thomas and Hedin 2008 Derkarabetian et al2010) are instrumental and imperative to addressing outstandingquestions of phylogenetic relationships and morphologicalevolution A phylogeny of Triaenonychidae is particularlywanting

Early diverging Grassatores Phalangodidaeand Sandokanidae

The recovery of a monophyletic Grassatores (supported inall analyses BS = 99 PP = 100) is consistent with severalmorphological synapomorphies uniting this diverse groupsuch as the presence of two tarsal claws on walking legs IIIand IV However the basal topology of Grassatores has longbeen contentious Previously two superfamilies of Grassatoreswere recognised Oncopodoidea (with the single familySandokanidae (formerly Oncopodidae)) and lsquoGonyleptoidearsquo(with the remaining families) (Martens 1976 1986 Martenset al 1981) This dichotomy was largely based upon theunique morphology of Sandokanidae ndash characters such as thescutum completum (fused opisthosomal tergites) reduced tarsal

articles and genitalic structures which are not found in theremaining Grassatores (Martens 1980 Giribet et al 2002Sharma and Giribet 2009) It was alternatively contended thatthese characters constituted autapomorphies of Sandokanidaewhich was nested within lsquoGonyleptoidearsquo itself (Kury 2003)

In all analyses we obtained an initial divergence betweenPhalangodidae and the remaining Grassatores (BS = 100PP = 096) refuting the traditional dichotomy betweenSandokanidae and lsquoGonyleptoidearsquo Therefore we hereindefine Gonyleptoidea as the taxon consisting of AgoristenidaeCosmetidae Cranaidae Gonyleptidae Manaosbiidae andStygnidae The split between Phalangodidae and the remainingGrassatores has been postulated to correspond to the rifting ofthe ancient supercontinents Laurasia and Gondwana as thedistribution of Phalangodidae was believed to be strictlyHolarctic (Giribet et al 2010) However the inclusion of theMadagascar genus Remyus previously placed in Zalmoxidae(Starega 1989) within a monophyletic Phalangodidae indicatesbroader distribution of phalangodids ndash complementing theTriaenonychidae-Fumontana case discussed above Moreoverthe origin of Phalangodidae is estimated to have occurred around302Mya (95 HPD 264ndash335Mya) greatly predating thebreakup of the supercontinents These results indicate thatPhalangodidae may be narrowly defined and we consequentlytransfer Remyus to Phalangodidae (new familial assignment)

The unusual family Sandokanidae has been postulated to besister toPodoctidae (SharmaandGiribet 2009Giribet et al 2010)or to form agradewith Phalangodidae (Kuryrsquos lsquoPhalangodoidearsquopartly) In the present study ML and BI topologies reconstructSandokanidae as sister to the remaining non-phalangodidGrassatores albeit with insignificant nodal support (BS = 21PP = 078) Curiously the topology obtained byBEAST recoversthe clade (Sandokanidae + Podoctidae) nested within a singleclade of South-east Asian families (PPBEAST = 085) Theseresults do not unambiguously favour one hypothesis overanother and the phylogenetic placement of Sandokanidae inthe Grassatores tree therefore remains debatable

Regardless of the inclusion of Sandokanidae within theSouth-east Asian group of families that the sister family to theremaining Grassatores is Phalangodidae not Sandokanidaeindicates that the peculiar morphology of sandokanids is theresult of multiple apomorphic reversals not the retention ofplesiomorphic characters (Martens and Schwendinger 1998)The large scutum and low tarsomere number found inSandokanidae also occur in Trogulidae and Dicranolasmatidae(suborder Dyspnoi) and all Cyphophthalmi and appear to haveevolved convergently This morphology may reflect adaptationsto a shared ecological niche all these groups inhabit leaf litterinclude no arboricolous species and are limited in vagility ndash

although these life history traits are also found in other groupsHowever this hypothesis has yet to be rigorously tested

Sandokanidae is presently one of few families of Grassatoresfor which a molecular phylogeny assessing intergenericrelationships is available (Sharma and Giribet 2009) andconsistent with earlier results the monophyly of Sandokanidaeis strongly supported (BS = 100 PP = 100) as is the initial splitbetweenMartensiellus and the remaining genera (an undescribedspecies was referred to as lsquogen sprsquo by Sharma and Giribet 2009but subsequent morphological investigation revealed this to be

Molecular phylogeny of Laniatores Invertebrate Systematics 125

Fig 16 Phylogenetic relationships of Laniatores inferred fromBayesian inference analysis of allmolecular data Numbers on nodes indicateposterior probabilities

126 Invertebrate Systematics P P Sharma and G Giribet

a miniature species of Martensiellus P J Schwendinger perscomm) (BS = 92 PP = 100) Intergeneric relationshipsof sandokanid genera are contingent upon analytical treatmentof molecular partitions (with additional sandokanid exemplarsdata not shown) reflecting conflict among datasets documentedby Sharma and Giribet (2009)

The other South-east Asian families

Epedanidae was postulated to be sister to Gonyleptoidea in acladistic analysis based on morphological characters (Kury1993) Subsequently Kury (2003) proposed that Epedanidaewas sister to the clade (Assamiidae (Stygnopsidae +Gonyleptoidea)) The single epedanid previously included in amolecular phylogeny was similarly unstable in placement eithernestingwithin Assamiidae or sister to the African lsquophalangodidsrsquo(Conomma and Maiorerus) in neither case with appreciablenodal support (Giribet et al 2010) Furthermore previousinclusion of several lineages (eg Tithaeus) within Epedanidaethat do not bear characters typical of true epedanids ndash sexuallydimorphic chelicera with heavy dentition elongate andspined pedipalpi male genitalia with setae surroundingthe capsula interna ndash has also made this family difficult todefine Consequently we included only Epedaninae (egPseudoepedanus Alloepedanus and Euepedanus) as exemplarsof true epedanids the systematic validity of the remaining threesubfamilies (and particularly the inclusion of Dibuninae) isbeyond the scope of this study and remains to be investigated

The monophyly of each of four South-east Asian families ndashEpedanidae (represented by epedanines) TithaeidaePetrobunidae and Podoctidae ndash is recovered with high nodalsupport (all BS = 100 PP = 100) These lineages are somehowrelated to each other and while they form a clade in bothML andBI analyses this result receives insignificant nodal support(PP = 077) In the topology recovered by BEAST the South-east Asian families form a clade that includes Sandokanidaea result consistent with the distribution of sandokanids albeitwithout support (PPBEAST = 085) Tithaeidae is probably closelyrelated to Podoctidae given the occurrence of a deeply cleftventral plate resulting in two flanking prongs in themale genitaliaof both families (Suzuki 1977 Lian et al 2008 Fig 19) Inaddition the clade (Podoctidae +Tithaeidae) is recovered withmoderate support in ML and BI analyses (BS = 59 PP = 097)In none of the analyses is Tithaeidae nested within or sister toEpedanidae sensu stricto

The morphology of Petrobunidae suggests some relationshipto previously described South-east Asian families oralternatively Phalangodidae but not inclusion within any ofthese (Fig 19) Molecular sequence data do not support anyspecificplacement ofPetrobunidae although it clusterswithotherSouth-east Asian families in all analyses and is recovered sisterto Epedanidae in two topologies (BI and BEAST)

Gonyleptoidea and Stygnopsidae

With over 2500 described species the superfamilyGonyleptoidea constitutes the most diverse and (arguably) themost charismatic lineage of Opiliones with most of this diversityconcentrated in Amazonia (some cosmetids occur as far north asthe mid-Atlantic states of the US) In a previous analysis

relationships of gonyleptoid families were unsupported andordid not accordwithmorphological studies (Giribet et al 2010) Inparticular the placement of the agoristenid exemplar Avimaalbiornata (Goodnight amp Goodnight 1947) ndash the putativesister family to the remaining Gonyleptoidea ndash within aparaphyletic Cranaidae was particularly suspect given thelimited availability of sequence data for Avima (complete 18SrRNA a300-bp fragmentof 28S rRNA andCOI) In addition thesister group of Gonyleptoidea was ambiguous and contingentupon analytical parameters

Redoubling sequencing efforts and addition of taxaparticularly in the case of Agoristenidae (currently sequencedfor 12S rRNA complete 18S rRNA a 2000-bp fragment of 28SrRNA COI H3 and EF-1a) improved the assessment ofgonyleptoid relationships A monophyletic Gonyleptoidea(BS = 58 PP = 066) is recovered sister to the familyStygnopsidae (BS = 57 PP = 100) Within Gonyleptoidea asplit between Agoristenidae and the remaining gonyleptoids isstrongly supported (BS = 100 PP = 100) followed by thedivergence of Stygnidae (BS = 71 PP = 099) Thisplacement of Agoristenidae is supported by morphologicalstudies (Pinto-da-Rocha and Kury 2007) although in aminority of tree topologies sampled in BI analysesAgoristenidae is sister to Stygnopsidae (hence lower nodalsupport for the monophyly of Gonyleptoidea in BI) Theplacement of Manaosbiidae is uncertain it is recoveredsister to either (Gonyleptidae +Cranaidae) (PP = 089) or toCosmetidae (PPBEAST = 092) but these results are notsupported Cranaidae is recovered as monophyletic (BS = 99PP = 100) and nested within a paraphyletic Gonyleptidae

The present sampling of Cosmetidae and Gonyleptidae doesnot do justice to the diversity of these lineages (~700 and 800described species respectively) A phylogenetic assessment ofall 16 subfamilies of Gonyleptidae alone constitutes the subjectof an arduous and exacting study Fortunately cladistic analysesof morphological characters continue to advance phylogeneticinvestigation of subfamilial lineages (eg BourguyiinaeYamaguti and Pinto-da-Rocha 2009 Goniosomatinae DaSilvaandGnaspini 2009HernandariinaeDaSilva andPinto-da-Rocha2010) Elucidating the phylogeny of Gonyleptoidea is one of themost exciting research topics in the study of Opiliones

The Afrotropical families

The third most diverse family of Laniatores Assamiidaeconstitutes the dominant opiliofauna of the African continent(excluding Madagascar) with some lineages occurring in SouthAsia the Indo-Malay Archipelago and Australia (Trionyxellinaeand Dampetrinae) Proposed to be related to EpedanidaeStygnopsidae andor Gonyleptoidea (Kury 2007) on the basisof genitalic structures assamiids were not recovered asmonophyletic in a previous study (paraphyly was induced byeither Epedanidae orAfricanBiantidae) and the placement of thesubfamily Trionyxellinae was particularly suspect (Giribet et al2010) Trionyxellinae was considered a separate family byMello-Leitatildeo (1949) though others considered it nested withinAssamiidae (eg Starega 1992) In our analyses the monophylyof Assamiidae is supported (BS = 79 PP = 100)lsquoTrionyxellinaersquo (Trionyxella and Mysorea both with a

Molecular phylogeny of Laniatores Invertebrate Systematics 127

Fig 17 Evolutionary time tree of Laniatores inferred fromBEASTanalysis of allmolecular data Coloured bars indicate 95highestposterior density (HPD) intervals for nodes of interest Numbers on nodes indicate posterior probabilities asterisks indicate posteriorprobability of 100

128 Invertebrate Systematics P P Sharma and G Giribet

pseudonychium on the third and fourth tarsi) is a diphyletic entitynested within the other Assamiidae (for the node renderingdiphyly BS = 100 PP = 100) disfavouring family status fortrionyxellines

The African lsquophalangodidsrsquo (sometimes called thelsquoPyramidops grouprsquo) were recognised as a new family byStarega (1992) but not formalised and included 13 genera(Conomma Pyramidops and related lineages) Consistentwith this hypothesis we recovered strong support for thePyramidops group (represented by Conomma and cfPyramidops) as a lineage separate from the true Phalangodidae(egBishopella and Scotolemon) recapitulating a previous result(Giribet et al 2010) The African lsquophalangodidsrsquowere recoveredas the sister lineage of Assamiidae although this relationshipis variably supported in our analyses (BS = 40 PP = 095PPBEAST = 100) A review and formal description of thePyramidops group as a new family lsquoPyramidopidaersquo ndash a namewidely available on the internet including GBIF but notformalised ndash is undertaken elsewhere (Sharma et al 2011)

While we have endeavoured to improve the sampling ofAssamiidae from South-east Asia the internal systematics ofthis family remain a high value target for phylogenetic researchHowever revision of assamiid systematics is inherently difficultfor two reasons (1) the family is peppered with questionablehierarchies and monotypic genera (~12 subfamilies and 250genera for less than 500 described species) and (2) occurs insome of the most inaccessible regions of the world namely sub-Saharan Africa

In all analyses the clade (Assamiidae + Pyramidopidae) issister to the clade (Zalmoxoidea + Samooidea) though this resultis only supported in one analysis (PP= 100) The divergence ofthese four lineages is estimated to have occurred 252Mya and isconsistent with diversification in West Tropical Gondwanaoccurring at least 140million years before the fragmentation ofthis terrane (~110Mya)

Zalmoxoidea

As currently defined the largely Neotropical superfamilyZalmoxoidea includes four families FissiphalliidaeGuasiniidae Icaleptidae and Zalmoxidae Guasiniidae hasnever before been included in a molecular phylogeny In thepresent study we sequenced a guasiniid for six genes and ouranalyses strongly support theplacement ofGuasiniidae as sister tothe samooid family Kimulidae (formerly Minuidae) (BS = 86PP = 098 PPBEAST = 099) and this clade in turn sister to anothersamooid family Escadabiidae (BS = 65 PP = 096PPBEAST = 100) The families Fissiphalliidae Icaleptidaeand Zalmoxidae in turn form a separate clade (BS = 100PP = 100 PPBEAST = 100) with strong support for the sisterrelationship of Zalmoxidae and Fissiphalliidae (BS = 99PP = 100 PPBEAST = 100) corroborating relationshipsproposed by morphological studies (Kury and Peacuterez G 2002Pinto-da-Rocha and Kury 2003b)

Previous analyses have suggested that Samooidea (discussedbelow) is a paraphyletic grade with respect to Zalmoxoidea(Giribet et al 2010) In the present analysis the cladeSamooidea + Zalmoxoidea is strongly supported (BS = 85PP = 100 PPBEAST = 100) as previously suggested by PeacuterezGonzaacutelez and Kury (2007) and by excluding Escadabiidae and

Kimulidae Samooidea is rendered a monophyletic entity albeitwith limited support (BS = 53 PP = 062 PPBEAST = 081) Thestrong support from molecular sequence data for the cladeincluding Escadabiidae Kimulidae and the four zalmoxoidfamilies (BS = 89 PP = 100 PPBEAST = 100) suggests thatthese may form a natural group

Re-examination of the morphology of these six families incomparisonwith true samooid lineages (Biantidae Samoidae andStygnommatidae) corroborates the exclusionofEscadabiidae andKimulidae from true Samooidea Escadabiidae and Kimulidae(1) lack the scopula characteristic of Samoidae and stenostygnineBiantidae (2) lack a sexually dimorphic metatarsus IIIcharacteristic of Samoidae Stygnommatidae and stenostygnineBiantidae and (3) lack a penial calyx characteristic of SamoidaeConsistent with placement within Zalmoxoidea EscadabiidaeandKimulidae (1) possess a small oculariumbearing the eyes thatis removed from the margin of the carapace (2) bear a wellmarked dorsal protuberance (bulla) on the proximal segmentof the chelicera that lacks armature and (3) possess sexuallydimorphic leg IV segments particularly the femur and tibiawhich may be variedly arcuate incrassate and spinedAdditionally Escadabiidae Fissiphalliidae and Zalmoxidae allpossess sexually dimorphic tegumental glandopeningson tibia IIwhereas Biantidae Samoidae and Stygnommatidae possessthese structures on metatarsus III (Willemart et al 2010)While data on tegumental gland openings are only availablefor a small handful of species these may constitute significantdiagnostic characters for species wherein sexual dimorphismdoes not manifest itself in the readily observable form ofenlarged and spiny segments

Given the results of our phylogenetic analyses maintainingSamooidea (as currently defined) renders it a paraphyletic gradewith respect to a diphyletic Zalmoxoidea (as currently defined)Consequently based on the aforementioned morphologicalcharacters and robust molecular phylogenetic signal wetransfer Escadabiidae and Kimulidae to Zalmoxoidea

Samooidea

A previous cladistic analysis based upon morphological datasuggested close relationship between six families ndash BiantidaeEscadabiidae Kimulidae Podoctidae Samoidae andStygnommatidae ndash thenceforth known as Samooidea (Kury1993) the only pantropical Laniatores superfamily HoweverPodoctidae does not have any obvious relationship to Samooideaand has subsequently been transferred (Kury 2007) in ouranalyses Podoctidae is sister to Tithaeidae or Sandokanidaeie distantly related to all samooid families Moreover ouranalyses strongly favour the exclusion of Escadabiidae andKimulidae from Samooidea

The remaining three families ndash Biantidae Samoidae andStygnommatidae ndash are distributed in the Neotropics and partsof Africa with a handful of suspect lineages in South-east AsiaRe-examination and reassignment of many Samoidae genera(eg the Indonesian lsquosamoidrsquo Waigeucola palpalis PeacuterezGonzaacutelez 2011) suggest that the range of Samoidae does notinclude South-east Asia Peacuterez Gonzaacutelez and Kury (2007) alsoobserved that the lsquosamoidsrsquo of Africa Madagascar and theSeychelles may not be true Samoidae either Similarlyinclusion of the genus Stygnomimus an Indonesian lineage

Molecular phylogeny of Laniatores Invertebrate Systematics 129

within Stygnommatidae is highly dubious as the twoIndonesian lsquostygnommatidsrsquo are either highly autapomorphic(Stygnomimus conopygus (Roewer 1927)) or described on the

basis of a generic female that is not readily distinguishable fromfemales of other species (Stygnomimus malayensis (Suzuki1970))

Fig 18 Strict consensus of tree topologies obtained by all phylogenetic analyses

130 Invertebrate Systematics P P Sharma and G Giribet

Previous efforts to assess the systematic validity of Samooideaby means of molecular sequence data were limited insofar asonly two Samoidae three Biantidae (all Metabiantes) and twoStygnommatidae were sampled (Giribet et al 2010) Thesampling of Samoidae was especially problematic only asingle Neotropical adult (Pellobunus) and one African juvenilesamoid (lsquoSamoidae gen sprsquo) were included The designation ofthe latter is suspect as juveniles of Samoidae are oftenindistinguishable from the juveniles of other lineages becausemany diagnostic secondary sexual characters in Grassatores(eg spines and incrassate appendages) are not acquired untilafter several postembryonic stages (Townsend et al 2009)

In the present study though the type genus of Samoidae(Samoa from Samoa) was not available we sequenced theclosely related genus Badessa (from Fiji collected byP P S) as well as additional Biantidae and StygnommatidaeOur analyses recovered a monophyletic Samooidea (excludingEscadabiidae and Kimulidae BS = 53 PP = 062) withSamoidae sensu stricto (Pellobunus +Badessa BS = 100PP = 100) nested within a paraphyletic Stygnommatidae aplacement that is supported (BS = 87 PP = 100) Bycontrast the African lsquosamoidrsquo is sister to the AfricanBiantidae a relationship that is also well supported(BS = 100 PP = 100) These relationships suggest a basal

Fig 19 Cladogram of male genitalic evolution in South-east Asian families superimposed upon a schematised molecular phylogeny based on ML and BIanalyses of all molecular data Exemplars (a) Pseudoepedanus doiensis Suzuki 1969 (redrawn from Suzuki 1969) dorsal view (b) Pseudoepedanus doiensisSuzuki 1969 (redrawn from Suzuki 1969) ventral view (c) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) ventral view(d) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) dorsal view (e) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki1976) dorsal view (f) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki 1976) ventral view (g) Petrobunus torosus lateral view (h) ZalmoxidagibberaSuzuki 1969 dorsal view (i)Zalmoxida sp (MCZDNA102677) dorsolateral view (j)Metatithaeus rubidusSuzuki 1969 (redrawn fromSuzuki 1969)ventral view (k)Tithaeus kokutnusSuzuki 1985 (redrawn fromSuzuki 1985) ventral view (l)Tithaeus similisSuzuki 1985 (redrawn fromSuzuki 1985) ventralview (m)DongmoaoshimensisSuzuki 1964 (redrawn fromSuzuki 1964) ventral view (n)Bonea longipalpisSuzuki 1977 (redrawn fromSuzuki 1977) ventralview (o) Santobius annulipes Soslashrensen 1886 (redrawn from Kury and Machado 2009) ventral view (p) Lomanius longipalpus mindanaoensis Suzuki 1977(redrawn from Suzuki 1977) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 131

dichotomy within Samooidea that corresponds to one groupof Neotropical and Pacific lineages and a second group ofAfrican lineages However as we were unable to samplestenostygnine (Neotropical) and Indo-Pacific Biantidae aswell as numerous monotypic genera dubiously placed inSamoidae biogeographical extrapolations for Samooidea aretenuous (discussed below)

The internal relationships of Samooidea suggest that themorphology of Samoidae may have evolved convergently Asthe African samoid is a juvenile (the same specimen previouslysequenced by Giribet et al 2010 now sequenced for additional28S rRNA and other genes) we cannot rule out the possibility ofa monophyletic Samoidae that includes African species (thespecimen in question could be a juvenile biantid) In any casethe paraphyly of Stygnommatidae and putative polyphyly ofSamoidae strongly advocate systematic revision of samooidfamilies as currently defined corroborating hypotheses of non-monophyly based on morphology (Peacuterez Gonzaacutelez 2007 PeacuterezGonzaacutelez and Kury 2007) Our sampling of these families isinsufficient to advocate specific taxonomic action but an ongoing

study of samooidean systematics will shed more light on thevalidity of constituent families (A Peacuterez Gonzaacutelez work inprogress)

Biogeography of Zalmoxoidea and Samooidea

While most superfamilies of Grassatores are restricted to aspecific part of the tropics (eg Neotropics South-east Asia)two are distributed in multiple biogeographical provincesSamooidea occurs in the Neotropics and Afrotropics withquestionable records from South-east Asia Zalmoxoidea isconcentrated in the Neotropics with the exception of oneIndo-Pacific lineage of Zalmoxidae (represented here byZalmoxis sp) The ages and distributions of Samooidea andZalmoxoidea suggest that their biogeography was influencedby the fragmentation of West Tropical Gondwana ndash causingthe former to diverge basally throughout West TropicalGondwanan terranes and the latter to become isolated to theNeotropics (with possible subsequent dispersal)

Fig 20 Ancestral range reconstructions for Samooidea +Zalmoxoidea inferred by Lagrange using stratified models corresponding to two vicariant events(indicated by dotted lines) Coloured squares at terminals indicate ranges occupied by sampled species Coloured squares on nodes indicate ranges reconstructedfor hypothetical ancestors Numbers on nodes indicate relative probability of ranges reconstructed

Fig 21 Best hypothesis of Laniatores relationships based on all available evidence Bracketed nodes indicate non-monophyletic entities Dashed line indicatesambiguity in the placement of Sandokanidae (alternatively placed as shown or as sister to Podoctidae) Exemplars of Laniatores diversity are Synthetonychiaoliveae (Synthetonychiidae) Equitius doriae (Triaenonychidae) Hadziana clavigera (Travuniidae) Erebomaster flavescens flavescens (Cladonychiidae)Scotolemon lespesi (Phalangodidae) Palaeoncopus gunung (Sandokanidae) Santobius sp (Podoctidae) Tithaeus sp (Tithaeidae) Petrobunus spinifer(Petrobunidae) Alloepedanus sp (Epedanidae) Hoplobunus sp (Stygnopsidae) Torreana spinata (Agoristenidae) Stygnoplus clavotibialis (Stygnidae)Metalibitia paraguayensis (Cosmetidae)Acutisoma longipes (Gonyleptidae)Conommaoedipus (Pyramidopsgroup)Mysorea thaiensis (Assamiidae)Lacurbssp (Biantidae) Stygnomma sp (Stygnommatidae) Badessa sp (Samoidae) Guasinia sp (Guasiniidae) Icaleptes sp (Icaleptidae) Fissiphallius chicoi(Fissiphalliidae) Zalmoxis sp (Zalmoxidae) Kimula goodnightiorum (Kimulidae)

132 Invertebrate Systematics P P Sharma and G Giribet

Molecular phylogeny of Laniatores Invertebrate Systematics 133

To test this hypothesis we conducted likelihood analysisof range evolution using the program Lagrange (Ree et al2005 Ree and Smith 2008) for the clade (Zalmoxoidea +Samooidea) The stratified analysis resulted in a globalmaximum likelihood of ndashlnL= 1556 outperforming anunconstrained analysis that did not include any dispersalconstraints (ndashlnL= 1676) Likelihood analysis of rangeoptimisation (Fig 20) indicates that the ancestral range ofSamooidea includes both the Afrotropics and the Neotropics(relative probability pr = 1000) but a subsequent split occursbetween an African lineage (pr = 1000) and a NeotropicalIndo-Pacific lineage with a Neotropical ancestral range (pr = 0986)Samoidea of the Indo-Pacific occur on young oceanic islands(eg Fiji Samoa) indicating recent transoceanic dispersal fromthe Neotropics

Ancestral range reconstructions for Samooidea are allconsistent with estimated divergence times for these clades(diversification of Samooidea predates the rifting of WestAfrica from northern South America) favouring an underlyingvicariant process for the basal topology with subsequent recentdispersal events However these results are contingent upon thepresent sampling which does not include all samooid lineages(eg stenostygnine Biantidae) but basal range reconstructionsare likely unaffected (eg Stenostygninae is exclusivelyNeotropical)

In contrast the ancestor of Zalmoxoidea is reconstructedas singularly Neotropical (pr = 0996) This is consistent withisolation of a zalmoxoid ancestor to Amazonia which thenradiated ~191Mya Subsequent ancestral ranges are alsoreconstructed as Neotropical with high relative probabilityHowever the ancestral range of the clade (Icaleptidae +Fissiphalliidae + Zalmoxidae) is ambiguously reconstructedas either Neotropical (pr = 0935) or Neotropical + Indo-Pacific(pr = 0064) as is the split between Fissiphalliidae andZalmoxidae (Neotropical pr = 0856 Neotropical + Indo-Pacific pr = 0141)

These results suggest that the Indo-Pacific lineage ofZalmoxidae which split from Neotropical Zalmoxidae ~83Myais likely the result of long-distance dispersal from the NeotropicsHowever due to the persistence of transantarctic connectionsbetween the Australian plate and temperate South America untilthe Tertiary a competing vicariant scenario cannot be ruled outwithout densely sampling zalmoxid diversity The biogeographyof Zalmoxidae is presently being explored in greater detail in aseparate study (P P Sharma unpubl data)

Finally the ancestral range of (Samooidea + Zalmoxoidea)includes both Africa and the Neotropics (pr = 0957) consistentwith a tropical West Gondwanan ancestor This resultlends circumstantial evidence to a sister relationship of theAfrotropical families (Assamiidae + Pyramidopidae) and theclade (Samooidea + Zalmoxoidea) recovered in all analyses

The diversification of Grassatores

While numerous interfamilial relationships are supported inthis study particularly among gonyleptoid and zalmoxoidfamilies some relationships between superfamilies ofGrassatores are not supported and are contingent upon

analytical treatments namely the deployment of substitutionmodels and data partitioning (Fig 21) The cause of thisinstability could be related to insufficient data particularly inthe EF-1a partition (the length of an intron which can exceed400 bp in some taxa makes this gene particularly difficult toamplify) However examination of clade divergence timessuggests that rapid diversification of Grassatores lineagescould in part augment phylogenetic uncertainty in basal partsof the topology

The split between Phalangodidae and the remainingGrassatores is estimated to have occurred ~302Mya but aseries of divergences resulted in the origin of all superfamiliallineages between 232 and 271Mya Relative to the estimatedage of Laniatores (348Mya) this 39-million-year period isremarkably narrow and inherently problematic as the amountof phylogenetic signal for a given stem subtending a node isdirectly proportional to the amount of time that the stem inquestion spans (Lanyon 1988 Rokas and Carroll 2006) Thesmall internal edge lengths of the stems corresponding to basaldivergences of non-phalangodid Grassatores (Figs 15 16)combined with the ancient age of lineages derived from thesedivergences result in relationships that are difficult to estimatewithout a large amount of sequence data andor the inclusion ofdata that are less afflicted by homoplasy (because longer edgelengths imply more indel and substitution events on edges)(Whitfield and Lockhart 2007)

We additionally observe that the origins of most Grassatoressuperfamilies occur in the wake of the end-Permian massextinction (~254Mya) Rapid radiation in the wake of a massextinction has occurred in multiple metazoan lineagesthe putative result of relaxed selection and opening ofpreviously occupied ecological niche space (Labandeira andSepkoski 1993 Sahney and Benton 2008) The rapiddiversification of early Grassatores lineages could be anexample of this phenomenon but this hypothesis is difficult totest in the absence of Mesozoic Grassatores fossils (reviewed byDunlop 2007)

Finally we observe that contrary to traditional hierarchiesproposed for Laniatores many of the clades recovered in ouranalyses correspond to geographical regions particularly in thecase of Grassatores For example the southern hemispheretriaenonychids are restricted to temperate Gondwananlandmasses Gonyleptoidea and their sister group Stygnopsidaeform a Neotropical (AmazonianMesoamericanAntillean) cladethat excludes Assamiidae which has been hypothesised to be amember of a broader Gonyleptoidea (Kury and Cokendolpher2000 Mendes and Kury 2007) In our analyses Assamiidae isin fact a member of a largely Afrotropical clade together withthe Pyramidopidae South-east Asian families usually form oneclade (at most two) albeit with limited support Samooideafamilies are divided into two clusters African and NeotropicalWith one exception (described above) Zalmoxoidea is restrictedto the Neotropics The ages that we estimate for Laniatoresradiations are consistent with ancient diversification beforethe fragmentation of Pangaea An ancient diversification inconjunction with the climatic stability of the tropics may in partexplain the comparatively greater diversity of the armouredharvestmen with respect to the other Opiliones suborders

134 Invertebrate Systematics P P Sharma and G Giribet

Acknowledgements

Weare indebted toPeter J Schwendingerwho collected andprovidedmost ofthe material for study from South-east Asia Some Thai and most of theNeotropical Laniatores were obtained from the TIGER (Thailand InventoryGroup for Entomological Research) and LLAMA (Leaf Litter Arthropods ofMeso-America) projects toC Lienhard and J Longino respectivelyMaterialfrom Madagascar was generously contributed by Charles Griswold and theCalifornia Academy of Sciences Jesse Czekanski-Moir in conjunction withthe Belau NationalMuseum contributed elusive specimens from Palau AbelPeacuterezGonzaacutelez identifiedmanyNeotropical species included in the study andcontributed specimens fromCubaRicardoPinto-da-Rocha identified someofthe live photographed animals from the Neotropics Discussions with RonaldMClouseAbelPeacuterezGonzaacutelezAdrianoBKury andCarlosEPrieto refinedmanyof the ideas presentedhereTwoanonymous reviewers and the associateeditor provided comments that helped to improve an earlier version ofthis manuscript Laura Leibensperger sorted and accessioned TIGER andLLAMA material as well as MCZ type material Adam Graham and theCenter forNanoscaleStudies atHarvardUniversityprovided support forSEMwork Collecting efforts in New Caledonia were greatly facilitated by theguidance of Herveacute Jourdan (Institut de rechercheacute pour de developpementNoumea) and his teammembers Collecting efforts in Fiji weremade possibleby Marika Tuiwawa (University of the South Pacific Suva) and his teammembers Hilda Waqa and Tokasaya lsquoToxrsquo Cakacaka we are especiallygrateful to Tox for his good company during fieldwork and to his familyfor graciously enabling a visit toOvalau SuzieYee Shawprovided invaluablelogistical support in Fiji and her sons Colin and Joshua Yee Shaw assistedwith sorting Fijian material Fieldwork in Indonesia and West Africa wassupported by two MCZ Putnam Expedition Grants awarded to RonaldM Clouse and G G (2006) and to G G (2009) respectively Fieldworkin New Caledonia was supported by the Goelet award the Kalathia FamilyTrust and the Explorers Club awarded to P P S in 2006 Fieldwork in Fijiand in Palauwas supported by twoMCZPutnamExpeditionGrants awardedto P P S (2008) and to Ronald M Clouse and P P S (2010) respectivelyP P S was supported by a Faculty of Arts and Sciences Graduate Fellowshipfrom Harvard University

References

Castresana J (2000) Selectionof conservedblocks frommultiple alignmentsfor their use in phylogenetic analysis Molecular Biology and Evolution17 540ndash552

Colgan D J McLauchlan A Wislon G D F Livingston S MacaranasJ Edgecombe G D Cassis G and Gray M R (1998) Molecularphylogenetics of the Arthropoda relationships based on histone H3and U2 snRNA DNA sequences Australian Journal of Zoology 46419ndash437 doi101071ZO98048

DaSilva M B and Gnaspini P (2009) A systematic revision ofGoniosomatinae (Arachnida Opiliones Gonyleptidae) with a cladisticanalysis and biogeographical notes Invertebrate Systematics 23530ndash624 doi101071IS09022

DaSilva M B and Pinto-da-Rocha R (2010) Systematic review andcladistic analysis of the Hernandariinae (Opiliones Gonyleptidae)Zoologia 27 577ndash642

Derkarabetian S Steinmann D B and Hedin M (2010) Repeatedand time-correlated morphological convergence in cave-dwellingharvestmen (Opiliones Laniatores) from montane western NorthAmerica PLoS ONE 5 e10388 doi101371journalpone0010388

Drummond A J and Rambaut A (2007) BEAST Bayesian evolutionaryanalysis by sampling trees BMC Evolutionary Biology 7 214doi1011861471-2148-7-214

Drummond A J Ho S Y W Phillips M J and Rambaut A (2006)Relaxed phylogenetics and dating with confidence PLoS Biology 4 e88doi101371journalpbio0040088

Dunlop J A (2007) Paleontology In lsquoHarvestmen The Biology ofOpilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 247ndash265 (Harvard University Press Cambridge MA USA)

Dunlop J A and Anderson L I (2005) A fossil harvestman (ArachnidaOpiliones) from theMississippian of East Kirkton Scotland The Journalof Arachnology 33 482ndash489 doi10163604-791

Dunlop JAAndersonL IKerpH andHassH (2003)Preservedorgansof Devonian harvestmen Nature 425 916 doi101038425916a

Dunlop J A Anderson L I Kerp H and Hass H (2004) A harvestman(Arachnida Opiliones) from the Early Devonian Rhynie chertsAberdeenshire Scotland Transactions of the Royal Society ofEdinburgh Earth Sciences 94 341ndash354

Edgar R C (2004) MUSCLE multiple sequence alignment with highaccuracy and high throughput Nucleic Acids Research 32 1792ndash1797doi101093nargkh340

Edgecombe G D and Giribet G (2006) A century laterndash a total evidencere-evaluation of scutigeromorph centipedes (Myriapoda Chilopoda)Invertebrate Systematics 20 503ndash525 doi101071IS05044

Edgecombe G D Giribet G and Wheeler W C (2002) Phylogeny ofHenicopidae (Chilopoda Lithobiomorpha) a combined analysis ofmorphology and five molecular loci Systematic Entomology 2731ndash64 doi101046j0307-6970200100163x

FolmerOBlackMHoehWLutzR andVrijenhoekRC (1994)DNAprimers for amplification ofmitochondrial cytochrome c oxidase subunit Ifrom diverse metazoan invertebrates Molecular Marine Biology andBiotechnology 3 294ndash299

Forster R R (1954) The New Zealand harvestmen (sub-order Laniatores)Canterbury Museum Bulletin 2 1ndash329

Giribet G and Kury A B (2007) Phylogeny and biogeography InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 62ndash87 (Harvard University PressCambridge MA USA)

Giribet G Carranza S Baguntildeagrave J Riutort M and Ribera C (1996) Firstmolecular evidence for the existence of a Tardigrada +Arthropoda cladeMolecular Biology and Evolution 13 76ndash84

Giribet G Rambla M Carranza S Baguntildeagrave J Riutort M and Ribera C(1999) Phylogeny of the arachnid order Opiliones (Arthropoda)inferred from a combined approach of complete 18S and partial 28Sribosomal DNA sequences and morphology Molecular Phylogeneticsand Evolution 11 296ndash307 doi101006mpev19980583

Giribet G Edgecombe G D Wheeler W C and Babbitt C (2002)Phylogeny and systematic position of Opiliones a combined analysis ofchelicerate relationships using morphological and molecular dataCladistics 18 5ndash70

Giribet G Vogt L PeacuterezGonzaacutelez A Sharma P andKury A B (2010)A multilocus approach to harvestman (Arachnida Opiliones) phylogenywith emphasis on biogeography and the systematics of LaniatoresCladistics 26 408ndash437

Hara M R Gnaspini P and Machado G (2003) Male egg guardingbehavior in the Neotropical harvestman Ampheres leucopheus (Mello-Leitatildeo 1922) (Opiliones Gonyleptidae) The Journal of Arachnology 31441ndash444 doi101636S02-32

Hedin M Derkarabetian S McCormack M and Richart C (2010) Thephylogenetic utility of the nuclear protein-encoding gene EF-1a forresolving recent divergences in Opiliones emphasizing intronevolution The Journal of Arachnology 38 9ndash20 doi101636HA09-491

Huelsenbeck J P and Ronquist F (2005) Bayesian analyses of molecularevolution using MrBayes In lsquoStatistical Methods in MolecularEvolutionrsquo (Ed R Nielsen) (Springer New York)

HunterRK ProundDNBurns JA Tibbetts JA andTownsendVR(2007) Parental care in the Neotropical harvestman Phareicranauscalcariferus (Opiliones Cranaidae) The Journal of Arachnology 35199ndash201 doi101636ST06-181

Molecular phylogeny of Laniatores Invertebrate Systematics 135

Kocher T D Thoma W K Meyer A Edwards S V Paumlaumlbo SVillablanca F X and Wilson A C (1989) Dynamics ofmitochondrial DNA evolution in animals amplification andsequencing with conserved primers Proceedings of the NationalAcademy of Sciences of the United States of America 86 6196ndash6200doi101073pnas86166196

Kury A B (1993) Anaacutelise filogeneacutetica de Gonyleptoidea (ArachnidaOpiliones Laniatores) PhD Thesis Universidade de Satildeo Paulo SatildeoPaulo Brazil

Kury A B (2003) Annotated catalogue of the Laniatores of the NewWorld (Arachnida Opiliones) Revista Ibeacuterica de AracnologiacuteaVolumen Especial Monograacutefico 1 1ndash337

Kury A B (2006) Checklist of valid genera of Opiliones of theWorld Museu NacionalUFRJ Available from httpwwwmuseunacionalufrjbrmndiAracnologiachecklaniatorhtm [Accessed1 February 2011]

Kury A B (2007) Podoctidae Roewer 1912 In lsquoHarvestmen The Biologyof Opilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 221ndash224 (Harvard University Press Cambridge MA USA)

Kury A B and Cokendolpher J C (2000) Opiliones In lsquoBiodiversidadTaxonomiacutea y Biogeografiacutea de Artoacutepodos de Meacutexico Hacia una Sintesisde su Conocimientorsquo vol 2 (Eds J E Llorente E Gonzaacutelez andN Papavero) pp 137ndash157 (Universidad Nacional Autoacutenoma deMexico Meacutexico DF Mexico)

Kury A B and Machado G (2009) Notes on Santobius from Vanuatu andFiji and the status of the eastern Melanesian Ibalonius (ArachnidaOpiliones Podoctidae) Zoological Studies 48 524ndash538

Kury A B and Peacuterez G A (2002) A new family of Laniatores fromnorthwestern South America (Arachnida Opiliones) Revista Ibeacuterica deAracnologiacutea 6 3ndash11

Labandeira C C and Sepkoski J J (1993) Insect diversity in the fossilrecord Science 261 310ndash315 doi101126science11536548

Lanyon S M (1988) The stochastic mode of molecular evolutionwhat consequences for systematic investigations The Auk 105565ndash573

Lian W-G Zhu M-S and Kury A B (2008) A new species of the genusTithaeus from China (Arachnida Laniatores Epedanidae) Zootaxa1841 53ndash60

Machado G Requena G S Buzatto B A Osses F and Rossetto L M(2004) Five new cases of paternal care in harvestmen (ArachnidaOpiliones) implications for the evolution of male guarding in theNeotropical family Gonyleptidae Sociobiology 44 577ndash598

Martens J (1976) Genitalmorphologie System und Phylogenie derWeberknechte (Arachnida Opiliones) Entomologica GermanicaZeitschrift fuumlr das Gesamtgebiet der Wissenschaftlichen Entomologie3 51ndash68

Martens J (1980) Versuch eines phylogenetischen Systems der OpilionesIn lsquoProceedings 8th International Congress of Arachnology ViennaVerhandlungenrsquo (Ed J Gruber) pp 355ndash360 (Vienna Austria)

Martens J (1986) Die Grossgliederung der Opiliones und die Evolutionder Ordnung (Arachnida) Actas del X Congreso Internacional deAracnologiacutea Jaca 1 289ndash310

Martens J (1993) Further cases of paternal care in Opiliones (Arachnida)Tropical Zoology 6 97ndash107

Martens J and Schwendinger P S (1998) A taxonomic revision ofthe family Oncopodidae I New genera and new species of GnomulusThorell (Opiliones Laniatores) Revue Suisse de Zoologie 105 499ndash555

Martens J Hoheisel U and Goumltze M (1981) Vergleichende Anatomieder Legeroumlhren der Opiliones als Beitrag zur Phylogenie der Ordnung(Arachnida) Zoologische Jahrbucher Abteilung fur Anatomie undOntogenie der Tiere 105 13ndash76

Mello-Leitatildeo C F (1949) Famiacutelias subfamiacutelia espeacutecies e gecircneros novos deopiliotildees e notas de sinoniacutemia Boletim do Museu Nacional Nova SeacuterieZoologia Rio de Janeiro 94 1ndash33

Mendes A C and Kury A B (2007) Stygnopsidae Soslashrensen 1932 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 232ndash234 (Harvard University PressCambridge MA USA)

Mendes A C and Kury A B (2008) Intercontinental Triaenonychidae ndashthe case of Ceratomontia (Opiliones Insidiatores) The Journal ofArachnology 36 273ndash279 doi101636CH07-931

Murphree C S (1988) Morphology of the dorsal integument of tenopilionid species (Arachnida Opiliones) The Journal of Arachnology16 237ndash252

Park J K andOacuteFoighilD (2000) Sphaeriid and corbiculid clams representseparate heterodont bivalve radiations into freshwater environmentsMolecular Phylogenetics and Evolution 14 75ndash88 doi101006mpev19990691

Peacuterez Gonzaacutelez A (2006) lsquoRevisatildeo Sistemaacutetica e Anaacutelise Filogeneacutetica deStygnommatidae (Arachnida Opiliones Laniatores)rsquo (Museu NacionalUniversidade Federal de Rio de Janeiro Rio de Janeiro Brazil)

Peacuterez Gonzaacutelez A (2007) Stygnommatidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 229ndash232 (Harvard University PressCambridge MA USA)

Peacuterez Gonzaacutelez A (2011) New familial assignment for two harvestmanspecies of the infraorder Grassatores (Arachnida Opiliones Laniatores)Zootaxa 2757 24ndash28

Peacuterez Gonzaacutelez A and Kury A B (2007) Samoidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 224ndash226 (Harvard University PressCambridge MA USA)

Pineau P Henry M Suspegravene R Marchio A Dettai A Debruyne RPetit T Leacutecu A Moisson P Dejean A Wain-Hobson S andVartanian J-P (2005) A universal primer set for PCR amplificationof nuclear histone H4 genes from all animal species Molecular Biologyand Evolution 22 582ndash588 doi101093molbevmsi053

Pinto-da-Rocha R (1997) Systematic review of the Neotropical familyStygnidae (Opiliones Laniatores Gonyleptoidea) Arquivos deZoologia 33 163ndash342

Pinto-da-Rocha R and Kury A B (2003a) Phylogenetic analysis ofSantinezia with description of five new species (Opiliones LaniatoresCranaidae) The Journal of Arachnology 31 173ndash208 doi1016360161-8202(2003)031[0173PAOSWD]20CO2

Pinto-da-Rocha R and Kury A B (2003b) Third species of Guasiniidae(Opiliones Laniatores) with comments on familial relationships TheJournal of Arachnology 31 394ndash399 doi101636H02-59

Pinto-da-Rocha R and Kury A B (2007) Agoristenidae Silhavy 1973 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 171ndash173 (Harvard University PressCambridge MA USA)

Posada D (2005) Modeltest 37 Program and documentation available athttpdarwinuvigoes [Accessed 28 May 2011]

Posada D and Buckley T (2004) Model selection and model averaging inphylogenetics advantages of Akaike information criterion and Bayesianapproaches over likelihood ratio tests Systematic Biology 53 793ndash808doi10108010635150490522304

Posada D and Crandall K A (1998) Modeltest testing the model ofDNA substitution Bioinformatics (Oxford England) 14 817ndash818doi101093bioinformatics149817

Prendini L Weygoldt P and Wheeler W C (2005) Systematics of theDamon variegates group of African whip spiders (ChelicerataAmblypygi) evidence from behaviour morphology and DNAOrganisms Diversity amp Evolution 5 203ndash236 doi101016jode200412004

Rambaut A E (1996) Se-Al sequence alignment editor University ofOxford UK Program and documentation available at httptreebioedacuksoftwarefigtree [Accessed 21 December 2009]

136 Invertebrate Systematics P P Sharma and G Giribet

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 3: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

Genegraveve Switzerland) and MCZ (Museum of ComparativeZoology Harvard University Cambridge MA USA)

The holotype and a female paratype of the new species werephotographed in dorsal ventral and lateral positions using aJVC KY-F70B digital camera mounted on a Leica MZ 125stereomicroscope A series of images (from 5 to 15) was taken atdifferent focal planes and assembled with the dedicated softwarepackage Auto-Montage Pro Version 5000271 (Syncroscopy

Frederick MD USA) Multiple specimens (for each species)were examined with a Zeiss EVO 50 scanning electronmicroscope (SEM) The genitalia of one to two male andfemale paratypes were also examined with the Zeiss EVO 50SEM Specimens previously used for DNA extraction areindicated as such among the type material Methodsconcerning molecular sequence data obtained from thesespecimens are described below Material used for comparison

Fig 2 Cladogram of the Laniatores subtree from Giribet et al (2010) Nodes that are unsupportedandor conflicting across analyses have been collapsed

108 Invertebrate Systematics P P Sharma and G Giribet

encompassed three morphospecies (not described at present) andspecimens of Zalmoxida gibbera Suzuki 1970 all of these wereincluded in the molecular phylogeny

All measurements are given in millimetres unless otherwiseindicated Nomenclature on cuticular ornamentation followsMurphree (1988)

Species samplingSpecimens of Laniatores were collected by several individualsover multiple collecting trips including by P P S duringcollecting trips to New Caledonia (2007) Fiji (2008) andPalau (2010) and by G G during collecting trips to Indonesia(2006) In addition data collected in a previous study (Giribetet al 2010) were accessed from GenBank andor updated withnew sequences Collected specimens were preserved in 96EtOH and stored at 80C The list of specimens includingvoucher numbers GenBank accession codes and collectiondetails is found in Appendix 1

Molecular methodsTotalDNAwas extracted from the legs of animals usingQiagenrsquosDNEasy tissue kit (Valencia CA USA) Purified genomicDNA was used as a template for PCR amplification Molecularmarkers consisted of two nuclear ribosomal genes (18S rRNAand 28S rRNA) two mitochondrial ribosomal genes (12SrRNA and 16S rRNA) three nuclear protein-encoding genes(elongation factor-1a histone H3 and histone H4) twomitochondrial protein-encoding genes (cytochrome c oxidasesubunit I and cytochrome b) and one nuclear non-coding gene(U2 snRNA) Primer sequences and fragment lengths areindicated in Table 1

Polymerase chain reaction (PCR) visualisation by agarosegel electrophoresis and direct sequencing were conducted asdescribed by Sharma and Giribet (2009) Chromatogramsobtained from the automatic sequencer were read andsequences assembled using the sequence editing softwareSequencher (Gene Codes Corporation Ann Arbor MI USA)Sequence data were edited in Se-Al ver 20a11 (Rambaut 1996)

Phylogenetic analysisMaximum likelihood (ML) and Bayesian inference (BI) analyseswere conducted on static alignments which were inferred asfollows Sequences of ribosomal and snRNA genes were alignedusing MUSCLE ver 36 (Edgar 2004) with default parametersand subsequently treated with GBlocks ver 091b (Castresana2000) to cull positions of ambiguous homology For thesegenes gaps were permitted within blocks Sequences ofprotein-encoding genes were aligned using MUSCLE ver 36with default parameters as well but alignments were confirmedusing protein sequence translations before treatment withGBlocks ver 091b and no gaps were permitted withinblocks The size of data matrices for each gene prior andsubsequent to treatment with GBlocks ver 091b is providedin Table 2

Maximum likelihood analysis was conducted usingRAxML ver 727 (Stamatakis 2006) through the CIPRESver 3 gateway using the Abe Dell Intel 64 Linux teragridcluster housed at the National Center for Supercomputing

Applications (University of Illinois) A unique GTR model ofsequence evolution (Tavareacute 1986) with corrections for a discretegamma distribution (GTR+G) was specified for each datapartition (Yang 1996) Nodal support was estimated via therapid bootstrap algorithm (1000 replicates) using the GTR-CAT model (Stamatakis et al 2008)

Bayesian inference analysis was performed using MrBayesver 312 (Huelsenbeck and Ronquist 2005) with a uniqueGTR model of sequence evolution with corrections for adiscrete gamma distribution and a proportion of invariant sites(GTR+G + I) specified for each partition as selected inModeltest ver 37 (Posada and Crandall 1998 Posada 2005)under the Akaike information criterion (Posada and Buckley2004) Default priors were used starting with random treesand three hot and one cold Markov chains were run until theaverage deviation of split frequencies reached lt001 (10 000 000generations) After burn-in samples were discarded sampledtrees were combined in a single majority consensus topologyand the percentage of nodes was taken as posterior probabilities

Estimation of divergence timesAgesof cladeswere inferredusingBEASTver 161 (Drummondet al 2006 Drummond and Rambaut 2007) We specified aunique GTR model of sequence evolution with corrections fora discrete gamma distribution and a proportion of invariant sites(GTR+G + I) for each partition and we further separated sitemodels for first second and third codon positions for all fiveprotein-encoding genes

Fossil taxa were used to calibrate divergence times as inprevious studies (Giribet et al 2010) We constrained the ageof Eupnoi to 410Mya using the Devonian harvestmanEophalangium sheari Dunlop Anderson Kerp amp Hass 2004(see Dunlop et al 2003 2004 Dunlop and Anderson 2005)a normal distribution with a standard deviation of 5million yearswas applied to this node to account for uncertainty in estimationof fossil age Dyspnoi were constrained using a normaldistribution with a mean of 300Mya and a standard deviationof 10million years on the basis of the Carboniferous fossilsEotrogulus fayoli Thevenin 1901 and Nemastomoides elaverisThevenin 1901 (see Dunlop 2007)

An uncorrelated lognormal clock model was inferred for eachpartition and a Yule speciation process was assumed for the treeprior We selected the uncorrelated lognormal model because itsaccuracy is comparable to an uncorrelated exponential modelbut it has narrower 95 highest posterior density intervalsAdditionally the variance of the uncorrelated lognormalmodel can better accommodate data that are already clock-like(Drummond et al 2006) Priors were sequentially optimised in aseries of iterative test runs (data not shown) Markov chains wererun for 50 000 000generations sampling every 5000generationsConvergence diagnostics were assessed using Tracer ver 15(Rambaut and Drummond 2009)

Ancestral range reconstructionLikelihood analysis of range evolution of (Samooidea +Zalmoxoidea) was conducted using the program Lagrange(Ree et al 2005 Ree and Smith 2008) We isolated the datedsubtree of the clade (Zalmoxoidea + Samooidea) from

Molecular phylogeny of Laniatores Invertebrate Systematics 109

BEAST analysis and coded the ranges of terminals asAfrotropical Neotropical or Indo-Pacific We implementedstratified dispersal constraint matrices for three spans of time(1) 0ndash35Mya (disconnection of all three landmasses) (2)35ndash110Mya (transantarctic connections between theAustralian plate and temperate South America disconnectionof South America and West Africa) and (3) 110ndash206Mya(connection of all three landmasses) Geological events usedto delimit the time spans follow Sanmartiacuten and Ronquist(2004) The maximum number of areas in ancestral ranges washeld at two (this convention reflects empirical observationsof Laniatores species the majority of which are narrowlydistributed endemics) and dispersal constraints were set toeither 10 (if landmasses were connected) or 01 (if landmasseswere disjunct)

Table 1 List of primer sequences used for amplification and sequencing with original references of primer sequences

12S rRNA12Sai 50-AAA CTA GGA TTA GAT ACC CTA TTA T-30 Kocher et al (1989)12Sr Opi 50-AAG AGC GAC GGG CGA TGT GTA CAT-30 This study

16S rRNA16Sa 50-CGC CTG TTT ATC AAA AAC AT-30 Xiong and Kocher (1991)16Sb 50-CTC CGG TTT GAA CTC AGA TCA-30 Edgecombe et al (2002)

18S rRNA1F 50-TAC CTG GTT GAT CCT GCC AGT AG-30 Giribet et al (1996)3F 50-GTT CGA TTC CGG AGA GGG A-30 Giribet et al (1996)5R 50-CTT GGC AAA TGC TTT CGC-30 Giribet et al (1996)9R 50-GAT CCT TCC GCA GGT TCA CCT AC-30 Giribet et al (1996)18Sa20 50-ATG GTT GCA AAG CTG AAA C-30 Whiting et al (1997)18Sbi 50-GAG TCT CGT TCG TTA TCG GA-30 Whiting et al (1997)

28S rRNA28Sa 50-GAC CCG TCT TGA AAC ACG GA-30 Whiting et al (1997)28S D1F 50-GGG ACT ACC CCC TGA ATT TAA GCAT-30 Park and Oacute Foighil (2000)28Srd4b 50-CCT TGG TCC GTG TTT CAA GAC-30 Edgecombe and Giribet (2006)28Srd5b 50-CCA CAG CGC CAG TTC TGC TTA C-30 Schwendinger and Giribet (2005)28Srd48a 50-ACC TAT TCT CAA ACT TTA AAT GG-30 Schwendinger and Giribet (2005)28Srd7b1 50-GAC TTC CCT TAC CTA CAT-30 Schwendinger and Giribet (2005)28S F2012 50-CCA AGG TKA RYA GCC TCT RG-30 Giribet et al (2010)28S R2762 50-CCG CCC CAG CCA AAC TCC CC-30 Giribet et al (2010)28S F2762 50-GGG GAG TTT GGC TGG GGC GG-30 Giribet et al (2010)28S OR2r 50-TTC TGA CTT AGA GGC GTT CAG-30 Giribet et al (2010)

COILCO1490 50-GGT CAA CAA ATC ATA AAG ATA TTG G-30 Folmer et al (1994)HCOoutout 50-GTA AAT ATA TGR TGD GCT C-30 Prendini et al (2005)

Cytochrome bCytB F-Lan 50-TAG GTT ATG TGT TAC CTT GAG GWC AAA TAT CTT TTT G-30 This study modified from Schoumlnhofer

and Martens (2008)CytB R-Lan 50-CCA CCT AAT TTA TTT GGA ATT GAT TG-30 This study

EF-1aEF OP3 50-TTT GAR GAA ATC CAR AAR GAA GT-30 Hedin et al (2010)EF OPRC4 Leio 50-GAA CTT GCA AGC AAT GTG AGC-30 Hedin et al (2010)

Histone H3H3aF 50-ATG GCT CGT ACC AAG CAG ACV GC-30 Colgan et al (1998)H3aR 50-ATA TCC TTR GGC ATR ATR GTG AC-30 Colgan et al (1998)

Histone H4H4F2S 50-TSC GIG AYA ACA TYC AGG GIA TCA C-30 Pineau et al (2005)H4F2er 50-CKY TTI AGI GCR TAI ACC ACR TCC AT-30 Pineau et al (2005)

U2 snRNAU2F 50-TCT CGG CCT WWT GGC TAA-30 Colgan et al (1998)U2R 50-GMG GTA STG CAA TAC CGG-30 Colgan et al (1998)

Table 2 Length of gene partition alignment prior and subsequent totreatment with GBlocks ver 091b

Partitions Original length ofalignment (bp)

Fraction retainedby GBlocks ()

Final length ofalignment (bp)

12S rRNA 382 44 17116S rRNA 656 64 36418S rRNA 1784 98 175228S rRNA 3438 70 2405COI 795 81 648CytB 421 100 421EF-1a 584 96 566H3 327 100 327H4 160 100 160U2 snRNA 131 100 131

110 Invertebrate Systematics P P Sharma and G Giribet

Taxonomy

Order OPILIONES Sundevall 1833

Suborder LANIATORES Thorell 1876

Family PETROBUNIDAE fam nov

Type genus Petrobunus gen nov

Type species Petrobunus schwendingeri sp nov

Genera included Petrobunus gen nov Zalmoxida Roewer 1912 newfamilial assignment

Diagnosis

Small to medium-sized Grassatores with a low oculariumremoved from anterior margin of carapace with a medianocularial tubercle in some species but distinguished fromEpedanidae in the lack of a large median spine Mesotergumsmooth indistinctly divided into five areas scutal areas I and IInot fused as opposed to Epedanidae Chelicerae with a sexuallymonomorphic prominent bulla basal segment not enlarged asopposed toEpedanidae Palpus robust and strongly spined palpalpatella armed with single distinct spine-bearing tubercle onmedial-distal portion It can be differentiated from Podoctidaein lacking spines in leg I and in lacking a sexually dimorphicocularium Femur of leg III sexually monomorphic and arcuateMale leg IV sexually dimorphic and spined Tarsi III and IV withunmodified double claws scopulae absent as opposed to mostSamooidea It can be distinguished from Sandokanidae andPodoctidae in the tarsal formula which is not reduced inPetrobunidae Pars distalis of penis either shaped as the headof a javelin (Petrobunus) or with a rounded apical margin(Zalmoxida) and spoon-shaped in dorsal aspect without cleftin ventral plate (as opposed to Tithaeidae and Podoctidae) or aring of setae surrounding a capsula interna (as opposed toEpedanidae) variable number of setae on lateroventral andlaterodorsal surfaces glans free in apical part and simple withparastylar lobe small (Zalmoxida) or elongate and extendingproximally (Petrobunus) Ovipositor composed of two apicallobes each bearing two dorsal setae one ventral seta and twoapical setae bases of ventral pair of setae either in contact(Zalmoxida) or set apart (Petrobunus) distal surfaces ofapical lobes either finely denticulate (Zalmoxida) or smooth(Petrobunus) (Appendix 2)

Remarks

The morphology of Petrobunidae is not readily indicative ofphylogenetic affinities The sexually dimorphic fourth walkingleg and apophyses of the opisthosomal sternites suggest arelationship to Zalmoxidae or Escadabiidae respectively (orsome distant relationship to Zalmoxoidea) the indistinctdivision of the mesotergum to Samoidae and the spoon-shaped pars distalis of the penis to erecanine Assamiidae orPhalangodidae Molecular sequence data similarly do notsupport the placement of Petrobunidae either within or sister toa single family disfavouring its inclusion in a previouslydescribed lineage However in most analyses Petrobunidaeclusters with other South-east Asian families namelyEpedanidae and Podoctidae (discussed below)

Etymology

The name refers to the appearance of males of this genuswhich appear to have tiny pebbles attached to the proximalpart of the fourth leg when observed with the naked eyedue to the greatly enlarged trochanter IV Derived from Greeklsquopetrarsquo (ptra) meaning lsquostonersquo or lsquopebblersquo and lsquo-bunusrsquoa common suffix in Opiliones taxonomy (eg HadrobunusTriaenobunus Dibunus) It is also wordplay as the typespecies is named after an individual with the given namelsquoPeterrsquo

a

b

050 mm

050 mm

050 mm

c

Fig 3 Petrobunus schwendingeri sp novmale holotype (a) Dorsal view(b) lateral view and (c) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 111

Genus Petrobunus gen nov

Type species Petrobunus schwendingeri sp nov

Diagnosis

Small Grassatores (body length lt2mm) distinct from otherpetrobunids in the following combination of characters coxaand trochanter of male leg IV greatly incrassate with trochanterIV sub-rectangular in lateral aspect Tarsal formula 3 5 5 5ndash6Pars distalis of penis shaped as the head of a javelin two to threepairs of setae on ventral plate and four setae on each lateralmargin glans free in apical part with parastylar lobe extendingproximally Ovipositor with two ventral setae (one per apicallobe) set apart from one another by a distance equal toapproximately one-third the width of the ovipositor

Distribution

The newly described species are known only from the Philippineislands of Palawan and Panay an undescribed morphospecies

(included in molecular phylogeny as MCZ DNA102668 andMCZ DNA102669) is known from Taiwan

Petrobunus schwendingeri sp nov

(Figs 3ndash6 Tables 3 4)

Material examined

Holotype Male (MHNG) Philippines Panay Sibaliw primary forest450m alt leg E Curio 13i2008 (ex MCZ DNA103572)

Paratypes 1lt (mounted on three SEMstubs [MCZ100872ndash100874] anddissected for genitalia) 2 (1 extracted for DNA [MCZ 100875 MCZDNA103572] 1 dissected for genitalia [MCZ100881]) same collectingdata as holotype 4 same collecting data as holotype (MHNG)

Additional material studied 1 lt juvenile same collecting data asholotype

Diagnosis

Small petrobunid with unarmed ocularium Distinct from otherspecies in the genus in the mesotergum with transverse bands of

a b

c

100 microm

100 microm

100 microm

Fig 4 Petrobunus schwendingeri sp novmale paratype (a) Dorsal view of prosoma andmesotergum (b) posteriorview of opisthosoma with dotted reconstructions of spination based on holotype specimen and (c) dorsal view ofanterior margin of carapace

112 Invertebrate Systematics P P Sharma and G Giribet

a

100 microm

100 microm

100 microm

200 microm

100 microm

100 microm

100 microm

100 microm

200 microm

b

c

d

e

h

i

g

f

Fig 5 Petrobunus schwendingeri sp nov (a) Left chelicer of male paratype (b) left palp of male paratype (c) left leg I of maleparatype (d) left leg II of male paratype (e) left leg III of male paratype ( f ) left leg IV of male paratype (g) left leg IV of femaleparatype (h) trochanter of left leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 113

pigmentation and in the armature of the opisthosomal sternites(two pairs of tubercles on sternite 7 and one pair on sternite 8)Proximal region of femora of all legs with single blunt peg Penis

more elongate than in congeners in the shape of a spear bladewith two pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100875] inparentheses) 168 (164) greatest width of prosoma 076 (076)greatest width of opisthosoma 126 (124) length-to-width ratio133 (132) (Figs 3 6) Body campaniform yellow to darkorange (in alcohol depending on incidence of light) almostentirely with a dense microgranulate surface microstructureEyes present on low well developed ocularium withoutmedian ocularial tubercle Ocularium 012 (012) long and024 (019) wide removed from anterior margin of carapaceAnterior margin of carapace with two pairs of blunt pegs abovecoxae of leg I with outer pair of sub-rectangular shape (Fig 4)Scutal grooves of mesotergum indistinct with mesotergal areasdistinguishable only by transverse bands of pigmentation Freetergites without large tubercles

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged with setosetubercles on anterior margin Genital operculum sub-triangularSpiracles not concealed adjacent to row of tuberclesOpisthosomal sternite 7 with two pairs of large tuberclesdisplaced away from midline Opisthosomal sternite 8 withone pair of smaller tubercles flanking midline Anal plateunarmed (Fig 4)

Chelicerae (Fig 5) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassatefree of ornamentation with dorsal margin bearing several setaeDistal article with delicate dentition free of ornamentation

Palpi (Fig 5) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setae Palpalfemur with two proximal ventral spines in a row and two paireddistal spines (one ventral one mesoventral) Palpal patella with asingle spine directed inward Palpal tibiawith twopairs of spinesand a small basal setose tubercle Palpal tarsus with two pairs ofspines Palpal claw nearly as long as palpal tarsus

Legs IndashIV (Fig 5) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge ventral tubercle and three smaller mesodorsal tuberclesFemora IndashIV with one basal peg on ventral surface with peg freeof granulation Femur III arcuate in males and females free oftubercles Femur IVandpatella IVofmalewith two irregular rowsof mesalmesoventral tubercles Tibia IV of male with multipleirregular rows of tubercles with ventral tubercles enlarged andbulbous distally ventral tubercles enlarged but conical in shapeMetatarsi IndashIV divided distally with distal portion lackingornamentation metatarsus IV of male with two rows of mesalmesoventral tubercles Tarsus IV unornamented Femaletrochanter IV not enlarged leg IV free of tubercles Tarsalclaws IndashIV smooth unmodified Tarsal segmentation 3 5 5 5

Penis (Fig 6) elongate narrow and slender in the shape ofa spear blade Lateral margins gradually coalescing dorsallyresulting in spoon shape in dorsal aspect Ventral surface withtwo pairs of setae lateral margins with four setae each Glans

a

b

c d

050 mm

050 mm

100 microm100 microm

Fig 6 Petrobunus schwendingeri sp nov (a) Female paratype dorsalview (b) female paratype ventral view (c) pars distalis of penis lateral viewand (d) ovipositor dorsal view (one of four dorsal setae broken duringmounting process)

114 Invertebrate Systematics P P Sharma and G Giribet

free in apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 6) composedof twoapical lobes eachbearingtwo dorsal setae one ventral seta and two apical setae Distalsurfaces of apical lobes smooth Bases of dorsal setae in contactBases of ventral setae set apart by a distance approximately equalto one-third the width of the ovipositor

Distribution

Known only from type locality

Etymology

The specific epithet honours Dr Peter J Schwendinger curator atthe MHNG for his inspiration and tireless efforts to advanceknowledge of South-east Asian arachnid fauna

Petrobunus spinifer sp nov

(Figs 7ndash10 Tables 5 6)

Material examined

Holotype Male (MHNG) Philippines Palawan El Nido RegionBulalacao Waterfall primary forest 200ndash450 alt (111304100N1192800000E) leg A Schulz 30xi2009 (ex MHNG PAL-0905)

Paratypes 12 lt 21 (MHNG) same collecting data as holotype (exMHNG PAL-0905) 3 lt (1 dissected for genitalia [MCZ 100888] andmounted on one SEM stub [MCZ 100886] 2 in ethanol [MCZ100877ndash100878]) 3 (1 dissected for genitalia [MCZ 100889] 2 inethanol [MCZ 100879ndash100880]) same collecting data as holotype (exMHNGPAL-0905) 2lt (1mountedononeSEMstub [MCZ100882] 1mounted on two SEM stubs [MCZ 100884ndash100885]) PhilippinesPalawan El Nido Region Mt Singkukan primary forest 300ndash400alt (111300700N 1192805100E) leg A Schulz 26xi2009 (exMHNG PAL-0904)

Additional material studied 6 juveniles same collecting data as holotype(MHNG PAL-0905) 1 lt Philippines Palawan El Nido Region MtSingkukan primary forest 400ndash600 alt (111303800N 1192805500E)leg A Schulz 24xi2009 (MHNG PAL-0903) 6 lt 8 PhilippinesPalawan El Nido Region Mt Singkukan primary forest 300ndash400 alt(111300700N 1192805100E) leg A Schulz 26xi2009 (MHNG PAL-0904)

Diagnosis

Small petrobunidwith unarmedoculariumwithmesotergum freeof pigmentation Distinct from congeners in the armature of thefreeopisthosomal tergites andanal plate (setose tubercules) andofthe opisthosomal sternites (sternites 3ndash6 with single tubercle oneach side forming a line under each coxa IV sternite 7 with twolarge spines directly anteroventrally and sternite 8with an evenlydistributed belt of eight smaller spines) Femur IV of male with asingle tubercle basoventrally Penis narrow in the shapeof a spearblade with three pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100879] inparentheses) 130 (115) greatest width of prosoma 058 (056)greatest width of opisthosoma 079 (080) length-to-width ratio165 (144) (Figs 5 8) Body campaniform yellow (in alcoholdepending on incidence of light) almost entirely with a densemicrogranulate surface microstructure Eyes present on lowwell developed ocularium without median ocularial tubercleOcularium 012 (010) long 018 (016) wide removed fromanterior margin of carapace Anterior margin of carapace withtwo pairs of conical pegs above coxae of leg I Scutal grooves ofmesotergum indistinct free of transverse bands of pigmentationFree tergites with regular belts of setose tubercles (Fig 5)

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged withsetose tubercules on anterior margin Genital operculumsub-triangular Spiracles not concealed anterior to row oftubercules Opisthosomal sternites 3ndash6 each with belt of smallregular tubercles Opisthosomal sternite 7 with two large setosespines directly anteroventrally Opisthosomal sternite 8 withbelt of regular tubercles Two rows of tubercles alignedanteroposteriorly under outer limit of coxae IV Anal platearmed with tubercles (Fig 6)

Chelicerae (Fig 7) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassate

Table 3 Leg measurements of Petrobunus schwendingeri holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 013012 049009 028014 034011 051005 042007 217Leg II 017016 069010 029014 055010 058005 079007 307Leg III 015016 054013 028017 046013 052007 047006 242Leg IV 045045 075014 037020 071019 090009 054007 372

Table 4 Leg measurements of Petrobunus schwendingeri female paratype (ex MCZ DNA103572) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 012015 049012 027013 034010 044006 038007 204Leg II 013018 069011 031013 053010 054006 069006 289Leg III 013017 051012 028015 040012 047007 046006 225Leg IV 024023 061012 031017 050012 071008 052008 289

Molecular phylogeny of Laniatores Invertebrate Systematics 115

free of ornamentation with dorsal margin bearing severalsetae Distal article with delicate dentition free of ornamentation

Palpi (Fig 7) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setaePalpal femur with two proximal ventral spines in a row andtwo paired distal spines (one ventral one mesoventral) Palpalpatella with a single spine directed inward Palpal tibia with twopairs of spines and a small basal setose tubercle Palpal tarsuswith two pairs of spines Palpal claw nearly as long as palpaltarsus

Legs IndashIV (Fig 7) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge setose tubercle ventrally Femora IndashIV without basalpegs femur IV with one large tubercle ventrally Femur IIIarcuate in males and females free of tubercles Femur IV andpatella IV of male with irregular rows of mesalmesoventraltubercles Tibia IV of male with multiple irregular rows oflarge tubercles distally ventral tubercles small not bulbousMetatarsi IndashIV divided distally with distal portion lackingornamentation metatarsus IV of male with two rows ofmesalmesoventral tubercles Tarsus IV unornamented Femaletrochanter IV not enlarged leg IV free of tubercles Tarsal clawsIndashIV smooth unmodified Tarsal segmentation 3 5 5 6

Penis (Fig 8) narrow and slender in the shape of a spearblade Lateral margins gradually coalescing dorsally resultingin spoon shape in dorsal aspect Ventral surface with threepairs of setae lateral margins with four setae each Glans freein apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 8) composedof twoapical lobes eachbearingtwo dorsal setae one ventral seta and two apical setae Distalsurfaces of apical lobes smooth Bases of dorsal setae in contactBases of ventral setae set apart by a distance approximately equalto one-third the width of the ovipositor

a

b

c

050 mm

050 mm

050 mm

Fig 7 Petrobunus spinifer sp nov male holotype (a) Dorsal view (b)lateral view and (c) ventral view

a

b

200 microm

100 microm

Fig 8 Petrobunus spinifer sp nov male paratype (a) Ventral view and(b) dorsal view of anterior margin of carapace

116 Invertebrate Systematics P P Sharma and G Giribet

a

b

c

d

e

h

i

g

f

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

Fig 9 Petrobunus schwendingeri sp nov (a) Left chelicer ofmaleparatype (b) left palp ofmale paratype (c) left leg I ofmale paratype (d) left leg II ofmale paratype (e) right leg III ofmale paratype ( f ) right leg IV ofmale paratype (g) left legIV of female paratype (h) trochanter of right leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 117

Distribution

Known only from type locality and additional localities reportedhere

Etymology

The specific epithet an invariable noun in apposition refers to theenlarged belts of tubercles on the free tergites and opisthosomalsternites of this species Derived from Latin lsquospinarsquo meaninglsquospearrsquo or lsquodartrsquo and lsquoferrersquo meaning lsquoto carry or bearrsquo

Petrobunus torosus sp nov

(Figs 11ndash14 Tables 7 8)

Material examined

Holotype Male (MHNG) Philippines Palawan Puerto Princesa RegionSabang Underground National Park Daylight Hole and Lions Caveprimary forest 100ndash200 alt (100900600N1185301000E) legA Schulz6ndash8xii2009 (ex MHNG PAL-0907)

Paratypes 6 lt 13 (MHNG) same collecting data as holotype(ex MHNG PAL-0907) 3 lt (1 dissected for genitalia and mountedon three SEM stubs [MCZ 100894ndash100896] 2 in ethanol [MCZ100890ndash100891]) 3 (1 dissected for genitalia [MCZ 100902] andmounted on one SEM stub [MCZ 100897] 2 in ethanol [MCZ100892ndash100893]) same collecting data as holotype (ex MHNGPAL-0907) 1 lt (mounted on one SEM stub [MCZ100899]) and 3 (dissected for genitalia [MCZ 100901] and mounted on one SEM stub[MCZ 100898]) Philippines Palawan Puerto Princesa Region SabangUnderground National Park jungle trail (101105500N 1185405900E)leg A Schulz 4xii2009 (ex MHNG PAL-0906)

Additional material studied 6 juveniles same collecting data as holotype(MHNG PAL-0907) 12 lt 3 2 juveniles Philippines PalawanPuerto Princesa Region Sabang Underground National Park jungletrail (101105500N 1185405900E) leg A Schulz 4xii2009 (MHNGPAL-0906)

Diagnosis

Distinct from congeners in the well developed ocularium armedwith median tubercle Mesotergum free of pigmentation as inP spinifer but opisthosomal sternites without large spines(sternites 7ndash9 armed only with small low tubercles) Proximalregion of femora of all legs with single blunt peg Penis widenedin the base of the pars distalis stocky in the shapeof a spear bladewith three pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100892] inparentheses) 152 (150) greatest width of prosoma 070 (068)greatest width of opisthosoma 104 (108) length-to-width ratio

a

b

c d

050 mm

050 mm

20 microm

100 microm

Fig 10 Petrobunus spinifer sp nov (a) Female paratype dorsal view(b) female paratype ventral view (c) pars distalis of penis lateral view and(d) ovipositor dorsal view

Table 5 Leg measurements of Petrobunus spinifer holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011009 032008 022011 024008 034005 036005 159Leg II 011011 046008 018012 036009 040005 068005 219Leg III 014015 044012 024014 032013 043005 041004 198Leg IV 032038 050014 025017 050014 062008 028004 247

118 Invertebrate Systematics P P Sharma and G Giribet

146 (139) (Figs 11 14) Body campaniform yellow to darkorange (in alcohol depending on incidence of light) almostentirely with a dense microgranulate surface microstructureEyes present on low well developed ocularium with medianocularial tubercle Ocularium 011 (011) long 020 (021) wideremoved from anterior margin of carapace Anterior margin ofcarapace with two pairs of blunt pegs above coxae of leg I withouter pair of sub-rectangular andor bifid shape Scutal grooves ofmesotergum indistinct free of transverse bands of pigmentationFree tergites without large tubercles or spines (Fig 12)

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged with setosetubercles on anterior margin Genital operculum sub-triangularSpiracles not concealed anterior to row of tuberclesOpisthosomal sternites with irregular belts of roundedtubercles Anal plate unarmed (Fig 12)

Chelicerae (Fig 13) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassatefree of ornamentation with dorsal margin bearing several setaeDistal article with delicate dentition free of ornamentation

Palpi (Fig 13) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setae Palpalfemur with two proximal ventral spines in a row and two paireddistal spines (one ventral one mesoventral) Palpal patella with asingle spine directed inward Palpal tibiawith twopairs of spinesand a small basal setose tubercle Palpal tarsus with two pairs ofspines Palpal claw as long as palpal tarsus

Legs IndashIV (Fig 13) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge ventral tubercle and three smaller mesodorsal tuberclesFemora IndashIV with one basal peg on ventral surface with peg freeof granulation Femur III arcuate in males and females free oftubercles Femur IVandpatella IVofmalewith two irregular rowsof mesalmesoventral tubercles Tibia IV of male with multipleirregular rows of tubercles with ventral row enlarged and conicaldistally distal-most ventral tubercle composed of two fusedtubercles Metatarsi IndashIV divided distally with distal portionlacking ornamentation metatarsus IV of male with two rows ofmesalmesoventral tubercles Female trochanter IV not enlargedleg IV free of tubercles Tarsal claws IndashIV smooth unmodifiedTarsal segmentation 3 5 5 6

Penis (Fig 14) narrow in the shape of a spear blade widenednear base Lateral margins gradually coalescing dorsallyresulting in spoon shape in dorsal aspect Ventral surface with

Table 6 Leg measurements of Petrobunus spinifer female paratype (ex MHNG PAL-0905) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 033007 021010 024007 025005 029005 143Leg II 013011 037006 023010 034007 026005 051005 184Leg III 014014 029009 022013 029010 027005 035004 156Leg IV 017015 049008 025014 034010 045006 043004 213

a

b

c

050 mm

050 mm

050 mm

Fig 11 Petrobunus torosus sp nov male holotype (a) Dorsal view(b) lateral view and (c) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 119

threepairs of setae lateralmarginswith four setae eachGlans freein apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 14) composed of two apical lobes eachbearing two dorsal setae one ventral seta and two apicalsetae Distal surfaces of apical lobes smooth Bases of dorsalsetae in contact Bases of ventral setae set apart by a distanceapproximately equal to one-third the width of the ovipositor

Distribution

Known only from type locality and additional locality reportedhere

Etymology

The specific epithet refers to the stocky and robust appearanceof the fourth leg in the males of this species Derived from Latinlsquotorosusrsquo meaning lsquomuscularrsquo or lsquobulgingrsquo

Family TITHAEIDAE fam nov

Type genusTithaeusThorell 1891 by present designation andmonotypy

Type species Tithaeus laevigatus Thorell 1891 by original designation

Genera included Tithaeus Thorell 1891 new familial assignmentMetatithaeus Suzuki 1969 new familial assignment

Diagnosis

Medium-sized Grassatores with a low ocularium removed fromthe anterior margin of carapace that differ from Epedanidae inlacking a median spine In some species slight to large hump

situated anterior of ocularium Scutal region divided into fiveareas areas I and II not fused as opposed to EpedanidaeChelicerae typical basal segment not enlarged (as opposed toEpedanidae)Distinct fromPodoctidae in the lack of spines on legI and in the lack of a sexually dimorphic ocularium Tarsalformula 5 8+ 5 6 not reduced (as opposed to Sandokanidaeand Podoctidae) Distitarsi of legs I and II typically with twotarsalia distinguished from Petrobunidae in the trochanter of legIV not enlarged inmales Tarsi III and IVwith unmodified doubleclaws scopulae absent (as opposed to most Samooidea) Distalmargin of ventral plate of penis usually with deep cleft (mostTithaeus) or widening distally into setiferous and conicalstructure (Metatithaeus) glans with simple membranous lobecovering the stylus terminus of stylus either a bifurcate orslightly inflatable lobe absence of prominent parastylar lobes(distinguishing it from Petrobunidae) absence of a ring of setaesurrounding a capsula interna (found in Epedanidae) Ovipositorlobes typically with a pair of ventral and dorsal setae

Remarks

One of dozens of genera placed in the subfamily Phalangodinae(Phalangodidae) by Roewer (1912 1923 1949) Tithaeus wassubsequently extricated and transferred to Epedanidae by Kury(1993 2003 2006) on the basis of the male genitalia althoughthe placement was ambiguous given the absence of typicalepedanid morphology such as elongate and armed pedipalpian erect ocularial spine (absent in Dibuninae) the fusion of scutalareas I and II side-branches in the posterior claws and stoutdentition of the cheliceral fingers (Lian et al 2008) However

a

b

100 microm

100 microm

100 microm

100 microm

c

d

Fig 12 Petrobunus torosus sp novmale paratype (a)Dorsolateral view (b) dorsolateral viewof anteriormargin of carapace(c) ventrolateral view and (d) ventrolateral view of prosomal complex

120 Invertebrate Systematics P P Sharma and G Giribet

comparisons of the male genitalia of a phalangodid (Texella) anepedanid (Kilungius Saracinicinae) and Tithaeus suggested acloser relationship between Epedanidae and Tithaeus in spite ofmarked differences in the stylar lobe and the extent of the basalsac (Lian et al 2008)

Our phylogenetic analyses corroborate a closer relationshipbetween Epedanidae and Tithaeuswith respect to Phalangodidae(which is sister to the remaining Grassatores and thereforedistantly related to both lineages) but the clade Tithaeus+Metatithaeus neither nests within nor is sister to Epedanidae

a

b

c

d

e

h

i

g

f

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

Fig 13 Petrobunus torosus sp nov (a) Left chelicer of male paratype (b) left palp of male paratype (c) left leg I of maleparatype (d) right leg II of male paratype (e) left leg III of male paratype (f) left leg IV of male paratype (g) left leg IV offemale paratype (h) trochanter of left leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 121

in any of the topologies we examinedMoreover the cleft ventralplate forming two prongs in the male genitalia of many Tithaeusspecies in addition to the absence of a ring of setae surroundingthe capsula interna (typical of Epedanidae) suggest that Tithaeus

and related genera (eg Istithaeus Metatithaeus Tithaeommaetc) are not true epedanids but may be more closely related toeither (1) Podoctidae a hypothesis that is supported in someanalyses (bootstrap frequency in ML [BS] = 59 posteriorclade probability given by MrBayes [PP] = 097) or (2) theclade (Podoctidae + Sandokanidae) recovered by the BEASTtopology (posterior clade probability given by BEAST[PPBEAST] = 100)

The inclusion of Tithaeus-like Grassatores in Epedanidaerenders the latter para- or diphyletic and obscures a cleardiagnosis of epedanids as the morphology of Tithaeus (andMetatithaeus) does not accord with many epedanidsynapomorphies Moreover inclusion of Tithaeus andorMetatithaeus within a broader Podoctidae is also unjustifiedbecause this violates many of the synapomorphies ofPodoctidae such as (1) tuberclesspines in dorsal and ventralrows on leg I (2) tubercular bridges (3) a sexually dimorphicbasichelicerite and (4) a sexually dimorphic ocularium

Consequently we erect the family name Tithaeidaeseparating Tithaeus and Metatithaeus from EpedanidaeTithaeidae likely includes the monotypic Roewerian generaIstithaeus Kondosus Sterrhosoma and Tithaeomma but thestatus of these genera requires further investigation and will beaddressed in a forthcoming study

Distribution

Distributed throughout Sundaland the Thai-Malay PeninsulaSumatra Java and Borneo Also reported from northern Vietnamand southern China One doubtful record from West Timor(see Lian et al 2008)

Results

Phylogenetic analysis

Less sequence data are presently available for Briggsusflavescens (partial 28S and COI Derkarabetian et al 2010)with respect to the rest of the data matrix Consequently twoML analyses were conducted including and excluding Briggsusflavescens The ML analysis with all taxa resulted in a treetopology with lnL= ndash8372597 Repeating the analysis withoutBriggsus resulted in a tree topology with lnL= ndash8336108 Thetwo topologies are identical save for the internal relationships ofTravunioidea which includes Briggsidae (Fig 15) Inclusion ofBriggsidae recovers a diphyletic Cladonychiidae with Briggsussister to Holoscotolemon but these relationships are notsupported Exclusion of Briggsidae results in higher nodalsupport frequencies within Travunioidea and recovers a sisterrelationship of Sclerobunidae and the remaining Travunioidea(BS = 75) and a monophyletic Cladonychiidae + Travuniidae(BS = 77) sister to Trojanella Including Briggsus in theanalysis does not affect topology or nodal support in otherparts of the phylogeny Monophyly of Travunioidea isstrongly supported (BS = 100) in either case

Runs of MrBayes ver 312 reached stationarity in 2 000 000generations 2 500 000 generations (25) were hence discardedas burn-in The BI analysis with all taxa resulted in a topologylargely similar to theMLtree (Fig 16)Notable differences are therelative placements of the clade (Gonyleptoidea + Stygnopsidae)

a

b

c d

050 mm

050 mm

20 microm

20 microm

Fig 14 Petrobunus torosus sp nov (a) female paratype dorsal view(b) female paratype ventral view (c) pars distalis of penis lateral view and(d) ovipositor dorsal view

122 Invertebrate Systematics P P Sharma and G Giribet

and the South-east Asian group of families Some differencesexist with respect to supported nodes within superfamilies

Estimation of divergence times

The run of BEAST reached stationarity after 6 000 000generations 10 000 000 generations (20) were discarded asburn-in The tree topology recovered by BEAST (Fig 17) differsfromML andBI topologies in (1) the placement of Sandokanidaeand (2) the relationships between superfamilies Diversificationof Laniatores is dated at ~348Mya Diversification of majorlineages is estimated as follows (Travunioidea+Triaenonychidae)299Mya Grassatores 302Mya Assamiidae +Pyramidopsgroup 232Mya Gonyleptoidea + Stygnopsidae 246MyaGonyleptoidea 230Mya Samooidea + Zalmoxoidea 206Myaand a South-east Asian clade (including Sandokanidae)249Mya These results largely corroborate previous estimatesof divergence times (Giribet et al 2010) but confidence intervalsfor estimated ages are more precise A tree file of estimated agesand 95highest posterior density (HPD) intervals for all nodes isprovided as an Accessory Publication on the InvertebrateSystematics website

Whereas the basal topology of Grassatores is unstable andunsupported most familial and superfamilial relationshipsare consistently recovered across analyses A consensus oftopologies across all analyses is shown in Fig 18

Discussion

A molecular phylogeny of the armoured harvestmen has longproven elusive Laniatores comprises entire genera and familiesthat are endemic to particular provinces of the world In somecases higher taxonomic ranks do not even occur beyond specificislands (eg the New Zealand family SynthetonychiidaeForster 1954) Moreover Laniatores includes the majority ofall described Opiliones species (and over half of all describedfamilies) and new lineages continue to be discoveredConsequently previous efforts to assess Laniatores phylogenyhave been prone to undersampling numerous lineages such asAssamiidae Epedanidae and the superfamilies Samooidea and

Zalmoxoidea (eg Giribet et al 1999 2002 Shultz and Regier2001)

The present study with the inclusion of all families ofarmoured harvestmen described heretofore enables detailedinvestigation of internal relationships of Laniatores Ofprincipal interest are the phylogenetic placement of the twonew families of Laniatores erected herein and the systematicvalidity of defined superfamilies Many of the relationshipsrecovered in our analyses are consistent with traditionalhypotheses based on morphological studies but there are someunexpected results We discuss these in turn

Insidiatores

Within a monophyletic Laniatores recovered in all analyses(BS = 100 PP = 093) the constituent lineages of Insidiatoresform a paraphyletic grade with respect to Grassatores WhileTriaenonychoidea and Travunioidea do form a clade (albeit withlow nodal support) the New Zealand endemic familySynthetonychiidae is recovered as sister to all remainingLaniatores (BS = 78 PP = 100) consistent with the resultsof a recent study (Giribet et al 2010) However the inclusionof more data in fact lowers the nodal support for this sisterrelationship relative to the previous studyrsquos ML analysislikely due to the influence of missing data (in particular only~300 bp out of a targeted 3400 bp of 28S rRNA are presentlyavailable for Synthetonychia) Consequently we do not treat theplacement of Synthetonychiidae as definitive

In all analyses the southern hemisphere Triaenonychidaeform a strongly supported clade that diversified ~200Mya(BS = 100 PP = 100) Their distribution and the age of thiscladersquos diversification are similar to that of the temperateGondwanan cyphophthalmid family Pettalidae (estimated tohave diversified ~183ndash221Mya Giribet et al 2010)suggesting a parallel biogeographical process in these lineagesThe North American triaenonychid Fumontana deprehendorShear 1977 is sister to the southern hemisphere Triaenonychidaein all analyses consistent with previous classification (Giribetand Kury 2007 Thomas and Hedin 2008) but support fora monophyletic Triaenonychoidea is limited and sensitiveto analytical parameters (BS = 57 PP lt 050 PPBEAST = 066)

Table 7 Leg measurements of Petrobunus torosus holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011011 039005 026012 028008 036006 040007 180Leg II 014013 061008 029010 043007 042006 072005 261Leg III 015015 051010 019015 037011 045006 046005 213Leg IV 034035 059012 034017 054015 067007 052006 300

Table 8 Leg measurements of Petrobunus torosus female paratype (ex MHNG PAL-0907) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 041008 022011 028010 037005 035006 174Leg II 010009 052007 023008 033007 037006 069005 224Leg III 014016 046010 025024 036012 042007 041005 204Leg IV 018017 054011 029016 049012 058007 048006 256

Molecular phylogeny of Laniatores Invertebrate Systematics 123

Fig 15 Phylogenetic relationships of Laniatores inferred from maximum likelihood analysis of all molecular data (ln L= ndash8372597) Inset topology ofTravunioidea excluding Briggsidae (ln L= ndash8336108) Numbers on nodes indicate bootstrap resampling frequencies

124 Invertebrate Systematics P P Sharma and G Giribet

We recovered a monophyletic Travunioidea which includesBriggsidae in all analyses (BS = 100PP = 100) corroboratingthe superfamilial placement of briggsids Briggsidae isrecovered sister to either Trojanella (ML) or Holoscotolemon(BI) or part of a grade with both of these taxa (BEAST) butthese placements are not supported (BS lt 50 PPBEAST = 085and PP = 051 respectively) Missing data for Briggsidaedepresses nodal support in ML analyses within Travunioideaobscuring interfamilial relationships In the absence ofBriggsidae we recover a sister relationship betweenSclerobunidae (Zuma acuta Goodnight amp Goodnight 1942)and the remaining Travunioidea (BS = 75) and themonophyly of Travuniidae +Cladonychiidae (BS = 77)

A recent molecular dating of Travunioidea obtained muchyounger dates than estimated herein in spite of similar taxaand molecular loci In that study Derkarabetian et al (2010)investigated the evolution of troglobitism in Sclerobunidae(also referred to as the lsquoNorth American triaenonychidsrsquo)and used the cladonychiid fossil Protoholoscotolemon(38ndash54Mya Ubick and Dunlop 2005) to constrain theminimum age of Travunioidea in addition to calibration pointsderived from geological ages of strata These practicesaccord with the scope of the troglobitism study (thedivergences of interest were comparatively recent ndash Plioceneor younger) but we did not utilise Protoholoscotolemon in ourdating for two reasons (1) we do not obtain an unambiguouslymonophyletic Cladonychiidae in our analyses and (2) theDevonian and Carboniferous fossils we utilised as calibrationpoints are sufficiently old to obtain a result consistent with anEocene cladonychiid fossil The different calibration pointsimplemented in the respective studies therefore account forthe discrepancy in the dating In addition the morphologicalconservatism of Opiliones makes it doubtful that the age ofProtoholoscotolemon is the maximum age of the superfamily

Our sampling of Insidiatores lineages remains limited andbarring the inclusion of Briggsidae additions to taxonomicsampling largely concern Grassatores Consequently continuedsampling and systematic studies of Insidiatores (eg Mendesand Kury 2008 Thomas and Hedin 2008 Derkarabetian et al2010) are instrumental and imperative to addressing outstandingquestions of phylogenetic relationships and morphologicalevolution A phylogeny of Triaenonychidae is particularlywanting

Early diverging Grassatores Phalangodidaeand Sandokanidae

The recovery of a monophyletic Grassatores (supported inall analyses BS = 99 PP = 100) is consistent with severalmorphological synapomorphies uniting this diverse groupsuch as the presence of two tarsal claws on walking legs IIIand IV However the basal topology of Grassatores has longbeen contentious Previously two superfamilies of Grassatoreswere recognised Oncopodoidea (with the single familySandokanidae (formerly Oncopodidae)) and lsquoGonyleptoidearsquo(with the remaining families) (Martens 1976 1986 Martenset al 1981) This dichotomy was largely based upon theunique morphology of Sandokanidae ndash characters such as thescutum completum (fused opisthosomal tergites) reduced tarsal

articles and genitalic structures which are not found in theremaining Grassatores (Martens 1980 Giribet et al 2002Sharma and Giribet 2009) It was alternatively contended thatthese characters constituted autapomorphies of Sandokanidaewhich was nested within lsquoGonyleptoidearsquo itself (Kury 2003)

In all analyses we obtained an initial divergence betweenPhalangodidae and the remaining Grassatores (BS = 100PP = 096) refuting the traditional dichotomy betweenSandokanidae and lsquoGonyleptoidearsquo Therefore we hereindefine Gonyleptoidea as the taxon consisting of AgoristenidaeCosmetidae Cranaidae Gonyleptidae Manaosbiidae andStygnidae The split between Phalangodidae and the remainingGrassatores has been postulated to correspond to the rifting ofthe ancient supercontinents Laurasia and Gondwana as thedistribution of Phalangodidae was believed to be strictlyHolarctic (Giribet et al 2010) However the inclusion of theMadagascar genus Remyus previously placed in Zalmoxidae(Starega 1989) within a monophyletic Phalangodidae indicatesbroader distribution of phalangodids ndash complementing theTriaenonychidae-Fumontana case discussed above Moreoverthe origin of Phalangodidae is estimated to have occurred around302Mya (95 HPD 264ndash335Mya) greatly predating thebreakup of the supercontinents These results indicate thatPhalangodidae may be narrowly defined and we consequentlytransfer Remyus to Phalangodidae (new familial assignment)

The unusual family Sandokanidae has been postulated to besister toPodoctidae (SharmaandGiribet 2009Giribet et al 2010)or to form agradewith Phalangodidae (Kuryrsquos lsquoPhalangodoidearsquopartly) In the present study ML and BI topologies reconstructSandokanidae as sister to the remaining non-phalangodidGrassatores albeit with insignificant nodal support (BS = 21PP = 078) Curiously the topology obtained byBEAST recoversthe clade (Sandokanidae + Podoctidae) nested within a singleclade of South-east Asian families (PPBEAST = 085) Theseresults do not unambiguously favour one hypothesis overanother and the phylogenetic placement of Sandokanidae inthe Grassatores tree therefore remains debatable

Regardless of the inclusion of Sandokanidae within theSouth-east Asian group of families that the sister family to theremaining Grassatores is Phalangodidae not Sandokanidaeindicates that the peculiar morphology of sandokanids is theresult of multiple apomorphic reversals not the retention ofplesiomorphic characters (Martens and Schwendinger 1998)The large scutum and low tarsomere number found inSandokanidae also occur in Trogulidae and Dicranolasmatidae(suborder Dyspnoi) and all Cyphophthalmi and appear to haveevolved convergently This morphology may reflect adaptationsto a shared ecological niche all these groups inhabit leaf litterinclude no arboricolous species and are limited in vagility ndash

although these life history traits are also found in other groupsHowever this hypothesis has yet to be rigorously tested

Sandokanidae is presently one of few families of Grassatoresfor which a molecular phylogeny assessing intergenericrelationships is available (Sharma and Giribet 2009) andconsistent with earlier results the monophyly of Sandokanidaeis strongly supported (BS = 100 PP = 100) as is the initial splitbetweenMartensiellus and the remaining genera (an undescribedspecies was referred to as lsquogen sprsquo by Sharma and Giribet 2009but subsequent morphological investigation revealed this to be

Molecular phylogeny of Laniatores Invertebrate Systematics 125

Fig 16 Phylogenetic relationships of Laniatores inferred fromBayesian inference analysis of allmolecular data Numbers on nodes indicateposterior probabilities

126 Invertebrate Systematics P P Sharma and G Giribet

a miniature species of Martensiellus P J Schwendinger perscomm) (BS = 92 PP = 100) Intergeneric relationshipsof sandokanid genera are contingent upon analytical treatmentof molecular partitions (with additional sandokanid exemplarsdata not shown) reflecting conflict among datasets documentedby Sharma and Giribet (2009)

The other South-east Asian families

Epedanidae was postulated to be sister to Gonyleptoidea in acladistic analysis based on morphological characters (Kury1993) Subsequently Kury (2003) proposed that Epedanidaewas sister to the clade (Assamiidae (Stygnopsidae +Gonyleptoidea)) The single epedanid previously included in amolecular phylogeny was similarly unstable in placement eithernestingwithin Assamiidae or sister to the African lsquophalangodidsrsquo(Conomma and Maiorerus) in neither case with appreciablenodal support (Giribet et al 2010) Furthermore previousinclusion of several lineages (eg Tithaeus) within Epedanidaethat do not bear characters typical of true epedanids ndash sexuallydimorphic chelicera with heavy dentition elongate andspined pedipalpi male genitalia with setae surroundingthe capsula interna ndash has also made this family difficult todefine Consequently we included only Epedaninae (egPseudoepedanus Alloepedanus and Euepedanus) as exemplarsof true epedanids the systematic validity of the remaining threesubfamilies (and particularly the inclusion of Dibuninae) isbeyond the scope of this study and remains to be investigated

The monophyly of each of four South-east Asian families ndashEpedanidae (represented by epedanines) TithaeidaePetrobunidae and Podoctidae ndash is recovered with high nodalsupport (all BS = 100 PP = 100) These lineages are somehowrelated to each other and while they form a clade in bothML andBI analyses this result receives insignificant nodal support(PP = 077) In the topology recovered by BEAST the South-east Asian families form a clade that includes Sandokanidaea result consistent with the distribution of sandokanids albeitwithout support (PPBEAST = 085) Tithaeidae is probably closelyrelated to Podoctidae given the occurrence of a deeply cleftventral plate resulting in two flanking prongs in themale genitaliaof both families (Suzuki 1977 Lian et al 2008 Fig 19) Inaddition the clade (Podoctidae +Tithaeidae) is recovered withmoderate support in ML and BI analyses (BS = 59 PP = 097)In none of the analyses is Tithaeidae nested within or sister toEpedanidae sensu stricto

The morphology of Petrobunidae suggests some relationshipto previously described South-east Asian families oralternatively Phalangodidae but not inclusion within any ofthese (Fig 19) Molecular sequence data do not support anyspecificplacement ofPetrobunidae although it clusterswithotherSouth-east Asian families in all analyses and is recovered sisterto Epedanidae in two topologies (BI and BEAST)

Gonyleptoidea and Stygnopsidae

With over 2500 described species the superfamilyGonyleptoidea constitutes the most diverse and (arguably) themost charismatic lineage of Opiliones with most of this diversityconcentrated in Amazonia (some cosmetids occur as far north asthe mid-Atlantic states of the US) In a previous analysis

relationships of gonyleptoid families were unsupported andordid not accordwithmorphological studies (Giribet et al 2010) Inparticular the placement of the agoristenid exemplar Avimaalbiornata (Goodnight amp Goodnight 1947) ndash the putativesister family to the remaining Gonyleptoidea ndash within aparaphyletic Cranaidae was particularly suspect given thelimited availability of sequence data for Avima (complete 18SrRNA a300-bp fragmentof 28S rRNA andCOI) In addition thesister group of Gonyleptoidea was ambiguous and contingentupon analytical parameters

Redoubling sequencing efforts and addition of taxaparticularly in the case of Agoristenidae (currently sequencedfor 12S rRNA complete 18S rRNA a 2000-bp fragment of 28SrRNA COI H3 and EF-1a) improved the assessment ofgonyleptoid relationships A monophyletic Gonyleptoidea(BS = 58 PP = 066) is recovered sister to the familyStygnopsidae (BS = 57 PP = 100) Within Gonyleptoidea asplit between Agoristenidae and the remaining gonyleptoids isstrongly supported (BS = 100 PP = 100) followed by thedivergence of Stygnidae (BS = 71 PP = 099) Thisplacement of Agoristenidae is supported by morphologicalstudies (Pinto-da-Rocha and Kury 2007) although in aminority of tree topologies sampled in BI analysesAgoristenidae is sister to Stygnopsidae (hence lower nodalsupport for the monophyly of Gonyleptoidea in BI) Theplacement of Manaosbiidae is uncertain it is recoveredsister to either (Gonyleptidae +Cranaidae) (PP = 089) or toCosmetidae (PPBEAST = 092) but these results are notsupported Cranaidae is recovered as monophyletic (BS = 99PP = 100) and nested within a paraphyletic Gonyleptidae

The present sampling of Cosmetidae and Gonyleptidae doesnot do justice to the diversity of these lineages (~700 and 800described species respectively) A phylogenetic assessment ofall 16 subfamilies of Gonyleptidae alone constitutes the subjectof an arduous and exacting study Fortunately cladistic analysesof morphological characters continue to advance phylogeneticinvestigation of subfamilial lineages (eg BourguyiinaeYamaguti and Pinto-da-Rocha 2009 Goniosomatinae DaSilvaandGnaspini 2009HernandariinaeDaSilva andPinto-da-Rocha2010) Elucidating the phylogeny of Gonyleptoidea is one of themost exciting research topics in the study of Opiliones

The Afrotropical families

The third most diverse family of Laniatores Assamiidaeconstitutes the dominant opiliofauna of the African continent(excluding Madagascar) with some lineages occurring in SouthAsia the Indo-Malay Archipelago and Australia (Trionyxellinaeand Dampetrinae) Proposed to be related to EpedanidaeStygnopsidae andor Gonyleptoidea (Kury 2007) on the basisof genitalic structures assamiids were not recovered asmonophyletic in a previous study (paraphyly was induced byeither Epedanidae orAfricanBiantidae) and the placement of thesubfamily Trionyxellinae was particularly suspect (Giribet et al2010) Trionyxellinae was considered a separate family byMello-Leitatildeo (1949) though others considered it nested withinAssamiidae (eg Starega 1992) In our analyses the monophylyof Assamiidae is supported (BS = 79 PP = 100)lsquoTrionyxellinaersquo (Trionyxella and Mysorea both with a

Molecular phylogeny of Laniatores Invertebrate Systematics 127

Fig 17 Evolutionary time tree of Laniatores inferred fromBEASTanalysis of allmolecular data Coloured bars indicate 95highestposterior density (HPD) intervals for nodes of interest Numbers on nodes indicate posterior probabilities asterisks indicate posteriorprobability of 100

128 Invertebrate Systematics P P Sharma and G Giribet

pseudonychium on the third and fourth tarsi) is a diphyletic entitynested within the other Assamiidae (for the node renderingdiphyly BS = 100 PP = 100) disfavouring family status fortrionyxellines

The African lsquophalangodidsrsquo (sometimes called thelsquoPyramidops grouprsquo) were recognised as a new family byStarega (1992) but not formalised and included 13 genera(Conomma Pyramidops and related lineages) Consistentwith this hypothesis we recovered strong support for thePyramidops group (represented by Conomma and cfPyramidops) as a lineage separate from the true Phalangodidae(egBishopella and Scotolemon) recapitulating a previous result(Giribet et al 2010) The African lsquophalangodidsrsquowere recoveredas the sister lineage of Assamiidae although this relationshipis variably supported in our analyses (BS = 40 PP = 095PPBEAST = 100) A review and formal description of thePyramidops group as a new family lsquoPyramidopidaersquo ndash a namewidely available on the internet including GBIF but notformalised ndash is undertaken elsewhere (Sharma et al 2011)

While we have endeavoured to improve the sampling ofAssamiidae from South-east Asia the internal systematics ofthis family remain a high value target for phylogenetic researchHowever revision of assamiid systematics is inherently difficultfor two reasons (1) the family is peppered with questionablehierarchies and monotypic genera (~12 subfamilies and 250genera for less than 500 described species) and (2) occurs insome of the most inaccessible regions of the world namely sub-Saharan Africa

In all analyses the clade (Assamiidae + Pyramidopidae) issister to the clade (Zalmoxoidea + Samooidea) though this resultis only supported in one analysis (PP= 100) The divergence ofthese four lineages is estimated to have occurred 252Mya and isconsistent with diversification in West Tropical Gondwanaoccurring at least 140million years before the fragmentation ofthis terrane (~110Mya)

Zalmoxoidea

As currently defined the largely Neotropical superfamilyZalmoxoidea includes four families FissiphalliidaeGuasiniidae Icaleptidae and Zalmoxidae Guasiniidae hasnever before been included in a molecular phylogeny In thepresent study we sequenced a guasiniid for six genes and ouranalyses strongly support theplacement ofGuasiniidae as sister tothe samooid family Kimulidae (formerly Minuidae) (BS = 86PP = 098 PPBEAST = 099) and this clade in turn sister to anothersamooid family Escadabiidae (BS = 65 PP = 096PPBEAST = 100) The families Fissiphalliidae Icaleptidaeand Zalmoxidae in turn form a separate clade (BS = 100PP = 100 PPBEAST = 100) with strong support for the sisterrelationship of Zalmoxidae and Fissiphalliidae (BS = 99PP = 100 PPBEAST = 100) corroborating relationshipsproposed by morphological studies (Kury and Peacuterez G 2002Pinto-da-Rocha and Kury 2003b)

Previous analyses have suggested that Samooidea (discussedbelow) is a paraphyletic grade with respect to Zalmoxoidea(Giribet et al 2010) In the present analysis the cladeSamooidea + Zalmoxoidea is strongly supported (BS = 85PP = 100 PPBEAST = 100) as previously suggested by PeacuterezGonzaacutelez and Kury (2007) and by excluding Escadabiidae and

Kimulidae Samooidea is rendered a monophyletic entity albeitwith limited support (BS = 53 PP = 062 PPBEAST = 081) Thestrong support from molecular sequence data for the cladeincluding Escadabiidae Kimulidae and the four zalmoxoidfamilies (BS = 89 PP = 100 PPBEAST = 100) suggests thatthese may form a natural group

Re-examination of the morphology of these six families incomparisonwith true samooid lineages (Biantidae Samoidae andStygnommatidae) corroborates the exclusionofEscadabiidae andKimulidae from true Samooidea Escadabiidae and Kimulidae(1) lack the scopula characteristic of Samoidae and stenostygnineBiantidae (2) lack a sexually dimorphic metatarsus IIIcharacteristic of Samoidae Stygnommatidae and stenostygnineBiantidae and (3) lack a penial calyx characteristic of SamoidaeConsistent with placement within Zalmoxoidea EscadabiidaeandKimulidae (1) possess a small oculariumbearing the eyes thatis removed from the margin of the carapace (2) bear a wellmarked dorsal protuberance (bulla) on the proximal segmentof the chelicera that lacks armature and (3) possess sexuallydimorphic leg IV segments particularly the femur and tibiawhich may be variedly arcuate incrassate and spinedAdditionally Escadabiidae Fissiphalliidae and Zalmoxidae allpossess sexually dimorphic tegumental glandopeningson tibia IIwhereas Biantidae Samoidae and Stygnommatidae possessthese structures on metatarsus III (Willemart et al 2010)While data on tegumental gland openings are only availablefor a small handful of species these may constitute significantdiagnostic characters for species wherein sexual dimorphismdoes not manifest itself in the readily observable form ofenlarged and spiny segments

Given the results of our phylogenetic analyses maintainingSamooidea (as currently defined) renders it a paraphyletic gradewith respect to a diphyletic Zalmoxoidea (as currently defined)Consequently based on the aforementioned morphologicalcharacters and robust molecular phylogenetic signal wetransfer Escadabiidae and Kimulidae to Zalmoxoidea

Samooidea

A previous cladistic analysis based upon morphological datasuggested close relationship between six families ndash BiantidaeEscadabiidae Kimulidae Podoctidae Samoidae andStygnommatidae ndash thenceforth known as Samooidea (Kury1993) the only pantropical Laniatores superfamily HoweverPodoctidae does not have any obvious relationship to Samooideaand has subsequently been transferred (Kury 2007) in ouranalyses Podoctidae is sister to Tithaeidae or Sandokanidaeie distantly related to all samooid families Moreover ouranalyses strongly favour the exclusion of Escadabiidae andKimulidae from Samooidea

The remaining three families ndash Biantidae Samoidae andStygnommatidae ndash are distributed in the Neotropics and partsof Africa with a handful of suspect lineages in South-east AsiaRe-examination and reassignment of many Samoidae genera(eg the Indonesian lsquosamoidrsquo Waigeucola palpalis PeacuterezGonzaacutelez 2011) suggest that the range of Samoidae does notinclude South-east Asia Peacuterez Gonzaacutelez and Kury (2007) alsoobserved that the lsquosamoidsrsquo of Africa Madagascar and theSeychelles may not be true Samoidae either Similarlyinclusion of the genus Stygnomimus an Indonesian lineage

Molecular phylogeny of Laniatores Invertebrate Systematics 129

within Stygnommatidae is highly dubious as the twoIndonesian lsquostygnommatidsrsquo are either highly autapomorphic(Stygnomimus conopygus (Roewer 1927)) or described on the

basis of a generic female that is not readily distinguishable fromfemales of other species (Stygnomimus malayensis (Suzuki1970))

Fig 18 Strict consensus of tree topologies obtained by all phylogenetic analyses

130 Invertebrate Systematics P P Sharma and G Giribet

Previous efforts to assess the systematic validity of Samooideaby means of molecular sequence data were limited insofar asonly two Samoidae three Biantidae (all Metabiantes) and twoStygnommatidae were sampled (Giribet et al 2010) Thesampling of Samoidae was especially problematic only asingle Neotropical adult (Pellobunus) and one African juvenilesamoid (lsquoSamoidae gen sprsquo) were included The designation ofthe latter is suspect as juveniles of Samoidae are oftenindistinguishable from the juveniles of other lineages becausemany diagnostic secondary sexual characters in Grassatores(eg spines and incrassate appendages) are not acquired untilafter several postembryonic stages (Townsend et al 2009)

In the present study though the type genus of Samoidae(Samoa from Samoa) was not available we sequenced theclosely related genus Badessa (from Fiji collected byP P S) as well as additional Biantidae and StygnommatidaeOur analyses recovered a monophyletic Samooidea (excludingEscadabiidae and Kimulidae BS = 53 PP = 062) withSamoidae sensu stricto (Pellobunus +Badessa BS = 100PP = 100) nested within a paraphyletic Stygnommatidae aplacement that is supported (BS = 87 PP = 100) Bycontrast the African lsquosamoidrsquo is sister to the AfricanBiantidae a relationship that is also well supported(BS = 100 PP = 100) These relationships suggest a basal

Fig 19 Cladogram of male genitalic evolution in South-east Asian families superimposed upon a schematised molecular phylogeny based on ML and BIanalyses of all molecular data Exemplars (a) Pseudoepedanus doiensis Suzuki 1969 (redrawn from Suzuki 1969) dorsal view (b) Pseudoepedanus doiensisSuzuki 1969 (redrawn from Suzuki 1969) ventral view (c) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) ventral view(d) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) dorsal view (e) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki1976) dorsal view (f) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki 1976) ventral view (g) Petrobunus torosus lateral view (h) ZalmoxidagibberaSuzuki 1969 dorsal view (i)Zalmoxida sp (MCZDNA102677) dorsolateral view (j)Metatithaeus rubidusSuzuki 1969 (redrawn fromSuzuki 1969)ventral view (k)Tithaeus kokutnusSuzuki 1985 (redrawn fromSuzuki 1985) ventral view (l)Tithaeus similisSuzuki 1985 (redrawn fromSuzuki 1985) ventralview (m)DongmoaoshimensisSuzuki 1964 (redrawn fromSuzuki 1964) ventral view (n)Bonea longipalpisSuzuki 1977 (redrawn fromSuzuki 1977) ventralview (o) Santobius annulipes Soslashrensen 1886 (redrawn from Kury and Machado 2009) ventral view (p) Lomanius longipalpus mindanaoensis Suzuki 1977(redrawn from Suzuki 1977) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 131

dichotomy within Samooidea that corresponds to one groupof Neotropical and Pacific lineages and a second group ofAfrican lineages However as we were unable to samplestenostygnine (Neotropical) and Indo-Pacific Biantidae aswell as numerous monotypic genera dubiously placed inSamoidae biogeographical extrapolations for Samooidea aretenuous (discussed below)

The internal relationships of Samooidea suggest that themorphology of Samoidae may have evolved convergently Asthe African samoid is a juvenile (the same specimen previouslysequenced by Giribet et al 2010 now sequenced for additional28S rRNA and other genes) we cannot rule out the possibility ofa monophyletic Samoidae that includes African species (thespecimen in question could be a juvenile biantid) In any casethe paraphyly of Stygnommatidae and putative polyphyly ofSamoidae strongly advocate systematic revision of samooidfamilies as currently defined corroborating hypotheses of non-monophyly based on morphology (Peacuterez Gonzaacutelez 2007 PeacuterezGonzaacutelez and Kury 2007) Our sampling of these families isinsufficient to advocate specific taxonomic action but an ongoing

study of samooidean systematics will shed more light on thevalidity of constituent families (A Peacuterez Gonzaacutelez work inprogress)

Biogeography of Zalmoxoidea and Samooidea

While most superfamilies of Grassatores are restricted to aspecific part of the tropics (eg Neotropics South-east Asia)two are distributed in multiple biogeographical provincesSamooidea occurs in the Neotropics and Afrotropics withquestionable records from South-east Asia Zalmoxoidea isconcentrated in the Neotropics with the exception of oneIndo-Pacific lineage of Zalmoxidae (represented here byZalmoxis sp) The ages and distributions of Samooidea andZalmoxoidea suggest that their biogeography was influencedby the fragmentation of West Tropical Gondwana ndash causingthe former to diverge basally throughout West TropicalGondwanan terranes and the latter to become isolated to theNeotropics (with possible subsequent dispersal)

Fig 20 Ancestral range reconstructions for Samooidea +Zalmoxoidea inferred by Lagrange using stratified models corresponding to two vicariant events(indicated by dotted lines) Coloured squares at terminals indicate ranges occupied by sampled species Coloured squares on nodes indicate ranges reconstructedfor hypothetical ancestors Numbers on nodes indicate relative probability of ranges reconstructed

Fig 21 Best hypothesis of Laniatores relationships based on all available evidence Bracketed nodes indicate non-monophyletic entities Dashed line indicatesambiguity in the placement of Sandokanidae (alternatively placed as shown or as sister to Podoctidae) Exemplars of Laniatores diversity are Synthetonychiaoliveae (Synthetonychiidae) Equitius doriae (Triaenonychidae) Hadziana clavigera (Travuniidae) Erebomaster flavescens flavescens (Cladonychiidae)Scotolemon lespesi (Phalangodidae) Palaeoncopus gunung (Sandokanidae) Santobius sp (Podoctidae) Tithaeus sp (Tithaeidae) Petrobunus spinifer(Petrobunidae) Alloepedanus sp (Epedanidae) Hoplobunus sp (Stygnopsidae) Torreana spinata (Agoristenidae) Stygnoplus clavotibialis (Stygnidae)Metalibitia paraguayensis (Cosmetidae)Acutisoma longipes (Gonyleptidae)Conommaoedipus (Pyramidopsgroup)Mysorea thaiensis (Assamiidae)Lacurbssp (Biantidae) Stygnomma sp (Stygnommatidae) Badessa sp (Samoidae) Guasinia sp (Guasiniidae) Icaleptes sp (Icaleptidae) Fissiphallius chicoi(Fissiphalliidae) Zalmoxis sp (Zalmoxidae) Kimula goodnightiorum (Kimulidae)

132 Invertebrate Systematics P P Sharma and G Giribet

Molecular phylogeny of Laniatores Invertebrate Systematics 133

To test this hypothesis we conducted likelihood analysisof range evolution using the program Lagrange (Ree et al2005 Ree and Smith 2008) for the clade (Zalmoxoidea +Samooidea) The stratified analysis resulted in a globalmaximum likelihood of ndashlnL= 1556 outperforming anunconstrained analysis that did not include any dispersalconstraints (ndashlnL= 1676) Likelihood analysis of rangeoptimisation (Fig 20) indicates that the ancestral range ofSamooidea includes both the Afrotropics and the Neotropics(relative probability pr = 1000) but a subsequent split occursbetween an African lineage (pr = 1000) and a NeotropicalIndo-Pacific lineage with a Neotropical ancestral range (pr = 0986)Samoidea of the Indo-Pacific occur on young oceanic islands(eg Fiji Samoa) indicating recent transoceanic dispersal fromthe Neotropics

Ancestral range reconstructions for Samooidea are allconsistent with estimated divergence times for these clades(diversification of Samooidea predates the rifting of WestAfrica from northern South America) favouring an underlyingvicariant process for the basal topology with subsequent recentdispersal events However these results are contingent upon thepresent sampling which does not include all samooid lineages(eg stenostygnine Biantidae) but basal range reconstructionsare likely unaffected (eg Stenostygninae is exclusivelyNeotropical)

In contrast the ancestor of Zalmoxoidea is reconstructedas singularly Neotropical (pr = 0996) This is consistent withisolation of a zalmoxoid ancestor to Amazonia which thenradiated ~191Mya Subsequent ancestral ranges are alsoreconstructed as Neotropical with high relative probabilityHowever the ancestral range of the clade (Icaleptidae +Fissiphalliidae + Zalmoxidae) is ambiguously reconstructedas either Neotropical (pr = 0935) or Neotropical + Indo-Pacific(pr = 0064) as is the split between Fissiphalliidae andZalmoxidae (Neotropical pr = 0856 Neotropical + Indo-Pacific pr = 0141)

These results suggest that the Indo-Pacific lineage ofZalmoxidae which split from Neotropical Zalmoxidae ~83Myais likely the result of long-distance dispersal from the NeotropicsHowever due to the persistence of transantarctic connectionsbetween the Australian plate and temperate South America untilthe Tertiary a competing vicariant scenario cannot be ruled outwithout densely sampling zalmoxid diversity The biogeographyof Zalmoxidae is presently being explored in greater detail in aseparate study (P P Sharma unpubl data)

Finally the ancestral range of (Samooidea + Zalmoxoidea)includes both Africa and the Neotropics (pr = 0957) consistentwith a tropical West Gondwanan ancestor This resultlends circumstantial evidence to a sister relationship of theAfrotropical families (Assamiidae + Pyramidopidae) and theclade (Samooidea + Zalmoxoidea) recovered in all analyses

The diversification of Grassatores

While numerous interfamilial relationships are supported inthis study particularly among gonyleptoid and zalmoxoidfamilies some relationships between superfamilies ofGrassatores are not supported and are contingent upon

analytical treatments namely the deployment of substitutionmodels and data partitioning (Fig 21) The cause of thisinstability could be related to insufficient data particularly inthe EF-1a partition (the length of an intron which can exceed400 bp in some taxa makes this gene particularly difficult toamplify) However examination of clade divergence timessuggests that rapid diversification of Grassatores lineagescould in part augment phylogenetic uncertainty in basal partsof the topology

The split between Phalangodidae and the remainingGrassatores is estimated to have occurred ~302Mya but aseries of divergences resulted in the origin of all superfamiliallineages between 232 and 271Mya Relative to the estimatedage of Laniatores (348Mya) this 39-million-year period isremarkably narrow and inherently problematic as the amountof phylogenetic signal for a given stem subtending a node isdirectly proportional to the amount of time that the stem inquestion spans (Lanyon 1988 Rokas and Carroll 2006) Thesmall internal edge lengths of the stems corresponding to basaldivergences of non-phalangodid Grassatores (Figs 15 16)combined with the ancient age of lineages derived from thesedivergences result in relationships that are difficult to estimatewithout a large amount of sequence data andor the inclusion ofdata that are less afflicted by homoplasy (because longer edgelengths imply more indel and substitution events on edges)(Whitfield and Lockhart 2007)

We additionally observe that the origins of most Grassatoressuperfamilies occur in the wake of the end-Permian massextinction (~254Mya) Rapid radiation in the wake of a massextinction has occurred in multiple metazoan lineagesthe putative result of relaxed selection and opening ofpreviously occupied ecological niche space (Labandeira andSepkoski 1993 Sahney and Benton 2008) The rapiddiversification of early Grassatores lineages could be anexample of this phenomenon but this hypothesis is difficult totest in the absence of Mesozoic Grassatores fossils (reviewed byDunlop 2007)

Finally we observe that contrary to traditional hierarchiesproposed for Laniatores many of the clades recovered in ouranalyses correspond to geographical regions particularly in thecase of Grassatores For example the southern hemispheretriaenonychids are restricted to temperate Gondwananlandmasses Gonyleptoidea and their sister group Stygnopsidaeform a Neotropical (AmazonianMesoamericanAntillean) cladethat excludes Assamiidae which has been hypothesised to be amember of a broader Gonyleptoidea (Kury and Cokendolpher2000 Mendes and Kury 2007) In our analyses Assamiidae isin fact a member of a largely Afrotropical clade together withthe Pyramidopidae South-east Asian families usually form oneclade (at most two) albeit with limited support Samooideafamilies are divided into two clusters African and NeotropicalWith one exception (described above) Zalmoxoidea is restrictedto the Neotropics The ages that we estimate for Laniatoresradiations are consistent with ancient diversification beforethe fragmentation of Pangaea An ancient diversification inconjunction with the climatic stability of the tropics may in partexplain the comparatively greater diversity of the armouredharvestmen with respect to the other Opiliones suborders

134 Invertebrate Systematics P P Sharma and G Giribet

Acknowledgements

Weare indebted toPeter J Schwendingerwho collected andprovidedmost ofthe material for study from South-east Asia Some Thai and most of theNeotropical Laniatores were obtained from the TIGER (Thailand InventoryGroup for Entomological Research) and LLAMA (Leaf Litter Arthropods ofMeso-America) projects toC Lienhard and J Longino respectivelyMaterialfrom Madagascar was generously contributed by Charles Griswold and theCalifornia Academy of Sciences Jesse Czekanski-Moir in conjunction withthe Belau NationalMuseum contributed elusive specimens from Palau AbelPeacuterezGonzaacutelez identifiedmanyNeotropical species included in the study andcontributed specimens fromCubaRicardoPinto-da-Rocha identified someofthe live photographed animals from the Neotropics Discussions with RonaldMClouseAbelPeacuterezGonzaacutelezAdrianoBKury andCarlosEPrieto refinedmanyof the ideas presentedhereTwoanonymous reviewers and the associateeditor provided comments that helped to improve an earlier version ofthis manuscript Laura Leibensperger sorted and accessioned TIGER andLLAMA material as well as MCZ type material Adam Graham and theCenter forNanoscaleStudies atHarvardUniversityprovided support forSEMwork Collecting efforts in New Caledonia were greatly facilitated by theguidance of Herveacute Jourdan (Institut de rechercheacute pour de developpementNoumea) and his teammembers Collecting efforts in Fiji weremade possibleby Marika Tuiwawa (University of the South Pacific Suva) and his teammembers Hilda Waqa and Tokasaya lsquoToxrsquo Cakacaka we are especiallygrateful to Tox for his good company during fieldwork and to his familyfor graciously enabling a visit toOvalau SuzieYee Shawprovided invaluablelogistical support in Fiji and her sons Colin and Joshua Yee Shaw assistedwith sorting Fijian material Fieldwork in Indonesia and West Africa wassupported by two MCZ Putnam Expedition Grants awarded to RonaldM Clouse and G G (2006) and to G G (2009) respectively Fieldworkin New Caledonia was supported by the Goelet award the Kalathia FamilyTrust and the Explorers Club awarded to P P S in 2006 Fieldwork in Fijiand in Palauwas supported by twoMCZPutnamExpeditionGrants awardedto P P S (2008) and to Ronald M Clouse and P P S (2010) respectivelyP P S was supported by a Faculty of Arts and Sciences Graduate Fellowshipfrom Harvard University

References

Castresana J (2000) Selectionof conservedblocks frommultiple alignmentsfor their use in phylogenetic analysis Molecular Biology and Evolution17 540ndash552

Colgan D J McLauchlan A Wislon G D F Livingston S MacaranasJ Edgecombe G D Cassis G and Gray M R (1998) Molecularphylogenetics of the Arthropoda relationships based on histone H3and U2 snRNA DNA sequences Australian Journal of Zoology 46419ndash437 doi101071ZO98048

DaSilva M B and Gnaspini P (2009) A systematic revision ofGoniosomatinae (Arachnida Opiliones Gonyleptidae) with a cladisticanalysis and biogeographical notes Invertebrate Systematics 23530ndash624 doi101071IS09022

DaSilva M B and Pinto-da-Rocha R (2010) Systematic review andcladistic analysis of the Hernandariinae (Opiliones Gonyleptidae)Zoologia 27 577ndash642

Derkarabetian S Steinmann D B and Hedin M (2010) Repeatedand time-correlated morphological convergence in cave-dwellingharvestmen (Opiliones Laniatores) from montane western NorthAmerica PLoS ONE 5 e10388 doi101371journalpone0010388

Drummond A J and Rambaut A (2007) BEAST Bayesian evolutionaryanalysis by sampling trees BMC Evolutionary Biology 7 214doi1011861471-2148-7-214

Drummond A J Ho S Y W Phillips M J and Rambaut A (2006)Relaxed phylogenetics and dating with confidence PLoS Biology 4 e88doi101371journalpbio0040088

Dunlop J A (2007) Paleontology In lsquoHarvestmen The Biology ofOpilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 247ndash265 (Harvard University Press Cambridge MA USA)

Dunlop J A and Anderson L I (2005) A fossil harvestman (ArachnidaOpiliones) from theMississippian of East Kirkton Scotland The Journalof Arachnology 33 482ndash489 doi10163604-791

Dunlop JAAndersonL IKerpH andHassH (2003)Preservedorgansof Devonian harvestmen Nature 425 916 doi101038425916a

Dunlop J A Anderson L I Kerp H and Hass H (2004) A harvestman(Arachnida Opiliones) from the Early Devonian Rhynie chertsAberdeenshire Scotland Transactions of the Royal Society ofEdinburgh Earth Sciences 94 341ndash354

Edgar R C (2004) MUSCLE multiple sequence alignment with highaccuracy and high throughput Nucleic Acids Research 32 1792ndash1797doi101093nargkh340

Edgecombe G D and Giribet G (2006) A century laterndash a total evidencere-evaluation of scutigeromorph centipedes (Myriapoda Chilopoda)Invertebrate Systematics 20 503ndash525 doi101071IS05044

Edgecombe G D Giribet G and Wheeler W C (2002) Phylogeny ofHenicopidae (Chilopoda Lithobiomorpha) a combined analysis ofmorphology and five molecular loci Systematic Entomology 2731ndash64 doi101046j0307-6970200100163x

FolmerOBlackMHoehWLutzR andVrijenhoekRC (1994)DNAprimers for amplification ofmitochondrial cytochrome c oxidase subunit Ifrom diverse metazoan invertebrates Molecular Marine Biology andBiotechnology 3 294ndash299

Forster R R (1954) The New Zealand harvestmen (sub-order Laniatores)Canterbury Museum Bulletin 2 1ndash329

Giribet G and Kury A B (2007) Phylogeny and biogeography InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 62ndash87 (Harvard University PressCambridge MA USA)

Giribet G Carranza S Baguntildeagrave J Riutort M and Ribera C (1996) Firstmolecular evidence for the existence of a Tardigrada +Arthropoda cladeMolecular Biology and Evolution 13 76ndash84

Giribet G Rambla M Carranza S Baguntildeagrave J Riutort M and Ribera C(1999) Phylogeny of the arachnid order Opiliones (Arthropoda)inferred from a combined approach of complete 18S and partial 28Sribosomal DNA sequences and morphology Molecular Phylogeneticsand Evolution 11 296ndash307 doi101006mpev19980583

Giribet G Edgecombe G D Wheeler W C and Babbitt C (2002)Phylogeny and systematic position of Opiliones a combined analysis ofchelicerate relationships using morphological and molecular dataCladistics 18 5ndash70

Giribet G Vogt L PeacuterezGonzaacutelez A Sharma P andKury A B (2010)A multilocus approach to harvestman (Arachnida Opiliones) phylogenywith emphasis on biogeography and the systematics of LaniatoresCladistics 26 408ndash437

Hara M R Gnaspini P and Machado G (2003) Male egg guardingbehavior in the Neotropical harvestman Ampheres leucopheus (Mello-Leitatildeo 1922) (Opiliones Gonyleptidae) The Journal of Arachnology 31441ndash444 doi101636S02-32

Hedin M Derkarabetian S McCormack M and Richart C (2010) Thephylogenetic utility of the nuclear protein-encoding gene EF-1a forresolving recent divergences in Opiliones emphasizing intronevolution The Journal of Arachnology 38 9ndash20 doi101636HA09-491

Huelsenbeck J P and Ronquist F (2005) Bayesian analyses of molecularevolution using MrBayes In lsquoStatistical Methods in MolecularEvolutionrsquo (Ed R Nielsen) (Springer New York)

HunterRK ProundDNBurns JA Tibbetts JA andTownsendVR(2007) Parental care in the Neotropical harvestman Phareicranauscalcariferus (Opiliones Cranaidae) The Journal of Arachnology 35199ndash201 doi101636ST06-181

Molecular phylogeny of Laniatores Invertebrate Systematics 135

Kocher T D Thoma W K Meyer A Edwards S V Paumlaumlbo SVillablanca F X and Wilson A C (1989) Dynamics ofmitochondrial DNA evolution in animals amplification andsequencing with conserved primers Proceedings of the NationalAcademy of Sciences of the United States of America 86 6196ndash6200doi101073pnas86166196

Kury A B (1993) Anaacutelise filogeneacutetica de Gonyleptoidea (ArachnidaOpiliones Laniatores) PhD Thesis Universidade de Satildeo Paulo SatildeoPaulo Brazil

Kury A B (2003) Annotated catalogue of the Laniatores of the NewWorld (Arachnida Opiliones) Revista Ibeacuterica de AracnologiacuteaVolumen Especial Monograacutefico 1 1ndash337

Kury A B (2006) Checklist of valid genera of Opiliones of theWorld Museu NacionalUFRJ Available from httpwwwmuseunacionalufrjbrmndiAracnologiachecklaniatorhtm [Accessed1 February 2011]

Kury A B (2007) Podoctidae Roewer 1912 In lsquoHarvestmen The Biologyof Opilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 221ndash224 (Harvard University Press Cambridge MA USA)

Kury A B and Cokendolpher J C (2000) Opiliones In lsquoBiodiversidadTaxonomiacutea y Biogeografiacutea de Artoacutepodos de Meacutexico Hacia una Sintesisde su Conocimientorsquo vol 2 (Eds J E Llorente E Gonzaacutelez andN Papavero) pp 137ndash157 (Universidad Nacional Autoacutenoma deMexico Meacutexico DF Mexico)

Kury A B and Machado G (2009) Notes on Santobius from Vanuatu andFiji and the status of the eastern Melanesian Ibalonius (ArachnidaOpiliones Podoctidae) Zoological Studies 48 524ndash538

Kury A B and Peacuterez G A (2002) A new family of Laniatores fromnorthwestern South America (Arachnida Opiliones) Revista Ibeacuterica deAracnologiacutea 6 3ndash11

Labandeira C C and Sepkoski J J (1993) Insect diversity in the fossilrecord Science 261 310ndash315 doi101126science11536548

Lanyon S M (1988) The stochastic mode of molecular evolutionwhat consequences for systematic investigations The Auk 105565ndash573

Lian W-G Zhu M-S and Kury A B (2008) A new species of the genusTithaeus from China (Arachnida Laniatores Epedanidae) Zootaxa1841 53ndash60

Machado G Requena G S Buzatto B A Osses F and Rossetto L M(2004) Five new cases of paternal care in harvestmen (ArachnidaOpiliones) implications for the evolution of male guarding in theNeotropical family Gonyleptidae Sociobiology 44 577ndash598

Martens J (1976) Genitalmorphologie System und Phylogenie derWeberknechte (Arachnida Opiliones) Entomologica GermanicaZeitschrift fuumlr das Gesamtgebiet der Wissenschaftlichen Entomologie3 51ndash68

Martens J (1980) Versuch eines phylogenetischen Systems der OpilionesIn lsquoProceedings 8th International Congress of Arachnology ViennaVerhandlungenrsquo (Ed J Gruber) pp 355ndash360 (Vienna Austria)

Martens J (1986) Die Grossgliederung der Opiliones und die Evolutionder Ordnung (Arachnida) Actas del X Congreso Internacional deAracnologiacutea Jaca 1 289ndash310

Martens J (1993) Further cases of paternal care in Opiliones (Arachnida)Tropical Zoology 6 97ndash107

Martens J and Schwendinger P S (1998) A taxonomic revision ofthe family Oncopodidae I New genera and new species of GnomulusThorell (Opiliones Laniatores) Revue Suisse de Zoologie 105 499ndash555

Martens J Hoheisel U and Goumltze M (1981) Vergleichende Anatomieder Legeroumlhren der Opiliones als Beitrag zur Phylogenie der Ordnung(Arachnida) Zoologische Jahrbucher Abteilung fur Anatomie undOntogenie der Tiere 105 13ndash76

Mello-Leitatildeo C F (1949) Famiacutelias subfamiacutelia espeacutecies e gecircneros novos deopiliotildees e notas de sinoniacutemia Boletim do Museu Nacional Nova SeacuterieZoologia Rio de Janeiro 94 1ndash33

Mendes A C and Kury A B (2007) Stygnopsidae Soslashrensen 1932 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 232ndash234 (Harvard University PressCambridge MA USA)

Mendes A C and Kury A B (2008) Intercontinental Triaenonychidae ndashthe case of Ceratomontia (Opiliones Insidiatores) The Journal ofArachnology 36 273ndash279 doi101636CH07-931

Murphree C S (1988) Morphology of the dorsal integument of tenopilionid species (Arachnida Opiliones) The Journal of Arachnology16 237ndash252

Park J K andOacuteFoighilD (2000) Sphaeriid and corbiculid clams representseparate heterodont bivalve radiations into freshwater environmentsMolecular Phylogenetics and Evolution 14 75ndash88 doi101006mpev19990691

Peacuterez Gonzaacutelez A (2006) lsquoRevisatildeo Sistemaacutetica e Anaacutelise Filogeneacutetica deStygnommatidae (Arachnida Opiliones Laniatores)rsquo (Museu NacionalUniversidade Federal de Rio de Janeiro Rio de Janeiro Brazil)

Peacuterez Gonzaacutelez A (2007) Stygnommatidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 229ndash232 (Harvard University PressCambridge MA USA)

Peacuterez Gonzaacutelez A (2011) New familial assignment for two harvestmanspecies of the infraorder Grassatores (Arachnida Opiliones Laniatores)Zootaxa 2757 24ndash28

Peacuterez Gonzaacutelez A and Kury A B (2007) Samoidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 224ndash226 (Harvard University PressCambridge MA USA)

Pineau P Henry M Suspegravene R Marchio A Dettai A Debruyne RPetit T Leacutecu A Moisson P Dejean A Wain-Hobson S andVartanian J-P (2005) A universal primer set for PCR amplificationof nuclear histone H4 genes from all animal species Molecular Biologyand Evolution 22 582ndash588 doi101093molbevmsi053

Pinto-da-Rocha R (1997) Systematic review of the Neotropical familyStygnidae (Opiliones Laniatores Gonyleptoidea) Arquivos deZoologia 33 163ndash342

Pinto-da-Rocha R and Kury A B (2003a) Phylogenetic analysis ofSantinezia with description of five new species (Opiliones LaniatoresCranaidae) The Journal of Arachnology 31 173ndash208 doi1016360161-8202(2003)031[0173PAOSWD]20CO2

Pinto-da-Rocha R and Kury A B (2003b) Third species of Guasiniidae(Opiliones Laniatores) with comments on familial relationships TheJournal of Arachnology 31 394ndash399 doi101636H02-59

Pinto-da-Rocha R and Kury A B (2007) Agoristenidae Silhavy 1973 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 171ndash173 (Harvard University PressCambridge MA USA)

Posada D (2005) Modeltest 37 Program and documentation available athttpdarwinuvigoes [Accessed 28 May 2011]

Posada D and Buckley T (2004) Model selection and model averaging inphylogenetics advantages of Akaike information criterion and Bayesianapproaches over likelihood ratio tests Systematic Biology 53 793ndash808doi10108010635150490522304

Posada D and Crandall K A (1998) Modeltest testing the model ofDNA substitution Bioinformatics (Oxford England) 14 817ndash818doi101093bioinformatics149817

Prendini L Weygoldt P and Wheeler W C (2005) Systematics of theDamon variegates group of African whip spiders (ChelicerataAmblypygi) evidence from behaviour morphology and DNAOrganisms Diversity amp Evolution 5 203ndash236 doi101016jode200412004

Rambaut A E (1996) Se-Al sequence alignment editor University ofOxford UK Program and documentation available at httptreebioedacuksoftwarefigtree [Accessed 21 December 2009]

136 Invertebrate Systematics P P Sharma and G Giribet

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 4: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

encompassed three morphospecies (not described at present) andspecimens of Zalmoxida gibbera Suzuki 1970 all of these wereincluded in the molecular phylogeny

All measurements are given in millimetres unless otherwiseindicated Nomenclature on cuticular ornamentation followsMurphree (1988)

Species samplingSpecimens of Laniatores were collected by several individualsover multiple collecting trips including by P P S duringcollecting trips to New Caledonia (2007) Fiji (2008) andPalau (2010) and by G G during collecting trips to Indonesia(2006) In addition data collected in a previous study (Giribetet al 2010) were accessed from GenBank andor updated withnew sequences Collected specimens were preserved in 96EtOH and stored at 80C The list of specimens includingvoucher numbers GenBank accession codes and collectiondetails is found in Appendix 1

Molecular methodsTotalDNAwas extracted from the legs of animals usingQiagenrsquosDNEasy tissue kit (Valencia CA USA) Purified genomicDNA was used as a template for PCR amplification Molecularmarkers consisted of two nuclear ribosomal genes (18S rRNAand 28S rRNA) two mitochondrial ribosomal genes (12SrRNA and 16S rRNA) three nuclear protein-encoding genes(elongation factor-1a histone H3 and histone H4) twomitochondrial protein-encoding genes (cytochrome c oxidasesubunit I and cytochrome b) and one nuclear non-coding gene(U2 snRNA) Primer sequences and fragment lengths areindicated in Table 1

Polymerase chain reaction (PCR) visualisation by agarosegel electrophoresis and direct sequencing were conducted asdescribed by Sharma and Giribet (2009) Chromatogramsobtained from the automatic sequencer were read andsequences assembled using the sequence editing softwareSequencher (Gene Codes Corporation Ann Arbor MI USA)Sequence data were edited in Se-Al ver 20a11 (Rambaut 1996)

Phylogenetic analysisMaximum likelihood (ML) and Bayesian inference (BI) analyseswere conducted on static alignments which were inferred asfollows Sequences of ribosomal and snRNA genes were alignedusing MUSCLE ver 36 (Edgar 2004) with default parametersand subsequently treated with GBlocks ver 091b (Castresana2000) to cull positions of ambiguous homology For thesegenes gaps were permitted within blocks Sequences ofprotein-encoding genes were aligned using MUSCLE ver 36with default parameters as well but alignments were confirmedusing protein sequence translations before treatment withGBlocks ver 091b and no gaps were permitted withinblocks The size of data matrices for each gene prior andsubsequent to treatment with GBlocks ver 091b is providedin Table 2

Maximum likelihood analysis was conducted usingRAxML ver 727 (Stamatakis 2006) through the CIPRESver 3 gateway using the Abe Dell Intel 64 Linux teragridcluster housed at the National Center for Supercomputing

Applications (University of Illinois) A unique GTR model ofsequence evolution (Tavareacute 1986) with corrections for a discretegamma distribution (GTR+G) was specified for each datapartition (Yang 1996) Nodal support was estimated via therapid bootstrap algorithm (1000 replicates) using the GTR-CAT model (Stamatakis et al 2008)

Bayesian inference analysis was performed using MrBayesver 312 (Huelsenbeck and Ronquist 2005) with a uniqueGTR model of sequence evolution with corrections for adiscrete gamma distribution and a proportion of invariant sites(GTR+G + I) specified for each partition as selected inModeltest ver 37 (Posada and Crandall 1998 Posada 2005)under the Akaike information criterion (Posada and Buckley2004) Default priors were used starting with random treesand three hot and one cold Markov chains were run until theaverage deviation of split frequencies reached lt001 (10 000 000generations) After burn-in samples were discarded sampledtrees were combined in a single majority consensus topologyand the percentage of nodes was taken as posterior probabilities

Estimation of divergence timesAgesof cladeswere inferredusingBEASTver 161 (Drummondet al 2006 Drummond and Rambaut 2007) We specified aunique GTR model of sequence evolution with corrections fora discrete gamma distribution and a proportion of invariant sites(GTR+G + I) for each partition and we further separated sitemodels for first second and third codon positions for all fiveprotein-encoding genes

Fossil taxa were used to calibrate divergence times as inprevious studies (Giribet et al 2010) We constrained the ageof Eupnoi to 410Mya using the Devonian harvestmanEophalangium sheari Dunlop Anderson Kerp amp Hass 2004(see Dunlop et al 2003 2004 Dunlop and Anderson 2005)a normal distribution with a standard deviation of 5million yearswas applied to this node to account for uncertainty in estimationof fossil age Dyspnoi were constrained using a normaldistribution with a mean of 300Mya and a standard deviationof 10million years on the basis of the Carboniferous fossilsEotrogulus fayoli Thevenin 1901 and Nemastomoides elaverisThevenin 1901 (see Dunlop 2007)

An uncorrelated lognormal clock model was inferred for eachpartition and a Yule speciation process was assumed for the treeprior We selected the uncorrelated lognormal model because itsaccuracy is comparable to an uncorrelated exponential modelbut it has narrower 95 highest posterior density intervalsAdditionally the variance of the uncorrelated lognormalmodel can better accommodate data that are already clock-like(Drummond et al 2006) Priors were sequentially optimised in aseries of iterative test runs (data not shown) Markov chains wererun for 50 000 000generations sampling every 5000generationsConvergence diagnostics were assessed using Tracer ver 15(Rambaut and Drummond 2009)

Ancestral range reconstructionLikelihood analysis of range evolution of (Samooidea +Zalmoxoidea) was conducted using the program Lagrange(Ree et al 2005 Ree and Smith 2008) We isolated the datedsubtree of the clade (Zalmoxoidea + Samooidea) from

Molecular phylogeny of Laniatores Invertebrate Systematics 109

BEAST analysis and coded the ranges of terminals asAfrotropical Neotropical or Indo-Pacific We implementedstratified dispersal constraint matrices for three spans of time(1) 0ndash35Mya (disconnection of all three landmasses) (2)35ndash110Mya (transantarctic connections between theAustralian plate and temperate South America disconnectionof South America and West Africa) and (3) 110ndash206Mya(connection of all three landmasses) Geological events usedto delimit the time spans follow Sanmartiacuten and Ronquist(2004) The maximum number of areas in ancestral ranges washeld at two (this convention reflects empirical observationsof Laniatores species the majority of which are narrowlydistributed endemics) and dispersal constraints were set toeither 10 (if landmasses were connected) or 01 (if landmasseswere disjunct)

Table 1 List of primer sequences used for amplification and sequencing with original references of primer sequences

12S rRNA12Sai 50-AAA CTA GGA TTA GAT ACC CTA TTA T-30 Kocher et al (1989)12Sr Opi 50-AAG AGC GAC GGG CGA TGT GTA CAT-30 This study

16S rRNA16Sa 50-CGC CTG TTT ATC AAA AAC AT-30 Xiong and Kocher (1991)16Sb 50-CTC CGG TTT GAA CTC AGA TCA-30 Edgecombe et al (2002)

18S rRNA1F 50-TAC CTG GTT GAT CCT GCC AGT AG-30 Giribet et al (1996)3F 50-GTT CGA TTC CGG AGA GGG A-30 Giribet et al (1996)5R 50-CTT GGC AAA TGC TTT CGC-30 Giribet et al (1996)9R 50-GAT CCT TCC GCA GGT TCA CCT AC-30 Giribet et al (1996)18Sa20 50-ATG GTT GCA AAG CTG AAA C-30 Whiting et al (1997)18Sbi 50-GAG TCT CGT TCG TTA TCG GA-30 Whiting et al (1997)

28S rRNA28Sa 50-GAC CCG TCT TGA AAC ACG GA-30 Whiting et al (1997)28S D1F 50-GGG ACT ACC CCC TGA ATT TAA GCAT-30 Park and Oacute Foighil (2000)28Srd4b 50-CCT TGG TCC GTG TTT CAA GAC-30 Edgecombe and Giribet (2006)28Srd5b 50-CCA CAG CGC CAG TTC TGC TTA C-30 Schwendinger and Giribet (2005)28Srd48a 50-ACC TAT TCT CAA ACT TTA AAT GG-30 Schwendinger and Giribet (2005)28Srd7b1 50-GAC TTC CCT TAC CTA CAT-30 Schwendinger and Giribet (2005)28S F2012 50-CCA AGG TKA RYA GCC TCT RG-30 Giribet et al (2010)28S R2762 50-CCG CCC CAG CCA AAC TCC CC-30 Giribet et al (2010)28S F2762 50-GGG GAG TTT GGC TGG GGC GG-30 Giribet et al (2010)28S OR2r 50-TTC TGA CTT AGA GGC GTT CAG-30 Giribet et al (2010)

COILCO1490 50-GGT CAA CAA ATC ATA AAG ATA TTG G-30 Folmer et al (1994)HCOoutout 50-GTA AAT ATA TGR TGD GCT C-30 Prendini et al (2005)

Cytochrome bCytB F-Lan 50-TAG GTT ATG TGT TAC CTT GAG GWC AAA TAT CTT TTT G-30 This study modified from Schoumlnhofer

and Martens (2008)CytB R-Lan 50-CCA CCT AAT TTA TTT GGA ATT GAT TG-30 This study

EF-1aEF OP3 50-TTT GAR GAA ATC CAR AAR GAA GT-30 Hedin et al (2010)EF OPRC4 Leio 50-GAA CTT GCA AGC AAT GTG AGC-30 Hedin et al (2010)

Histone H3H3aF 50-ATG GCT CGT ACC AAG CAG ACV GC-30 Colgan et al (1998)H3aR 50-ATA TCC TTR GGC ATR ATR GTG AC-30 Colgan et al (1998)

Histone H4H4F2S 50-TSC GIG AYA ACA TYC AGG GIA TCA C-30 Pineau et al (2005)H4F2er 50-CKY TTI AGI GCR TAI ACC ACR TCC AT-30 Pineau et al (2005)

U2 snRNAU2F 50-TCT CGG CCT WWT GGC TAA-30 Colgan et al (1998)U2R 50-GMG GTA STG CAA TAC CGG-30 Colgan et al (1998)

Table 2 Length of gene partition alignment prior and subsequent totreatment with GBlocks ver 091b

Partitions Original length ofalignment (bp)

Fraction retainedby GBlocks ()

Final length ofalignment (bp)

12S rRNA 382 44 17116S rRNA 656 64 36418S rRNA 1784 98 175228S rRNA 3438 70 2405COI 795 81 648CytB 421 100 421EF-1a 584 96 566H3 327 100 327H4 160 100 160U2 snRNA 131 100 131

110 Invertebrate Systematics P P Sharma and G Giribet

Taxonomy

Order OPILIONES Sundevall 1833

Suborder LANIATORES Thorell 1876

Family PETROBUNIDAE fam nov

Type genus Petrobunus gen nov

Type species Petrobunus schwendingeri sp nov

Genera included Petrobunus gen nov Zalmoxida Roewer 1912 newfamilial assignment

Diagnosis

Small to medium-sized Grassatores with a low oculariumremoved from anterior margin of carapace with a medianocularial tubercle in some species but distinguished fromEpedanidae in the lack of a large median spine Mesotergumsmooth indistinctly divided into five areas scutal areas I and IInot fused as opposed to Epedanidae Chelicerae with a sexuallymonomorphic prominent bulla basal segment not enlarged asopposed toEpedanidae Palpus robust and strongly spined palpalpatella armed with single distinct spine-bearing tubercle onmedial-distal portion It can be differentiated from Podoctidaein lacking spines in leg I and in lacking a sexually dimorphicocularium Femur of leg III sexually monomorphic and arcuateMale leg IV sexually dimorphic and spined Tarsi III and IV withunmodified double claws scopulae absent as opposed to mostSamooidea It can be distinguished from Sandokanidae andPodoctidae in the tarsal formula which is not reduced inPetrobunidae Pars distalis of penis either shaped as the headof a javelin (Petrobunus) or with a rounded apical margin(Zalmoxida) and spoon-shaped in dorsal aspect without cleftin ventral plate (as opposed to Tithaeidae and Podoctidae) or aring of setae surrounding a capsula interna (as opposed toEpedanidae) variable number of setae on lateroventral andlaterodorsal surfaces glans free in apical part and simple withparastylar lobe small (Zalmoxida) or elongate and extendingproximally (Petrobunus) Ovipositor composed of two apicallobes each bearing two dorsal setae one ventral seta and twoapical setae bases of ventral pair of setae either in contact(Zalmoxida) or set apart (Petrobunus) distal surfaces ofapical lobes either finely denticulate (Zalmoxida) or smooth(Petrobunus) (Appendix 2)

Remarks

The morphology of Petrobunidae is not readily indicative ofphylogenetic affinities The sexually dimorphic fourth walkingleg and apophyses of the opisthosomal sternites suggest arelationship to Zalmoxidae or Escadabiidae respectively (orsome distant relationship to Zalmoxoidea) the indistinctdivision of the mesotergum to Samoidae and the spoon-shaped pars distalis of the penis to erecanine Assamiidae orPhalangodidae Molecular sequence data similarly do notsupport the placement of Petrobunidae either within or sister toa single family disfavouring its inclusion in a previouslydescribed lineage However in most analyses Petrobunidaeclusters with other South-east Asian families namelyEpedanidae and Podoctidae (discussed below)

Etymology

The name refers to the appearance of males of this genuswhich appear to have tiny pebbles attached to the proximalpart of the fourth leg when observed with the naked eyedue to the greatly enlarged trochanter IV Derived from Greeklsquopetrarsquo (ptra) meaning lsquostonersquo or lsquopebblersquo and lsquo-bunusrsquoa common suffix in Opiliones taxonomy (eg HadrobunusTriaenobunus Dibunus) It is also wordplay as the typespecies is named after an individual with the given namelsquoPeterrsquo

a

b

050 mm

050 mm

050 mm

c

Fig 3 Petrobunus schwendingeri sp novmale holotype (a) Dorsal view(b) lateral view and (c) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 111

Genus Petrobunus gen nov

Type species Petrobunus schwendingeri sp nov

Diagnosis

Small Grassatores (body length lt2mm) distinct from otherpetrobunids in the following combination of characters coxaand trochanter of male leg IV greatly incrassate with trochanterIV sub-rectangular in lateral aspect Tarsal formula 3 5 5 5ndash6Pars distalis of penis shaped as the head of a javelin two to threepairs of setae on ventral plate and four setae on each lateralmargin glans free in apical part with parastylar lobe extendingproximally Ovipositor with two ventral setae (one per apicallobe) set apart from one another by a distance equal toapproximately one-third the width of the ovipositor

Distribution

The newly described species are known only from the Philippineislands of Palawan and Panay an undescribed morphospecies

(included in molecular phylogeny as MCZ DNA102668 andMCZ DNA102669) is known from Taiwan

Petrobunus schwendingeri sp nov

(Figs 3ndash6 Tables 3 4)

Material examined

Holotype Male (MHNG) Philippines Panay Sibaliw primary forest450m alt leg E Curio 13i2008 (ex MCZ DNA103572)

Paratypes 1lt (mounted on three SEMstubs [MCZ100872ndash100874] anddissected for genitalia) 2 (1 extracted for DNA [MCZ 100875 MCZDNA103572] 1 dissected for genitalia [MCZ100881]) same collectingdata as holotype 4 same collecting data as holotype (MHNG)

Additional material studied 1 lt juvenile same collecting data asholotype

Diagnosis

Small petrobunid with unarmed ocularium Distinct from otherspecies in the genus in the mesotergum with transverse bands of

a b

c

100 microm

100 microm

100 microm

Fig 4 Petrobunus schwendingeri sp novmale paratype (a) Dorsal view of prosoma andmesotergum (b) posteriorview of opisthosoma with dotted reconstructions of spination based on holotype specimen and (c) dorsal view ofanterior margin of carapace

112 Invertebrate Systematics P P Sharma and G Giribet

a

100 microm

100 microm

100 microm

200 microm

100 microm

100 microm

100 microm

100 microm

200 microm

b

c

d

e

h

i

g

f

Fig 5 Petrobunus schwendingeri sp nov (a) Left chelicer of male paratype (b) left palp of male paratype (c) left leg I of maleparatype (d) left leg II of male paratype (e) left leg III of male paratype ( f ) left leg IV of male paratype (g) left leg IV of femaleparatype (h) trochanter of left leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 113

pigmentation and in the armature of the opisthosomal sternites(two pairs of tubercles on sternite 7 and one pair on sternite 8)Proximal region of femora of all legs with single blunt peg Penis

more elongate than in congeners in the shape of a spear bladewith two pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100875] inparentheses) 168 (164) greatest width of prosoma 076 (076)greatest width of opisthosoma 126 (124) length-to-width ratio133 (132) (Figs 3 6) Body campaniform yellow to darkorange (in alcohol depending on incidence of light) almostentirely with a dense microgranulate surface microstructureEyes present on low well developed ocularium withoutmedian ocularial tubercle Ocularium 012 (012) long and024 (019) wide removed from anterior margin of carapaceAnterior margin of carapace with two pairs of blunt pegs abovecoxae of leg I with outer pair of sub-rectangular shape (Fig 4)Scutal grooves of mesotergum indistinct with mesotergal areasdistinguishable only by transverse bands of pigmentation Freetergites without large tubercles

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged with setosetubercles on anterior margin Genital operculum sub-triangularSpiracles not concealed adjacent to row of tuberclesOpisthosomal sternite 7 with two pairs of large tuberclesdisplaced away from midline Opisthosomal sternite 8 withone pair of smaller tubercles flanking midline Anal plateunarmed (Fig 4)

Chelicerae (Fig 5) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassatefree of ornamentation with dorsal margin bearing several setaeDistal article with delicate dentition free of ornamentation

Palpi (Fig 5) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setae Palpalfemur with two proximal ventral spines in a row and two paireddistal spines (one ventral one mesoventral) Palpal patella with asingle spine directed inward Palpal tibiawith twopairs of spinesand a small basal setose tubercle Palpal tarsus with two pairs ofspines Palpal claw nearly as long as palpal tarsus

Legs IndashIV (Fig 5) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge ventral tubercle and three smaller mesodorsal tuberclesFemora IndashIV with one basal peg on ventral surface with peg freeof granulation Femur III arcuate in males and females free oftubercles Femur IVandpatella IVofmalewith two irregular rowsof mesalmesoventral tubercles Tibia IV of male with multipleirregular rows of tubercles with ventral tubercles enlarged andbulbous distally ventral tubercles enlarged but conical in shapeMetatarsi IndashIV divided distally with distal portion lackingornamentation metatarsus IV of male with two rows of mesalmesoventral tubercles Tarsus IV unornamented Femaletrochanter IV not enlarged leg IV free of tubercles Tarsalclaws IndashIV smooth unmodified Tarsal segmentation 3 5 5 5

Penis (Fig 6) elongate narrow and slender in the shape ofa spear blade Lateral margins gradually coalescing dorsallyresulting in spoon shape in dorsal aspect Ventral surface withtwo pairs of setae lateral margins with four setae each Glans

a

b

c d

050 mm

050 mm

100 microm100 microm

Fig 6 Petrobunus schwendingeri sp nov (a) Female paratype dorsalview (b) female paratype ventral view (c) pars distalis of penis lateral viewand (d) ovipositor dorsal view (one of four dorsal setae broken duringmounting process)

114 Invertebrate Systematics P P Sharma and G Giribet

free in apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 6) composedof twoapical lobes eachbearingtwo dorsal setae one ventral seta and two apical setae Distalsurfaces of apical lobes smooth Bases of dorsal setae in contactBases of ventral setae set apart by a distance approximately equalto one-third the width of the ovipositor

Distribution

Known only from type locality

Etymology

The specific epithet honours Dr Peter J Schwendinger curator atthe MHNG for his inspiration and tireless efforts to advanceknowledge of South-east Asian arachnid fauna

Petrobunus spinifer sp nov

(Figs 7ndash10 Tables 5 6)

Material examined

Holotype Male (MHNG) Philippines Palawan El Nido RegionBulalacao Waterfall primary forest 200ndash450 alt (111304100N1192800000E) leg A Schulz 30xi2009 (ex MHNG PAL-0905)

Paratypes 12 lt 21 (MHNG) same collecting data as holotype (exMHNG PAL-0905) 3 lt (1 dissected for genitalia [MCZ 100888] andmounted on one SEM stub [MCZ 100886] 2 in ethanol [MCZ100877ndash100878]) 3 (1 dissected for genitalia [MCZ 100889] 2 inethanol [MCZ 100879ndash100880]) same collecting data as holotype (exMHNGPAL-0905) 2lt (1mountedononeSEMstub [MCZ100882] 1mounted on two SEM stubs [MCZ 100884ndash100885]) PhilippinesPalawan El Nido Region Mt Singkukan primary forest 300ndash400alt (111300700N 1192805100E) leg A Schulz 26xi2009 (exMHNG PAL-0904)

Additional material studied 6 juveniles same collecting data as holotype(MHNG PAL-0905) 1 lt Philippines Palawan El Nido Region MtSingkukan primary forest 400ndash600 alt (111303800N 1192805500E)leg A Schulz 24xi2009 (MHNG PAL-0903) 6 lt 8 PhilippinesPalawan El Nido Region Mt Singkukan primary forest 300ndash400 alt(111300700N 1192805100E) leg A Schulz 26xi2009 (MHNG PAL-0904)

Diagnosis

Small petrobunidwith unarmedoculariumwithmesotergum freeof pigmentation Distinct from congeners in the armature of thefreeopisthosomal tergites andanal plate (setose tubercules) andofthe opisthosomal sternites (sternites 3ndash6 with single tubercle oneach side forming a line under each coxa IV sternite 7 with twolarge spines directly anteroventrally and sternite 8with an evenlydistributed belt of eight smaller spines) Femur IV of male with asingle tubercle basoventrally Penis narrow in the shapeof a spearblade with three pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100879] inparentheses) 130 (115) greatest width of prosoma 058 (056)greatest width of opisthosoma 079 (080) length-to-width ratio165 (144) (Figs 5 8) Body campaniform yellow (in alcoholdepending on incidence of light) almost entirely with a densemicrogranulate surface microstructure Eyes present on lowwell developed ocularium without median ocularial tubercleOcularium 012 (010) long 018 (016) wide removed fromanterior margin of carapace Anterior margin of carapace withtwo pairs of conical pegs above coxae of leg I Scutal grooves ofmesotergum indistinct free of transverse bands of pigmentationFree tergites with regular belts of setose tubercles (Fig 5)

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged withsetose tubercules on anterior margin Genital operculumsub-triangular Spiracles not concealed anterior to row oftubercules Opisthosomal sternites 3ndash6 each with belt of smallregular tubercles Opisthosomal sternite 7 with two large setosespines directly anteroventrally Opisthosomal sternite 8 withbelt of regular tubercles Two rows of tubercles alignedanteroposteriorly under outer limit of coxae IV Anal platearmed with tubercles (Fig 6)

Chelicerae (Fig 7) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassate

Table 3 Leg measurements of Petrobunus schwendingeri holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 013012 049009 028014 034011 051005 042007 217Leg II 017016 069010 029014 055010 058005 079007 307Leg III 015016 054013 028017 046013 052007 047006 242Leg IV 045045 075014 037020 071019 090009 054007 372

Table 4 Leg measurements of Petrobunus schwendingeri female paratype (ex MCZ DNA103572) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 012015 049012 027013 034010 044006 038007 204Leg II 013018 069011 031013 053010 054006 069006 289Leg III 013017 051012 028015 040012 047007 046006 225Leg IV 024023 061012 031017 050012 071008 052008 289

Molecular phylogeny of Laniatores Invertebrate Systematics 115

free of ornamentation with dorsal margin bearing severalsetae Distal article with delicate dentition free of ornamentation

Palpi (Fig 7) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setaePalpal femur with two proximal ventral spines in a row andtwo paired distal spines (one ventral one mesoventral) Palpalpatella with a single spine directed inward Palpal tibia with twopairs of spines and a small basal setose tubercle Palpal tarsuswith two pairs of spines Palpal claw nearly as long as palpaltarsus

Legs IndashIV (Fig 7) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge setose tubercle ventrally Femora IndashIV without basalpegs femur IV with one large tubercle ventrally Femur IIIarcuate in males and females free of tubercles Femur IV andpatella IV of male with irregular rows of mesalmesoventraltubercles Tibia IV of male with multiple irregular rows oflarge tubercles distally ventral tubercles small not bulbousMetatarsi IndashIV divided distally with distal portion lackingornamentation metatarsus IV of male with two rows ofmesalmesoventral tubercles Tarsus IV unornamented Femaletrochanter IV not enlarged leg IV free of tubercles Tarsal clawsIndashIV smooth unmodified Tarsal segmentation 3 5 5 6

Penis (Fig 8) narrow and slender in the shape of a spearblade Lateral margins gradually coalescing dorsally resultingin spoon shape in dorsal aspect Ventral surface with threepairs of setae lateral margins with four setae each Glans freein apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 8) composedof twoapical lobes eachbearingtwo dorsal setae one ventral seta and two apical setae Distalsurfaces of apical lobes smooth Bases of dorsal setae in contactBases of ventral setae set apart by a distance approximately equalto one-third the width of the ovipositor

a

b

c

050 mm

050 mm

050 mm

Fig 7 Petrobunus spinifer sp nov male holotype (a) Dorsal view (b)lateral view and (c) ventral view

a

b

200 microm

100 microm

Fig 8 Petrobunus spinifer sp nov male paratype (a) Ventral view and(b) dorsal view of anterior margin of carapace

116 Invertebrate Systematics P P Sharma and G Giribet

a

b

c

d

e

h

i

g

f

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

Fig 9 Petrobunus schwendingeri sp nov (a) Left chelicer ofmaleparatype (b) left palp ofmale paratype (c) left leg I ofmale paratype (d) left leg II ofmale paratype (e) right leg III ofmale paratype ( f ) right leg IV ofmale paratype (g) left legIV of female paratype (h) trochanter of right leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 117

Distribution

Known only from type locality and additional localities reportedhere

Etymology

The specific epithet an invariable noun in apposition refers to theenlarged belts of tubercles on the free tergites and opisthosomalsternites of this species Derived from Latin lsquospinarsquo meaninglsquospearrsquo or lsquodartrsquo and lsquoferrersquo meaning lsquoto carry or bearrsquo

Petrobunus torosus sp nov

(Figs 11ndash14 Tables 7 8)

Material examined

Holotype Male (MHNG) Philippines Palawan Puerto Princesa RegionSabang Underground National Park Daylight Hole and Lions Caveprimary forest 100ndash200 alt (100900600N1185301000E) legA Schulz6ndash8xii2009 (ex MHNG PAL-0907)

Paratypes 6 lt 13 (MHNG) same collecting data as holotype(ex MHNG PAL-0907) 3 lt (1 dissected for genitalia and mountedon three SEM stubs [MCZ 100894ndash100896] 2 in ethanol [MCZ100890ndash100891]) 3 (1 dissected for genitalia [MCZ 100902] andmounted on one SEM stub [MCZ 100897] 2 in ethanol [MCZ100892ndash100893]) same collecting data as holotype (ex MHNGPAL-0907) 1 lt (mounted on one SEM stub [MCZ100899]) and 3 (dissected for genitalia [MCZ 100901] and mounted on one SEM stub[MCZ 100898]) Philippines Palawan Puerto Princesa Region SabangUnderground National Park jungle trail (101105500N 1185405900E)leg A Schulz 4xii2009 (ex MHNG PAL-0906)

Additional material studied 6 juveniles same collecting data as holotype(MHNG PAL-0907) 12 lt 3 2 juveniles Philippines PalawanPuerto Princesa Region Sabang Underground National Park jungletrail (101105500N 1185405900E) leg A Schulz 4xii2009 (MHNGPAL-0906)

Diagnosis

Distinct from congeners in the well developed ocularium armedwith median tubercle Mesotergum free of pigmentation as inP spinifer but opisthosomal sternites without large spines(sternites 7ndash9 armed only with small low tubercles) Proximalregion of femora of all legs with single blunt peg Penis widenedin the base of the pars distalis stocky in the shapeof a spear bladewith three pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100892] inparentheses) 152 (150) greatest width of prosoma 070 (068)greatest width of opisthosoma 104 (108) length-to-width ratio

a

b

c d

050 mm

050 mm

20 microm

100 microm

Fig 10 Petrobunus spinifer sp nov (a) Female paratype dorsal view(b) female paratype ventral view (c) pars distalis of penis lateral view and(d) ovipositor dorsal view

Table 5 Leg measurements of Petrobunus spinifer holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011009 032008 022011 024008 034005 036005 159Leg II 011011 046008 018012 036009 040005 068005 219Leg III 014015 044012 024014 032013 043005 041004 198Leg IV 032038 050014 025017 050014 062008 028004 247

118 Invertebrate Systematics P P Sharma and G Giribet

146 (139) (Figs 11 14) Body campaniform yellow to darkorange (in alcohol depending on incidence of light) almostentirely with a dense microgranulate surface microstructureEyes present on low well developed ocularium with medianocularial tubercle Ocularium 011 (011) long 020 (021) wideremoved from anterior margin of carapace Anterior margin ofcarapace with two pairs of blunt pegs above coxae of leg I withouter pair of sub-rectangular andor bifid shape Scutal grooves ofmesotergum indistinct free of transverse bands of pigmentationFree tergites without large tubercles or spines (Fig 12)

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged with setosetubercles on anterior margin Genital operculum sub-triangularSpiracles not concealed anterior to row of tuberclesOpisthosomal sternites with irregular belts of roundedtubercles Anal plate unarmed (Fig 12)

Chelicerae (Fig 13) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassatefree of ornamentation with dorsal margin bearing several setaeDistal article with delicate dentition free of ornamentation

Palpi (Fig 13) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setae Palpalfemur with two proximal ventral spines in a row and two paireddistal spines (one ventral one mesoventral) Palpal patella with asingle spine directed inward Palpal tibiawith twopairs of spinesand a small basal setose tubercle Palpal tarsus with two pairs ofspines Palpal claw as long as palpal tarsus

Legs IndashIV (Fig 13) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge ventral tubercle and three smaller mesodorsal tuberclesFemora IndashIV with one basal peg on ventral surface with peg freeof granulation Femur III arcuate in males and females free oftubercles Femur IVandpatella IVofmalewith two irregular rowsof mesalmesoventral tubercles Tibia IV of male with multipleirregular rows of tubercles with ventral row enlarged and conicaldistally distal-most ventral tubercle composed of two fusedtubercles Metatarsi IndashIV divided distally with distal portionlacking ornamentation metatarsus IV of male with two rows ofmesalmesoventral tubercles Female trochanter IV not enlargedleg IV free of tubercles Tarsal claws IndashIV smooth unmodifiedTarsal segmentation 3 5 5 6

Penis (Fig 14) narrow in the shape of a spear blade widenednear base Lateral margins gradually coalescing dorsallyresulting in spoon shape in dorsal aspect Ventral surface with

Table 6 Leg measurements of Petrobunus spinifer female paratype (ex MHNG PAL-0905) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 033007 021010 024007 025005 029005 143Leg II 013011 037006 023010 034007 026005 051005 184Leg III 014014 029009 022013 029010 027005 035004 156Leg IV 017015 049008 025014 034010 045006 043004 213

a

b

c

050 mm

050 mm

050 mm

Fig 11 Petrobunus torosus sp nov male holotype (a) Dorsal view(b) lateral view and (c) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 119

threepairs of setae lateralmarginswith four setae eachGlans freein apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 14) composed of two apical lobes eachbearing two dorsal setae one ventral seta and two apicalsetae Distal surfaces of apical lobes smooth Bases of dorsalsetae in contact Bases of ventral setae set apart by a distanceapproximately equal to one-third the width of the ovipositor

Distribution

Known only from type locality and additional locality reportedhere

Etymology

The specific epithet refers to the stocky and robust appearanceof the fourth leg in the males of this species Derived from Latinlsquotorosusrsquo meaning lsquomuscularrsquo or lsquobulgingrsquo

Family TITHAEIDAE fam nov

Type genusTithaeusThorell 1891 by present designation andmonotypy

Type species Tithaeus laevigatus Thorell 1891 by original designation

Genera included Tithaeus Thorell 1891 new familial assignmentMetatithaeus Suzuki 1969 new familial assignment

Diagnosis

Medium-sized Grassatores with a low ocularium removed fromthe anterior margin of carapace that differ from Epedanidae inlacking a median spine In some species slight to large hump

situated anterior of ocularium Scutal region divided into fiveareas areas I and II not fused as opposed to EpedanidaeChelicerae typical basal segment not enlarged (as opposed toEpedanidae)Distinct fromPodoctidae in the lack of spines on legI and in the lack of a sexually dimorphic ocularium Tarsalformula 5 8+ 5 6 not reduced (as opposed to Sandokanidaeand Podoctidae) Distitarsi of legs I and II typically with twotarsalia distinguished from Petrobunidae in the trochanter of legIV not enlarged inmales Tarsi III and IVwith unmodified doubleclaws scopulae absent (as opposed to most Samooidea) Distalmargin of ventral plate of penis usually with deep cleft (mostTithaeus) or widening distally into setiferous and conicalstructure (Metatithaeus) glans with simple membranous lobecovering the stylus terminus of stylus either a bifurcate orslightly inflatable lobe absence of prominent parastylar lobes(distinguishing it from Petrobunidae) absence of a ring of setaesurrounding a capsula interna (found in Epedanidae) Ovipositorlobes typically with a pair of ventral and dorsal setae

Remarks

One of dozens of genera placed in the subfamily Phalangodinae(Phalangodidae) by Roewer (1912 1923 1949) Tithaeus wassubsequently extricated and transferred to Epedanidae by Kury(1993 2003 2006) on the basis of the male genitalia althoughthe placement was ambiguous given the absence of typicalepedanid morphology such as elongate and armed pedipalpian erect ocularial spine (absent in Dibuninae) the fusion of scutalareas I and II side-branches in the posterior claws and stoutdentition of the cheliceral fingers (Lian et al 2008) However

a

b

100 microm

100 microm

100 microm

100 microm

c

d

Fig 12 Petrobunus torosus sp novmale paratype (a)Dorsolateral view (b) dorsolateral viewof anteriormargin of carapace(c) ventrolateral view and (d) ventrolateral view of prosomal complex

120 Invertebrate Systematics P P Sharma and G Giribet

comparisons of the male genitalia of a phalangodid (Texella) anepedanid (Kilungius Saracinicinae) and Tithaeus suggested acloser relationship between Epedanidae and Tithaeus in spite ofmarked differences in the stylar lobe and the extent of the basalsac (Lian et al 2008)

Our phylogenetic analyses corroborate a closer relationshipbetween Epedanidae and Tithaeuswith respect to Phalangodidae(which is sister to the remaining Grassatores and thereforedistantly related to both lineages) but the clade Tithaeus+Metatithaeus neither nests within nor is sister to Epedanidae

a

b

c

d

e

h

i

g

f

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

Fig 13 Petrobunus torosus sp nov (a) Left chelicer of male paratype (b) left palp of male paratype (c) left leg I of maleparatype (d) right leg II of male paratype (e) left leg III of male paratype (f) left leg IV of male paratype (g) left leg IV offemale paratype (h) trochanter of left leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 121

in any of the topologies we examinedMoreover the cleft ventralplate forming two prongs in the male genitalia of many Tithaeusspecies in addition to the absence of a ring of setae surroundingthe capsula interna (typical of Epedanidae) suggest that Tithaeus

and related genera (eg Istithaeus Metatithaeus Tithaeommaetc) are not true epedanids but may be more closely related toeither (1) Podoctidae a hypothesis that is supported in someanalyses (bootstrap frequency in ML [BS] = 59 posteriorclade probability given by MrBayes [PP] = 097) or (2) theclade (Podoctidae + Sandokanidae) recovered by the BEASTtopology (posterior clade probability given by BEAST[PPBEAST] = 100)

The inclusion of Tithaeus-like Grassatores in Epedanidaerenders the latter para- or diphyletic and obscures a cleardiagnosis of epedanids as the morphology of Tithaeus (andMetatithaeus) does not accord with many epedanidsynapomorphies Moreover inclusion of Tithaeus andorMetatithaeus within a broader Podoctidae is also unjustifiedbecause this violates many of the synapomorphies ofPodoctidae such as (1) tuberclesspines in dorsal and ventralrows on leg I (2) tubercular bridges (3) a sexually dimorphicbasichelicerite and (4) a sexually dimorphic ocularium

Consequently we erect the family name Tithaeidaeseparating Tithaeus and Metatithaeus from EpedanidaeTithaeidae likely includes the monotypic Roewerian generaIstithaeus Kondosus Sterrhosoma and Tithaeomma but thestatus of these genera requires further investigation and will beaddressed in a forthcoming study

Distribution

Distributed throughout Sundaland the Thai-Malay PeninsulaSumatra Java and Borneo Also reported from northern Vietnamand southern China One doubtful record from West Timor(see Lian et al 2008)

Results

Phylogenetic analysis

Less sequence data are presently available for Briggsusflavescens (partial 28S and COI Derkarabetian et al 2010)with respect to the rest of the data matrix Consequently twoML analyses were conducted including and excluding Briggsusflavescens The ML analysis with all taxa resulted in a treetopology with lnL= ndash8372597 Repeating the analysis withoutBriggsus resulted in a tree topology with lnL= ndash8336108 Thetwo topologies are identical save for the internal relationships ofTravunioidea which includes Briggsidae (Fig 15) Inclusion ofBriggsidae recovers a diphyletic Cladonychiidae with Briggsussister to Holoscotolemon but these relationships are notsupported Exclusion of Briggsidae results in higher nodalsupport frequencies within Travunioidea and recovers a sisterrelationship of Sclerobunidae and the remaining Travunioidea(BS = 75) and a monophyletic Cladonychiidae + Travuniidae(BS = 77) sister to Trojanella Including Briggsus in theanalysis does not affect topology or nodal support in otherparts of the phylogeny Monophyly of Travunioidea isstrongly supported (BS = 100) in either case

Runs of MrBayes ver 312 reached stationarity in 2 000 000generations 2 500 000 generations (25) were hence discardedas burn-in The BI analysis with all taxa resulted in a topologylargely similar to theMLtree (Fig 16)Notable differences are therelative placements of the clade (Gonyleptoidea + Stygnopsidae)

a

b

c d

050 mm

050 mm

20 microm

20 microm

Fig 14 Petrobunus torosus sp nov (a) female paratype dorsal view(b) female paratype ventral view (c) pars distalis of penis lateral view and(d) ovipositor dorsal view

122 Invertebrate Systematics P P Sharma and G Giribet

and the South-east Asian group of families Some differencesexist with respect to supported nodes within superfamilies

Estimation of divergence times

The run of BEAST reached stationarity after 6 000 000generations 10 000 000 generations (20) were discarded asburn-in The tree topology recovered by BEAST (Fig 17) differsfromML andBI topologies in (1) the placement of Sandokanidaeand (2) the relationships between superfamilies Diversificationof Laniatores is dated at ~348Mya Diversification of majorlineages is estimated as follows (Travunioidea+Triaenonychidae)299Mya Grassatores 302Mya Assamiidae +Pyramidopsgroup 232Mya Gonyleptoidea + Stygnopsidae 246MyaGonyleptoidea 230Mya Samooidea + Zalmoxoidea 206Myaand a South-east Asian clade (including Sandokanidae)249Mya These results largely corroborate previous estimatesof divergence times (Giribet et al 2010) but confidence intervalsfor estimated ages are more precise A tree file of estimated agesand 95highest posterior density (HPD) intervals for all nodes isprovided as an Accessory Publication on the InvertebrateSystematics website

Whereas the basal topology of Grassatores is unstable andunsupported most familial and superfamilial relationshipsare consistently recovered across analyses A consensus oftopologies across all analyses is shown in Fig 18

Discussion

A molecular phylogeny of the armoured harvestmen has longproven elusive Laniatores comprises entire genera and familiesthat are endemic to particular provinces of the world In somecases higher taxonomic ranks do not even occur beyond specificislands (eg the New Zealand family SynthetonychiidaeForster 1954) Moreover Laniatores includes the majority ofall described Opiliones species (and over half of all describedfamilies) and new lineages continue to be discoveredConsequently previous efforts to assess Laniatores phylogenyhave been prone to undersampling numerous lineages such asAssamiidae Epedanidae and the superfamilies Samooidea and

Zalmoxoidea (eg Giribet et al 1999 2002 Shultz and Regier2001)

The present study with the inclusion of all families ofarmoured harvestmen described heretofore enables detailedinvestigation of internal relationships of Laniatores Ofprincipal interest are the phylogenetic placement of the twonew families of Laniatores erected herein and the systematicvalidity of defined superfamilies Many of the relationshipsrecovered in our analyses are consistent with traditionalhypotheses based on morphological studies but there are someunexpected results We discuss these in turn

Insidiatores

Within a monophyletic Laniatores recovered in all analyses(BS = 100 PP = 093) the constituent lineages of Insidiatoresform a paraphyletic grade with respect to Grassatores WhileTriaenonychoidea and Travunioidea do form a clade (albeit withlow nodal support) the New Zealand endemic familySynthetonychiidae is recovered as sister to all remainingLaniatores (BS = 78 PP = 100) consistent with the resultsof a recent study (Giribet et al 2010) However the inclusionof more data in fact lowers the nodal support for this sisterrelationship relative to the previous studyrsquos ML analysislikely due to the influence of missing data (in particular only~300 bp out of a targeted 3400 bp of 28S rRNA are presentlyavailable for Synthetonychia) Consequently we do not treat theplacement of Synthetonychiidae as definitive

In all analyses the southern hemisphere Triaenonychidaeform a strongly supported clade that diversified ~200Mya(BS = 100 PP = 100) Their distribution and the age of thiscladersquos diversification are similar to that of the temperateGondwanan cyphophthalmid family Pettalidae (estimated tohave diversified ~183ndash221Mya Giribet et al 2010)suggesting a parallel biogeographical process in these lineagesThe North American triaenonychid Fumontana deprehendorShear 1977 is sister to the southern hemisphere Triaenonychidaein all analyses consistent with previous classification (Giribetand Kury 2007 Thomas and Hedin 2008) but support fora monophyletic Triaenonychoidea is limited and sensitiveto analytical parameters (BS = 57 PP lt 050 PPBEAST = 066)

Table 7 Leg measurements of Petrobunus torosus holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011011 039005 026012 028008 036006 040007 180Leg II 014013 061008 029010 043007 042006 072005 261Leg III 015015 051010 019015 037011 045006 046005 213Leg IV 034035 059012 034017 054015 067007 052006 300

Table 8 Leg measurements of Petrobunus torosus female paratype (ex MHNG PAL-0907) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 041008 022011 028010 037005 035006 174Leg II 010009 052007 023008 033007 037006 069005 224Leg III 014016 046010 025024 036012 042007 041005 204Leg IV 018017 054011 029016 049012 058007 048006 256

Molecular phylogeny of Laniatores Invertebrate Systematics 123

Fig 15 Phylogenetic relationships of Laniatores inferred from maximum likelihood analysis of all molecular data (ln L= ndash8372597) Inset topology ofTravunioidea excluding Briggsidae (ln L= ndash8336108) Numbers on nodes indicate bootstrap resampling frequencies

124 Invertebrate Systematics P P Sharma and G Giribet

We recovered a monophyletic Travunioidea which includesBriggsidae in all analyses (BS = 100PP = 100) corroboratingthe superfamilial placement of briggsids Briggsidae isrecovered sister to either Trojanella (ML) or Holoscotolemon(BI) or part of a grade with both of these taxa (BEAST) butthese placements are not supported (BS lt 50 PPBEAST = 085and PP = 051 respectively) Missing data for Briggsidaedepresses nodal support in ML analyses within Travunioideaobscuring interfamilial relationships In the absence ofBriggsidae we recover a sister relationship betweenSclerobunidae (Zuma acuta Goodnight amp Goodnight 1942)and the remaining Travunioidea (BS = 75) and themonophyly of Travuniidae +Cladonychiidae (BS = 77)

A recent molecular dating of Travunioidea obtained muchyounger dates than estimated herein in spite of similar taxaand molecular loci In that study Derkarabetian et al (2010)investigated the evolution of troglobitism in Sclerobunidae(also referred to as the lsquoNorth American triaenonychidsrsquo)and used the cladonychiid fossil Protoholoscotolemon(38ndash54Mya Ubick and Dunlop 2005) to constrain theminimum age of Travunioidea in addition to calibration pointsderived from geological ages of strata These practicesaccord with the scope of the troglobitism study (thedivergences of interest were comparatively recent ndash Plioceneor younger) but we did not utilise Protoholoscotolemon in ourdating for two reasons (1) we do not obtain an unambiguouslymonophyletic Cladonychiidae in our analyses and (2) theDevonian and Carboniferous fossils we utilised as calibrationpoints are sufficiently old to obtain a result consistent with anEocene cladonychiid fossil The different calibration pointsimplemented in the respective studies therefore account forthe discrepancy in the dating In addition the morphologicalconservatism of Opiliones makes it doubtful that the age ofProtoholoscotolemon is the maximum age of the superfamily

Our sampling of Insidiatores lineages remains limited andbarring the inclusion of Briggsidae additions to taxonomicsampling largely concern Grassatores Consequently continuedsampling and systematic studies of Insidiatores (eg Mendesand Kury 2008 Thomas and Hedin 2008 Derkarabetian et al2010) are instrumental and imperative to addressing outstandingquestions of phylogenetic relationships and morphologicalevolution A phylogeny of Triaenonychidae is particularlywanting

Early diverging Grassatores Phalangodidaeand Sandokanidae

The recovery of a monophyletic Grassatores (supported inall analyses BS = 99 PP = 100) is consistent with severalmorphological synapomorphies uniting this diverse groupsuch as the presence of two tarsal claws on walking legs IIIand IV However the basal topology of Grassatores has longbeen contentious Previously two superfamilies of Grassatoreswere recognised Oncopodoidea (with the single familySandokanidae (formerly Oncopodidae)) and lsquoGonyleptoidearsquo(with the remaining families) (Martens 1976 1986 Martenset al 1981) This dichotomy was largely based upon theunique morphology of Sandokanidae ndash characters such as thescutum completum (fused opisthosomal tergites) reduced tarsal

articles and genitalic structures which are not found in theremaining Grassatores (Martens 1980 Giribet et al 2002Sharma and Giribet 2009) It was alternatively contended thatthese characters constituted autapomorphies of Sandokanidaewhich was nested within lsquoGonyleptoidearsquo itself (Kury 2003)

In all analyses we obtained an initial divergence betweenPhalangodidae and the remaining Grassatores (BS = 100PP = 096) refuting the traditional dichotomy betweenSandokanidae and lsquoGonyleptoidearsquo Therefore we hereindefine Gonyleptoidea as the taxon consisting of AgoristenidaeCosmetidae Cranaidae Gonyleptidae Manaosbiidae andStygnidae The split between Phalangodidae and the remainingGrassatores has been postulated to correspond to the rifting ofthe ancient supercontinents Laurasia and Gondwana as thedistribution of Phalangodidae was believed to be strictlyHolarctic (Giribet et al 2010) However the inclusion of theMadagascar genus Remyus previously placed in Zalmoxidae(Starega 1989) within a monophyletic Phalangodidae indicatesbroader distribution of phalangodids ndash complementing theTriaenonychidae-Fumontana case discussed above Moreoverthe origin of Phalangodidae is estimated to have occurred around302Mya (95 HPD 264ndash335Mya) greatly predating thebreakup of the supercontinents These results indicate thatPhalangodidae may be narrowly defined and we consequentlytransfer Remyus to Phalangodidae (new familial assignment)

The unusual family Sandokanidae has been postulated to besister toPodoctidae (SharmaandGiribet 2009Giribet et al 2010)or to form agradewith Phalangodidae (Kuryrsquos lsquoPhalangodoidearsquopartly) In the present study ML and BI topologies reconstructSandokanidae as sister to the remaining non-phalangodidGrassatores albeit with insignificant nodal support (BS = 21PP = 078) Curiously the topology obtained byBEAST recoversthe clade (Sandokanidae + Podoctidae) nested within a singleclade of South-east Asian families (PPBEAST = 085) Theseresults do not unambiguously favour one hypothesis overanother and the phylogenetic placement of Sandokanidae inthe Grassatores tree therefore remains debatable

Regardless of the inclusion of Sandokanidae within theSouth-east Asian group of families that the sister family to theremaining Grassatores is Phalangodidae not Sandokanidaeindicates that the peculiar morphology of sandokanids is theresult of multiple apomorphic reversals not the retention ofplesiomorphic characters (Martens and Schwendinger 1998)The large scutum and low tarsomere number found inSandokanidae also occur in Trogulidae and Dicranolasmatidae(suborder Dyspnoi) and all Cyphophthalmi and appear to haveevolved convergently This morphology may reflect adaptationsto a shared ecological niche all these groups inhabit leaf litterinclude no arboricolous species and are limited in vagility ndash

although these life history traits are also found in other groupsHowever this hypothesis has yet to be rigorously tested

Sandokanidae is presently one of few families of Grassatoresfor which a molecular phylogeny assessing intergenericrelationships is available (Sharma and Giribet 2009) andconsistent with earlier results the monophyly of Sandokanidaeis strongly supported (BS = 100 PP = 100) as is the initial splitbetweenMartensiellus and the remaining genera (an undescribedspecies was referred to as lsquogen sprsquo by Sharma and Giribet 2009but subsequent morphological investigation revealed this to be

Molecular phylogeny of Laniatores Invertebrate Systematics 125

Fig 16 Phylogenetic relationships of Laniatores inferred fromBayesian inference analysis of allmolecular data Numbers on nodes indicateposterior probabilities

126 Invertebrate Systematics P P Sharma and G Giribet

a miniature species of Martensiellus P J Schwendinger perscomm) (BS = 92 PP = 100) Intergeneric relationshipsof sandokanid genera are contingent upon analytical treatmentof molecular partitions (with additional sandokanid exemplarsdata not shown) reflecting conflict among datasets documentedby Sharma and Giribet (2009)

The other South-east Asian families

Epedanidae was postulated to be sister to Gonyleptoidea in acladistic analysis based on morphological characters (Kury1993) Subsequently Kury (2003) proposed that Epedanidaewas sister to the clade (Assamiidae (Stygnopsidae +Gonyleptoidea)) The single epedanid previously included in amolecular phylogeny was similarly unstable in placement eithernestingwithin Assamiidae or sister to the African lsquophalangodidsrsquo(Conomma and Maiorerus) in neither case with appreciablenodal support (Giribet et al 2010) Furthermore previousinclusion of several lineages (eg Tithaeus) within Epedanidaethat do not bear characters typical of true epedanids ndash sexuallydimorphic chelicera with heavy dentition elongate andspined pedipalpi male genitalia with setae surroundingthe capsula interna ndash has also made this family difficult todefine Consequently we included only Epedaninae (egPseudoepedanus Alloepedanus and Euepedanus) as exemplarsof true epedanids the systematic validity of the remaining threesubfamilies (and particularly the inclusion of Dibuninae) isbeyond the scope of this study and remains to be investigated

The monophyly of each of four South-east Asian families ndashEpedanidae (represented by epedanines) TithaeidaePetrobunidae and Podoctidae ndash is recovered with high nodalsupport (all BS = 100 PP = 100) These lineages are somehowrelated to each other and while they form a clade in bothML andBI analyses this result receives insignificant nodal support(PP = 077) In the topology recovered by BEAST the South-east Asian families form a clade that includes Sandokanidaea result consistent with the distribution of sandokanids albeitwithout support (PPBEAST = 085) Tithaeidae is probably closelyrelated to Podoctidae given the occurrence of a deeply cleftventral plate resulting in two flanking prongs in themale genitaliaof both families (Suzuki 1977 Lian et al 2008 Fig 19) Inaddition the clade (Podoctidae +Tithaeidae) is recovered withmoderate support in ML and BI analyses (BS = 59 PP = 097)In none of the analyses is Tithaeidae nested within or sister toEpedanidae sensu stricto

The morphology of Petrobunidae suggests some relationshipto previously described South-east Asian families oralternatively Phalangodidae but not inclusion within any ofthese (Fig 19) Molecular sequence data do not support anyspecificplacement ofPetrobunidae although it clusterswithotherSouth-east Asian families in all analyses and is recovered sisterto Epedanidae in two topologies (BI and BEAST)

Gonyleptoidea and Stygnopsidae

With over 2500 described species the superfamilyGonyleptoidea constitutes the most diverse and (arguably) themost charismatic lineage of Opiliones with most of this diversityconcentrated in Amazonia (some cosmetids occur as far north asthe mid-Atlantic states of the US) In a previous analysis

relationships of gonyleptoid families were unsupported andordid not accordwithmorphological studies (Giribet et al 2010) Inparticular the placement of the agoristenid exemplar Avimaalbiornata (Goodnight amp Goodnight 1947) ndash the putativesister family to the remaining Gonyleptoidea ndash within aparaphyletic Cranaidae was particularly suspect given thelimited availability of sequence data for Avima (complete 18SrRNA a300-bp fragmentof 28S rRNA andCOI) In addition thesister group of Gonyleptoidea was ambiguous and contingentupon analytical parameters

Redoubling sequencing efforts and addition of taxaparticularly in the case of Agoristenidae (currently sequencedfor 12S rRNA complete 18S rRNA a 2000-bp fragment of 28SrRNA COI H3 and EF-1a) improved the assessment ofgonyleptoid relationships A monophyletic Gonyleptoidea(BS = 58 PP = 066) is recovered sister to the familyStygnopsidae (BS = 57 PP = 100) Within Gonyleptoidea asplit between Agoristenidae and the remaining gonyleptoids isstrongly supported (BS = 100 PP = 100) followed by thedivergence of Stygnidae (BS = 71 PP = 099) Thisplacement of Agoristenidae is supported by morphologicalstudies (Pinto-da-Rocha and Kury 2007) although in aminority of tree topologies sampled in BI analysesAgoristenidae is sister to Stygnopsidae (hence lower nodalsupport for the monophyly of Gonyleptoidea in BI) Theplacement of Manaosbiidae is uncertain it is recoveredsister to either (Gonyleptidae +Cranaidae) (PP = 089) or toCosmetidae (PPBEAST = 092) but these results are notsupported Cranaidae is recovered as monophyletic (BS = 99PP = 100) and nested within a paraphyletic Gonyleptidae

The present sampling of Cosmetidae and Gonyleptidae doesnot do justice to the diversity of these lineages (~700 and 800described species respectively) A phylogenetic assessment ofall 16 subfamilies of Gonyleptidae alone constitutes the subjectof an arduous and exacting study Fortunately cladistic analysesof morphological characters continue to advance phylogeneticinvestigation of subfamilial lineages (eg BourguyiinaeYamaguti and Pinto-da-Rocha 2009 Goniosomatinae DaSilvaandGnaspini 2009HernandariinaeDaSilva andPinto-da-Rocha2010) Elucidating the phylogeny of Gonyleptoidea is one of themost exciting research topics in the study of Opiliones

The Afrotropical families

The third most diverse family of Laniatores Assamiidaeconstitutes the dominant opiliofauna of the African continent(excluding Madagascar) with some lineages occurring in SouthAsia the Indo-Malay Archipelago and Australia (Trionyxellinaeand Dampetrinae) Proposed to be related to EpedanidaeStygnopsidae andor Gonyleptoidea (Kury 2007) on the basisof genitalic structures assamiids were not recovered asmonophyletic in a previous study (paraphyly was induced byeither Epedanidae orAfricanBiantidae) and the placement of thesubfamily Trionyxellinae was particularly suspect (Giribet et al2010) Trionyxellinae was considered a separate family byMello-Leitatildeo (1949) though others considered it nested withinAssamiidae (eg Starega 1992) In our analyses the monophylyof Assamiidae is supported (BS = 79 PP = 100)lsquoTrionyxellinaersquo (Trionyxella and Mysorea both with a

Molecular phylogeny of Laniatores Invertebrate Systematics 127

Fig 17 Evolutionary time tree of Laniatores inferred fromBEASTanalysis of allmolecular data Coloured bars indicate 95highestposterior density (HPD) intervals for nodes of interest Numbers on nodes indicate posterior probabilities asterisks indicate posteriorprobability of 100

128 Invertebrate Systematics P P Sharma and G Giribet

pseudonychium on the third and fourth tarsi) is a diphyletic entitynested within the other Assamiidae (for the node renderingdiphyly BS = 100 PP = 100) disfavouring family status fortrionyxellines

The African lsquophalangodidsrsquo (sometimes called thelsquoPyramidops grouprsquo) were recognised as a new family byStarega (1992) but not formalised and included 13 genera(Conomma Pyramidops and related lineages) Consistentwith this hypothesis we recovered strong support for thePyramidops group (represented by Conomma and cfPyramidops) as a lineage separate from the true Phalangodidae(egBishopella and Scotolemon) recapitulating a previous result(Giribet et al 2010) The African lsquophalangodidsrsquowere recoveredas the sister lineage of Assamiidae although this relationshipis variably supported in our analyses (BS = 40 PP = 095PPBEAST = 100) A review and formal description of thePyramidops group as a new family lsquoPyramidopidaersquo ndash a namewidely available on the internet including GBIF but notformalised ndash is undertaken elsewhere (Sharma et al 2011)

While we have endeavoured to improve the sampling ofAssamiidae from South-east Asia the internal systematics ofthis family remain a high value target for phylogenetic researchHowever revision of assamiid systematics is inherently difficultfor two reasons (1) the family is peppered with questionablehierarchies and monotypic genera (~12 subfamilies and 250genera for less than 500 described species) and (2) occurs insome of the most inaccessible regions of the world namely sub-Saharan Africa

In all analyses the clade (Assamiidae + Pyramidopidae) issister to the clade (Zalmoxoidea + Samooidea) though this resultis only supported in one analysis (PP= 100) The divergence ofthese four lineages is estimated to have occurred 252Mya and isconsistent with diversification in West Tropical Gondwanaoccurring at least 140million years before the fragmentation ofthis terrane (~110Mya)

Zalmoxoidea

As currently defined the largely Neotropical superfamilyZalmoxoidea includes four families FissiphalliidaeGuasiniidae Icaleptidae and Zalmoxidae Guasiniidae hasnever before been included in a molecular phylogeny In thepresent study we sequenced a guasiniid for six genes and ouranalyses strongly support theplacement ofGuasiniidae as sister tothe samooid family Kimulidae (formerly Minuidae) (BS = 86PP = 098 PPBEAST = 099) and this clade in turn sister to anothersamooid family Escadabiidae (BS = 65 PP = 096PPBEAST = 100) The families Fissiphalliidae Icaleptidaeand Zalmoxidae in turn form a separate clade (BS = 100PP = 100 PPBEAST = 100) with strong support for the sisterrelationship of Zalmoxidae and Fissiphalliidae (BS = 99PP = 100 PPBEAST = 100) corroborating relationshipsproposed by morphological studies (Kury and Peacuterez G 2002Pinto-da-Rocha and Kury 2003b)

Previous analyses have suggested that Samooidea (discussedbelow) is a paraphyletic grade with respect to Zalmoxoidea(Giribet et al 2010) In the present analysis the cladeSamooidea + Zalmoxoidea is strongly supported (BS = 85PP = 100 PPBEAST = 100) as previously suggested by PeacuterezGonzaacutelez and Kury (2007) and by excluding Escadabiidae and

Kimulidae Samooidea is rendered a monophyletic entity albeitwith limited support (BS = 53 PP = 062 PPBEAST = 081) Thestrong support from molecular sequence data for the cladeincluding Escadabiidae Kimulidae and the four zalmoxoidfamilies (BS = 89 PP = 100 PPBEAST = 100) suggests thatthese may form a natural group

Re-examination of the morphology of these six families incomparisonwith true samooid lineages (Biantidae Samoidae andStygnommatidae) corroborates the exclusionofEscadabiidae andKimulidae from true Samooidea Escadabiidae and Kimulidae(1) lack the scopula characteristic of Samoidae and stenostygnineBiantidae (2) lack a sexually dimorphic metatarsus IIIcharacteristic of Samoidae Stygnommatidae and stenostygnineBiantidae and (3) lack a penial calyx characteristic of SamoidaeConsistent with placement within Zalmoxoidea EscadabiidaeandKimulidae (1) possess a small oculariumbearing the eyes thatis removed from the margin of the carapace (2) bear a wellmarked dorsal protuberance (bulla) on the proximal segmentof the chelicera that lacks armature and (3) possess sexuallydimorphic leg IV segments particularly the femur and tibiawhich may be variedly arcuate incrassate and spinedAdditionally Escadabiidae Fissiphalliidae and Zalmoxidae allpossess sexually dimorphic tegumental glandopeningson tibia IIwhereas Biantidae Samoidae and Stygnommatidae possessthese structures on metatarsus III (Willemart et al 2010)While data on tegumental gland openings are only availablefor a small handful of species these may constitute significantdiagnostic characters for species wherein sexual dimorphismdoes not manifest itself in the readily observable form ofenlarged and spiny segments

Given the results of our phylogenetic analyses maintainingSamooidea (as currently defined) renders it a paraphyletic gradewith respect to a diphyletic Zalmoxoidea (as currently defined)Consequently based on the aforementioned morphologicalcharacters and robust molecular phylogenetic signal wetransfer Escadabiidae and Kimulidae to Zalmoxoidea

Samooidea

A previous cladistic analysis based upon morphological datasuggested close relationship between six families ndash BiantidaeEscadabiidae Kimulidae Podoctidae Samoidae andStygnommatidae ndash thenceforth known as Samooidea (Kury1993) the only pantropical Laniatores superfamily HoweverPodoctidae does not have any obvious relationship to Samooideaand has subsequently been transferred (Kury 2007) in ouranalyses Podoctidae is sister to Tithaeidae or Sandokanidaeie distantly related to all samooid families Moreover ouranalyses strongly favour the exclusion of Escadabiidae andKimulidae from Samooidea

The remaining three families ndash Biantidae Samoidae andStygnommatidae ndash are distributed in the Neotropics and partsof Africa with a handful of suspect lineages in South-east AsiaRe-examination and reassignment of many Samoidae genera(eg the Indonesian lsquosamoidrsquo Waigeucola palpalis PeacuterezGonzaacutelez 2011) suggest that the range of Samoidae does notinclude South-east Asia Peacuterez Gonzaacutelez and Kury (2007) alsoobserved that the lsquosamoidsrsquo of Africa Madagascar and theSeychelles may not be true Samoidae either Similarlyinclusion of the genus Stygnomimus an Indonesian lineage

Molecular phylogeny of Laniatores Invertebrate Systematics 129

within Stygnommatidae is highly dubious as the twoIndonesian lsquostygnommatidsrsquo are either highly autapomorphic(Stygnomimus conopygus (Roewer 1927)) or described on the

basis of a generic female that is not readily distinguishable fromfemales of other species (Stygnomimus malayensis (Suzuki1970))

Fig 18 Strict consensus of tree topologies obtained by all phylogenetic analyses

130 Invertebrate Systematics P P Sharma and G Giribet

Previous efforts to assess the systematic validity of Samooideaby means of molecular sequence data were limited insofar asonly two Samoidae three Biantidae (all Metabiantes) and twoStygnommatidae were sampled (Giribet et al 2010) Thesampling of Samoidae was especially problematic only asingle Neotropical adult (Pellobunus) and one African juvenilesamoid (lsquoSamoidae gen sprsquo) were included The designation ofthe latter is suspect as juveniles of Samoidae are oftenindistinguishable from the juveniles of other lineages becausemany diagnostic secondary sexual characters in Grassatores(eg spines and incrassate appendages) are not acquired untilafter several postembryonic stages (Townsend et al 2009)

In the present study though the type genus of Samoidae(Samoa from Samoa) was not available we sequenced theclosely related genus Badessa (from Fiji collected byP P S) as well as additional Biantidae and StygnommatidaeOur analyses recovered a monophyletic Samooidea (excludingEscadabiidae and Kimulidae BS = 53 PP = 062) withSamoidae sensu stricto (Pellobunus +Badessa BS = 100PP = 100) nested within a paraphyletic Stygnommatidae aplacement that is supported (BS = 87 PP = 100) Bycontrast the African lsquosamoidrsquo is sister to the AfricanBiantidae a relationship that is also well supported(BS = 100 PP = 100) These relationships suggest a basal

Fig 19 Cladogram of male genitalic evolution in South-east Asian families superimposed upon a schematised molecular phylogeny based on ML and BIanalyses of all molecular data Exemplars (a) Pseudoepedanus doiensis Suzuki 1969 (redrawn from Suzuki 1969) dorsal view (b) Pseudoepedanus doiensisSuzuki 1969 (redrawn from Suzuki 1969) ventral view (c) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) ventral view(d) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) dorsal view (e) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki1976) dorsal view (f) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki 1976) ventral view (g) Petrobunus torosus lateral view (h) ZalmoxidagibberaSuzuki 1969 dorsal view (i)Zalmoxida sp (MCZDNA102677) dorsolateral view (j)Metatithaeus rubidusSuzuki 1969 (redrawn fromSuzuki 1969)ventral view (k)Tithaeus kokutnusSuzuki 1985 (redrawn fromSuzuki 1985) ventral view (l)Tithaeus similisSuzuki 1985 (redrawn fromSuzuki 1985) ventralview (m)DongmoaoshimensisSuzuki 1964 (redrawn fromSuzuki 1964) ventral view (n)Bonea longipalpisSuzuki 1977 (redrawn fromSuzuki 1977) ventralview (o) Santobius annulipes Soslashrensen 1886 (redrawn from Kury and Machado 2009) ventral view (p) Lomanius longipalpus mindanaoensis Suzuki 1977(redrawn from Suzuki 1977) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 131

dichotomy within Samooidea that corresponds to one groupof Neotropical and Pacific lineages and a second group ofAfrican lineages However as we were unable to samplestenostygnine (Neotropical) and Indo-Pacific Biantidae aswell as numerous monotypic genera dubiously placed inSamoidae biogeographical extrapolations for Samooidea aretenuous (discussed below)

The internal relationships of Samooidea suggest that themorphology of Samoidae may have evolved convergently Asthe African samoid is a juvenile (the same specimen previouslysequenced by Giribet et al 2010 now sequenced for additional28S rRNA and other genes) we cannot rule out the possibility ofa monophyletic Samoidae that includes African species (thespecimen in question could be a juvenile biantid) In any casethe paraphyly of Stygnommatidae and putative polyphyly ofSamoidae strongly advocate systematic revision of samooidfamilies as currently defined corroborating hypotheses of non-monophyly based on morphology (Peacuterez Gonzaacutelez 2007 PeacuterezGonzaacutelez and Kury 2007) Our sampling of these families isinsufficient to advocate specific taxonomic action but an ongoing

study of samooidean systematics will shed more light on thevalidity of constituent families (A Peacuterez Gonzaacutelez work inprogress)

Biogeography of Zalmoxoidea and Samooidea

While most superfamilies of Grassatores are restricted to aspecific part of the tropics (eg Neotropics South-east Asia)two are distributed in multiple biogeographical provincesSamooidea occurs in the Neotropics and Afrotropics withquestionable records from South-east Asia Zalmoxoidea isconcentrated in the Neotropics with the exception of oneIndo-Pacific lineage of Zalmoxidae (represented here byZalmoxis sp) The ages and distributions of Samooidea andZalmoxoidea suggest that their biogeography was influencedby the fragmentation of West Tropical Gondwana ndash causingthe former to diverge basally throughout West TropicalGondwanan terranes and the latter to become isolated to theNeotropics (with possible subsequent dispersal)

Fig 20 Ancestral range reconstructions for Samooidea +Zalmoxoidea inferred by Lagrange using stratified models corresponding to two vicariant events(indicated by dotted lines) Coloured squares at terminals indicate ranges occupied by sampled species Coloured squares on nodes indicate ranges reconstructedfor hypothetical ancestors Numbers on nodes indicate relative probability of ranges reconstructed

Fig 21 Best hypothesis of Laniatores relationships based on all available evidence Bracketed nodes indicate non-monophyletic entities Dashed line indicatesambiguity in the placement of Sandokanidae (alternatively placed as shown or as sister to Podoctidae) Exemplars of Laniatores diversity are Synthetonychiaoliveae (Synthetonychiidae) Equitius doriae (Triaenonychidae) Hadziana clavigera (Travuniidae) Erebomaster flavescens flavescens (Cladonychiidae)Scotolemon lespesi (Phalangodidae) Palaeoncopus gunung (Sandokanidae) Santobius sp (Podoctidae) Tithaeus sp (Tithaeidae) Petrobunus spinifer(Petrobunidae) Alloepedanus sp (Epedanidae) Hoplobunus sp (Stygnopsidae) Torreana spinata (Agoristenidae) Stygnoplus clavotibialis (Stygnidae)Metalibitia paraguayensis (Cosmetidae)Acutisoma longipes (Gonyleptidae)Conommaoedipus (Pyramidopsgroup)Mysorea thaiensis (Assamiidae)Lacurbssp (Biantidae) Stygnomma sp (Stygnommatidae) Badessa sp (Samoidae) Guasinia sp (Guasiniidae) Icaleptes sp (Icaleptidae) Fissiphallius chicoi(Fissiphalliidae) Zalmoxis sp (Zalmoxidae) Kimula goodnightiorum (Kimulidae)

132 Invertebrate Systematics P P Sharma and G Giribet

Molecular phylogeny of Laniatores Invertebrate Systematics 133

To test this hypothesis we conducted likelihood analysisof range evolution using the program Lagrange (Ree et al2005 Ree and Smith 2008) for the clade (Zalmoxoidea +Samooidea) The stratified analysis resulted in a globalmaximum likelihood of ndashlnL= 1556 outperforming anunconstrained analysis that did not include any dispersalconstraints (ndashlnL= 1676) Likelihood analysis of rangeoptimisation (Fig 20) indicates that the ancestral range ofSamooidea includes both the Afrotropics and the Neotropics(relative probability pr = 1000) but a subsequent split occursbetween an African lineage (pr = 1000) and a NeotropicalIndo-Pacific lineage with a Neotropical ancestral range (pr = 0986)Samoidea of the Indo-Pacific occur on young oceanic islands(eg Fiji Samoa) indicating recent transoceanic dispersal fromthe Neotropics

Ancestral range reconstructions for Samooidea are allconsistent with estimated divergence times for these clades(diversification of Samooidea predates the rifting of WestAfrica from northern South America) favouring an underlyingvicariant process for the basal topology with subsequent recentdispersal events However these results are contingent upon thepresent sampling which does not include all samooid lineages(eg stenostygnine Biantidae) but basal range reconstructionsare likely unaffected (eg Stenostygninae is exclusivelyNeotropical)

In contrast the ancestor of Zalmoxoidea is reconstructedas singularly Neotropical (pr = 0996) This is consistent withisolation of a zalmoxoid ancestor to Amazonia which thenradiated ~191Mya Subsequent ancestral ranges are alsoreconstructed as Neotropical with high relative probabilityHowever the ancestral range of the clade (Icaleptidae +Fissiphalliidae + Zalmoxidae) is ambiguously reconstructedas either Neotropical (pr = 0935) or Neotropical + Indo-Pacific(pr = 0064) as is the split between Fissiphalliidae andZalmoxidae (Neotropical pr = 0856 Neotropical + Indo-Pacific pr = 0141)

These results suggest that the Indo-Pacific lineage ofZalmoxidae which split from Neotropical Zalmoxidae ~83Myais likely the result of long-distance dispersal from the NeotropicsHowever due to the persistence of transantarctic connectionsbetween the Australian plate and temperate South America untilthe Tertiary a competing vicariant scenario cannot be ruled outwithout densely sampling zalmoxid diversity The biogeographyof Zalmoxidae is presently being explored in greater detail in aseparate study (P P Sharma unpubl data)

Finally the ancestral range of (Samooidea + Zalmoxoidea)includes both Africa and the Neotropics (pr = 0957) consistentwith a tropical West Gondwanan ancestor This resultlends circumstantial evidence to a sister relationship of theAfrotropical families (Assamiidae + Pyramidopidae) and theclade (Samooidea + Zalmoxoidea) recovered in all analyses

The diversification of Grassatores

While numerous interfamilial relationships are supported inthis study particularly among gonyleptoid and zalmoxoidfamilies some relationships between superfamilies ofGrassatores are not supported and are contingent upon

analytical treatments namely the deployment of substitutionmodels and data partitioning (Fig 21) The cause of thisinstability could be related to insufficient data particularly inthe EF-1a partition (the length of an intron which can exceed400 bp in some taxa makes this gene particularly difficult toamplify) However examination of clade divergence timessuggests that rapid diversification of Grassatores lineagescould in part augment phylogenetic uncertainty in basal partsof the topology

The split between Phalangodidae and the remainingGrassatores is estimated to have occurred ~302Mya but aseries of divergences resulted in the origin of all superfamiliallineages between 232 and 271Mya Relative to the estimatedage of Laniatores (348Mya) this 39-million-year period isremarkably narrow and inherently problematic as the amountof phylogenetic signal for a given stem subtending a node isdirectly proportional to the amount of time that the stem inquestion spans (Lanyon 1988 Rokas and Carroll 2006) Thesmall internal edge lengths of the stems corresponding to basaldivergences of non-phalangodid Grassatores (Figs 15 16)combined with the ancient age of lineages derived from thesedivergences result in relationships that are difficult to estimatewithout a large amount of sequence data andor the inclusion ofdata that are less afflicted by homoplasy (because longer edgelengths imply more indel and substitution events on edges)(Whitfield and Lockhart 2007)

We additionally observe that the origins of most Grassatoressuperfamilies occur in the wake of the end-Permian massextinction (~254Mya) Rapid radiation in the wake of a massextinction has occurred in multiple metazoan lineagesthe putative result of relaxed selection and opening ofpreviously occupied ecological niche space (Labandeira andSepkoski 1993 Sahney and Benton 2008) The rapiddiversification of early Grassatores lineages could be anexample of this phenomenon but this hypothesis is difficult totest in the absence of Mesozoic Grassatores fossils (reviewed byDunlop 2007)

Finally we observe that contrary to traditional hierarchiesproposed for Laniatores many of the clades recovered in ouranalyses correspond to geographical regions particularly in thecase of Grassatores For example the southern hemispheretriaenonychids are restricted to temperate Gondwananlandmasses Gonyleptoidea and their sister group Stygnopsidaeform a Neotropical (AmazonianMesoamericanAntillean) cladethat excludes Assamiidae which has been hypothesised to be amember of a broader Gonyleptoidea (Kury and Cokendolpher2000 Mendes and Kury 2007) In our analyses Assamiidae isin fact a member of a largely Afrotropical clade together withthe Pyramidopidae South-east Asian families usually form oneclade (at most two) albeit with limited support Samooideafamilies are divided into two clusters African and NeotropicalWith one exception (described above) Zalmoxoidea is restrictedto the Neotropics The ages that we estimate for Laniatoresradiations are consistent with ancient diversification beforethe fragmentation of Pangaea An ancient diversification inconjunction with the climatic stability of the tropics may in partexplain the comparatively greater diversity of the armouredharvestmen with respect to the other Opiliones suborders

134 Invertebrate Systematics P P Sharma and G Giribet

Acknowledgements

Weare indebted toPeter J Schwendingerwho collected andprovidedmost ofthe material for study from South-east Asia Some Thai and most of theNeotropical Laniatores were obtained from the TIGER (Thailand InventoryGroup for Entomological Research) and LLAMA (Leaf Litter Arthropods ofMeso-America) projects toC Lienhard and J Longino respectivelyMaterialfrom Madagascar was generously contributed by Charles Griswold and theCalifornia Academy of Sciences Jesse Czekanski-Moir in conjunction withthe Belau NationalMuseum contributed elusive specimens from Palau AbelPeacuterezGonzaacutelez identifiedmanyNeotropical species included in the study andcontributed specimens fromCubaRicardoPinto-da-Rocha identified someofthe live photographed animals from the Neotropics Discussions with RonaldMClouseAbelPeacuterezGonzaacutelezAdrianoBKury andCarlosEPrieto refinedmanyof the ideas presentedhereTwoanonymous reviewers and the associateeditor provided comments that helped to improve an earlier version ofthis manuscript Laura Leibensperger sorted and accessioned TIGER andLLAMA material as well as MCZ type material Adam Graham and theCenter forNanoscaleStudies atHarvardUniversityprovided support forSEMwork Collecting efforts in New Caledonia were greatly facilitated by theguidance of Herveacute Jourdan (Institut de rechercheacute pour de developpementNoumea) and his teammembers Collecting efforts in Fiji weremade possibleby Marika Tuiwawa (University of the South Pacific Suva) and his teammembers Hilda Waqa and Tokasaya lsquoToxrsquo Cakacaka we are especiallygrateful to Tox for his good company during fieldwork and to his familyfor graciously enabling a visit toOvalau SuzieYee Shawprovided invaluablelogistical support in Fiji and her sons Colin and Joshua Yee Shaw assistedwith sorting Fijian material Fieldwork in Indonesia and West Africa wassupported by two MCZ Putnam Expedition Grants awarded to RonaldM Clouse and G G (2006) and to G G (2009) respectively Fieldworkin New Caledonia was supported by the Goelet award the Kalathia FamilyTrust and the Explorers Club awarded to P P S in 2006 Fieldwork in Fijiand in Palauwas supported by twoMCZPutnamExpeditionGrants awardedto P P S (2008) and to Ronald M Clouse and P P S (2010) respectivelyP P S was supported by a Faculty of Arts and Sciences Graduate Fellowshipfrom Harvard University

References

Castresana J (2000) Selectionof conservedblocks frommultiple alignmentsfor their use in phylogenetic analysis Molecular Biology and Evolution17 540ndash552

Colgan D J McLauchlan A Wislon G D F Livingston S MacaranasJ Edgecombe G D Cassis G and Gray M R (1998) Molecularphylogenetics of the Arthropoda relationships based on histone H3and U2 snRNA DNA sequences Australian Journal of Zoology 46419ndash437 doi101071ZO98048

DaSilva M B and Gnaspini P (2009) A systematic revision ofGoniosomatinae (Arachnida Opiliones Gonyleptidae) with a cladisticanalysis and biogeographical notes Invertebrate Systematics 23530ndash624 doi101071IS09022

DaSilva M B and Pinto-da-Rocha R (2010) Systematic review andcladistic analysis of the Hernandariinae (Opiliones Gonyleptidae)Zoologia 27 577ndash642

Derkarabetian S Steinmann D B and Hedin M (2010) Repeatedand time-correlated morphological convergence in cave-dwellingharvestmen (Opiliones Laniatores) from montane western NorthAmerica PLoS ONE 5 e10388 doi101371journalpone0010388

Drummond A J and Rambaut A (2007) BEAST Bayesian evolutionaryanalysis by sampling trees BMC Evolutionary Biology 7 214doi1011861471-2148-7-214

Drummond A J Ho S Y W Phillips M J and Rambaut A (2006)Relaxed phylogenetics and dating with confidence PLoS Biology 4 e88doi101371journalpbio0040088

Dunlop J A (2007) Paleontology In lsquoHarvestmen The Biology ofOpilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 247ndash265 (Harvard University Press Cambridge MA USA)

Dunlop J A and Anderson L I (2005) A fossil harvestman (ArachnidaOpiliones) from theMississippian of East Kirkton Scotland The Journalof Arachnology 33 482ndash489 doi10163604-791

Dunlop JAAndersonL IKerpH andHassH (2003)Preservedorgansof Devonian harvestmen Nature 425 916 doi101038425916a

Dunlop J A Anderson L I Kerp H and Hass H (2004) A harvestman(Arachnida Opiliones) from the Early Devonian Rhynie chertsAberdeenshire Scotland Transactions of the Royal Society ofEdinburgh Earth Sciences 94 341ndash354

Edgar R C (2004) MUSCLE multiple sequence alignment with highaccuracy and high throughput Nucleic Acids Research 32 1792ndash1797doi101093nargkh340

Edgecombe G D and Giribet G (2006) A century laterndash a total evidencere-evaluation of scutigeromorph centipedes (Myriapoda Chilopoda)Invertebrate Systematics 20 503ndash525 doi101071IS05044

Edgecombe G D Giribet G and Wheeler W C (2002) Phylogeny ofHenicopidae (Chilopoda Lithobiomorpha) a combined analysis ofmorphology and five molecular loci Systematic Entomology 2731ndash64 doi101046j0307-6970200100163x

FolmerOBlackMHoehWLutzR andVrijenhoekRC (1994)DNAprimers for amplification ofmitochondrial cytochrome c oxidase subunit Ifrom diverse metazoan invertebrates Molecular Marine Biology andBiotechnology 3 294ndash299

Forster R R (1954) The New Zealand harvestmen (sub-order Laniatores)Canterbury Museum Bulletin 2 1ndash329

Giribet G and Kury A B (2007) Phylogeny and biogeography InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 62ndash87 (Harvard University PressCambridge MA USA)

Giribet G Carranza S Baguntildeagrave J Riutort M and Ribera C (1996) Firstmolecular evidence for the existence of a Tardigrada +Arthropoda cladeMolecular Biology and Evolution 13 76ndash84

Giribet G Rambla M Carranza S Baguntildeagrave J Riutort M and Ribera C(1999) Phylogeny of the arachnid order Opiliones (Arthropoda)inferred from a combined approach of complete 18S and partial 28Sribosomal DNA sequences and morphology Molecular Phylogeneticsand Evolution 11 296ndash307 doi101006mpev19980583

Giribet G Edgecombe G D Wheeler W C and Babbitt C (2002)Phylogeny and systematic position of Opiliones a combined analysis ofchelicerate relationships using morphological and molecular dataCladistics 18 5ndash70

Giribet G Vogt L PeacuterezGonzaacutelez A Sharma P andKury A B (2010)A multilocus approach to harvestman (Arachnida Opiliones) phylogenywith emphasis on biogeography and the systematics of LaniatoresCladistics 26 408ndash437

Hara M R Gnaspini P and Machado G (2003) Male egg guardingbehavior in the Neotropical harvestman Ampheres leucopheus (Mello-Leitatildeo 1922) (Opiliones Gonyleptidae) The Journal of Arachnology 31441ndash444 doi101636S02-32

Hedin M Derkarabetian S McCormack M and Richart C (2010) Thephylogenetic utility of the nuclear protein-encoding gene EF-1a forresolving recent divergences in Opiliones emphasizing intronevolution The Journal of Arachnology 38 9ndash20 doi101636HA09-491

Huelsenbeck J P and Ronquist F (2005) Bayesian analyses of molecularevolution using MrBayes In lsquoStatistical Methods in MolecularEvolutionrsquo (Ed R Nielsen) (Springer New York)

HunterRK ProundDNBurns JA Tibbetts JA andTownsendVR(2007) Parental care in the Neotropical harvestman Phareicranauscalcariferus (Opiliones Cranaidae) The Journal of Arachnology 35199ndash201 doi101636ST06-181

Molecular phylogeny of Laniatores Invertebrate Systematics 135

Kocher T D Thoma W K Meyer A Edwards S V Paumlaumlbo SVillablanca F X and Wilson A C (1989) Dynamics ofmitochondrial DNA evolution in animals amplification andsequencing with conserved primers Proceedings of the NationalAcademy of Sciences of the United States of America 86 6196ndash6200doi101073pnas86166196

Kury A B (1993) Anaacutelise filogeneacutetica de Gonyleptoidea (ArachnidaOpiliones Laniatores) PhD Thesis Universidade de Satildeo Paulo SatildeoPaulo Brazil

Kury A B (2003) Annotated catalogue of the Laniatores of the NewWorld (Arachnida Opiliones) Revista Ibeacuterica de AracnologiacuteaVolumen Especial Monograacutefico 1 1ndash337

Kury A B (2006) Checklist of valid genera of Opiliones of theWorld Museu NacionalUFRJ Available from httpwwwmuseunacionalufrjbrmndiAracnologiachecklaniatorhtm [Accessed1 February 2011]

Kury A B (2007) Podoctidae Roewer 1912 In lsquoHarvestmen The Biologyof Opilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 221ndash224 (Harvard University Press Cambridge MA USA)

Kury A B and Cokendolpher J C (2000) Opiliones In lsquoBiodiversidadTaxonomiacutea y Biogeografiacutea de Artoacutepodos de Meacutexico Hacia una Sintesisde su Conocimientorsquo vol 2 (Eds J E Llorente E Gonzaacutelez andN Papavero) pp 137ndash157 (Universidad Nacional Autoacutenoma deMexico Meacutexico DF Mexico)

Kury A B and Machado G (2009) Notes on Santobius from Vanuatu andFiji and the status of the eastern Melanesian Ibalonius (ArachnidaOpiliones Podoctidae) Zoological Studies 48 524ndash538

Kury A B and Peacuterez G A (2002) A new family of Laniatores fromnorthwestern South America (Arachnida Opiliones) Revista Ibeacuterica deAracnologiacutea 6 3ndash11

Labandeira C C and Sepkoski J J (1993) Insect diversity in the fossilrecord Science 261 310ndash315 doi101126science11536548

Lanyon S M (1988) The stochastic mode of molecular evolutionwhat consequences for systematic investigations The Auk 105565ndash573

Lian W-G Zhu M-S and Kury A B (2008) A new species of the genusTithaeus from China (Arachnida Laniatores Epedanidae) Zootaxa1841 53ndash60

Machado G Requena G S Buzatto B A Osses F and Rossetto L M(2004) Five new cases of paternal care in harvestmen (ArachnidaOpiliones) implications for the evolution of male guarding in theNeotropical family Gonyleptidae Sociobiology 44 577ndash598

Martens J (1976) Genitalmorphologie System und Phylogenie derWeberknechte (Arachnida Opiliones) Entomologica GermanicaZeitschrift fuumlr das Gesamtgebiet der Wissenschaftlichen Entomologie3 51ndash68

Martens J (1980) Versuch eines phylogenetischen Systems der OpilionesIn lsquoProceedings 8th International Congress of Arachnology ViennaVerhandlungenrsquo (Ed J Gruber) pp 355ndash360 (Vienna Austria)

Martens J (1986) Die Grossgliederung der Opiliones und die Evolutionder Ordnung (Arachnida) Actas del X Congreso Internacional deAracnologiacutea Jaca 1 289ndash310

Martens J (1993) Further cases of paternal care in Opiliones (Arachnida)Tropical Zoology 6 97ndash107

Martens J and Schwendinger P S (1998) A taxonomic revision ofthe family Oncopodidae I New genera and new species of GnomulusThorell (Opiliones Laniatores) Revue Suisse de Zoologie 105 499ndash555

Martens J Hoheisel U and Goumltze M (1981) Vergleichende Anatomieder Legeroumlhren der Opiliones als Beitrag zur Phylogenie der Ordnung(Arachnida) Zoologische Jahrbucher Abteilung fur Anatomie undOntogenie der Tiere 105 13ndash76

Mello-Leitatildeo C F (1949) Famiacutelias subfamiacutelia espeacutecies e gecircneros novos deopiliotildees e notas de sinoniacutemia Boletim do Museu Nacional Nova SeacuterieZoologia Rio de Janeiro 94 1ndash33

Mendes A C and Kury A B (2007) Stygnopsidae Soslashrensen 1932 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 232ndash234 (Harvard University PressCambridge MA USA)

Mendes A C and Kury A B (2008) Intercontinental Triaenonychidae ndashthe case of Ceratomontia (Opiliones Insidiatores) The Journal ofArachnology 36 273ndash279 doi101636CH07-931

Murphree C S (1988) Morphology of the dorsal integument of tenopilionid species (Arachnida Opiliones) The Journal of Arachnology16 237ndash252

Park J K andOacuteFoighilD (2000) Sphaeriid and corbiculid clams representseparate heterodont bivalve radiations into freshwater environmentsMolecular Phylogenetics and Evolution 14 75ndash88 doi101006mpev19990691

Peacuterez Gonzaacutelez A (2006) lsquoRevisatildeo Sistemaacutetica e Anaacutelise Filogeneacutetica deStygnommatidae (Arachnida Opiliones Laniatores)rsquo (Museu NacionalUniversidade Federal de Rio de Janeiro Rio de Janeiro Brazil)

Peacuterez Gonzaacutelez A (2007) Stygnommatidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 229ndash232 (Harvard University PressCambridge MA USA)

Peacuterez Gonzaacutelez A (2011) New familial assignment for two harvestmanspecies of the infraorder Grassatores (Arachnida Opiliones Laniatores)Zootaxa 2757 24ndash28

Peacuterez Gonzaacutelez A and Kury A B (2007) Samoidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 224ndash226 (Harvard University PressCambridge MA USA)

Pineau P Henry M Suspegravene R Marchio A Dettai A Debruyne RPetit T Leacutecu A Moisson P Dejean A Wain-Hobson S andVartanian J-P (2005) A universal primer set for PCR amplificationof nuclear histone H4 genes from all animal species Molecular Biologyand Evolution 22 582ndash588 doi101093molbevmsi053

Pinto-da-Rocha R (1997) Systematic review of the Neotropical familyStygnidae (Opiliones Laniatores Gonyleptoidea) Arquivos deZoologia 33 163ndash342

Pinto-da-Rocha R and Kury A B (2003a) Phylogenetic analysis ofSantinezia with description of five new species (Opiliones LaniatoresCranaidae) The Journal of Arachnology 31 173ndash208 doi1016360161-8202(2003)031[0173PAOSWD]20CO2

Pinto-da-Rocha R and Kury A B (2003b) Third species of Guasiniidae(Opiliones Laniatores) with comments on familial relationships TheJournal of Arachnology 31 394ndash399 doi101636H02-59

Pinto-da-Rocha R and Kury A B (2007) Agoristenidae Silhavy 1973 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 171ndash173 (Harvard University PressCambridge MA USA)

Posada D (2005) Modeltest 37 Program and documentation available athttpdarwinuvigoes [Accessed 28 May 2011]

Posada D and Buckley T (2004) Model selection and model averaging inphylogenetics advantages of Akaike information criterion and Bayesianapproaches over likelihood ratio tests Systematic Biology 53 793ndash808doi10108010635150490522304

Posada D and Crandall K A (1998) Modeltest testing the model ofDNA substitution Bioinformatics (Oxford England) 14 817ndash818doi101093bioinformatics149817

Prendini L Weygoldt P and Wheeler W C (2005) Systematics of theDamon variegates group of African whip spiders (ChelicerataAmblypygi) evidence from behaviour morphology and DNAOrganisms Diversity amp Evolution 5 203ndash236 doi101016jode200412004

Rambaut A E (1996) Se-Al sequence alignment editor University ofOxford UK Program and documentation available at httptreebioedacuksoftwarefigtree [Accessed 21 December 2009]

136 Invertebrate Systematics P P Sharma and G Giribet

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 5: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

BEAST analysis and coded the ranges of terminals asAfrotropical Neotropical or Indo-Pacific We implementedstratified dispersal constraint matrices for three spans of time(1) 0ndash35Mya (disconnection of all three landmasses) (2)35ndash110Mya (transantarctic connections between theAustralian plate and temperate South America disconnectionof South America and West Africa) and (3) 110ndash206Mya(connection of all three landmasses) Geological events usedto delimit the time spans follow Sanmartiacuten and Ronquist(2004) The maximum number of areas in ancestral ranges washeld at two (this convention reflects empirical observationsof Laniatores species the majority of which are narrowlydistributed endemics) and dispersal constraints were set toeither 10 (if landmasses were connected) or 01 (if landmasseswere disjunct)

Table 1 List of primer sequences used for amplification and sequencing with original references of primer sequences

12S rRNA12Sai 50-AAA CTA GGA TTA GAT ACC CTA TTA T-30 Kocher et al (1989)12Sr Opi 50-AAG AGC GAC GGG CGA TGT GTA CAT-30 This study

16S rRNA16Sa 50-CGC CTG TTT ATC AAA AAC AT-30 Xiong and Kocher (1991)16Sb 50-CTC CGG TTT GAA CTC AGA TCA-30 Edgecombe et al (2002)

18S rRNA1F 50-TAC CTG GTT GAT CCT GCC AGT AG-30 Giribet et al (1996)3F 50-GTT CGA TTC CGG AGA GGG A-30 Giribet et al (1996)5R 50-CTT GGC AAA TGC TTT CGC-30 Giribet et al (1996)9R 50-GAT CCT TCC GCA GGT TCA CCT AC-30 Giribet et al (1996)18Sa20 50-ATG GTT GCA AAG CTG AAA C-30 Whiting et al (1997)18Sbi 50-GAG TCT CGT TCG TTA TCG GA-30 Whiting et al (1997)

28S rRNA28Sa 50-GAC CCG TCT TGA AAC ACG GA-30 Whiting et al (1997)28S D1F 50-GGG ACT ACC CCC TGA ATT TAA GCAT-30 Park and Oacute Foighil (2000)28Srd4b 50-CCT TGG TCC GTG TTT CAA GAC-30 Edgecombe and Giribet (2006)28Srd5b 50-CCA CAG CGC CAG TTC TGC TTA C-30 Schwendinger and Giribet (2005)28Srd48a 50-ACC TAT TCT CAA ACT TTA AAT GG-30 Schwendinger and Giribet (2005)28Srd7b1 50-GAC TTC CCT TAC CTA CAT-30 Schwendinger and Giribet (2005)28S F2012 50-CCA AGG TKA RYA GCC TCT RG-30 Giribet et al (2010)28S R2762 50-CCG CCC CAG CCA AAC TCC CC-30 Giribet et al (2010)28S F2762 50-GGG GAG TTT GGC TGG GGC GG-30 Giribet et al (2010)28S OR2r 50-TTC TGA CTT AGA GGC GTT CAG-30 Giribet et al (2010)

COILCO1490 50-GGT CAA CAA ATC ATA AAG ATA TTG G-30 Folmer et al (1994)HCOoutout 50-GTA AAT ATA TGR TGD GCT C-30 Prendini et al (2005)

Cytochrome bCytB F-Lan 50-TAG GTT ATG TGT TAC CTT GAG GWC AAA TAT CTT TTT G-30 This study modified from Schoumlnhofer

and Martens (2008)CytB R-Lan 50-CCA CCT AAT TTA TTT GGA ATT GAT TG-30 This study

EF-1aEF OP3 50-TTT GAR GAA ATC CAR AAR GAA GT-30 Hedin et al (2010)EF OPRC4 Leio 50-GAA CTT GCA AGC AAT GTG AGC-30 Hedin et al (2010)

Histone H3H3aF 50-ATG GCT CGT ACC AAG CAG ACV GC-30 Colgan et al (1998)H3aR 50-ATA TCC TTR GGC ATR ATR GTG AC-30 Colgan et al (1998)

Histone H4H4F2S 50-TSC GIG AYA ACA TYC AGG GIA TCA C-30 Pineau et al (2005)H4F2er 50-CKY TTI AGI GCR TAI ACC ACR TCC AT-30 Pineau et al (2005)

U2 snRNAU2F 50-TCT CGG CCT WWT GGC TAA-30 Colgan et al (1998)U2R 50-GMG GTA STG CAA TAC CGG-30 Colgan et al (1998)

Table 2 Length of gene partition alignment prior and subsequent totreatment with GBlocks ver 091b

Partitions Original length ofalignment (bp)

Fraction retainedby GBlocks ()

Final length ofalignment (bp)

12S rRNA 382 44 17116S rRNA 656 64 36418S rRNA 1784 98 175228S rRNA 3438 70 2405COI 795 81 648CytB 421 100 421EF-1a 584 96 566H3 327 100 327H4 160 100 160U2 snRNA 131 100 131

110 Invertebrate Systematics P P Sharma and G Giribet

Taxonomy

Order OPILIONES Sundevall 1833

Suborder LANIATORES Thorell 1876

Family PETROBUNIDAE fam nov

Type genus Petrobunus gen nov

Type species Petrobunus schwendingeri sp nov

Genera included Petrobunus gen nov Zalmoxida Roewer 1912 newfamilial assignment

Diagnosis

Small to medium-sized Grassatores with a low oculariumremoved from anterior margin of carapace with a medianocularial tubercle in some species but distinguished fromEpedanidae in the lack of a large median spine Mesotergumsmooth indistinctly divided into five areas scutal areas I and IInot fused as opposed to Epedanidae Chelicerae with a sexuallymonomorphic prominent bulla basal segment not enlarged asopposed toEpedanidae Palpus robust and strongly spined palpalpatella armed with single distinct spine-bearing tubercle onmedial-distal portion It can be differentiated from Podoctidaein lacking spines in leg I and in lacking a sexually dimorphicocularium Femur of leg III sexually monomorphic and arcuateMale leg IV sexually dimorphic and spined Tarsi III and IV withunmodified double claws scopulae absent as opposed to mostSamooidea It can be distinguished from Sandokanidae andPodoctidae in the tarsal formula which is not reduced inPetrobunidae Pars distalis of penis either shaped as the headof a javelin (Petrobunus) or with a rounded apical margin(Zalmoxida) and spoon-shaped in dorsal aspect without cleftin ventral plate (as opposed to Tithaeidae and Podoctidae) or aring of setae surrounding a capsula interna (as opposed toEpedanidae) variable number of setae on lateroventral andlaterodorsal surfaces glans free in apical part and simple withparastylar lobe small (Zalmoxida) or elongate and extendingproximally (Petrobunus) Ovipositor composed of two apicallobes each bearing two dorsal setae one ventral seta and twoapical setae bases of ventral pair of setae either in contact(Zalmoxida) or set apart (Petrobunus) distal surfaces ofapical lobes either finely denticulate (Zalmoxida) or smooth(Petrobunus) (Appendix 2)

Remarks

The morphology of Petrobunidae is not readily indicative ofphylogenetic affinities The sexually dimorphic fourth walkingleg and apophyses of the opisthosomal sternites suggest arelationship to Zalmoxidae or Escadabiidae respectively (orsome distant relationship to Zalmoxoidea) the indistinctdivision of the mesotergum to Samoidae and the spoon-shaped pars distalis of the penis to erecanine Assamiidae orPhalangodidae Molecular sequence data similarly do notsupport the placement of Petrobunidae either within or sister toa single family disfavouring its inclusion in a previouslydescribed lineage However in most analyses Petrobunidaeclusters with other South-east Asian families namelyEpedanidae and Podoctidae (discussed below)

Etymology

The name refers to the appearance of males of this genuswhich appear to have tiny pebbles attached to the proximalpart of the fourth leg when observed with the naked eyedue to the greatly enlarged trochanter IV Derived from Greeklsquopetrarsquo (ptra) meaning lsquostonersquo or lsquopebblersquo and lsquo-bunusrsquoa common suffix in Opiliones taxonomy (eg HadrobunusTriaenobunus Dibunus) It is also wordplay as the typespecies is named after an individual with the given namelsquoPeterrsquo

a

b

050 mm

050 mm

050 mm

c

Fig 3 Petrobunus schwendingeri sp novmale holotype (a) Dorsal view(b) lateral view and (c) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 111

Genus Petrobunus gen nov

Type species Petrobunus schwendingeri sp nov

Diagnosis

Small Grassatores (body length lt2mm) distinct from otherpetrobunids in the following combination of characters coxaand trochanter of male leg IV greatly incrassate with trochanterIV sub-rectangular in lateral aspect Tarsal formula 3 5 5 5ndash6Pars distalis of penis shaped as the head of a javelin two to threepairs of setae on ventral plate and four setae on each lateralmargin glans free in apical part with parastylar lobe extendingproximally Ovipositor with two ventral setae (one per apicallobe) set apart from one another by a distance equal toapproximately one-third the width of the ovipositor

Distribution

The newly described species are known only from the Philippineislands of Palawan and Panay an undescribed morphospecies

(included in molecular phylogeny as MCZ DNA102668 andMCZ DNA102669) is known from Taiwan

Petrobunus schwendingeri sp nov

(Figs 3ndash6 Tables 3 4)

Material examined

Holotype Male (MHNG) Philippines Panay Sibaliw primary forest450m alt leg E Curio 13i2008 (ex MCZ DNA103572)

Paratypes 1lt (mounted on three SEMstubs [MCZ100872ndash100874] anddissected for genitalia) 2 (1 extracted for DNA [MCZ 100875 MCZDNA103572] 1 dissected for genitalia [MCZ100881]) same collectingdata as holotype 4 same collecting data as holotype (MHNG)

Additional material studied 1 lt juvenile same collecting data asholotype

Diagnosis

Small petrobunid with unarmed ocularium Distinct from otherspecies in the genus in the mesotergum with transverse bands of

a b

c

100 microm

100 microm

100 microm

Fig 4 Petrobunus schwendingeri sp novmale paratype (a) Dorsal view of prosoma andmesotergum (b) posteriorview of opisthosoma with dotted reconstructions of spination based on holotype specimen and (c) dorsal view ofanterior margin of carapace

112 Invertebrate Systematics P P Sharma and G Giribet

a

100 microm

100 microm

100 microm

200 microm

100 microm

100 microm

100 microm

100 microm

200 microm

b

c

d

e

h

i

g

f

Fig 5 Petrobunus schwendingeri sp nov (a) Left chelicer of male paratype (b) left palp of male paratype (c) left leg I of maleparatype (d) left leg II of male paratype (e) left leg III of male paratype ( f ) left leg IV of male paratype (g) left leg IV of femaleparatype (h) trochanter of left leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 113

pigmentation and in the armature of the opisthosomal sternites(two pairs of tubercles on sternite 7 and one pair on sternite 8)Proximal region of femora of all legs with single blunt peg Penis

more elongate than in congeners in the shape of a spear bladewith two pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100875] inparentheses) 168 (164) greatest width of prosoma 076 (076)greatest width of opisthosoma 126 (124) length-to-width ratio133 (132) (Figs 3 6) Body campaniform yellow to darkorange (in alcohol depending on incidence of light) almostentirely with a dense microgranulate surface microstructureEyes present on low well developed ocularium withoutmedian ocularial tubercle Ocularium 012 (012) long and024 (019) wide removed from anterior margin of carapaceAnterior margin of carapace with two pairs of blunt pegs abovecoxae of leg I with outer pair of sub-rectangular shape (Fig 4)Scutal grooves of mesotergum indistinct with mesotergal areasdistinguishable only by transverse bands of pigmentation Freetergites without large tubercles

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged with setosetubercles on anterior margin Genital operculum sub-triangularSpiracles not concealed adjacent to row of tuberclesOpisthosomal sternite 7 with two pairs of large tuberclesdisplaced away from midline Opisthosomal sternite 8 withone pair of smaller tubercles flanking midline Anal plateunarmed (Fig 4)

Chelicerae (Fig 5) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassatefree of ornamentation with dorsal margin bearing several setaeDistal article with delicate dentition free of ornamentation

Palpi (Fig 5) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setae Palpalfemur with two proximal ventral spines in a row and two paireddistal spines (one ventral one mesoventral) Palpal patella with asingle spine directed inward Palpal tibiawith twopairs of spinesand a small basal setose tubercle Palpal tarsus with two pairs ofspines Palpal claw nearly as long as palpal tarsus

Legs IndashIV (Fig 5) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge ventral tubercle and three smaller mesodorsal tuberclesFemora IndashIV with one basal peg on ventral surface with peg freeof granulation Femur III arcuate in males and females free oftubercles Femur IVandpatella IVofmalewith two irregular rowsof mesalmesoventral tubercles Tibia IV of male with multipleirregular rows of tubercles with ventral tubercles enlarged andbulbous distally ventral tubercles enlarged but conical in shapeMetatarsi IndashIV divided distally with distal portion lackingornamentation metatarsus IV of male with two rows of mesalmesoventral tubercles Tarsus IV unornamented Femaletrochanter IV not enlarged leg IV free of tubercles Tarsalclaws IndashIV smooth unmodified Tarsal segmentation 3 5 5 5

Penis (Fig 6) elongate narrow and slender in the shape ofa spear blade Lateral margins gradually coalescing dorsallyresulting in spoon shape in dorsal aspect Ventral surface withtwo pairs of setae lateral margins with four setae each Glans

a

b

c d

050 mm

050 mm

100 microm100 microm

Fig 6 Petrobunus schwendingeri sp nov (a) Female paratype dorsalview (b) female paratype ventral view (c) pars distalis of penis lateral viewand (d) ovipositor dorsal view (one of four dorsal setae broken duringmounting process)

114 Invertebrate Systematics P P Sharma and G Giribet

free in apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 6) composedof twoapical lobes eachbearingtwo dorsal setae one ventral seta and two apical setae Distalsurfaces of apical lobes smooth Bases of dorsal setae in contactBases of ventral setae set apart by a distance approximately equalto one-third the width of the ovipositor

Distribution

Known only from type locality

Etymology

The specific epithet honours Dr Peter J Schwendinger curator atthe MHNG for his inspiration and tireless efforts to advanceknowledge of South-east Asian arachnid fauna

Petrobunus spinifer sp nov

(Figs 7ndash10 Tables 5 6)

Material examined

Holotype Male (MHNG) Philippines Palawan El Nido RegionBulalacao Waterfall primary forest 200ndash450 alt (111304100N1192800000E) leg A Schulz 30xi2009 (ex MHNG PAL-0905)

Paratypes 12 lt 21 (MHNG) same collecting data as holotype (exMHNG PAL-0905) 3 lt (1 dissected for genitalia [MCZ 100888] andmounted on one SEM stub [MCZ 100886] 2 in ethanol [MCZ100877ndash100878]) 3 (1 dissected for genitalia [MCZ 100889] 2 inethanol [MCZ 100879ndash100880]) same collecting data as holotype (exMHNGPAL-0905) 2lt (1mountedononeSEMstub [MCZ100882] 1mounted on two SEM stubs [MCZ 100884ndash100885]) PhilippinesPalawan El Nido Region Mt Singkukan primary forest 300ndash400alt (111300700N 1192805100E) leg A Schulz 26xi2009 (exMHNG PAL-0904)

Additional material studied 6 juveniles same collecting data as holotype(MHNG PAL-0905) 1 lt Philippines Palawan El Nido Region MtSingkukan primary forest 400ndash600 alt (111303800N 1192805500E)leg A Schulz 24xi2009 (MHNG PAL-0903) 6 lt 8 PhilippinesPalawan El Nido Region Mt Singkukan primary forest 300ndash400 alt(111300700N 1192805100E) leg A Schulz 26xi2009 (MHNG PAL-0904)

Diagnosis

Small petrobunidwith unarmedoculariumwithmesotergum freeof pigmentation Distinct from congeners in the armature of thefreeopisthosomal tergites andanal plate (setose tubercules) andofthe opisthosomal sternites (sternites 3ndash6 with single tubercle oneach side forming a line under each coxa IV sternite 7 with twolarge spines directly anteroventrally and sternite 8with an evenlydistributed belt of eight smaller spines) Femur IV of male with asingle tubercle basoventrally Penis narrow in the shapeof a spearblade with three pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100879] inparentheses) 130 (115) greatest width of prosoma 058 (056)greatest width of opisthosoma 079 (080) length-to-width ratio165 (144) (Figs 5 8) Body campaniform yellow (in alcoholdepending on incidence of light) almost entirely with a densemicrogranulate surface microstructure Eyes present on lowwell developed ocularium without median ocularial tubercleOcularium 012 (010) long 018 (016) wide removed fromanterior margin of carapace Anterior margin of carapace withtwo pairs of conical pegs above coxae of leg I Scutal grooves ofmesotergum indistinct free of transverse bands of pigmentationFree tergites with regular belts of setose tubercles (Fig 5)

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged withsetose tubercules on anterior margin Genital operculumsub-triangular Spiracles not concealed anterior to row oftubercules Opisthosomal sternites 3ndash6 each with belt of smallregular tubercles Opisthosomal sternite 7 with two large setosespines directly anteroventrally Opisthosomal sternite 8 withbelt of regular tubercles Two rows of tubercles alignedanteroposteriorly under outer limit of coxae IV Anal platearmed with tubercles (Fig 6)

Chelicerae (Fig 7) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassate

Table 3 Leg measurements of Petrobunus schwendingeri holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 013012 049009 028014 034011 051005 042007 217Leg II 017016 069010 029014 055010 058005 079007 307Leg III 015016 054013 028017 046013 052007 047006 242Leg IV 045045 075014 037020 071019 090009 054007 372

Table 4 Leg measurements of Petrobunus schwendingeri female paratype (ex MCZ DNA103572) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 012015 049012 027013 034010 044006 038007 204Leg II 013018 069011 031013 053010 054006 069006 289Leg III 013017 051012 028015 040012 047007 046006 225Leg IV 024023 061012 031017 050012 071008 052008 289

Molecular phylogeny of Laniatores Invertebrate Systematics 115

free of ornamentation with dorsal margin bearing severalsetae Distal article with delicate dentition free of ornamentation

Palpi (Fig 7) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setaePalpal femur with two proximal ventral spines in a row andtwo paired distal spines (one ventral one mesoventral) Palpalpatella with a single spine directed inward Palpal tibia with twopairs of spines and a small basal setose tubercle Palpal tarsuswith two pairs of spines Palpal claw nearly as long as palpaltarsus

Legs IndashIV (Fig 7) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge setose tubercle ventrally Femora IndashIV without basalpegs femur IV with one large tubercle ventrally Femur IIIarcuate in males and females free of tubercles Femur IV andpatella IV of male with irregular rows of mesalmesoventraltubercles Tibia IV of male with multiple irregular rows oflarge tubercles distally ventral tubercles small not bulbousMetatarsi IndashIV divided distally with distal portion lackingornamentation metatarsus IV of male with two rows ofmesalmesoventral tubercles Tarsus IV unornamented Femaletrochanter IV not enlarged leg IV free of tubercles Tarsal clawsIndashIV smooth unmodified Tarsal segmentation 3 5 5 6

Penis (Fig 8) narrow and slender in the shape of a spearblade Lateral margins gradually coalescing dorsally resultingin spoon shape in dorsal aspect Ventral surface with threepairs of setae lateral margins with four setae each Glans freein apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 8) composedof twoapical lobes eachbearingtwo dorsal setae one ventral seta and two apical setae Distalsurfaces of apical lobes smooth Bases of dorsal setae in contactBases of ventral setae set apart by a distance approximately equalto one-third the width of the ovipositor

a

b

c

050 mm

050 mm

050 mm

Fig 7 Petrobunus spinifer sp nov male holotype (a) Dorsal view (b)lateral view and (c) ventral view

a

b

200 microm

100 microm

Fig 8 Petrobunus spinifer sp nov male paratype (a) Ventral view and(b) dorsal view of anterior margin of carapace

116 Invertebrate Systematics P P Sharma and G Giribet

a

b

c

d

e

h

i

g

f

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

Fig 9 Petrobunus schwendingeri sp nov (a) Left chelicer ofmaleparatype (b) left palp ofmale paratype (c) left leg I ofmale paratype (d) left leg II ofmale paratype (e) right leg III ofmale paratype ( f ) right leg IV ofmale paratype (g) left legIV of female paratype (h) trochanter of right leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 117

Distribution

Known only from type locality and additional localities reportedhere

Etymology

The specific epithet an invariable noun in apposition refers to theenlarged belts of tubercles on the free tergites and opisthosomalsternites of this species Derived from Latin lsquospinarsquo meaninglsquospearrsquo or lsquodartrsquo and lsquoferrersquo meaning lsquoto carry or bearrsquo

Petrobunus torosus sp nov

(Figs 11ndash14 Tables 7 8)

Material examined

Holotype Male (MHNG) Philippines Palawan Puerto Princesa RegionSabang Underground National Park Daylight Hole and Lions Caveprimary forest 100ndash200 alt (100900600N1185301000E) legA Schulz6ndash8xii2009 (ex MHNG PAL-0907)

Paratypes 6 lt 13 (MHNG) same collecting data as holotype(ex MHNG PAL-0907) 3 lt (1 dissected for genitalia and mountedon three SEM stubs [MCZ 100894ndash100896] 2 in ethanol [MCZ100890ndash100891]) 3 (1 dissected for genitalia [MCZ 100902] andmounted on one SEM stub [MCZ 100897] 2 in ethanol [MCZ100892ndash100893]) same collecting data as holotype (ex MHNGPAL-0907) 1 lt (mounted on one SEM stub [MCZ100899]) and 3 (dissected for genitalia [MCZ 100901] and mounted on one SEM stub[MCZ 100898]) Philippines Palawan Puerto Princesa Region SabangUnderground National Park jungle trail (101105500N 1185405900E)leg A Schulz 4xii2009 (ex MHNG PAL-0906)

Additional material studied 6 juveniles same collecting data as holotype(MHNG PAL-0907) 12 lt 3 2 juveniles Philippines PalawanPuerto Princesa Region Sabang Underground National Park jungletrail (101105500N 1185405900E) leg A Schulz 4xii2009 (MHNGPAL-0906)

Diagnosis

Distinct from congeners in the well developed ocularium armedwith median tubercle Mesotergum free of pigmentation as inP spinifer but opisthosomal sternites without large spines(sternites 7ndash9 armed only with small low tubercles) Proximalregion of femora of all legs with single blunt peg Penis widenedin the base of the pars distalis stocky in the shapeof a spear bladewith three pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100892] inparentheses) 152 (150) greatest width of prosoma 070 (068)greatest width of opisthosoma 104 (108) length-to-width ratio

a

b

c d

050 mm

050 mm

20 microm

100 microm

Fig 10 Petrobunus spinifer sp nov (a) Female paratype dorsal view(b) female paratype ventral view (c) pars distalis of penis lateral view and(d) ovipositor dorsal view

Table 5 Leg measurements of Petrobunus spinifer holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011009 032008 022011 024008 034005 036005 159Leg II 011011 046008 018012 036009 040005 068005 219Leg III 014015 044012 024014 032013 043005 041004 198Leg IV 032038 050014 025017 050014 062008 028004 247

118 Invertebrate Systematics P P Sharma and G Giribet

146 (139) (Figs 11 14) Body campaniform yellow to darkorange (in alcohol depending on incidence of light) almostentirely with a dense microgranulate surface microstructureEyes present on low well developed ocularium with medianocularial tubercle Ocularium 011 (011) long 020 (021) wideremoved from anterior margin of carapace Anterior margin ofcarapace with two pairs of blunt pegs above coxae of leg I withouter pair of sub-rectangular andor bifid shape Scutal grooves ofmesotergum indistinct free of transverse bands of pigmentationFree tergites without large tubercles or spines (Fig 12)

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged with setosetubercles on anterior margin Genital operculum sub-triangularSpiracles not concealed anterior to row of tuberclesOpisthosomal sternites with irregular belts of roundedtubercles Anal plate unarmed (Fig 12)

Chelicerae (Fig 13) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassatefree of ornamentation with dorsal margin bearing several setaeDistal article with delicate dentition free of ornamentation

Palpi (Fig 13) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setae Palpalfemur with two proximal ventral spines in a row and two paireddistal spines (one ventral one mesoventral) Palpal patella with asingle spine directed inward Palpal tibiawith twopairs of spinesand a small basal setose tubercle Palpal tarsus with two pairs ofspines Palpal claw as long as palpal tarsus

Legs IndashIV (Fig 13) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge ventral tubercle and three smaller mesodorsal tuberclesFemora IndashIV with one basal peg on ventral surface with peg freeof granulation Femur III arcuate in males and females free oftubercles Femur IVandpatella IVofmalewith two irregular rowsof mesalmesoventral tubercles Tibia IV of male with multipleirregular rows of tubercles with ventral row enlarged and conicaldistally distal-most ventral tubercle composed of two fusedtubercles Metatarsi IndashIV divided distally with distal portionlacking ornamentation metatarsus IV of male with two rows ofmesalmesoventral tubercles Female trochanter IV not enlargedleg IV free of tubercles Tarsal claws IndashIV smooth unmodifiedTarsal segmentation 3 5 5 6

Penis (Fig 14) narrow in the shape of a spear blade widenednear base Lateral margins gradually coalescing dorsallyresulting in spoon shape in dorsal aspect Ventral surface with

Table 6 Leg measurements of Petrobunus spinifer female paratype (ex MHNG PAL-0905) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 033007 021010 024007 025005 029005 143Leg II 013011 037006 023010 034007 026005 051005 184Leg III 014014 029009 022013 029010 027005 035004 156Leg IV 017015 049008 025014 034010 045006 043004 213

a

b

c

050 mm

050 mm

050 mm

Fig 11 Petrobunus torosus sp nov male holotype (a) Dorsal view(b) lateral view and (c) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 119

threepairs of setae lateralmarginswith four setae eachGlans freein apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 14) composed of two apical lobes eachbearing two dorsal setae one ventral seta and two apicalsetae Distal surfaces of apical lobes smooth Bases of dorsalsetae in contact Bases of ventral setae set apart by a distanceapproximately equal to one-third the width of the ovipositor

Distribution

Known only from type locality and additional locality reportedhere

Etymology

The specific epithet refers to the stocky and robust appearanceof the fourth leg in the males of this species Derived from Latinlsquotorosusrsquo meaning lsquomuscularrsquo or lsquobulgingrsquo

Family TITHAEIDAE fam nov

Type genusTithaeusThorell 1891 by present designation andmonotypy

Type species Tithaeus laevigatus Thorell 1891 by original designation

Genera included Tithaeus Thorell 1891 new familial assignmentMetatithaeus Suzuki 1969 new familial assignment

Diagnosis

Medium-sized Grassatores with a low ocularium removed fromthe anterior margin of carapace that differ from Epedanidae inlacking a median spine In some species slight to large hump

situated anterior of ocularium Scutal region divided into fiveareas areas I and II not fused as opposed to EpedanidaeChelicerae typical basal segment not enlarged (as opposed toEpedanidae)Distinct fromPodoctidae in the lack of spines on legI and in the lack of a sexually dimorphic ocularium Tarsalformula 5 8+ 5 6 not reduced (as opposed to Sandokanidaeand Podoctidae) Distitarsi of legs I and II typically with twotarsalia distinguished from Petrobunidae in the trochanter of legIV not enlarged inmales Tarsi III and IVwith unmodified doubleclaws scopulae absent (as opposed to most Samooidea) Distalmargin of ventral plate of penis usually with deep cleft (mostTithaeus) or widening distally into setiferous and conicalstructure (Metatithaeus) glans with simple membranous lobecovering the stylus terminus of stylus either a bifurcate orslightly inflatable lobe absence of prominent parastylar lobes(distinguishing it from Petrobunidae) absence of a ring of setaesurrounding a capsula interna (found in Epedanidae) Ovipositorlobes typically with a pair of ventral and dorsal setae

Remarks

One of dozens of genera placed in the subfamily Phalangodinae(Phalangodidae) by Roewer (1912 1923 1949) Tithaeus wassubsequently extricated and transferred to Epedanidae by Kury(1993 2003 2006) on the basis of the male genitalia althoughthe placement was ambiguous given the absence of typicalepedanid morphology such as elongate and armed pedipalpian erect ocularial spine (absent in Dibuninae) the fusion of scutalareas I and II side-branches in the posterior claws and stoutdentition of the cheliceral fingers (Lian et al 2008) However

a

b

100 microm

100 microm

100 microm

100 microm

c

d

Fig 12 Petrobunus torosus sp novmale paratype (a)Dorsolateral view (b) dorsolateral viewof anteriormargin of carapace(c) ventrolateral view and (d) ventrolateral view of prosomal complex

120 Invertebrate Systematics P P Sharma and G Giribet

comparisons of the male genitalia of a phalangodid (Texella) anepedanid (Kilungius Saracinicinae) and Tithaeus suggested acloser relationship between Epedanidae and Tithaeus in spite ofmarked differences in the stylar lobe and the extent of the basalsac (Lian et al 2008)

Our phylogenetic analyses corroborate a closer relationshipbetween Epedanidae and Tithaeuswith respect to Phalangodidae(which is sister to the remaining Grassatores and thereforedistantly related to both lineages) but the clade Tithaeus+Metatithaeus neither nests within nor is sister to Epedanidae

a

b

c

d

e

h

i

g

f

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

Fig 13 Petrobunus torosus sp nov (a) Left chelicer of male paratype (b) left palp of male paratype (c) left leg I of maleparatype (d) right leg II of male paratype (e) left leg III of male paratype (f) left leg IV of male paratype (g) left leg IV offemale paratype (h) trochanter of left leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 121

in any of the topologies we examinedMoreover the cleft ventralplate forming two prongs in the male genitalia of many Tithaeusspecies in addition to the absence of a ring of setae surroundingthe capsula interna (typical of Epedanidae) suggest that Tithaeus

and related genera (eg Istithaeus Metatithaeus Tithaeommaetc) are not true epedanids but may be more closely related toeither (1) Podoctidae a hypothesis that is supported in someanalyses (bootstrap frequency in ML [BS] = 59 posteriorclade probability given by MrBayes [PP] = 097) or (2) theclade (Podoctidae + Sandokanidae) recovered by the BEASTtopology (posterior clade probability given by BEAST[PPBEAST] = 100)

The inclusion of Tithaeus-like Grassatores in Epedanidaerenders the latter para- or diphyletic and obscures a cleardiagnosis of epedanids as the morphology of Tithaeus (andMetatithaeus) does not accord with many epedanidsynapomorphies Moreover inclusion of Tithaeus andorMetatithaeus within a broader Podoctidae is also unjustifiedbecause this violates many of the synapomorphies ofPodoctidae such as (1) tuberclesspines in dorsal and ventralrows on leg I (2) tubercular bridges (3) a sexually dimorphicbasichelicerite and (4) a sexually dimorphic ocularium

Consequently we erect the family name Tithaeidaeseparating Tithaeus and Metatithaeus from EpedanidaeTithaeidae likely includes the monotypic Roewerian generaIstithaeus Kondosus Sterrhosoma and Tithaeomma but thestatus of these genera requires further investigation and will beaddressed in a forthcoming study

Distribution

Distributed throughout Sundaland the Thai-Malay PeninsulaSumatra Java and Borneo Also reported from northern Vietnamand southern China One doubtful record from West Timor(see Lian et al 2008)

Results

Phylogenetic analysis

Less sequence data are presently available for Briggsusflavescens (partial 28S and COI Derkarabetian et al 2010)with respect to the rest of the data matrix Consequently twoML analyses were conducted including and excluding Briggsusflavescens The ML analysis with all taxa resulted in a treetopology with lnL= ndash8372597 Repeating the analysis withoutBriggsus resulted in a tree topology with lnL= ndash8336108 Thetwo topologies are identical save for the internal relationships ofTravunioidea which includes Briggsidae (Fig 15) Inclusion ofBriggsidae recovers a diphyletic Cladonychiidae with Briggsussister to Holoscotolemon but these relationships are notsupported Exclusion of Briggsidae results in higher nodalsupport frequencies within Travunioidea and recovers a sisterrelationship of Sclerobunidae and the remaining Travunioidea(BS = 75) and a monophyletic Cladonychiidae + Travuniidae(BS = 77) sister to Trojanella Including Briggsus in theanalysis does not affect topology or nodal support in otherparts of the phylogeny Monophyly of Travunioidea isstrongly supported (BS = 100) in either case

Runs of MrBayes ver 312 reached stationarity in 2 000 000generations 2 500 000 generations (25) were hence discardedas burn-in The BI analysis with all taxa resulted in a topologylargely similar to theMLtree (Fig 16)Notable differences are therelative placements of the clade (Gonyleptoidea + Stygnopsidae)

a

b

c d

050 mm

050 mm

20 microm

20 microm

Fig 14 Petrobunus torosus sp nov (a) female paratype dorsal view(b) female paratype ventral view (c) pars distalis of penis lateral view and(d) ovipositor dorsal view

122 Invertebrate Systematics P P Sharma and G Giribet

and the South-east Asian group of families Some differencesexist with respect to supported nodes within superfamilies

Estimation of divergence times

The run of BEAST reached stationarity after 6 000 000generations 10 000 000 generations (20) were discarded asburn-in The tree topology recovered by BEAST (Fig 17) differsfromML andBI topologies in (1) the placement of Sandokanidaeand (2) the relationships between superfamilies Diversificationof Laniatores is dated at ~348Mya Diversification of majorlineages is estimated as follows (Travunioidea+Triaenonychidae)299Mya Grassatores 302Mya Assamiidae +Pyramidopsgroup 232Mya Gonyleptoidea + Stygnopsidae 246MyaGonyleptoidea 230Mya Samooidea + Zalmoxoidea 206Myaand a South-east Asian clade (including Sandokanidae)249Mya These results largely corroborate previous estimatesof divergence times (Giribet et al 2010) but confidence intervalsfor estimated ages are more precise A tree file of estimated agesand 95highest posterior density (HPD) intervals for all nodes isprovided as an Accessory Publication on the InvertebrateSystematics website

Whereas the basal topology of Grassatores is unstable andunsupported most familial and superfamilial relationshipsare consistently recovered across analyses A consensus oftopologies across all analyses is shown in Fig 18

Discussion

A molecular phylogeny of the armoured harvestmen has longproven elusive Laniatores comprises entire genera and familiesthat are endemic to particular provinces of the world In somecases higher taxonomic ranks do not even occur beyond specificislands (eg the New Zealand family SynthetonychiidaeForster 1954) Moreover Laniatores includes the majority ofall described Opiliones species (and over half of all describedfamilies) and new lineages continue to be discoveredConsequently previous efforts to assess Laniatores phylogenyhave been prone to undersampling numerous lineages such asAssamiidae Epedanidae and the superfamilies Samooidea and

Zalmoxoidea (eg Giribet et al 1999 2002 Shultz and Regier2001)

The present study with the inclusion of all families ofarmoured harvestmen described heretofore enables detailedinvestigation of internal relationships of Laniatores Ofprincipal interest are the phylogenetic placement of the twonew families of Laniatores erected herein and the systematicvalidity of defined superfamilies Many of the relationshipsrecovered in our analyses are consistent with traditionalhypotheses based on morphological studies but there are someunexpected results We discuss these in turn

Insidiatores

Within a monophyletic Laniatores recovered in all analyses(BS = 100 PP = 093) the constituent lineages of Insidiatoresform a paraphyletic grade with respect to Grassatores WhileTriaenonychoidea and Travunioidea do form a clade (albeit withlow nodal support) the New Zealand endemic familySynthetonychiidae is recovered as sister to all remainingLaniatores (BS = 78 PP = 100) consistent with the resultsof a recent study (Giribet et al 2010) However the inclusionof more data in fact lowers the nodal support for this sisterrelationship relative to the previous studyrsquos ML analysislikely due to the influence of missing data (in particular only~300 bp out of a targeted 3400 bp of 28S rRNA are presentlyavailable for Synthetonychia) Consequently we do not treat theplacement of Synthetonychiidae as definitive

In all analyses the southern hemisphere Triaenonychidaeform a strongly supported clade that diversified ~200Mya(BS = 100 PP = 100) Their distribution and the age of thiscladersquos diversification are similar to that of the temperateGondwanan cyphophthalmid family Pettalidae (estimated tohave diversified ~183ndash221Mya Giribet et al 2010)suggesting a parallel biogeographical process in these lineagesThe North American triaenonychid Fumontana deprehendorShear 1977 is sister to the southern hemisphere Triaenonychidaein all analyses consistent with previous classification (Giribetand Kury 2007 Thomas and Hedin 2008) but support fora monophyletic Triaenonychoidea is limited and sensitiveto analytical parameters (BS = 57 PP lt 050 PPBEAST = 066)

Table 7 Leg measurements of Petrobunus torosus holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011011 039005 026012 028008 036006 040007 180Leg II 014013 061008 029010 043007 042006 072005 261Leg III 015015 051010 019015 037011 045006 046005 213Leg IV 034035 059012 034017 054015 067007 052006 300

Table 8 Leg measurements of Petrobunus torosus female paratype (ex MHNG PAL-0907) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 041008 022011 028010 037005 035006 174Leg II 010009 052007 023008 033007 037006 069005 224Leg III 014016 046010 025024 036012 042007 041005 204Leg IV 018017 054011 029016 049012 058007 048006 256

Molecular phylogeny of Laniatores Invertebrate Systematics 123

Fig 15 Phylogenetic relationships of Laniatores inferred from maximum likelihood analysis of all molecular data (ln L= ndash8372597) Inset topology ofTravunioidea excluding Briggsidae (ln L= ndash8336108) Numbers on nodes indicate bootstrap resampling frequencies

124 Invertebrate Systematics P P Sharma and G Giribet

We recovered a monophyletic Travunioidea which includesBriggsidae in all analyses (BS = 100PP = 100) corroboratingthe superfamilial placement of briggsids Briggsidae isrecovered sister to either Trojanella (ML) or Holoscotolemon(BI) or part of a grade with both of these taxa (BEAST) butthese placements are not supported (BS lt 50 PPBEAST = 085and PP = 051 respectively) Missing data for Briggsidaedepresses nodal support in ML analyses within Travunioideaobscuring interfamilial relationships In the absence ofBriggsidae we recover a sister relationship betweenSclerobunidae (Zuma acuta Goodnight amp Goodnight 1942)and the remaining Travunioidea (BS = 75) and themonophyly of Travuniidae +Cladonychiidae (BS = 77)

A recent molecular dating of Travunioidea obtained muchyounger dates than estimated herein in spite of similar taxaand molecular loci In that study Derkarabetian et al (2010)investigated the evolution of troglobitism in Sclerobunidae(also referred to as the lsquoNorth American triaenonychidsrsquo)and used the cladonychiid fossil Protoholoscotolemon(38ndash54Mya Ubick and Dunlop 2005) to constrain theminimum age of Travunioidea in addition to calibration pointsderived from geological ages of strata These practicesaccord with the scope of the troglobitism study (thedivergences of interest were comparatively recent ndash Plioceneor younger) but we did not utilise Protoholoscotolemon in ourdating for two reasons (1) we do not obtain an unambiguouslymonophyletic Cladonychiidae in our analyses and (2) theDevonian and Carboniferous fossils we utilised as calibrationpoints are sufficiently old to obtain a result consistent with anEocene cladonychiid fossil The different calibration pointsimplemented in the respective studies therefore account forthe discrepancy in the dating In addition the morphologicalconservatism of Opiliones makes it doubtful that the age ofProtoholoscotolemon is the maximum age of the superfamily

Our sampling of Insidiatores lineages remains limited andbarring the inclusion of Briggsidae additions to taxonomicsampling largely concern Grassatores Consequently continuedsampling and systematic studies of Insidiatores (eg Mendesand Kury 2008 Thomas and Hedin 2008 Derkarabetian et al2010) are instrumental and imperative to addressing outstandingquestions of phylogenetic relationships and morphologicalevolution A phylogeny of Triaenonychidae is particularlywanting

Early diverging Grassatores Phalangodidaeand Sandokanidae

The recovery of a monophyletic Grassatores (supported inall analyses BS = 99 PP = 100) is consistent with severalmorphological synapomorphies uniting this diverse groupsuch as the presence of two tarsal claws on walking legs IIIand IV However the basal topology of Grassatores has longbeen contentious Previously two superfamilies of Grassatoreswere recognised Oncopodoidea (with the single familySandokanidae (formerly Oncopodidae)) and lsquoGonyleptoidearsquo(with the remaining families) (Martens 1976 1986 Martenset al 1981) This dichotomy was largely based upon theunique morphology of Sandokanidae ndash characters such as thescutum completum (fused opisthosomal tergites) reduced tarsal

articles and genitalic structures which are not found in theremaining Grassatores (Martens 1980 Giribet et al 2002Sharma and Giribet 2009) It was alternatively contended thatthese characters constituted autapomorphies of Sandokanidaewhich was nested within lsquoGonyleptoidearsquo itself (Kury 2003)

In all analyses we obtained an initial divergence betweenPhalangodidae and the remaining Grassatores (BS = 100PP = 096) refuting the traditional dichotomy betweenSandokanidae and lsquoGonyleptoidearsquo Therefore we hereindefine Gonyleptoidea as the taxon consisting of AgoristenidaeCosmetidae Cranaidae Gonyleptidae Manaosbiidae andStygnidae The split between Phalangodidae and the remainingGrassatores has been postulated to correspond to the rifting ofthe ancient supercontinents Laurasia and Gondwana as thedistribution of Phalangodidae was believed to be strictlyHolarctic (Giribet et al 2010) However the inclusion of theMadagascar genus Remyus previously placed in Zalmoxidae(Starega 1989) within a monophyletic Phalangodidae indicatesbroader distribution of phalangodids ndash complementing theTriaenonychidae-Fumontana case discussed above Moreoverthe origin of Phalangodidae is estimated to have occurred around302Mya (95 HPD 264ndash335Mya) greatly predating thebreakup of the supercontinents These results indicate thatPhalangodidae may be narrowly defined and we consequentlytransfer Remyus to Phalangodidae (new familial assignment)

The unusual family Sandokanidae has been postulated to besister toPodoctidae (SharmaandGiribet 2009Giribet et al 2010)or to form agradewith Phalangodidae (Kuryrsquos lsquoPhalangodoidearsquopartly) In the present study ML and BI topologies reconstructSandokanidae as sister to the remaining non-phalangodidGrassatores albeit with insignificant nodal support (BS = 21PP = 078) Curiously the topology obtained byBEAST recoversthe clade (Sandokanidae + Podoctidae) nested within a singleclade of South-east Asian families (PPBEAST = 085) Theseresults do not unambiguously favour one hypothesis overanother and the phylogenetic placement of Sandokanidae inthe Grassatores tree therefore remains debatable

Regardless of the inclusion of Sandokanidae within theSouth-east Asian group of families that the sister family to theremaining Grassatores is Phalangodidae not Sandokanidaeindicates that the peculiar morphology of sandokanids is theresult of multiple apomorphic reversals not the retention ofplesiomorphic characters (Martens and Schwendinger 1998)The large scutum and low tarsomere number found inSandokanidae also occur in Trogulidae and Dicranolasmatidae(suborder Dyspnoi) and all Cyphophthalmi and appear to haveevolved convergently This morphology may reflect adaptationsto a shared ecological niche all these groups inhabit leaf litterinclude no arboricolous species and are limited in vagility ndash

although these life history traits are also found in other groupsHowever this hypothesis has yet to be rigorously tested

Sandokanidae is presently one of few families of Grassatoresfor which a molecular phylogeny assessing intergenericrelationships is available (Sharma and Giribet 2009) andconsistent with earlier results the monophyly of Sandokanidaeis strongly supported (BS = 100 PP = 100) as is the initial splitbetweenMartensiellus and the remaining genera (an undescribedspecies was referred to as lsquogen sprsquo by Sharma and Giribet 2009but subsequent morphological investigation revealed this to be

Molecular phylogeny of Laniatores Invertebrate Systematics 125

Fig 16 Phylogenetic relationships of Laniatores inferred fromBayesian inference analysis of allmolecular data Numbers on nodes indicateposterior probabilities

126 Invertebrate Systematics P P Sharma and G Giribet

a miniature species of Martensiellus P J Schwendinger perscomm) (BS = 92 PP = 100) Intergeneric relationshipsof sandokanid genera are contingent upon analytical treatmentof molecular partitions (with additional sandokanid exemplarsdata not shown) reflecting conflict among datasets documentedby Sharma and Giribet (2009)

The other South-east Asian families

Epedanidae was postulated to be sister to Gonyleptoidea in acladistic analysis based on morphological characters (Kury1993) Subsequently Kury (2003) proposed that Epedanidaewas sister to the clade (Assamiidae (Stygnopsidae +Gonyleptoidea)) The single epedanid previously included in amolecular phylogeny was similarly unstable in placement eithernestingwithin Assamiidae or sister to the African lsquophalangodidsrsquo(Conomma and Maiorerus) in neither case with appreciablenodal support (Giribet et al 2010) Furthermore previousinclusion of several lineages (eg Tithaeus) within Epedanidaethat do not bear characters typical of true epedanids ndash sexuallydimorphic chelicera with heavy dentition elongate andspined pedipalpi male genitalia with setae surroundingthe capsula interna ndash has also made this family difficult todefine Consequently we included only Epedaninae (egPseudoepedanus Alloepedanus and Euepedanus) as exemplarsof true epedanids the systematic validity of the remaining threesubfamilies (and particularly the inclusion of Dibuninae) isbeyond the scope of this study and remains to be investigated

The monophyly of each of four South-east Asian families ndashEpedanidae (represented by epedanines) TithaeidaePetrobunidae and Podoctidae ndash is recovered with high nodalsupport (all BS = 100 PP = 100) These lineages are somehowrelated to each other and while they form a clade in bothML andBI analyses this result receives insignificant nodal support(PP = 077) In the topology recovered by BEAST the South-east Asian families form a clade that includes Sandokanidaea result consistent with the distribution of sandokanids albeitwithout support (PPBEAST = 085) Tithaeidae is probably closelyrelated to Podoctidae given the occurrence of a deeply cleftventral plate resulting in two flanking prongs in themale genitaliaof both families (Suzuki 1977 Lian et al 2008 Fig 19) Inaddition the clade (Podoctidae +Tithaeidae) is recovered withmoderate support in ML and BI analyses (BS = 59 PP = 097)In none of the analyses is Tithaeidae nested within or sister toEpedanidae sensu stricto

The morphology of Petrobunidae suggests some relationshipto previously described South-east Asian families oralternatively Phalangodidae but not inclusion within any ofthese (Fig 19) Molecular sequence data do not support anyspecificplacement ofPetrobunidae although it clusterswithotherSouth-east Asian families in all analyses and is recovered sisterto Epedanidae in two topologies (BI and BEAST)

Gonyleptoidea and Stygnopsidae

With over 2500 described species the superfamilyGonyleptoidea constitutes the most diverse and (arguably) themost charismatic lineage of Opiliones with most of this diversityconcentrated in Amazonia (some cosmetids occur as far north asthe mid-Atlantic states of the US) In a previous analysis

relationships of gonyleptoid families were unsupported andordid not accordwithmorphological studies (Giribet et al 2010) Inparticular the placement of the agoristenid exemplar Avimaalbiornata (Goodnight amp Goodnight 1947) ndash the putativesister family to the remaining Gonyleptoidea ndash within aparaphyletic Cranaidae was particularly suspect given thelimited availability of sequence data for Avima (complete 18SrRNA a300-bp fragmentof 28S rRNA andCOI) In addition thesister group of Gonyleptoidea was ambiguous and contingentupon analytical parameters

Redoubling sequencing efforts and addition of taxaparticularly in the case of Agoristenidae (currently sequencedfor 12S rRNA complete 18S rRNA a 2000-bp fragment of 28SrRNA COI H3 and EF-1a) improved the assessment ofgonyleptoid relationships A monophyletic Gonyleptoidea(BS = 58 PP = 066) is recovered sister to the familyStygnopsidae (BS = 57 PP = 100) Within Gonyleptoidea asplit between Agoristenidae and the remaining gonyleptoids isstrongly supported (BS = 100 PP = 100) followed by thedivergence of Stygnidae (BS = 71 PP = 099) Thisplacement of Agoristenidae is supported by morphologicalstudies (Pinto-da-Rocha and Kury 2007) although in aminority of tree topologies sampled in BI analysesAgoristenidae is sister to Stygnopsidae (hence lower nodalsupport for the monophyly of Gonyleptoidea in BI) Theplacement of Manaosbiidae is uncertain it is recoveredsister to either (Gonyleptidae +Cranaidae) (PP = 089) or toCosmetidae (PPBEAST = 092) but these results are notsupported Cranaidae is recovered as monophyletic (BS = 99PP = 100) and nested within a paraphyletic Gonyleptidae

The present sampling of Cosmetidae and Gonyleptidae doesnot do justice to the diversity of these lineages (~700 and 800described species respectively) A phylogenetic assessment ofall 16 subfamilies of Gonyleptidae alone constitutes the subjectof an arduous and exacting study Fortunately cladistic analysesof morphological characters continue to advance phylogeneticinvestigation of subfamilial lineages (eg BourguyiinaeYamaguti and Pinto-da-Rocha 2009 Goniosomatinae DaSilvaandGnaspini 2009HernandariinaeDaSilva andPinto-da-Rocha2010) Elucidating the phylogeny of Gonyleptoidea is one of themost exciting research topics in the study of Opiliones

The Afrotropical families

The third most diverse family of Laniatores Assamiidaeconstitutes the dominant opiliofauna of the African continent(excluding Madagascar) with some lineages occurring in SouthAsia the Indo-Malay Archipelago and Australia (Trionyxellinaeand Dampetrinae) Proposed to be related to EpedanidaeStygnopsidae andor Gonyleptoidea (Kury 2007) on the basisof genitalic structures assamiids were not recovered asmonophyletic in a previous study (paraphyly was induced byeither Epedanidae orAfricanBiantidae) and the placement of thesubfamily Trionyxellinae was particularly suspect (Giribet et al2010) Trionyxellinae was considered a separate family byMello-Leitatildeo (1949) though others considered it nested withinAssamiidae (eg Starega 1992) In our analyses the monophylyof Assamiidae is supported (BS = 79 PP = 100)lsquoTrionyxellinaersquo (Trionyxella and Mysorea both with a

Molecular phylogeny of Laniatores Invertebrate Systematics 127

Fig 17 Evolutionary time tree of Laniatores inferred fromBEASTanalysis of allmolecular data Coloured bars indicate 95highestposterior density (HPD) intervals for nodes of interest Numbers on nodes indicate posterior probabilities asterisks indicate posteriorprobability of 100

128 Invertebrate Systematics P P Sharma and G Giribet

pseudonychium on the third and fourth tarsi) is a diphyletic entitynested within the other Assamiidae (for the node renderingdiphyly BS = 100 PP = 100) disfavouring family status fortrionyxellines

The African lsquophalangodidsrsquo (sometimes called thelsquoPyramidops grouprsquo) were recognised as a new family byStarega (1992) but not formalised and included 13 genera(Conomma Pyramidops and related lineages) Consistentwith this hypothesis we recovered strong support for thePyramidops group (represented by Conomma and cfPyramidops) as a lineage separate from the true Phalangodidae(egBishopella and Scotolemon) recapitulating a previous result(Giribet et al 2010) The African lsquophalangodidsrsquowere recoveredas the sister lineage of Assamiidae although this relationshipis variably supported in our analyses (BS = 40 PP = 095PPBEAST = 100) A review and formal description of thePyramidops group as a new family lsquoPyramidopidaersquo ndash a namewidely available on the internet including GBIF but notformalised ndash is undertaken elsewhere (Sharma et al 2011)

While we have endeavoured to improve the sampling ofAssamiidae from South-east Asia the internal systematics ofthis family remain a high value target for phylogenetic researchHowever revision of assamiid systematics is inherently difficultfor two reasons (1) the family is peppered with questionablehierarchies and monotypic genera (~12 subfamilies and 250genera for less than 500 described species) and (2) occurs insome of the most inaccessible regions of the world namely sub-Saharan Africa

In all analyses the clade (Assamiidae + Pyramidopidae) issister to the clade (Zalmoxoidea + Samooidea) though this resultis only supported in one analysis (PP= 100) The divergence ofthese four lineages is estimated to have occurred 252Mya and isconsistent with diversification in West Tropical Gondwanaoccurring at least 140million years before the fragmentation ofthis terrane (~110Mya)

Zalmoxoidea

As currently defined the largely Neotropical superfamilyZalmoxoidea includes four families FissiphalliidaeGuasiniidae Icaleptidae and Zalmoxidae Guasiniidae hasnever before been included in a molecular phylogeny In thepresent study we sequenced a guasiniid for six genes and ouranalyses strongly support theplacement ofGuasiniidae as sister tothe samooid family Kimulidae (formerly Minuidae) (BS = 86PP = 098 PPBEAST = 099) and this clade in turn sister to anothersamooid family Escadabiidae (BS = 65 PP = 096PPBEAST = 100) The families Fissiphalliidae Icaleptidaeand Zalmoxidae in turn form a separate clade (BS = 100PP = 100 PPBEAST = 100) with strong support for the sisterrelationship of Zalmoxidae and Fissiphalliidae (BS = 99PP = 100 PPBEAST = 100) corroborating relationshipsproposed by morphological studies (Kury and Peacuterez G 2002Pinto-da-Rocha and Kury 2003b)

Previous analyses have suggested that Samooidea (discussedbelow) is a paraphyletic grade with respect to Zalmoxoidea(Giribet et al 2010) In the present analysis the cladeSamooidea + Zalmoxoidea is strongly supported (BS = 85PP = 100 PPBEAST = 100) as previously suggested by PeacuterezGonzaacutelez and Kury (2007) and by excluding Escadabiidae and

Kimulidae Samooidea is rendered a monophyletic entity albeitwith limited support (BS = 53 PP = 062 PPBEAST = 081) Thestrong support from molecular sequence data for the cladeincluding Escadabiidae Kimulidae and the four zalmoxoidfamilies (BS = 89 PP = 100 PPBEAST = 100) suggests thatthese may form a natural group

Re-examination of the morphology of these six families incomparisonwith true samooid lineages (Biantidae Samoidae andStygnommatidae) corroborates the exclusionofEscadabiidae andKimulidae from true Samooidea Escadabiidae and Kimulidae(1) lack the scopula characteristic of Samoidae and stenostygnineBiantidae (2) lack a sexually dimorphic metatarsus IIIcharacteristic of Samoidae Stygnommatidae and stenostygnineBiantidae and (3) lack a penial calyx characteristic of SamoidaeConsistent with placement within Zalmoxoidea EscadabiidaeandKimulidae (1) possess a small oculariumbearing the eyes thatis removed from the margin of the carapace (2) bear a wellmarked dorsal protuberance (bulla) on the proximal segmentof the chelicera that lacks armature and (3) possess sexuallydimorphic leg IV segments particularly the femur and tibiawhich may be variedly arcuate incrassate and spinedAdditionally Escadabiidae Fissiphalliidae and Zalmoxidae allpossess sexually dimorphic tegumental glandopeningson tibia IIwhereas Biantidae Samoidae and Stygnommatidae possessthese structures on metatarsus III (Willemart et al 2010)While data on tegumental gland openings are only availablefor a small handful of species these may constitute significantdiagnostic characters for species wherein sexual dimorphismdoes not manifest itself in the readily observable form ofenlarged and spiny segments

Given the results of our phylogenetic analyses maintainingSamooidea (as currently defined) renders it a paraphyletic gradewith respect to a diphyletic Zalmoxoidea (as currently defined)Consequently based on the aforementioned morphologicalcharacters and robust molecular phylogenetic signal wetransfer Escadabiidae and Kimulidae to Zalmoxoidea

Samooidea

A previous cladistic analysis based upon morphological datasuggested close relationship between six families ndash BiantidaeEscadabiidae Kimulidae Podoctidae Samoidae andStygnommatidae ndash thenceforth known as Samooidea (Kury1993) the only pantropical Laniatores superfamily HoweverPodoctidae does not have any obvious relationship to Samooideaand has subsequently been transferred (Kury 2007) in ouranalyses Podoctidae is sister to Tithaeidae or Sandokanidaeie distantly related to all samooid families Moreover ouranalyses strongly favour the exclusion of Escadabiidae andKimulidae from Samooidea

The remaining three families ndash Biantidae Samoidae andStygnommatidae ndash are distributed in the Neotropics and partsof Africa with a handful of suspect lineages in South-east AsiaRe-examination and reassignment of many Samoidae genera(eg the Indonesian lsquosamoidrsquo Waigeucola palpalis PeacuterezGonzaacutelez 2011) suggest that the range of Samoidae does notinclude South-east Asia Peacuterez Gonzaacutelez and Kury (2007) alsoobserved that the lsquosamoidsrsquo of Africa Madagascar and theSeychelles may not be true Samoidae either Similarlyinclusion of the genus Stygnomimus an Indonesian lineage

Molecular phylogeny of Laniatores Invertebrate Systematics 129

within Stygnommatidae is highly dubious as the twoIndonesian lsquostygnommatidsrsquo are either highly autapomorphic(Stygnomimus conopygus (Roewer 1927)) or described on the

basis of a generic female that is not readily distinguishable fromfemales of other species (Stygnomimus malayensis (Suzuki1970))

Fig 18 Strict consensus of tree topologies obtained by all phylogenetic analyses

130 Invertebrate Systematics P P Sharma and G Giribet

Previous efforts to assess the systematic validity of Samooideaby means of molecular sequence data were limited insofar asonly two Samoidae three Biantidae (all Metabiantes) and twoStygnommatidae were sampled (Giribet et al 2010) Thesampling of Samoidae was especially problematic only asingle Neotropical adult (Pellobunus) and one African juvenilesamoid (lsquoSamoidae gen sprsquo) were included The designation ofthe latter is suspect as juveniles of Samoidae are oftenindistinguishable from the juveniles of other lineages becausemany diagnostic secondary sexual characters in Grassatores(eg spines and incrassate appendages) are not acquired untilafter several postembryonic stages (Townsend et al 2009)

In the present study though the type genus of Samoidae(Samoa from Samoa) was not available we sequenced theclosely related genus Badessa (from Fiji collected byP P S) as well as additional Biantidae and StygnommatidaeOur analyses recovered a monophyletic Samooidea (excludingEscadabiidae and Kimulidae BS = 53 PP = 062) withSamoidae sensu stricto (Pellobunus +Badessa BS = 100PP = 100) nested within a paraphyletic Stygnommatidae aplacement that is supported (BS = 87 PP = 100) Bycontrast the African lsquosamoidrsquo is sister to the AfricanBiantidae a relationship that is also well supported(BS = 100 PP = 100) These relationships suggest a basal

Fig 19 Cladogram of male genitalic evolution in South-east Asian families superimposed upon a schematised molecular phylogeny based on ML and BIanalyses of all molecular data Exemplars (a) Pseudoepedanus doiensis Suzuki 1969 (redrawn from Suzuki 1969) dorsal view (b) Pseudoepedanus doiensisSuzuki 1969 (redrawn from Suzuki 1969) ventral view (c) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) ventral view(d) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) dorsal view (e) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki1976) dorsal view (f) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki 1976) ventral view (g) Petrobunus torosus lateral view (h) ZalmoxidagibberaSuzuki 1969 dorsal view (i)Zalmoxida sp (MCZDNA102677) dorsolateral view (j)Metatithaeus rubidusSuzuki 1969 (redrawn fromSuzuki 1969)ventral view (k)Tithaeus kokutnusSuzuki 1985 (redrawn fromSuzuki 1985) ventral view (l)Tithaeus similisSuzuki 1985 (redrawn fromSuzuki 1985) ventralview (m)DongmoaoshimensisSuzuki 1964 (redrawn fromSuzuki 1964) ventral view (n)Bonea longipalpisSuzuki 1977 (redrawn fromSuzuki 1977) ventralview (o) Santobius annulipes Soslashrensen 1886 (redrawn from Kury and Machado 2009) ventral view (p) Lomanius longipalpus mindanaoensis Suzuki 1977(redrawn from Suzuki 1977) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 131

dichotomy within Samooidea that corresponds to one groupof Neotropical and Pacific lineages and a second group ofAfrican lineages However as we were unable to samplestenostygnine (Neotropical) and Indo-Pacific Biantidae aswell as numerous monotypic genera dubiously placed inSamoidae biogeographical extrapolations for Samooidea aretenuous (discussed below)

The internal relationships of Samooidea suggest that themorphology of Samoidae may have evolved convergently Asthe African samoid is a juvenile (the same specimen previouslysequenced by Giribet et al 2010 now sequenced for additional28S rRNA and other genes) we cannot rule out the possibility ofa monophyletic Samoidae that includes African species (thespecimen in question could be a juvenile biantid) In any casethe paraphyly of Stygnommatidae and putative polyphyly ofSamoidae strongly advocate systematic revision of samooidfamilies as currently defined corroborating hypotheses of non-monophyly based on morphology (Peacuterez Gonzaacutelez 2007 PeacuterezGonzaacutelez and Kury 2007) Our sampling of these families isinsufficient to advocate specific taxonomic action but an ongoing

study of samooidean systematics will shed more light on thevalidity of constituent families (A Peacuterez Gonzaacutelez work inprogress)

Biogeography of Zalmoxoidea and Samooidea

While most superfamilies of Grassatores are restricted to aspecific part of the tropics (eg Neotropics South-east Asia)two are distributed in multiple biogeographical provincesSamooidea occurs in the Neotropics and Afrotropics withquestionable records from South-east Asia Zalmoxoidea isconcentrated in the Neotropics with the exception of oneIndo-Pacific lineage of Zalmoxidae (represented here byZalmoxis sp) The ages and distributions of Samooidea andZalmoxoidea suggest that their biogeography was influencedby the fragmentation of West Tropical Gondwana ndash causingthe former to diverge basally throughout West TropicalGondwanan terranes and the latter to become isolated to theNeotropics (with possible subsequent dispersal)

Fig 20 Ancestral range reconstructions for Samooidea +Zalmoxoidea inferred by Lagrange using stratified models corresponding to two vicariant events(indicated by dotted lines) Coloured squares at terminals indicate ranges occupied by sampled species Coloured squares on nodes indicate ranges reconstructedfor hypothetical ancestors Numbers on nodes indicate relative probability of ranges reconstructed

Fig 21 Best hypothesis of Laniatores relationships based on all available evidence Bracketed nodes indicate non-monophyletic entities Dashed line indicatesambiguity in the placement of Sandokanidae (alternatively placed as shown or as sister to Podoctidae) Exemplars of Laniatores diversity are Synthetonychiaoliveae (Synthetonychiidae) Equitius doriae (Triaenonychidae) Hadziana clavigera (Travuniidae) Erebomaster flavescens flavescens (Cladonychiidae)Scotolemon lespesi (Phalangodidae) Palaeoncopus gunung (Sandokanidae) Santobius sp (Podoctidae) Tithaeus sp (Tithaeidae) Petrobunus spinifer(Petrobunidae) Alloepedanus sp (Epedanidae) Hoplobunus sp (Stygnopsidae) Torreana spinata (Agoristenidae) Stygnoplus clavotibialis (Stygnidae)Metalibitia paraguayensis (Cosmetidae)Acutisoma longipes (Gonyleptidae)Conommaoedipus (Pyramidopsgroup)Mysorea thaiensis (Assamiidae)Lacurbssp (Biantidae) Stygnomma sp (Stygnommatidae) Badessa sp (Samoidae) Guasinia sp (Guasiniidae) Icaleptes sp (Icaleptidae) Fissiphallius chicoi(Fissiphalliidae) Zalmoxis sp (Zalmoxidae) Kimula goodnightiorum (Kimulidae)

132 Invertebrate Systematics P P Sharma and G Giribet

Molecular phylogeny of Laniatores Invertebrate Systematics 133

To test this hypothesis we conducted likelihood analysisof range evolution using the program Lagrange (Ree et al2005 Ree and Smith 2008) for the clade (Zalmoxoidea +Samooidea) The stratified analysis resulted in a globalmaximum likelihood of ndashlnL= 1556 outperforming anunconstrained analysis that did not include any dispersalconstraints (ndashlnL= 1676) Likelihood analysis of rangeoptimisation (Fig 20) indicates that the ancestral range ofSamooidea includes both the Afrotropics and the Neotropics(relative probability pr = 1000) but a subsequent split occursbetween an African lineage (pr = 1000) and a NeotropicalIndo-Pacific lineage with a Neotropical ancestral range (pr = 0986)Samoidea of the Indo-Pacific occur on young oceanic islands(eg Fiji Samoa) indicating recent transoceanic dispersal fromthe Neotropics

Ancestral range reconstructions for Samooidea are allconsistent with estimated divergence times for these clades(diversification of Samooidea predates the rifting of WestAfrica from northern South America) favouring an underlyingvicariant process for the basal topology with subsequent recentdispersal events However these results are contingent upon thepresent sampling which does not include all samooid lineages(eg stenostygnine Biantidae) but basal range reconstructionsare likely unaffected (eg Stenostygninae is exclusivelyNeotropical)

In contrast the ancestor of Zalmoxoidea is reconstructedas singularly Neotropical (pr = 0996) This is consistent withisolation of a zalmoxoid ancestor to Amazonia which thenradiated ~191Mya Subsequent ancestral ranges are alsoreconstructed as Neotropical with high relative probabilityHowever the ancestral range of the clade (Icaleptidae +Fissiphalliidae + Zalmoxidae) is ambiguously reconstructedas either Neotropical (pr = 0935) or Neotropical + Indo-Pacific(pr = 0064) as is the split between Fissiphalliidae andZalmoxidae (Neotropical pr = 0856 Neotropical + Indo-Pacific pr = 0141)

These results suggest that the Indo-Pacific lineage ofZalmoxidae which split from Neotropical Zalmoxidae ~83Myais likely the result of long-distance dispersal from the NeotropicsHowever due to the persistence of transantarctic connectionsbetween the Australian plate and temperate South America untilthe Tertiary a competing vicariant scenario cannot be ruled outwithout densely sampling zalmoxid diversity The biogeographyof Zalmoxidae is presently being explored in greater detail in aseparate study (P P Sharma unpubl data)

Finally the ancestral range of (Samooidea + Zalmoxoidea)includes both Africa and the Neotropics (pr = 0957) consistentwith a tropical West Gondwanan ancestor This resultlends circumstantial evidence to a sister relationship of theAfrotropical families (Assamiidae + Pyramidopidae) and theclade (Samooidea + Zalmoxoidea) recovered in all analyses

The diversification of Grassatores

While numerous interfamilial relationships are supported inthis study particularly among gonyleptoid and zalmoxoidfamilies some relationships between superfamilies ofGrassatores are not supported and are contingent upon

analytical treatments namely the deployment of substitutionmodels and data partitioning (Fig 21) The cause of thisinstability could be related to insufficient data particularly inthe EF-1a partition (the length of an intron which can exceed400 bp in some taxa makes this gene particularly difficult toamplify) However examination of clade divergence timessuggests that rapid diversification of Grassatores lineagescould in part augment phylogenetic uncertainty in basal partsof the topology

The split between Phalangodidae and the remainingGrassatores is estimated to have occurred ~302Mya but aseries of divergences resulted in the origin of all superfamiliallineages between 232 and 271Mya Relative to the estimatedage of Laniatores (348Mya) this 39-million-year period isremarkably narrow and inherently problematic as the amountof phylogenetic signal for a given stem subtending a node isdirectly proportional to the amount of time that the stem inquestion spans (Lanyon 1988 Rokas and Carroll 2006) Thesmall internal edge lengths of the stems corresponding to basaldivergences of non-phalangodid Grassatores (Figs 15 16)combined with the ancient age of lineages derived from thesedivergences result in relationships that are difficult to estimatewithout a large amount of sequence data andor the inclusion ofdata that are less afflicted by homoplasy (because longer edgelengths imply more indel and substitution events on edges)(Whitfield and Lockhart 2007)

We additionally observe that the origins of most Grassatoressuperfamilies occur in the wake of the end-Permian massextinction (~254Mya) Rapid radiation in the wake of a massextinction has occurred in multiple metazoan lineagesthe putative result of relaxed selection and opening ofpreviously occupied ecological niche space (Labandeira andSepkoski 1993 Sahney and Benton 2008) The rapiddiversification of early Grassatores lineages could be anexample of this phenomenon but this hypothesis is difficult totest in the absence of Mesozoic Grassatores fossils (reviewed byDunlop 2007)

Finally we observe that contrary to traditional hierarchiesproposed for Laniatores many of the clades recovered in ouranalyses correspond to geographical regions particularly in thecase of Grassatores For example the southern hemispheretriaenonychids are restricted to temperate Gondwananlandmasses Gonyleptoidea and their sister group Stygnopsidaeform a Neotropical (AmazonianMesoamericanAntillean) cladethat excludes Assamiidae which has been hypothesised to be amember of a broader Gonyleptoidea (Kury and Cokendolpher2000 Mendes and Kury 2007) In our analyses Assamiidae isin fact a member of a largely Afrotropical clade together withthe Pyramidopidae South-east Asian families usually form oneclade (at most two) albeit with limited support Samooideafamilies are divided into two clusters African and NeotropicalWith one exception (described above) Zalmoxoidea is restrictedto the Neotropics The ages that we estimate for Laniatoresradiations are consistent with ancient diversification beforethe fragmentation of Pangaea An ancient diversification inconjunction with the climatic stability of the tropics may in partexplain the comparatively greater diversity of the armouredharvestmen with respect to the other Opiliones suborders

134 Invertebrate Systematics P P Sharma and G Giribet

Acknowledgements

Weare indebted toPeter J Schwendingerwho collected andprovidedmost ofthe material for study from South-east Asia Some Thai and most of theNeotropical Laniatores were obtained from the TIGER (Thailand InventoryGroup for Entomological Research) and LLAMA (Leaf Litter Arthropods ofMeso-America) projects toC Lienhard and J Longino respectivelyMaterialfrom Madagascar was generously contributed by Charles Griswold and theCalifornia Academy of Sciences Jesse Czekanski-Moir in conjunction withthe Belau NationalMuseum contributed elusive specimens from Palau AbelPeacuterezGonzaacutelez identifiedmanyNeotropical species included in the study andcontributed specimens fromCubaRicardoPinto-da-Rocha identified someofthe live photographed animals from the Neotropics Discussions with RonaldMClouseAbelPeacuterezGonzaacutelezAdrianoBKury andCarlosEPrieto refinedmanyof the ideas presentedhereTwoanonymous reviewers and the associateeditor provided comments that helped to improve an earlier version ofthis manuscript Laura Leibensperger sorted and accessioned TIGER andLLAMA material as well as MCZ type material Adam Graham and theCenter forNanoscaleStudies atHarvardUniversityprovided support forSEMwork Collecting efforts in New Caledonia were greatly facilitated by theguidance of Herveacute Jourdan (Institut de rechercheacute pour de developpementNoumea) and his teammembers Collecting efforts in Fiji weremade possibleby Marika Tuiwawa (University of the South Pacific Suva) and his teammembers Hilda Waqa and Tokasaya lsquoToxrsquo Cakacaka we are especiallygrateful to Tox for his good company during fieldwork and to his familyfor graciously enabling a visit toOvalau SuzieYee Shawprovided invaluablelogistical support in Fiji and her sons Colin and Joshua Yee Shaw assistedwith sorting Fijian material Fieldwork in Indonesia and West Africa wassupported by two MCZ Putnam Expedition Grants awarded to RonaldM Clouse and G G (2006) and to G G (2009) respectively Fieldworkin New Caledonia was supported by the Goelet award the Kalathia FamilyTrust and the Explorers Club awarded to P P S in 2006 Fieldwork in Fijiand in Palauwas supported by twoMCZPutnamExpeditionGrants awardedto P P S (2008) and to Ronald M Clouse and P P S (2010) respectivelyP P S was supported by a Faculty of Arts and Sciences Graduate Fellowshipfrom Harvard University

References

Castresana J (2000) Selectionof conservedblocks frommultiple alignmentsfor their use in phylogenetic analysis Molecular Biology and Evolution17 540ndash552

Colgan D J McLauchlan A Wislon G D F Livingston S MacaranasJ Edgecombe G D Cassis G and Gray M R (1998) Molecularphylogenetics of the Arthropoda relationships based on histone H3and U2 snRNA DNA sequences Australian Journal of Zoology 46419ndash437 doi101071ZO98048

DaSilva M B and Gnaspini P (2009) A systematic revision ofGoniosomatinae (Arachnida Opiliones Gonyleptidae) with a cladisticanalysis and biogeographical notes Invertebrate Systematics 23530ndash624 doi101071IS09022

DaSilva M B and Pinto-da-Rocha R (2010) Systematic review andcladistic analysis of the Hernandariinae (Opiliones Gonyleptidae)Zoologia 27 577ndash642

Derkarabetian S Steinmann D B and Hedin M (2010) Repeatedand time-correlated morphological convergence in cave-dwellingharvestmen (Opiliones Laniatores) from montane western NorthAmerica PLoS ONE 5 e10388 doi101371journalpone0010388

Drummond A J and Rambaut A (2007) BEAST Bayesian evolutionaryanalysis by sampling trees BMC Evolutionary Biology 7 214doi1011861471-2148-7-214

Drummond A J Ho S Y W Phillips M J and Rambaut A (2006)Relaxed phylogenetics and dating with confidence PLoS Biology 4 e88doi101371journalpbio0040088

Dunlop J A (2007) Paleontology In lsquoHarvestmen The Biology ofOpilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 247ndash265 (Harvard University Press Cambridge MA USA)

Dunlop J A and Anderson L I (2005) A fossil harvestman (ArachnidaOpiliones) from theMississippian of East Kirkton Scotland The Journalof Arachnology 33 482ndash489 doi10163604-791

Dunlop JAAndersonL IKerpH andHassH (2003)Preservedorgansof Devonian harvestmen Nature 425 916 doi101038425916a

Dunlop J A Anderson L I Kerp H and Hass H (2004) A harvestman(Arachnida Opiliones) from the Early Devonian Rhynie chertsAberdeenshire Scotland Transactions of the Royal Society ofEdinburgh Earth Sciences 94 341ndash354

Edgar R C (2004) MUSCLE multiple sequence alignment with highaccuracy and high throughput Nucleic Acids Research 32 1792ndash1797doi101093nargkh340

Edgecombe G D and Giribet G (2006) A century laterndash a total evidencere-evaluation of scutigeromorph centipedes (Myriapoda Chilopoda)Invertebrate Systematics 20 503ndash525 doi101071IS05044

Edgecombe G D Giribet G and Wheeler W C (2002) Phylogeny ofHenicopidae (Chilopoda Lithobiomorpha) a combined analysis ofmorphology and five molecular loci Systematic Entomology 2731ndash64 doi101046j0307-6970200100163x

FolmerOBlackMHoehWLutzR andVrijenhoekRC (1994)DNAprimers for amplification ofmitochondrial cytochrome c oxidase subunit Ifrom diverse metazoan invertebrates Molecular Marine Biology andBiotechnology 3 294ndash299

Forster R R (1954) The New Zealand harvestmen (sub-order Laniatores)Canterbury Museum Bulletin 2 1ndash329

Giribet G and Kury A B (2007) Phylogeny and biogeography InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 62ndash87 (Harvard University PressCambridge MA USA)

Giribet G Carranza S Baguntildeagrave J Riutort M and Ribera C (1996) Firstmolecular evidence for the existence of a Tardigrada +Arthropoda cladeMolecular Biology and Evolution 13 76ndash84

Giribet G Rambla M Carranza S Baguntildeagrave J Riutort M and Ribera C(1999) Phylogeny of the arachnid order Opiliones (Arthropoda)inferred from a combined approach of complete 18S and partial 28Sribosomal DNA sequences and morphology Molecular Phylogeneticsand Evolution 11 296ndash307 doi101006mpev19980583

Giribet G Edgecombe G D Wheeler W C and Babbitt C (2002)Phylogeny and systematic position of Opiliones a combined analysis ofchelicerate relationships using morphological and molecular dataCladistics 18 5ndash70

Giribet G Vogt L PeacuterezGonzaacutelez A Sharma P andKury A B (2010)A multilocus approach to harvestman (Arachnida Opiliones) phylogenywith emphasis on biogeography and the systematics of LaniatoresCladistics 26 408ndash437

Hara M R Gnaspini P and Machado G (2003) Male egg guardingbehavior in the Neotropical harvestman Ampheres leucopheus (Mello-Leitatildeo 1922) (Opiliones Gonyleptidae) The Journal of Arachnology 31441ndash444 doi101636S02-32

Hedin M Derkarabetian S McCormack M and Richart C (2010) Thephylogenetic utility of the nuclear protein-encoding gene EF-1a forresolving recent divergences in Opiliones emphasizing intronevolution The Journal of Arachnology 38 9ndash20 doi101636HA09-491

Huelsenbeck J P and Ronquist F (2005) Bayesian analyses of molecularevolution using MrBayes In lsquoStatistical Methods in MolecularEvolutionrsquo (Ed R Nielsen) (Springer New York)

HunterRK ProundDNBurns JA Tibbetts JA andTownsendVR(2007) Parental care in the Neotropical harvestman Phareicranauscalcariferus (Opiliones Cranaidae) The Journal of Arachnology 35199ndash201 doi101636ST06-181

Molecular phylogeny of Laniatores Invertebrate Systematics 135

Kocher T D Thoma W K Meyer A Edwards S V Paumlaumlbo SVillablanca F X and Wilson A C (1989) Dynamics ofmitochondrial DNA evolution in animals amplification andsequencing with conserved primers Proceedings of the NationalAcademy of Sciences of the United States of America 86 6196ndash6200doi101073pnas86166196

Kury A B (1993) Anaacutelise filogeneacutetica de Gonyleptoidea (ArachnidaOpiliones Laniatores) PhD Thesis Universidade de Satildeo Paulo SatildeoPaulo Brazil

Kury A B (2003) Annotated catalogue of the Laniatores of the NewWorld (Arachnida Opiliones) Revista Ibeacuterica de AracnologiacuteaVolumen Especial Monograacutefico 1 1ndash337

Kury A B (2006) Checklist of valid genera of Opiliones of theWorld Museu NacionalUFRJ Available from httpwwwmuseunacionalufrjbrmndiAracnologiachecklaniatorhtm [Accessed1 February 2011]

Kury A B (2007) Podoctidae Roewer 1912 In lsquoHarvestmen The Biologyof Opilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 221ndash224 (Harvard University Press Cambridge MA USA)

Kury A B and Cokendolpher J C (2000) Opiliones In lsquoBiodiversidadTaxonomiacutea y Biogeografiacutea de Artoacutepodos de Meacutexico Hacia una Sintesisde su Conocimientorsquo vol 2 (Eds J E Llorente E Gonzaacutelez andN Papavero) pp 137ndash157 (Universidad Nacional Autoacutenoma deMexico Meacutexico DF Mexico)

Kury A B and Machado G (2009) Notes on Santobius from Vanuatu andFiji and the status of the eastern Melanesian Ibalonius (ArachnidaOpiliones Podoctidae) Zoological Studies 48 524ndash538

Kury A B and Peacuterez G A (2002) A new family of Laniatores fromnorthwestern South America (Arachnida Opiliones) Revista Ibeacuterica deAracnologiacutea 6 3ndash11

Labandeira C C and Sepkoski J J (1993) Insect diversity in the fossilrecord Science 261 310ndash315 doi101126science11536548

Lanyon S M (1988) The stochastic mode of molecular evolutionwhat consequences for systematic investigations The Auk 105565ndash573

Lian W-G Zhu M-S and Kury A B (2008) A new species of the genusTithaeus from China (Arachnida Laniatores Epedanidae) Zootaxa1841 53ndash60

Machado G Requena G S Buzatto B A Osses F and Rossetto L M(2004) Five new cases of paternal care in harvestmen (ArachnidaOpiliones) implications for the evolution of male guarding in theNeotropical family Gonyleptidae Sociobiology 44 577ndash598

Martens J (1976) Genitalmorphologie System und Phylogenie derWeberknechte (Arachnida Opiliones) Entomologica GermanicaZeitschrift fuumlr das Gesamtgebiet der Wissenschaftlichen Entomologie3 51ndash68

Martens J (1980) Versuch eines phylogenetischen Systems der OpilionesIn lsquoProceedings 8th International Congress of Arachnology ViennaVerhandlungenrsquo (Ed J Gruber) pp 355ndash360 (Vienna Austria)

Martens J (1986) Die Grossgliederung der Opiliones und die Evolutionder Ordnung (Arachnida) Actas del X Congreso Internacional deAracnologiacutea Jaca 1 289ndash310

Martens J (1993) Further cases of paternal care in Opiliones (Arachnida)Tropical Zoology 6 97ndash107

Martens J and Schwendinger P S (1998) A taxonomic revision ofthe family Oncopodidae I New genera and new species of GnomulusThorell (Opiliones Laniatores) Revue Suisse de Zoologie 105 499ndash555

Martens J Hoheisel U and Goumltze M (1981) Vergleichende Anatomieder Legeroumlhren der Opiliones als Beitrag zur Phylogenie der Ordnung(Arachnida) Zoologische Jahrbucher Abteilung fur Anatomie undOntogenie der Tiere 105 13ndash76

Mello-Leitatildeo C F (1949) Famiacutelias subfamiacutelia espeacutecies e gecircneros novos deopiliotildees e notas de sinoniacutemia Boletim do Museu Nacional Nova SeacuterieZoologia Rio de Janeiro 94 1ndash33

Mendes A C and Kury A B (2007) Stygnopsidae Soslashrensen 1932 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 232ndash234 (Harvard University PressCambridge MA USA)

Mendes A C and Kury A B (2008) Intercontinental Triaenonychidae ndashthe case of Ceratomontia (Opiliones Insidiatores) The Journal ofArachnology 36 273ndash279 doi101636CH07-931

Murphree C S (1988) Morphology of the dorsal integument of tenopilionid species (Arachnida Opiliones) The Journal of Arachnology16 237ndash252

Park J K andOacuteFoighilD (2000) Sphaeriid and corbiculid clams representseparate heterodont bivalve radiations into freshwater environmentsMolecular Phylogenetics and Evolution 14 75ndash88 doi101006mpev19990691

Peacuterez Gonzaacutelez A (2006) lsquoRevisatildeo Sistemaacutetica e Anaacutelise Filogeneacutetica deStygnommatidae (Arachnida Opiliones Laniatores)rsquo (Museu NacionalUniversidade Federal de Rio de Janeiro Rio de Janeiro Brazil)

Peacuterez Gonzaacutelez A (2007) Stygnommatidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 229ndash232 (Harvard University PressCambridge MA USA)

Peacuterez Gonzaacutelez A (2011) New familial assignment for two harvestmanspecies of the infraorder Grassatores (Arachnida Opiliones Laniatores)Zootaxa 2757 24ndash28

Peacuterez Gonzaacutelez A and Kury A B (2007) Samoidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 224ndash226 (Harvard University PressCambridge MA USA)

Pineau P Henry M Suspegravene R Marchio A Dettai A Debruyne RPetit T Leacutecu A Moisson P Dejean A Wain-Hobson S andVartanian J-P (2005) A universal primer set for PCR amplificationof nuclear histone H4 genes from all animal species Molecular Biologyand Evolution 22 582ndash588 doi101093molbevmsi053

Pinto-da-Rocha R (1997) Systematic review of the Neotropical familyStygnidae (Opiliones Laniatores Gonyleptoidea) Arquivos deZoologia 33 163ndash342

Pinto-da-Rocha R and Kury A B (2003a) Phylogenetic analysis ofSantinezia with description of five new species (Opiliones LaniatoresCranaidae) The Journal of Arachnology 31 173ndash208 doi1016360161-8202(2003)031[0173PAOSWD]20CO2

Pinto-da-Rocha R and Kury A B (2003b) Third species of Guasiniidae(Opiliones Laniatores) with comments on familial relationships TheJournal of Arachnology 31 394ndash399 doi101636H02-59

Pinto-da-Rocha R and Kury A B (2007) Agoristenidae Silhavy 1973 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 171ndash173 (Harvard University PressCambridge MA USA)

Posada D (2005) Modeltest 37 Program and documentation available athttpdarwinuvigoes [Accessed 28 May 2011]

Posada D and Buckley T (2004) Model selection and model averaging inphylogenetics advantages of Akaike information criterion and Bayesianapproaches over likelihood ratio tests Systematic Biology 53 793ndash808doi10108010635150490522304

Posada D and Crandall K A (1998) Modeltest testing the model ofDNA substitution Bioinformatics (Oxford England) 14 817ndash818doi101093bioinformatics149817

Prendini L Weygoldt P and Wheeler W C (2005) Systematics of theDamon variegates group of African whip spiders (ChelicerataAmblypygi) evidence from behaviour morphology and DNAOrganisms Diversity amp Evolution 5 203ndash236 doi101016jode200412004

Rambaut A E (1996) Se-Al sequence alignment editor University ofOxford UK Program and documentation available at httptreebioedacuksoftwarefigtree [Accessed 21 December 2009]

136 Invertebrate Systematics P P Sharma and G Giribet

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 6: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

Taxonomy

Order OPILIONES Sundevall 1833

Suborder LANIATORES Thorell 1876

Family PETROBUNIDAE fam nov

Type genus Petrobunus gen nov

Type species Petrobunus schwendingeri sp nov

Genera included Petrobunus gen nov Zalmoxida Roewer 1912 newfamilial assignment

Diagnosis

Small to medium-sized Grassatores with a low oculariumremoved from anterior margin of carapace with a medianocularial tubercle in some species but distinguished fromEpedanidae in the lack of a large median spine Mesotergumsmooth indistinctly divided into five areas scutal areas I and IInot fused as opposed to Epedanidae Chelicerae with a sexuallymonomorphic prominent bulla basal segment not enlarged asopposed toEpedanidae Palpus robust and strongly spined palpalpatella armed with single distinct spine-bearing tubercle onmedial-distal portion It can be differentiated from Podoctidaein lacking spines in leg I and in lacking a sexually dimorphicocularium Femur of leg III sexually monomorphic and arcuateMale leg IV sexually dimorphic and spined Tarsi III and IV withunmodified double claws scopulae absent as opposed to mostSamooidea It can be distinguished from Sandokanidae andPodoctidae in the tarsal formula which is not reduced inPetrobunidae Pars distalis of penis either shaped as the headof a javelin (Petrobunus) or with a rounded apical margin(Zalmoxida) and spoon-shaped in dorsal aspect without cleftin ventral plate (as opposed to Tithaeidae and Podoctidae) or aring of setae surrounding a capsula interna (as opposed toEpedanidae) variable number of setae on lateroventral andlaterodorsal surfaces glans free in apical part and simple withparastylar lobe small (Zalmoxida) or elongate and extendingproximally (Petrobunus) Ovipositor composed of two apicallobes each bearing two dorsal setae one ventral seta and twoapical setae bases of ventral pair of setae either in contact(Zalmoxida) or set apart (Petrobunus) distal surfaces ofapical lobes either finely denticulate (Zalmoxida) or smooth(Petrobunus) (Appendix 2)

Remarks

The morphology of Petrobunidae is not readily indicative ofphylogenetic affinities The sexually dimorphic fourth walkingleg and apophyses of the opisthosomal sternites suggest arelationship to Zalmoxidae or Escadabiidae respectively (orsome distant relationship to Zalmoxoidea) the indistinctdivision of the mesotergum to Samoidae and the spoon-shaped pars distalis of the penis to erecanine Assamiidae orPhalangodidae Molecular sequence data similarly do notsupport the placement of Petrobunidae either within or sister toa single family disfavouring its inclusion in a previouslydescribed lineage However in most analyses Petrobunidaeclusters with other South-east Asian families namelyEpedanidae and Podoctidae (discussed below)

Etymology

The name refers to the appearance of males of this genuswhich appear to have tiny pebbles attached to the proximalpart of the fourth leg when observed with the naked eyedue to the greatly enlarged trochanter IV Derived from Greeklsquopetrarsquo (ptra) meaning lsquostonersquo or lsquopebblersquo and lsquo-bunusrsquoa common suffix in Opiliones taxonomy (eg HadrobunusTriaenobunus Dibunus) It is also wordplay as the typespecies is named after an individual with the given namelsquoPeterrsquo

a

b

050 mm

050 mm

050 mm

c

Fig 3 Petrobunus schwendingeri sp novmale holotype (a) Dorsal view(b) lateral view and (c) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 111

Genus Petrobunus gen nov

Type species Petrobunus schwendingeri sp nov

Diagnosis

Small Grassatores (body length lt2mm) distinct from otherpetrobunids in the following combination of characters coxaand trochanter of male leg IV greatly incrassate with trochanterIV sub-rectangular in lateral aspect Tarsal formula 3 5 5 5ndash6Pars distalis of penis shaped as the head of a javelin two to threepairs of setae on ventral plate and four setae on each lateralmargin glans free in apical part with parastylar lobe extendingproximally Ovipositor with two ventral setae (one per apicallobe) set apart from one another by a distance equal toapproximately one-third the width of the ovipositor

Distribution

The newly described species are known only from the Philippineislands of Palawan and Panay an undescribed morphospecies

(included in molecular phylogeny as MCZ DNA102668 andMCZ DNA102669) is known from Taiwan

Petrobunus schwendingeri sp nov

(Figs 3ndash6 Tables 3 4)

Material examined

Holotype Male (MHNG) Philippines Panay Sibaliw primary forest450m alt leg E Curio 13i2008 (ex MCZ DNA103572)

Paratypes 1lt (mounted on three SEMstubs [MCZ100872ndash100874] anddissected for genitalia) 2 (1 extracted for DNA [MCZ 100875 MCZDNA103572] 1 dissected for genitalia [MCZ100881]) same collectingdata as holotype 4 same collecting data as holotype (MHNG)

Additional material studied 1 lt juvenile same collecting data asholotype

Diagnosis

Small petrobunid with unarmed ocularium Distinct from otherspecies in the genus in the mesotergum with transverse bands of

a b

c

100 microm

100 microm

100 microm

Fig 4 Petrobunus schwendingeri sp novmale paratype (a) Dorsal view of prosoma andmesotergum (b) posteriorview of opisthosoma with dotted reconstructions of spination based on holotype specimen and (c) dorsal view ofanterior margin of carapace

112 Invertebrate Systematics P P Sharma and G Giribet

a

100 microm

100 microm

100 microm

200 microm

100 microm

100 microm

100 microm

100 microm

200 microm

b

c

d

e

h

i

g

f

Fig 5 Petrobunus schwendingeri sp nov (a) Left chelicer of male paratype (b) left palp of male paratype (c) left leg I of maleparatype (d) left leg II of male paratype (e) left leg III of male paratype ( f ) left leg IV of male paratype (g) left leg IV of femaleparatype (h) trochanter of left leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 113

pigmentation and in the armature of the opisthosomal sternites(two pairs of tubercles on sternite 7 and one pair on sternite 8)Proximal region of femora of all legs with single blunt peg Penis

more elongate than in congeners in the shape of a spear bladewith two pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100875] inparentheses) 168 (164) greatest width of prosoma 076 (076)greatest width of opisthosoma 126 (124) length-to-width ratio133 (132) (Figs 3 6) Body campaniform yellow to darkorange (in alcohol depending on incidence of light) almostentirely with a dense microgranulate surface microstructureEyes present on low well developed ocularium withoutmedian ocularial tubercle Ocularium 012 (012) long and024 (019) wide removed from anterior margin of carapaceAnterior margin of carapace with two pairs of blunt pegs abovecoxae of leg I with outer pair of sub-rectangular shape (Fig 4)Scutal grooves of mesotergum indistinct with mesotergal areasdistinguishable only by transverse bands of pigmentation Freetergites without large tubercles

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged with setosetubercles on anterior margin Genital operculum sub-triangularSpiracles not concealed adjacent to row of tuberclesOpisthosomal sternite 7 with two pairs of large tuberclesdisplaced away from midline Opisthosomal sternite 8 withone pair of smaller tubercles flanking midline Anal plateunarmed (Fig 4)

Chelicerae (Fig 5) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassatefree of ornamentation with dorsal margin bearing several setaeDistal article with delicate dentition free of ornamentation

Palpi (Fig 5) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setae Palpalfemur with two proximal ventral spines in a row and two paireddistal spines (one ventral one mesoventral) Palpal patella with asingle spine directed inward Palpal tibiawith twopairs of spinesand a small basal setose tubercle Palpal tarsus with two pairs ofspines Palpal claw nearly as long as palpal tarsus

Legs IndashIV (Fig 5) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge ventral tubercle and three smaller mesodorsal tuberclesFemora IndashIV with one basal peg on ventral surface with peg freeof granulation Femur III arcuate in males and females free oftubercles Femur IVandpatella IVofmalewith two irregular rowsof mesalmesoventral tubercles Tibia IV of male with multipleirregular rows of tubercles with ventral tubercles enlarged andbulbous distally ventral tubercles enlarged but conical in shapeMetatarsi IndashIV divided distally with distal portion lackingornamentation metatarsus IV of male with two rows of mesalmesoventral tubercles Tarsus IV unornamented Femaletrochanter IV not enlarged leg IV free of tubercles Tarsalclaws IndashIV smooth unmodified Tarsal segmentation 3 5 5 5

Penis (Fig 6) elongate narrow and slender in the shape ofa spear blade Lateral margins gradually coalescing dorsallyresulting in spoon shape in dorsal aspect Ventral surface withtwo pairs of setae lateral margins with four setae each Glans

a

b

c d

050 mm

050 mm

100 microm100 microm

Fig 6 Petrobunus schwendingeri sp nov (a) Female paratype dorsalview (b) female paratype ventral view (c) pars distalis of penis lateral viewand (d) ovipositor dorsal view (one of four dorsal setae broken duringmounting process)

114 Invertebrate Systematics P P Sharma and G Giribet

free in apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 6) composedof twoapical lobes eachbearingtwo dorsal setae one ventral seta and two apical setae Distalsurfaces of apical lobes smooth Bases of dorsal setae in contactBases of ventral setae set apart by a distance approximately equalto one-third the width of the ovipositor

Distribution

Known only from type locality

Etymology

The specific epithet honours Dr Peter J Schwendinger curator atthe MHNG for his inspiration and tireless efforts to advanceknowledge of South-east Asian arachnid fauna

Petrobunus spinifer sp nov

(Figs 7ndash10 Tables 5 6)

Material examined

Holotype Male (MHNG) Philippines Palawan El Nido RegionBulalacao Waterfall primary forest 200ndash450 alt (111304100N1192800000E) leg A Schulz 30xi2009 (ex MHNG PAL-0905)

Paratypes 12 lt 21 (MHNG) same collecting data as holotype (exMHNG PAL-0905) 3 lt (1 dissected for genitalia [MCZ 100888] andmounted on one SEM stub [MCZ 100886] 2 in ethanol [MCZ100877ndash100878]) 3 (1 dissected for genitalia [MCZ 100889] 2 inethanol [MCZ 100879ndash100880]) same collecting data as holotype (exMHNGPAL-0905) 2lt (1mountedononeSEMstub [MCZ100882] 1mounted on two SEM stubs [MCZ 100884ndash100885]) PhilippinesPalawan El Nido Region Mt Singkukan primary forest 300ndash400alt (111300700N 1192805100E) leg A Schulz 26xi2009 (exMHNG PAL-0904)

Additional material studied 6 juveniles same collecting data as holotype(MHNG PAL-0905) 1 lt Philippines Palawan El Nido Region MtSingkukan primary forest 400ndash600 alt (111303800N 1192805500E)leg A Schulz 24xi2009 (MHNG PAL-0903) 6 lt 8 PhilippinesPalawan El Nido Region Mt Singkukan primary forest 300ndash400 alt(111300700N 1192805100E) leg A Schulz 26xi2009 (MHNG PAL-0904)

Diagnosis

Small petrobunidwith unarmedoculariumwithmesotergum freeof pigmentation Distinct from congeners in the armature of thefreeopisthosomal tergites andanal plate (setose tubercules) andofthe opisthosomal sternites (sternites 3ndash6 with single tubercle oneach side forming a line under each coxa IV sternite 7 with twolarge spines directly anteroventrally and sternite 8with an evenlydistributed belt of eight smaller spines) Femur IV of male with asingle tubercle basoventrally Penis narrow in the shapeof a spearblade with three pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100879] inparentheses) 130 (115) greatest width of prosoma 058 (056)greatest width of opisthosoma 079 (080) length-to-width ratio165 (144) (Figs 5 8) Body campaniform yellow (in alcoholdepending on incidence of light) almost entirely with a densemicrogranulate surface microstructure Eyes present on lowwell developed ocularium without median ocularial tubercleOcularium 012 (010) long 018 (016) wide removed fromanterior margin of carapace Anterior margin of carapace withtwo pairs of conical pegs above coxae of leg I Scutal grooves ofmesotergum indistinct free of transverse bands of pigmentationFree tergites with regular belts of setose tubercles (Fig 5)

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged withsetose tubercules on anterior margin Genital operculumsub-triangular Spiracles not concealed anterior to row oftubercules Opisthosomal sternites 3ndash6 each with belt of smallregular tubercles Opisthosomal sternite 7 with two large setosespines directly anteroventrally Opisthosomal sternite 8 withbelt of regular tubercles Two rows of tubercles alignedanteroposteriorly under outer limit of coxae IV Anal platearmed with tubercles (Fig 6)

Chelicerae (Fig 7) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassate

Table 3 Leg measurements of Petrobunus schwendingeri holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 013012 049009 028014 034011 051005 042007 217Leg II 017016 069010 029014 055010 058005 079007 307Leg III 015016 054013 028017 046013 052007 047006 242Leg IV 045045 075014 037020 071019 090009 054007 372

Table 4 Leg measurements of Petrobunus schwendingeri female paratype (ex MCZ DNA103572) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 012015 049012 027013 034010 044006 038007 204Leg II 013018 069011 031013 053010 054006 069006 289Leg III 013017 051012 028015 040012 047007 046006 225Leg IV 024023 061012 031017 050012 071008 052008 289

Molecular phylogeny of Laniatores Invertebrate Systematics 115

free of ornamentation with dorsal margin bearing severalsetae Distal article with delicate dentition free of ornamentation

Palpi (Fig 7) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setaePalpal femur with two proximal ventral spines in a row andtwo paired distal spines (one ventral one mesoventral) Palpalpatella with a single spine directed inward Palpal tibia with twopairs of spines and a small basal setose tubercle Palpal tarsuswith two pairs of spines Palpal claw nearly as long as palpaltarsus

Legs IndashIV (Fig 7) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge setose tubercle ventrally Femora IndashIV without basalpegs femur IV with one large tubercle ventrally Femur IIIarcuate in males and females free of tubercles Femur IV andpatella IV of male with irregular rows of mesalmesoventraltubercles Tibia IV of male with multiple irregular rows oflarge tubercles distally ventral tubercles small not bulbousMetatarsi IndashIV divided distally with distal portion lackingornamentation metatarsus IV of male with two rows ofmesalmesoventral tubercles Tarsus IV unornamented Femaletrochanter IV not enlarged leg IV free of tubercles Tarsal clawsIndashIV smooth unmodified Tarsal segmentation 3 5 5 6

Penis (Fig 8) narrow and slender in the shape of a spearblade Lateral margins gradually coalescing dorsally resultingin spoon shape in dorsal aspect Ventral surface with threepairs of setae lateral margins with four setae each Glans freein apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 8) composedof twoapical lobes eachbearingtwo dorsal setae one ventral seta and two apical setae Distalsurfaces of apical lobes smooth Bases of dorsal setae in contactBases of ventral setae set apart by a distance approximately equalto one-third the width of the ovipositor

a

b

c

050 mm

050 mm

050 mm

Fig 7 Petrobunus spinifer sp nov male holotype (a) Dorsal view (b)lateral view and (c) ventral view

a

b

200 microm

100 microm

Fig 8 Petrobunus spinifer sp nov male paratype (a) Ventral view and(b) dorsal view of anterior margin of carapace

116 Invertebrate Systematics P P Sharma and G Giribet

a

b

c

d

e

h

i

g

f

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

Fig 9 Petrobunus schwendingeri sp nov (a) Left chelicer ofmaleparatype (b) left palp ofmale paratype (c) left leg I ofmale paratype (d) left leg II ofmale paratype (e) right leg III ofmale paratype ( f ) right leg IV ofmale paratype (g) left legIV of female paratype (h) trochanter of right leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 117

Distribution

Known only from type locality and additional localities reportedhere

Etymology

The specific epithet an invariable noun in apposition refers to theenlarged belts of tubercles on the free tergites and opisthosomalsternites of this species Derived from Latin lsquospinarsquo meaninglsquospearrsquo or lsquodartrsquo and lsquoferrersquo meaning lsquoto carry or bearrsquo

Petrobunus torosus sp nov

(Figs 11ndash14 Tables 7 8)

Material examined

Holotype Male (MHNG) Philippines Palawan Puerto Princesa RegionSabang Underground National Park Daylight Hole and Lions Caveprimary forest 100ndash200 alt (100900600N1185301000E) legA Schulz6ndash8xii2009 (ex MHNG PAL-0907)

Paratypes 6 lt 13 (MHNG) same collecting data as holotype(ex MHNG PAL-0907) 3 lt (1 dissected for genitalia and mountedon three SEM stubs [MCZ 100894ndash100896] 2 in ethanol [MCZ100890ndash100891]) 3 (1 dissected for genitalia [MCZ 100902] andmounted on one SEM stub [MCZ 100897] 2 in ethanol [MCZ100892ndash100893]) same collecting data as holotype (ex MHNGPAL-0907) 1 lt (mounted on one SEM stub [MCZ100899]) and 3 (dissected for genitalia [MCZ 100901] and mounted on one SEM stub[MCZ 100898]) Philippines Palawan Puerto Princesa Region SabangUnderground National Park jungle trail (101105500N 1185405900E)leg A Schulz 4xii2009 (ex MHNG PAL-0906)

Additional material studied 6 juveniles same collecting data as holotype(MHNG PAL-0907) 12 lt 3 2 juveniles Philippines PalawanPuerto Princesa Region Sabang Underground National Park jungletrail (101105500N 1185405900E) leg A Schulz 4xii2009 (MHNGPAL-0906)

Diagnosis

Distinct from congeners in the well developed ocularium armedwith median tubercle Mesotergum free of pigmentation as inP spinifer but opisthosomal sternites without large spines(sternites 7ndash9 armed only with small low tubercles) Proximalregion of femora of all legs with single blunt peg Penis widenedin the base of the pars distalis stocky in the shapeof a spear bladewith three pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100892] inparentheses) 152 (150) greatest width of prosoma 070 (068)greatest width of opisthosoma 104 (108) length-to-width ratio

a

b

c d

050 mm

050 mm

20 microm

100 microm

Fig 10 Petrobunus spinifer sp nov (a) Female paratype dorsal view(b) female paratype ventral view (c) pars distalis of penis lateral view and(d) ovipositor dorsal view

Table 5 Leg measurements of Petrobunus spinifer holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011009 032008 022011 024008 034005 036005 159Leg II 011011 046008 018012 036009 040005 068005 219Leg III 014015 044012 024014 032013 043005 041004 198Leg IV 032038 050014 025017 050014 062008 028004 247

118 Invertebrate Systematics P P Sharma and G Giribet

146 (139) (Figs 11 14) Body campaniform yellow to darkorange (in alcohol depending on incidence of light) almostentirely with a dense microgranulate surface microstructureEyes present on low well developed ocularium with medianocularial tubercle Ocularium 011 (011) long 020 (021) wideremoved from anterior margin of carapace Anterior margin ofcarapace with two pairs of blunt pegs above coxae of leg I withouter pair of sub-rectangular andor bifid shape Scutal grooves ofmesotergum indistinct free of transverse bands of pigmentationFree tergites without large tubercles or spines (Fig 12)

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged with setosetubercles on anterior margin Genital operculum sub-triangularSpiracles not concealed anterior to row of tuberclesOpisthosomal sternites with irregular belts of roundedtubercles Anal plate unarmed (Fig 12)

Chelicerae (Fig 13) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassatefree of ornamentation with dorsal margin bearing several setaeDistal article with delicate dentition free of ornamentation

Palpi (Fig 13) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setae Palpalfemur with two proximal ventral spines in a row and two paireddistal spines (one ventral one mesoventral) Palpal patella with asingle spine directed inward Palpal tibiawith twopairs of spinesand a small basal setose tubercle Palpal tarsus with two pairs ofspines Palpal claw as long as palpal tarsus

Legs IndashIV (Fig 13) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge ventral tubercle and three smaller mesodorsal tuberclesFemora IndashIV with one basal peg on ventral surface with peg freeof granulation Femur III arcuate in males and females free oftubercles Femur IVandpatella IVofmalewith two irregular rowsof mesalmesoventral tubercles Tibia IV of male with multipleirregular rows of tubercles with ventral row enlarged and conicaldistally distal-most ventral tubercle composed of two fusedtubercles Metatarsi IndashIV divided distally with distal portionlacking ornamentation metatarsus IV of male with two rows ofmesalmesoventral tubercles Female trochanter IV not enlargedleg IV free of tubercles Tarsal claws IndashIV smooth unmodifiedTarsal segmentation 3 5 5 6

Penis (Fig 14) narrow in the shape of a spear blade widenednear base Lateral margins gradually coalescing dorsallyresulting in spoon shape in dorsal aspect Ventral surface with

Table 6 Leg measurements of Petrobunus spinifer female paratype (ex MHNG PAL-0905) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 033007 021010 024007 025005 029005 143Leg II 013011 037006 023010 034007 026005 051005 184Leg III 014014 029009 022013 029010 027005 035004 156Leg IV 017015 049008 025014 034010 045006 043004 213

a

b

c

050 mm

050 mm

050 mm

Fig 11 Petrobunus torosus sp nov male holotype (a) Dorsal view(b) lateral view and (c) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 119

threepairs of setae lateralmarginswith four setae eachGlans freein apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 14) composed of two apical lobes eachbearing two dorsal setae one ventral seta and two apicalsetae Distal surfaces of apical lobes smooth Bases of dorsalsetae in contact Bases of ventral setae set apart by a distanceapproximately equal to one-third the width of the ovipositor

Distribution

Known only from type locality and additional locality reportedhere

Etymology

The specific epithet refers to the stocky and robust appearanceof the fourth leg in the males of this species Derived from Latinlsquotorosusrsquo meaning lsquomuscularrsquo or lsquobulgingrsquo

Family TITHAEIDAE fam nov

Type genusTithaeusThorell 1891 by present designation andmonotypy

Type species Tithaeus laevigatus Thorell 1891 by original designation

Genera included Tithaeus Thorell 1891 new familial assignmentMetatithaeus Suzuki 1969 new familial assignment

Diagnosis

Medium-sized Grassatores with a low ocularium removed fromthe anterior margin of carapace that differ from Epedanidae inlacking a median spine In some species slight to large hump

situated anterior of ocularium Scutal region divided into fiveareas areas I and II not fused as opposed to EpedanidaeChelicerae typical basal segment not enlarged (as opposed toEpedanidae)Distinct fromPodoctidae in the lack of spines on legI and in the lack of a sexually dimorphic ocularium Tarsalformula 5 8+ 5 6 not reduced (as opposed to Sandokanidaeand Podoctidae) Distitarsi of legs I and II typically with twotarsalia distinguished from Petrobunidae in the trochanter of legIV not enlarged inmales Tarsi III and IVwith unmodified doubleclaws scopulae absent (as opposed to most Samooidea) Distalmargin of ventral plate of penis usually with deep cleft (mostTithaeus) or widening distally into setiferous and conicalstructure (Metatithaeus) glans with simple membranous lobecovering the stylus terminus of stylus either a bifurcate orslightly inflatable lobe absence of prominent parastylar lobes(distinguishing it from Petrobunidae) absence of a ring of setaesurrounding a capsula interna (found in Epedanidae) Ovipositorlobes typically with a pair of ventral and dorsal setae

Remarks

One of dozens of genera placed in the subfamily Phalangodinae(Phalangodidae) by Roewer (1912 1923 1949) Tithaeus wassubsequently extricated and transferred to Epedanidae by Kury(1993 2003 2006) on the basis of the male genitalia althoughthe placement was ambiguous given the absence of typicalepedanid morphology such as elongate and armed pedipalpian erect ocularial spine (absent in Dibuninae) the fusion of scutalareas I and II side-branches in the posterior claws and stoutdentition of the cheliceral fingers (Lian et al 2008) However

a

b

100 microm

100 microm

100 microm

100 microm

c

d

Fig 12 Petrobunus torosus sp novmale paratype (a)Dorsolateral view (b) dorsolateral viewof anteriormargin of carapace(c) ventrolateral view and (d) ventrolateral view of prosomal complex

120 Invertebrate Systematics P P Sharma and G Giribet

comparisons of the male genitalia of a phalangodid (Texella) anepedanid (Kilungius Saracinicinae) and Tithaeus suggested acloser relationship between Epedanidae and Tithaeus in spite ofmarked differences in the stylar lobe and the extent of the basalsac (Lian et al 2008)

Our phylogenetic analyses corroborate a closer relationshipbetween Epedanidae and Tithaeuswith respect to Phalangodidae(which is sister to the remaining Grassatores and thereforedistantly related to both lineages) but the clade Tithaeus+Metatithaeus neither nests within nor is sister to Epedanidae

a

b

c

d

e

h

i

g

f

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

Fig 13 Petrobunus torosus sp nov (a) Left chelicer of male paratype (b) left palp of male paratype (c) left leg I of maleparatype (d) right leg II of male paratype (e) left leg III of male paratype (f) left leg IV of male paratype (g) left leg IV offemale paratype (h) trochanter of left leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 121

in any of the topologies we examinedMoreover the cleft ventralplate forming two prongs in the male genitalia of many Tithaeusspecies in addition to the absence of a ring of setae surroundingthe capsula interna (typical of Epedanidae) suggest that Tithaeus

and related genera (eg Istithaeus Metatithaeus Tithaeommaetc) are not true epedanids but may be more closely related toeither (1) Podoctidae a hypothesis that is supported in someanalyses (bootstrap frequency in ML [BS] = 59 posteriorclade probability given by MrBayes [PP] = 097) or (2) theclade (Podoctidae + Sandokanidae) recovered by the BEASTtopology (posterior clade probability given by BEAST[PPBEAST] = 100)

The inclusion of Tithaeus-like Grassatores in Epedanidaerenders the latter para- or diphyletic and obscures a cleardiagnosis of epedanids as the morphology of Tithaeus (andMetatithaeus) does not accord with many epedanidsynapomorphies Moreover inclusion of Tithaeus andorMetatithaeus within a broader Podoctidae is also unjustifiedbecause this violates many of the synapomorphies ofPodoctidae such as (1) tuberclesspines in dorsal and ventralrows on leg I (2) tubercular bridges (3) a sexually dimorphicbasichelicerite and (4) a sexually dimorphic ocularium

Consequently we erect the family name Tithaeidaeseparating Tithaeus and Metatithaeus from EpedanidaeTithaeidae likely includes the monotypic Roewerian generaIstithaeus Kondosus Sterrhosoma and Tithaeomma but thestatus of these genera requires further investigation and will beaddressed in a forthcoming study

Distribution

Distributed throughout Sundaland the Thai-Malay PeninsulaSumatra Java and Borneo Also reported from northern Vietnamand southern China One doubtful record from West Timor(see Lian et al 2008)

Results

Phylogenetic analysis

Less sequence data are presently available for Briggsusflavescens (partial 28S and COI Derkarabetian et al 2010)with respect to the rest of the data matrix Consequently twoML analyses were conducted including and excluding Briggsusflavescens The ML analysis with all taxa resulted in a treetopology with lnL= ndash8372597 Repeating the analysis withoutBriggsus resulted in a tree topology with lnL= ndash8336108 Thetwo topologies are identical save for the internal relationships ofTravunioidea which includes Briggsidae (Fig 15) Inclusion ofBriggsidae recovers a diphyletic Cladonychiidae with Briggsussister to Holoscotolemon but these relationships are notsupported Exclusion of Briggsidae results in higher nodalsupport frequencies within Travunioidea and recovers a sisterrelationship of Sclerobunidae and the remaining Travunioidea(BS = 75) and a monophyletic Cladonychiidae + Travuniidae(BS = 77) sister to Trojanella Including Briggsus in theanalysis does not affect topology or nodal support in otherparts of the phylogeny Monophyly of Travunioidea isstrongly supported (BS = 100) in either case

Runs of MrBayes ver 312 reached stationarity in 2 000 000generations 2 500 000 generations (25) were hence discardedas burn-in The BI analysis with all taxa resulted in a topologylargely similar to theMLtree (Fig 16)Notable differences are therelative placements of the clade (Gonyleptoidea + Stygnopsidae)

a

b

c d

050 mm

050 mm

20 microm

20 microm

Fig 14 Petrobunus torosus sp nov (a) female paratype dorsal view(b) female paratype ventral view (c) pars distalis of penis lateral view and(d) ovipositor dorsal view

122 Invertebrate Systematics P P Sharma and G Giribet

and the South-east Asian group of families Some differencesexist with respect to supported nodes within superfamilies

Estimation of divergence times

The run of BEAST reached stationarity after 6 000 000generations 10 000 000 generations (20) were discarded asburn-in The tree topology recovered by BEAST (Fig 17) differsfromML andBI topologies in (1) the placement of Sandokanidaeand (2) the relationships between superfamilies Diversificationof Laniatores is dated at ~348Mya Diversification of majorlineages is estimated as follows (Travunioidea+Triaenonychidae)299Mya Grassatores 302Mya Assamiidae +Pyramidopsgroup 232Mya Gonyleptoidea + Stygnopsidae 246MyaGonyleptoidea 230Mya Samooidea + Zalmoxoidea 206Myaand a South-east Asian clade (including Sandokanidae)249Mya These results largely corroborate previous estimatesof divergence times (Giribet et al 2010) but confidence intervalsfor estimated ages are more precise A tree file of estimated agesand 95highest posterior density (HPD) intervals for all nodes isprovided as an Accessory Publication on the InvertebrateSystematics website

Whereas the basal topology of Grassatores is unstable andunsupported most familial and superfamilial relationshipsare consistently recovered across analyses A consensus oftopologies across all analyses is shown in Fig 18

Discussion

A molecular phylogeny of the armoured harvestmen has longproven elusive Laniatores comprises entire genera and familiesthat are endemic to particular provinces of the world In somecases higher taxonomic ranks do not even occur beyond specificislands (eg the New Zealand family SynthetonychiidaeForster 1954) Moreover Laniatores includes the majority ofall described Opiliones species (and over half of all describedfamilies) and new lineages continue to be discoveredConsequently previous efforts to assess Laniatores phylogenyhave been prone to undersampling numerous lineages such asAssamiidae Epedanidae and the superfamilies Samooidea and

Zalmoxoidea (eg Giribet et al 1999 2002 Shultz and Regier2001)

The present study with the inclusion of all families ofarmoured harvestmen described heretofore enables detailedinvestigation of internal relationships of Laniatores Ofprincipal interest are the phylogenetic placement of the twonew families of Laniatores erected herein and the systematicvalidity of defined superfamilies Many of the relationshipsrecovered in our analyses are consistent with traditionalhypotheses based on morphological studies but there are someunexpected results We discuss these in turn

Insidiatores

Within a monophyletic Laniatores recovered in all analyses(BS = 100 PP = 093) the constituent lineages of Insidiatoresform a paraphyletic grade with respect to Grassatores WhileTriaenonychoidea and Travunioidea do form a clade (albeit withlow nodal support) the New Zealand endemic familySynthetonychiidae is recovered as sister to all remainingLaniatores (BS = 78 PP = 100) consistent with the resultsof a recent study (Giribet et al 2010) However the inclusionof more data in fact lowers the nodal support for this sisterrelationship relative to the previous studyrsquos ML analysislikely due to the influence of missing data (in particular only~300 bp out of a targeted 3400 bp of 28S rRNA are presentlyavailable for Synthetonychia) Consequently we do not treat theplacement of Synthetonychiidae as definitive

In all analyses the southern hemisphere Triaenonychidaeform a strongly supported clade that diversified ~200Mya(BS = 100 PP = 100) Their distribution and the age of thiscladersquos diversification are similar to that of the temperateGondwanan cyphophthalmid family Pettalidae (estimated tohave diversified ~183ndash221Mya Giribet et al 2010)suggesting a parallel biogeographical process in these lineagesThe North American triaenonychid Fumontana deprehendorShear 1977 is sister to the southern hemisphere Triaenonychidaein all analyses consistent with previous classification (Giribetand Kury 2007 Thomas and Hedin 2008) but support fora monophyletic Triaenonychoidea is limited and sensitiveto analytical parameters (BS = 57 PP lt 050 PPBEAST = 066)

Table 7 Leg measurements of Petrobunus torosus holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011011 039005 026012 028008 036006 040007 180Leg II 014013 061008 029010 043007 042006 072005 261Leg III 015015 051010 019015 037011 045006 046005 213Leg IV 034035 059012 034017 054015 067007 052006 300

Table 8 Leg measurements of Petrobunus torosus female paratype (ex MHNG PAL-0907) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 041008 022011 028010 037005 035006 174Leg II 010009 052007 023008 033007 037006 069005 224Leg III 014016 046010 025024 036012 042007 041005 204Leg IV 018017 054011 029016 049012 058007 048006 256

Molecular phylogeny of Laniatores Invertebrate Systematics 123

Fig 15 Phylogenetic relationships of Laniatores inferred from maximum likelihood analysis of all molecular data (ln L= ndash8372597) Inset topology ofTravunioidea excluding Briggsidae (ln L= ndash8336108) Numbers on nodes indicate bootstrap resampling frequencies

124 Invertebrate Systematics P P Sharma and G Giribet

We recovered a monophyletic Travunioidea which includesBriggsidae in all analyses (BS = 100PP = 100) corroboratingthe superfamilial placement of briggsids Briggsidae isrecovered sister to either Trojanella (ML) or Holoscotolemon(BI) or part of a grade with both of these taxa (BEAST) butthese placements are not supported (BS lt 50 PPBEAST = 085and PP = 051 respectively) Missing data for Briggsidaedepresses nodal support in ML analyses within Travunioideaobscuring interfamilial relationships In the absence ofBriggsidae we recover a sister relationship betweenSclerobunidae (Zuma acuta Goodnight amp Goodnight 1942)and the remaining Travunioidea (BS = 75) and themonophyly of Travuniidae +Cladonychiidae (BS = 77)

A recent molecular dating of Travunioidea obtained muchyounger dates than estimated herein in spite of similar taxaand molecular loci In that study Derkarabetian et al (2010)investigated the evolution of troglobitism in Sclerobunidae(also referred to as the lsquoNorth American triaenonychidsrsquo)and used the cladonychiid fossil Protoholoscotolemon(38ndash54Mya Ubick and Dunlop 2005) to constrain theminimum age of Travunioidea in addition to calibration pointsderived from geological ages of strata These practicesaccord with the scope of the troglobitism study (thedivergences of interest were comparatively recent ndash Plioceneor younger) but we did not utilise Protoholoscotolemon in ourdating for two reasons (1) we do not obtain an unambiguouslymonophyletic Cladonychiidae in our analyses and (2) theDevonian and Carboniferous fossils we utilised as calibrationpoints are sufficiently old to obtain a result consistent with anEocene cladonychiid fossil The different calibration pointsimplemented in the respective studies therefore account forthe discrepancy in the dating In addition the morphologicalconservatism of Opiliones makes it doubtful that the age ofProtoholoscotolemon is the maximum age of the superfamily

Our sampling of Insidiatores lineages remains limited andbarring the inclusion of Briggsidae additions to taxonomicsampling largely concern Grassatores Consequently continuedsampling and systematic studies of Insidiatores (eg Mendesand Kury 2008 Thomas and Hedin 2008 Derkarabetian et al2010) are instrumental and imperative to addressing outstandingquestions of phylogenetic relationships and morphologicalevolution A phylogeny of Triaenonychidae is particularlywanting

Early diverging Grassatores Phalangodidaeand Sandokanidae

The recovery of a monophyletic Grassatores (supported inall analyses BS = 99 PP = 100) is consistent with severalmorphological synapomorphies uniting this diverse groupsuch as the presence of two tarsal claws on walking legs IIIand IV However the basal topology of Grassatores has longbeen contentious Previously two superfamilies of Grassatoreswere recognised Oncopodoidea (with the single familySandokanidae (formerly Oncopodidae)) and lsquoGonyleptoidearsquo(with the remaining families) (Martens 1976 1986 Martenset al 1981) This dichotomy was largely based upon theunique morphology of Sandokanidae ndash characters such as thescutum completum (fused opisthosomal tergites) reduced tarsal

articles and genitalic structures which are not found in theremaining Grassatores (Martens 1980 Giribet et al 2002Sharma and Giribet 2009) It was alternatively contended thatthese characters constituted autapomorphies of Sandokanidaewhich was nested within lsquoGonyleptoidearsquo itself (Kury 2003)

In all analyses we obtained an initial divergence betweenPhalangodidae and the remaining Grassatores (BS = 100PP = 096) refuting the traditional dichotomy betweenSandokanidae and lsquoGonyleptoidearsquo Therefore we hereindefine Gonyleptoidea as the taxon consisting of AgoristenidaeCosmetidae Cranaidae Gonyleptidae Manaosbiidae andStygnidae The split between Phalangodidae and the remainingGrassatores has been postulated to correspond to the rifting ofthe ancient supercontinents Laurasia and Gondwana as thedistribution of Phalangodidae was believed to be strictlyHolarctic (Giribet et al 2010) However the inclusion of theMadagascar genus Remyus previously placed in Zalmoxidae(Starega 1989) within a monophyletic Phalangodidae indicatesbroader distribution of phalangodids ndash complementing theTriaenonychidae-Fumontana case discussed above Moreoverthe origin of Phalangodidae is estimated to have occurred around302Mya (95 HPD 264ndash335Mya) greatly predating thebreakup of the supercontinents These results indicate thatPhalangodidae may be narrowly defined and we consequentlytransfer Remyus to Phalangodidae (new familial assignment)

The unusual family Sandokanidae has been postulated to besister toPodoctidae (SharmaandGiribet 2009Giribet et al 2010)or to form agradewith Phalangodidae (Kuryrsquos lsquoPhalangodoidearsquopartly) In the present study ML and BI topologies reconstructSandokanidae as sister to the remaining non-phalangodidGrassatores albeit with insignificant nodal support (BS = 21PP = 078) Curiously the topology obtained byBEAST recoversthe clade (Sandokanidae + Podoctidae) nested within a singleclade of South-east Asian families (PPBEAST = 085) Theseresults do not unambiguously favour one hypothesis overanother and the phylogenetic placement of Sandokanidae inthe Grassatores tree therefore remains debatable

Regardless of the inclusion of Sandokanidae within theSouth-east Asian group of families that the sister family to theremaining Grassatores is Phalangodidae not Sandokanidaeindicates that the peculiar morphology of sandokanids is theresult of multiple apomorphic reversals not the retention ofplesiomorphic characters (Martens and Schwendinger 1998)The large scutum and low tarsomere number found inSandokanidae also occur in Trogulidae and Dicranolasmatidae(suborder Dyspnoi) and all Cyphophthalmi and appear to haveevolved convergently This morphology may reflect adaptationsto a shared ecological niche all these groups inhabit leaf litterinclude no arboricolous species and are limited in vagility ndash

although these life history traits are also found in other groupsHowever this hypothesis has yet to be rigorously tested

Sandokanidae is presently one of few families of Grassatoresfor which a molecular phylogeny assessing intergenericrelationships is available (Sharma and Giribet 2009) andconsistent with earlier results the monophyly of Sandokanidaeis strongly supported (BS = 100 PP = 100) as is the initial splitbetweenMartensiellus and the remaining genera (an undescribedspecies was referred to as lsquogen sprsquo by Sharma and Giribet 2009but subsequent morphological investigation revealed this to be

Molecular phylogeny of Laniatores Invertebrate Systematics 125

Fig 16 Phylogenetic relationships of Laniatores inferred fromBayesian inference analysis of allmolecular data Numbers on nodes indicateposterior probabilities

126 Invertebrate Systematics P P Sharma and G Giribet

a miniature species of Martensiellus P J Schwendinger perscomm) (BS = 92 PP = 100) Intergeneric relationshipsof sandokanid genera are contingent upon analytical treatmentof molecular partitions (with additional sandokanid exemplarsdata not shown) reflecting conflict among datasets documentedby Sharma and Giribet (2009)

The other South-east Asian families

Epedanidae was postulated to be sister to Gonyleptoidea in acladistic analysis based on morphological characters (Kury1993) Subsequently Kury (2003) proposed that Epedanidaewas sister to the clade (Assamiidae (Stygnopsidae +Gonyleptoidea)) The single epedanid previously included in amolecular phylogeny was similarly unstable in placement eithernestingwithin Assamiidae or sister to the African lsquophalangodidsrsquo(Conomma and Maiorerus) in neither case with appreciablenodal support (Giribet et al 2010) Furthermore previousinclusion of several lineages (eg Tithaeus) within Epedanidaethat do not bear characters typical of true epedanids ndash sexuallydimorphic chelicera with heavy dentition elongate andspined pedipalpi male genitalia with setae surroundingthe capsula interna ndash has also made this family difficult todefine Consequently we included only Epedaninae (egPseudoepedanus Alloepedanus and Euepedanus) as exemplarsof true epedanids the systematic validity of the remaining threesubfamilies (and particularly the inclusion of Dibuninae) isbeyond the scope of this study and remains to be investigated

The monophyly of each of four South-east Asian families ndashEpedanidae (represented by epedanines) TithaeidaePetrobunidae and Podoctidae ndash is recovered with high nodalsupport (all BS = 100 PP = 100) These lineages are somehowrelated to each other and while they form a clade in bothML andBI analyses this result receives insignificant nodal support(PP = 077) In the topology recovered by BEAST the South-east Asian families form a clade that includes Sandokanidaea result consistent with the distribution of sandokanids albeitwithout support (PPBEAST = 085) Tithaeidae is probably closelyrelated to Podoctidae given the occurrence of a deeply cleftventral plate resulting in two flanking prongs in themale genitaliaof both families (Suzuki 1977 Lian et al 2008 Fig 19) Inaddition the clade (Podoctidae +Tithaeidae) is recovered withmoderate support in ML and BI analyses (BS = 59 PP = 097)In none of the analyses is Tithaeidae nested within or sister toEpedanidae sensu stricto

The morphology of Petrobunidae suggests some relationshipto previously described South-east Asian families oralternatively Phalangodidae but not inclusion within any ofthese (Fig 19) Molecular sequence data do not support anyspecificplacement ofPetrobunidae although it clusterswithotherSouth-east Asian families in all analyses and is recovered sisterto Epedanidae in two topologies (BI and BEAST)

Gonyleptoidea and Stygnopsidae

With over 2500 described species the superfamilyGonyleptoidea constitutes the most diverse and (arguably) themost charismatic lineage of Opiliones with most of this diversityconcentrated in Amazonia (some cosmetids occur as far north asthe mid-Atlantic states of the US) In a previous analysis

relationships of gonyleptoid families were unsupported andordid not accordwithmorphological studies (Giribet et al 2010) Inparticular the placement of the agoristenid exemplar Avimaalbiornata (Goodnight amp Goodnight 1947) ndash the putativesister family to the remaining Gonyleptoidea ndash within aparaphyletic Cranaidae was particularly suspect given thelimited availability of sequence data for Avima (complete 18SrRNA a300-bp fragmentof 28S rRNA andCOI) In addition thesister group of Gonyleptoidea was ambiguous and contingentupon analytical parameters

Redoubling sequencing efforts and addition of taxaparticularly in the case of Agoristenidae (currently sequencedfor 12S rRNA complete 18S rRNA a 2000-bp fragment of 28SrRNA COI H3 and EF-1a) improved the assessment ofgonyleptoid relationships A monophyletic Gonyleptoidea(BS = 58 PP = 066) is recovered sister to the familyStygnopsidae (BS = 57 PP = 100) Within Gonyleptoidea asplit between Agoristenidae and the remaining gonyleptoids isstrongly supported (BS = 100 PP = 100) followed by thedivergence of Stygnidae (BS = 71 PP = 099) Thisplacement of Agoristenidae is supported by morphologicalstudies (Pinto-da-Rocha and Kury 2007) although in aminority of tree topologies sampled in BI analysesAgoristenidae is sister to Stygnopsidae (hence lower nodalsupport for the monophyly of Gonyleptoidea in BI) Theplacement of Manaosbiidae is uncertain it is recoveredsister to either (Gonyleptidae +Cranaidae) (PP = 089) or toCosmetidae (PPBEAST = 092) but these results are notsupported Cranaidae is recovered as monophyletic (BS = 99PP = 100) and nested within a paraphyletic Gonyleptidae

The present sampling of Cosmetidae and Gonyleptidae doesnot do justice to the diversity of these lineages (~700 and 800described species respectively) A phylogenetic assessment ofall 16 subfamilies of Gonyleptidae alone constitutes the subjectof an arduous and exacting study Fortunately cladistic analysesof morphological characters continue to advance phylogeneticinvestigation of subfamilial lineages (eg BourguyiinaeYamaguti and Pinto-da-Rocha 2009 Goniosomatinae DaSilvaandGnaspini 2009HernandariinaeDaSilva andPinto-da-Rocha2010) Elucidating the phylogeny of Gonyleptoidea is one of themost exciting research topics in the study of Opiliones

The Afrotropical families

The third most diverse family of Laniatores Assamiidaeconstitutes the dominant opiliofauna of the African continent(excluding Madagascar) with some lineages occurring in SouthAsia the Indo-Malay Archipelago and Australia (Trionyxellinaeand Dampetrinae) Proposed to be related to EpedanidaeStygnopsidae andor Gonyleptoidea (Kury 2007) on the basisof genitalic structures assamiids were not recovered asmonophyletic in a previous study (paraphyly was induced byeither Epedanidae orAfricanBiantidae) and the placement of thesubfamily Trionyxellinae was particularly suspect (Giribet et al2010) Trionyxellinae was considered a separate family byMello-Leitatildeo (1949) though others considered it nested withinAssamiidae (eg Starega 1992) In our analyses the monophylyof Assamiidae is supported (BS = 79 PP = 100)lsquoTrionyxellinaersquo (Trionyxella and Mysorea both with a

Molecular phylogeny of Laniatores Invertebrate Systematics 127

Fig 17 Evolutionary time tree of Laniatores inferred fromBEASTanalysis of allmolecular data Coloured bars indicate 95highestposterior density (HPD) intervals for nodes of interest Numbers on nodes indicate posterior probabilities asterisks indicate posteriorprobability of 100

128 Invertebrate Systematics P P Sharma and G Giribet

pseudonychium on the third and fourth tarsi) is a diphyletic entitynested within the other Assamiidae (for the node renderingdiphyly BS = 100 PP = 100) disfavouring family status fortrionyxellines

The African lsquophalangodidsrsquo (sometimes called thelsquoPyramidops grouprsquo) were recognised as a new family byStarega (1992) but not formalised and included 13 genera(Conomma Pyramidops and related lineages) Consistentwith this hypothesis we recovered strong support for thePyramidops group (represented by Conomma and cfPyramidops) as a lineage separate from the true Phalangodidae(egBishopella and Scotolemon) recapitulating a previous result(Giribet et al 2010) The African lsquophalangodidsrsquowere recoveredas the sister lineage of Assamiidae although this relationshipis variably supported in our analyses (BS = 40 PP = 095PPBEAST = 100) A review and formal description of thePyramidops group as a new family lsquoPyramidopidaersquo ndash a namewidely available on the internet including GBIF but notformalised ndash is undertaken elsewhere (Sharma et al 2011)

While we have endeavoured to improve the sampling ofAssamiidae from South-east Asia the internal systematics ofthis family remain a high value target for phylogenetic researchHowever revision of assamiid systematics is inherently difficultfor two reasons (1) the family is peppered with questionablehierarchies and monotypic genera (~12 subfamilies and 250genera for less than 500 described species) and (2) occurs insome of the most inaccessible regions of the world namely sub-Saharan Africa

In all analyses the clade (Assamiidae + Pyramidopidae) issister to the clade (Zalmoxoidea + Samooidea) though this resultis only supported in one analysis (PP= 100) The divergence ofthese four lineages is estimated to have occurred 252Mya and isconsistent with diversification in West Tropical Gondwanaoccurring at least 140million years before the fragmentation ofthis terrane (~110Mya)

Zalmoxoidea

As currently defined the largely Neotropical superfamilyZalmoxoidea includes four families FissiphalliidaeGuasiniidae Icaleptidae and Zalmoxidae Guasiniidae hasnever before been included in a molecular phylogeny In thepresent study we sequenced a guasiniid for six genes and ouranalyses strongly support theplacement ofGuasiniidae as sister tothe samooid family Kimulidae (formerly Minuidae) (BS = 86PP = 098 PPBEAST = 099) and this clade in turn sister to anothersamooid family Escadabiidae (BS = 65 PP = 096PPBEAST = 100) The families Fissiphalliidae Icaleptidaeand Zalmoxidae in turn form a separate clade (BS = 100PP = 100 PPBEAST = 100) with strong support for the sisterrelationship of Zalmoxidae and Fissiphalliidae (BS = 99PP = 100 PPBEAST = 100) corroborating relationshipsproposed by morphological studies (Kury and Peacuterez G 2002Pinto-da-Rocha and Kury 2003b)

Previous analyses have suggested that Samooidea (discussedbelow) is a paraphyletic grade with respect to Zalmoxoidea(Giribet et al 2010) In the present analysis the cladeSamooidea + Zalmoxoidea is strongly supported (BS = 85PP = 100 PPBEAST = 100) as previously suggested by PeacuterezGonzaacutelez and Kury (2007) and by excluding Escadabiidae and

Kimulidae Samooidea is rendered a monophyletic entity albeitwith limited support (BS = 53 PP = 062 PPBEAST = 081) Thestrong support from molecular sequence data for the cladeincluding Escadabiidae Kimulidae and the four zalmoxoidfamilies (BS = 89 PP = 100 PPBEAST = 100) suggests thatthese may form a natural group

Re-examination of the morphology of these six families incomparisonwith true samooid lineages (Biantidae Samoidae andStygnommatidae) corroborates the exclusionofEscadabiidae andKimulidae from true Samooidea Escadabiidae and Kimulidae(1) lack the scopula characteristic of Samoidae and stenostygnineBiantidae (2) lack a sexually dimorphic metatarsus IIIcharacteristic of Samoidae Stygnommatidae and stenostygnineBiantidae and (3) lack a penial calyx characteristic of SamoidaeConsistent with placement within Zalmoxoidea EscadabiidaeandKimulidae (1) possess a small oculariumbearing the eyes thatis removed from the margin of the carapace (2) bear a wellmarked dorsal protuberance (bulla) on the proximal segmentof the chelicera that lacks armature and (3) possess sexuallydimorphic leg IV segments particularly the femur and tibiawhich may be variedly arcuate incrassate and spinedAdditionally Escadabiidae Fissiphalliidae and Zalmoxidae allpossess sexually dimorphic tegumental glandopeningson tibia IIwhereas Biantidae Samoidae and Stygnommatidae possessthese structures on metatarsus III (Willemart et al 2010)While data on tegumental gland openings are only availablefor a small handful of species these may constitute significantdiagnostic characters for species wherein sexual dimorphismdoes not manifest itself in the readily observable form ofenlarged and spiny segments

Given the results of our phylogenetic analyses maintainingSamooidea (as currently defined) renders it a paraphyletic gradewith respect to a diphyletic Zalmoxoidea (as currently defined)Consequently based on the aforementioned morphologicalcharacters and robust molecular phylogenetic signal wetransfer Escadabiidae and Kimulidae to Zalmoxoidea

Samooidea

A previous cladistic analysis based upon morphological datasuggested close relationship between six families ndash BiantidaeEscadabiidae Kimulidae Podoctidae Samoidae andStygnommatidae ndash thenceforth known as Samooidea (Kury1993) the only pantropical Laniatores superfamily HoweverPodoctidae does not have any obvious relationship to Samooideaand has subsequently been transferred (Kury 2007) in ouranalyses Podoctidae is sister to Tithaeidae or Sandokanidaeie distantly related to all samooid families Moreover ouranalyses strongly favour the exclusion of Escadabiidae andKimulidae from Samooidea

The remaining three families ndash Biantidae Samoidae andStygnommatidae ndash are distributed in the Neotropics and partsof Africa with a handful of suspect lineages in South-east AsiaRe-examination and reassignment of many Samoidae genera(eg the Indonesian lsquosamoidrsquo Waigeucola palpalis PeacuterezGonzaacutelez 2011) suggest that the range of Samoidae does notinclude South-east Asia Peacuterez Gonzaacutelez and Kury (2007) alsoobserved that the lsquosamoidsrsquo of Africa Madagascar and theSeychelles may not be true Samoidae either Similarlyinclusion of the genus Stygnomimus an Indonesian lineage

Molecular phylogeny of Laniatores Invertebrate Systematics 129

within Stygnommatidae is highly dubious as the twoIndonesian lsquostygnommatidsrsquo are either highly autapomorphic(Stygnomimus conopygus (Roewer 1927)) or described on the

basis of a generic female that is not readily distinguishable fromfemales of other species (Stygnomimus malayensis (Suzuki1970))

Fig 18 Strict consensus of tree topologies obtained by all phylogenetic analyses

130 Invertebrate Systematics P P Sharma and G Giribet

Previous efforts to assess the systematic validity of Samooideaby means of molecular sequence data were limited insofar asonly two Samoidae three Biantidae (all Metabiantes) and twoStygnommatidae were sampled (Giribet et al 2010) Thesampling of Samoidae was especially problematic only asingle Neotropical adult (Pellobunus) and one African juvenilesamoid (lsquoSamoidae gen sprsquo) were included The designation ofthe latter is suspect as juveniles of Samoidae are oftenindistinguishable from the juveniles of other lineages becausemany diagnostic secondary sexual characters in Grassatores(eg spines and incrassate appendages) are not acquired untilafter several postembryonic stages (Townsend et al 2009)

In the present study though the type genus of Samoidae(Samoa from Samoa) was not available we sequenced theclosely related genus Badessa (from Fiji collected byP P S) as well as additional Biantidae and StygnommatidaeOur analyses recovered a monophyletic Samooidea (excludingEscadabiidae and Kimulidae BS = 53 PP = 062) withSamoidae sensu stricto (Pellobunus +Badessa BS = 100PP = 100) nested within a paraphyletic Stygnommatidae aplacement that is supported (BS = 87 PP = 100) Bycontrast the African lsquosamoidrsquo is sister to the AfricanBiantidae a relationship that is also well supported(BS = 100 PP = 100) These relationships suggest a basal

Fig 19 Cladogram of male genitalic evolution in South-east Asian families superimposed upon a schematised molecular phylogeny based on ML and BIanalyses of all molecular data Exemplars (a) Pseudoepedanus doiensis Suzuki 1969 (redrawn from Suzuki 1969) dorsal view (b) Pseudoepedanus doiensisSuzuki 1969 (redrawn from Suzuki 1969) ventral view (c) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) ventral view(d) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) dorsal view (e) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki1976) dorsal view (f) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki 1976) ventral view (g) Petrobunus torosus lateral view (h) ZalmoxidagibberaSuzuki 1969 dorsal view (i)Zalmoxida sp (MCZDNA102677) dorsolateral view (j)Metatithaeus rubidusSuzuki 1969 (redrawn fromSuzuki 1969)ventral view (k)Tithaeus kokutnusSuzuki 1985 (redrawn fromSuzuki 1985) ventral view (l)Tithaeus similisSuzuki 1985 (redrawn fromSuzuki 1985) ventralview (m)DongmoaoshimensisSuzuki 1964 (redrawn fromSuzuki 1964) ventral view (n)Bonea longipalpisSuzuki 1977 (redrawn fromSuzuki 1977) ventralview (o) Santobius annulipes Soslashrensen 1886 (redrawn from Kury and Machado 2009) ventral view (p) Lomanius longipalpus mindanaoensis Suzuki 1977(redrawn from Suzuki 1977) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 131

dichotomy within Samooidea that corresponds to one groupof Neotropical and Pacific lineages and a second group ofAfrican lineages However as we were unable to samplestenostygnine (Neotropical) and Indo-Pacific Biantidae aswell as numerous monotypic genera dubiously placed inSamoidae biogeographical extrapolations for Samooidea aretenuous (discussed below)

The internal relationships of Samooidea suggest that themorphology of Samoidae may have evolved convergently Asthe African samoid is a juvenile (the same specimen previouslysequenced by Giribet et al 2010 now sequenced for additional28S rRNA and other genes) we cannot rule out the possibility ofa monophyletic Samoidae that includes African species (thespecimen in question could be a juvenile biantid) In any casethe paraphyly of Stygnommatidae and putative polyphyly ofSamoidae strongly advocate systematic revision of samooidfamilies as currently defined corroborating hypotheses of non-monophyly based on morphology (Peacuterez Gonzaacutelez 2007 PeacuterezGonzaacutelez and Kury 2007) Our sampling of these families isinsufficient to advocate specific taxonomic action but an ongoing

study of samooidean systematics will shed more light on thevalidity of constituent families (A Peacuterez Gonzaacutelez work inprogress)

Biogeography of Zalmoxoidea and Samooidea

While most superfamilies of Grassatores are restricted to aspecific part of the tropics (eg Neotropics South-east Asia)two are distributed in multiple biogeographical provincesSamooidea occurs in the Neotropics and Afrotropics withquestionable records from South-east Asia Zalmoxoidea isconcentrated in the Neotropics with the exception of oneIndo-Pacific lineage of Zalmoxidae (represented here byZalmoxis sp) The ages and distributions of Samooidea andZalmoxoidea suggest that their biogeography was influencedby the fragmentation of West Tropical Gondwana ndash causingthe former to diverge basally throughout West TropicalGondwanan terranes and the latter to become isolated to theNeotropics (with possible subsequent dispersal)

Fig 20 Ancestral range reconstructions for Samooidea +Zalmoxoidea inferred by Lagrange using stratified models corresponding to two vicariant events(indicated by dotted lines) Coloured squares at terminals indicate ranges occupied by sampled species Coloured squares on nodes indicate ranges reconstructedfor hypothetical ancestors Numbers on nodes indicate relative probability of ranges reconstructed

Fig 21 Best hypothesis of Laniatores relationships based on all available evidence Bracketed nodes indicate non-monophyletic entities Dashed line indicatesambiguity in the placement of Sandokanidae (alternatively placed as shown or as sister to Podoctidae) Exemplars of Laniatores diversity are Synthetonychiaoliveae (Synthetonychiidae) Equitius doriae (Triaenonychidae) Hadziana clavigera (Travuniidae) Erebomaster flavescens flavescens (Cladonychiidae)Scotolemon lespesi (Phalangodidae) Palaeoncopus gunung (Sandokanidae) Santobius sp (Podoctidae) Tithaeus sp (Tithaeidae) Petrobunus spinifer(Petrobunidae) Alloepedanus sp (Epedanidae) Hoplobunus sp (Stygnopsidae) Torreana spinata (Agoristenidae) Stygnoplus clavotibialis (Stygnidae)Metalibitia paraguayensis (Cosmetidae)Acutisoma longipes (Gonyleptidae)Conommaoedipus (Pyramidopsgroup)Mysorea thaiensis (Assamiidae)Lacurbssp (Biantidae) Stygnomma sp (Stygnommatidae) Badessa sp (Samoidae) Guasinia sp (Guasiniidae) Icaleptes sp (Icaleptidae) Fissiphallius chicoi(Fissiphalliidae) Zalmoxis sp (Zalmoxidae) Kimula goodnightiorum (Kimulidae)

132 Invertebrate Systematics P P Sharma and G Giribet

Molecular phylogeny of Laniatores Invertebrate Systematics 133

To test this hypothesis we conducted likelihood analysisof range evolution using the program Lagrange (Ree et al2005 Ree and Smith 2008) for the clade (Zalmoxoidea +Samooidea) The stratified analysis resulted in a globalmaximum likelihood of ndashlnL= 1556 outperforming anunconstrained analysis that did not include any dispersalconstraints (ndashlnL= 1676) Likelihood analysis of rangeoptimisation (Fig 20) indicates that the ancestral range ofSamooidea includes both the Afrotropics and the Neotropics(relative probability pr = 1000) but a subsequent split occursbetween an African lineage (pr = 1000) and a NeotropicalIndo-Pacific lineage with a Neotropical ancestral range (pr = 0986)Samoidea of the Indo-Pacific occur on young oceanic islands(eg Fiji Samoa) indicating recent transoceanic dispersal fromthe Neotropics

Ancestral range reconstructions for Samooidea are allconsistent with estimated divergence times for these clades(diversification of Samooidea predates the rifting of WestAfrica from northern South America) favouring an underlyingvicariant process for the basal topology with subsequent recentdispersal events However these results are contingent upon thepresent sampling which does not include all samooid lineages(eg stenostygnine Biantidae) but basal range reconstructionsare likely unaffected (eg Stenostygninae is exclusivelyNeotropical)

In contrast the ancestor of Zalmoxoidea is reconstructedas singularly Neotropical (pr = 0996) This is consistent withisolation of a zalmoxoid ancestor to Amazonia which thenradiated ~191Mya Subsequent ancestral ranges are alsoreconstructed as Neotropical with high relative probabilityHowever the ancestral range of the clade (Icaleptidae +Fissiphalliidae + Zalmoxidae) is ambiguously reconstructedas either Neotropical (pr = 0935) or Neotropical + Indo-Pacific(pr = 0064) as is the split between Fissiphalliidae andZalmoxidae (Neotropical pr = 0856 Neotropical + Indo-Pacific pr = 0141)

These results suggest that the Indo-Pacific lineage ofZalmoxidae which split from Neotropical Zalmoxidae ~83Myais likely the result of long-distance dispersal from the NeotropicsHowever due to the persistence of transantarctic connectionsbetween the Australian plate and temperate South America untilthe Tertiary a competing vicariant scenario cannot be ruled outwithout densely sampling zalmoxid diversity The biogeographyof Zalmoxidae is presently being explored in greater detail in aseparate study (P P Sharma unpubl data)

Finally the ancestral range of (Samooidea + Zalmoxoidea)includes both Africa and the Neotropics (pr = 0957) consistentwith a tropical West Gondwanan ancestor This resultlends circumstantial evidence to a sister relationship of theAfrotropical families (Assamiidae + Pyramidopidae) and theclade (Samooidea + Zalmoxoidea) recovered in all analyses

The diversification of Grassatores

While numerous interfamilial relationships are supported inthis study particularly among gonyleptoid and zalmoxoidfamilies some relationships between superfamilies ofGrassatores are not supported and are contingent upon

analytical treatments namely the deployment of substitutionmodels and data partitioning (Fig 21) The cause of thisinstability could be related to insufficient data particularly inthe EF-1a partition (the length of an intron which can exceed400 bp in some taxa makes this gene particularly difficult toamplify) However examination of clade divergence timessuggests that rapid diversification of Grassatores lineagescould in part augment phylogenetic uncertainty in basal partsof the topology

The split between Phalangodidae and the remainingGrassatores is estimated to have occurred ~302Mya but aseries of divergences resulted in the origin of all superfamiliallineages between 232 and 271Mya Relative to the estimatedage of Laniatores (348Mya) this 39-million-year period isremarkably narrow and inherently problematic as the amountof phylogenetic signal for a given stem subtending a node isdirectly proportional to the amount of time that the stem inquestion spans (Lanyon 1988 Rokas and Carroll 2006) Thesmall internal edge lengths of the stems corresponding to basaldivergences of non-phalangodid Grassatores (Figs 15 16)combined with the ancient age of lineages derived from thesedivergences result in relationships that are difficult to estimatewithout a large amount of sequence data andor the inclusion ofdata that are less afflicted by homoplasy (because longer edgelengths imply more indel and substitution events on edges)(Whitfield and Lockhart 2007)

We additionally observe that the origins of most Grassatoressuperfamilies occur in the wake of the end-Permian massextinction (~254Mya) Rapid radiation in the wake of a massextinction has occurred in multiple metazoan lineagesthe putative result of relaxed selection and opening ofpreviously occupied ecological niche space (Labandeira andSepkoski 1993 Sahney and Benton 2008) The rapiddiversification of early Grassatores lineages could be anexample of this phenomenon but this hypothesis is difficult totest in the absence of Mesozoic Grassatores fossils (reviewed byDunlop 2007)

Finally we observe that contrary to traditional hierarchiesproposed for Laniatores many of the clades recovered in ouranalyses correspond to geographical regions particularly in thecase of Grassatores For example the southern hemispheretriaenonychids are restricted to temperate Gondwananlandmasses Gonyleptoidea and their sister group Stygnopsidaeform a Neotropical (AmazonianMesoamericanAntillean) cladethat excludes Assamiidae which has been hypothesised to be amember of a broader Gonyleptoidea (Kury and Cokendolpher2000 Mendes and Kury 2007) In our analyses Assamiidae isin fact a member of a largely Afrotropical clade together withthe Pyramidopidae South-east Asian families usually form oneclade (at most two) albeit with limited support Samooideafamilies are divided into two clusters African and NeotropicalWith one exception (described above) Zalmoxoidea is restrictedto the Neotropics The ages that we estimate for Laniatoresradiations are consistent with ancient diversification beforethe fragmentation of Pangaea An ancient diversification inconjunction with the climatic stability of the tropics may in partexplain the comparatively greater diversity of the armouredharvestmen with respect to the other Opiliones suborders

134 Invertebrate Systematics P P Sharma and G Giribet

Acknowledgements

Weare indebted toPeter J Schwendingerwho collected andprovidedmost ofthe material for study from South-east Asia Some Thai and most of theNeotropical Laniatores were obtained from the TIGER (Thailand InventoryGroup for Entomological Research) and LLAMA (Leaf Litter Arthropods ofMeso-America) projects toC Lienhard and J Longino respectivelyMaterialfrom Madagascar was generously contributed by Charles Griswold and theCalifornia Academy of Sciences Jesse Czekanski-Moir in conjunction withthe Belau NationalMuseum contributed elusive specimens from Palau AbelPeacuterezGonzaacutelez identifiedmanyNeotropical species included in the study andcontributed specimens fromCubaRicardoPinto-da-Rocha identified someofthe live photographed animals from the Neotropics Discussions with RonaldMClouseAbelPeacuterezGonzaacutelezAdrianoBKury andCarlosEPrieto refinedmanyof the ideas presentedhereTwoanonymous reviewers and the associateeditor provided comments that helped to improve an earlier version ofthis manuscript Laura Leibensperger sorted and accessioned TIGER andLLAMA material as well as MCZ type material Adam Graham and theCenter forNanoscaleStudies atHarvardUniversityprovided support forSEMwork Collecting efforts in New Caledonia were greatly facilitated by theguidance of Herveacute Jourdan (Institut de rechercheacute pour de developpementNoumea) and his teammembers Collecting efforts in Fiji weremade possibleby Marika Tuiwawa (University of the South Pacific Suva) and his teammembers Hilda Waqa and Tokasaya lsquoToxrsquo Cakacaka we are especiallygrateful to Tox for his good company during fieldwork and to his familyfor graciously enabling a visit toOvalau SuzieYee Shawprovided invaluablelogistical support in Fiji and her sons Colin and Joshua Yee Shaw assistedwith sorting Fijian material Fieldwork in Indonesia and West Africa wassupported by two MCZ Putnam Expedition Grants awarded to RonaldM Clouse and G G (2006) and to G G (2009) respectively Fieldworkin New Caledonia was supported by the Goelet award the Kalathia FamilyTrust and the Explorers Club awarded to P P S in 2006 Fieldwork in Fijiand in Palauwas supported by twoMCZPutnamExpeditionGrants awardedto P P S (2008) and to Ronald M Clouse and P P S (2010) respectivelyP P S was supported by a Faculty of Arts and Sciences Graduate Fellowshipfrom Harvard University

References

Castresana J (2000) Selectionof conservedblocks frommultiple alignmentsfor their use in phylogenetic analysis Molecular Biology and Evolution17 540ndash552

Colgan D J McLauchlan A Wislon G D F Livingston S MacaranasJ Edgecombe G D Cassis G and Gray M R (1998) Molecularphylogenetics of the Arthropoda relationships based on histone H3and U2 snRNA DNA sequences Australian Journal of Zoology 46419ndash437 doi101071ZO98048

DaSilva M B and Gnaspini P (2009) A systematic revision ofGoniosomatinae (Arachnida Opiliones Gonyleptidae) with a cladisticanalysis and biogeographical notes Invertebrate Systematics 23530ndash624 doi101071IS09022

DaSilva M B and Pinto-da-Rocha R (2010) Systematic review andcladistic analysis of the Hernandariinae (Opiliones Gonyleptidae)Zoologia 27 577ndash642

Derkarabetian S Steinmann D B and Hedin M (2010) Repeatedand time-correlated morphological convergence in cave-dwellingharvestmen (Opiliones Laniatores) from montane western NorthAmerica PLoS ONE 5 e10388 doi101371journalpone0010388

Drummond A J and Rambaut A (2007) BEAST Bayesian evolutionaryanalysis by sampling trees BMC Evolutionary Biology 7 214doi1011861471-2148-7-214

Drummond A J Ho S Y W Phillips M J and Rambaut A (2006)Relaxed phylogenetics and dating with confidence PLoS Biology 4 e88doi101371journalpbio0040088

Dunlop J A (2007) Paleontology In lsquoHarvestmen The Biology ofOpilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 247ndash265 (Harvard University Press Cambridge MA USA)

Dunlop J A and Anderson L I (2005) A fossil harvestman (ArachnidaOpiliones) from theMississippian of East Kirkton Scotland The Journalof Arachnology 33 482ndash489 doi10163604-791

Dunlop JAAndersonL IKerpH andHassH (2003)Preservedorgansof Devonian harvestmen Nature 425 916 doi101038425916a

Dunlop J A Anderson L I Kerp H and Hass H (2004) A harvestman(Arachnida Opiliones) from the Early Devonian Rhynie chertsAberdeenshire Scotland Transactions of the Royal Society ofEdinburgh Earth Sciences 94 341ndash354

Edgar R C (2004) MUSCLE multiple sequence alignment with highaccuracy and high throughput Nucleic Acids Research 32 1792ndash1797doi101093nargkh340

Edgecombe G D and Giribet G (2006) A century laterndash a total evidencere-evaluation of scutigeromorph centipedes (Myriapoda Chilopoda)Invertebrate Systematics 20 503ndash525 doi101071IS05044

Edgecombe G D Giribet G and Wheeler W C (2002) Phylogeny ofHenicopidae (Chilopoda Lithobiomorpha) a combined analysis ofmorphology and five molecular loci Systematic Entomology 2731ndash64 doi101046j0307-6970200100163x

FolmerOBlackMHoehWLutzR andVrijenhoekRC (1994)DNAprimers for amplification ofmitochondrial cytochrome c oxidase subunit Ifrom diverse metazoan invertebrates Molecular Marine Biology andBiotechnology 3 294ndash299

Forster R R (1954) The New Zealand harvestmen (sub-order Laniatores)Canterbury Museum Bulletin 2 1ndash329

Giribet G and Kury A B (2007) Phylogeny and biogeography InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 62ndash87 (Harvard University PressCambridge MA USA)

Giribet G Carranza S Baguntildeagrave J Riutort M and Ribera C (1996) Firstmolecular evidence for the existence of a Tardigrada +Arthropoda cladeMolecular Biology and Evolution 13 76ndash84

Giribet G Rambla M Carranza S Baguntildeagrave J Riutort M and Ribera C(1999) Phylogeny of the arachnid order Opiliones (Arthropoda)inferred from a combined approach of complete 18S and partial 28Sribosomal DNA sequences and morphology Molecular Phylogeneticsand Evolution 11 296ndash307 doi101006mpev19980583

Giribet G Edgecombe G D Wheeler W C and Babbitt C (2002)Phylogeny and systematic position of Opiliones a combined analysis ofchelicerate relationships using morphological and molecular dataCladistics 18 5ndash70

Giribet G Vogt L PeacuterezGonzaacutelez A Sharma P andKury A B (2010)A multilocus approach to harvestman (Arachnida Opiliones) phylogenywith emphasis on biogeography and the systematics of LaniatoresCladistics 26 408ndash437

Hara M R Gnaspini P and Machado G (2003) Male egg guardingbehavior in the Neotropical harvestman Ampheres leucopheus (Mello-Leitatildeo 1922) (Opiliones Gonyleptidae) The Journal of Arachnology 31441ndash444 doi101636S02-32

Hedin M Derkarabetian S McCormack M and Richart C (2010) Thephylogenetic utility of the nuclear protein-encoding gene EF-1a forresolving recent divergences in Opiliones emphasizing intronevolution The Journal of Arachnology 38 9ndash20 doi101636HA09-491

Huelsenbeck J P and Ronquist F (2005) Bayesian analyses of molecularevolution using MrBayes In lsquoStatistical Methods in MolecularEvolutionrsquo (Ed R Nielsen) (Springer New York)

HunterRK ProundDNBurns JA Tibbetts JA andTownsendVR(2007) Parental care in the Neotropical harvestman Phareicranauscalcariferus (Opiliones Cranaidae) The Journal of Arachnology 35199ndash201 doi101636ST06-181

Molecular phylogeny of Laniatores Invertebrate Systematics 135

Kocher T D Thoma W K Meyer A Edwards S V Paumlaumlbo SVillablanca F X and Wilson A C (1989) Dynamics ofmitochondrial DNA evolution in animals amplification andsequencing with conserved primers Proceedings of the NationalAcademy of Sciences of the United States of America 86 6196ndash6200doi101073pnas86166196

Kury A B (1993) Anaacutelise filogeneacutetica de Gonyleptoidea (ArachnidaOpiliones Laniatores) PhD Thesis Universidade de Satildeo Paulo SatildeoPaulo Brazil

Kury A B (2003) Annotated catalogue of the Laniatores of the NewWorld (Arachnida Opiliones) Revista Ibeacuterica de AracnologiacuteaVolumen Especial Monograacutefico 1 1ndash337

Kury A B (2006) Checklist of valid genera of Opiliones of theWorld Museu NacionalUFRJ Available from httpwwwmuseunacionalufrjbrmndiAracnologiachecklaniatorhtm [Accessed1 February 2011]

Kury A B (2007) Podoctidae Roewer 1912 In lsquoHarvestmen The Biologyof Opilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 221ndash224 (Harvard University Press Cambridge MA USA)

Kury A B and Cokendolpher J C (2000) Opiliones In lsquoBiodiversidadTaxonomiacutea y Biogeografiacutea de Artoacutepodos de Meacutexico Hacia una Sintesisde su Conocimientorsquo vol 2 (Eds J E Llorente E Gonzaacutelez andN Papavero) pp 137ndash157 (Universidad Nacional Autoacutenoma deMexico Meacutexico DF Mexico)

Kury A B and Machado G (2009) Notes on Santobius from Vanuatu andFiji and the status of the eastern Melanesian Ibalonius (ArachnidaOpiliones Podoctidae) Zoological Studies 48 524ndash538

Kury A B and Peacuterez G A (2002) A new family of Laniatores fromnorthwestern South America (Arachnida Opiliones) Revista Ibeacuterica deAracnologiacutea 6 3ndash11

Labandeira C C and Sepkoski J J (1993) Insect diversity in the fossilrecord Science 261 310ndash315 doi101126science11536548

Lanyon S M (1988) The stochastic mode of molecular evolutionwhat consequences for systematic investigations The Auk 105565ndash573

Lian W-G Zhu M-S and Kury A B (2008) A new species of the genusTithaeus from China (Arachnida Laniatores Epedanidae) Zootaxa1841 53ndash60

Machado G Requena G S Buzatto B A Osses F and Rossetto L M(2004) Five new cases of paternal care in harvestmen (ArachnidaOpiliones) implications for the evolution of male guarding in theNeotropical family Gonyleptidae Sociobiology 44 577ndash598

Martens J (1976) Genitalmorphologie System und Phylogenie derWeberknechte (Arachnida Opiliones) Entomologica GermanicaZeitschrift fuumlr das Gesamtgebiet der Wissenschaftlichen Entomologie3 51ndash68

Martens J (1980) Versuch eines phylogenetischen Systems der OpilionesIn lsquoProceedings 8th International Congress of Arachnology ViennaVerhandlungenrsquo (Ed J Gruber) pp 355ndash360 (Vienna Austria)

Martens J (1986) Die Grossgliederung der Opiliones und die Evolutionder Ordnung (Arachnida) Actas del X Congreso Internacional deAracnologiacutea Jaca 1 289ndash310

Martens J (1993) Further cases of paternal care in Opiliones (Arachnida)Tropical Zoology 6 97ndash107

Martens J and Schwendinger P S (1998) A taxonomic revision ofthe family Oncopodidae I New genera and new species of GnomulusThorell (Opiliones Laniatores) Revue Suisse de Zoologie 105 499ndash555

Martens J Hoheisel U and Goumltze M (1981) Vergleichende Anatomieder Legeroumlhren der Opiliones als Beitrag zur Phylogenie der Ordnung(Arachnida) Zoologische Jahrbucher Abteilung fur Anatomie undOntogenie der Tiere 105 13ndash76

Mello-Leitatildeo C F (1949) Famiacutelias subfamiacutelia espeacutecies e gecircneros novos deopiliotildees e notas de sinoniacutemia Boletim do Museu Nacional Nova SeacuterieZoologia Rio de Janeiro 94 1ndash33

Mendes A C and Kury A B (2007) Stygnopsidae Soslashrensen 1932 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 232ndash234 (Harvard University PressCambridge MA USA)

Mendes A C and Kury A B (2008) Intercontinental Triaenonychidae ndashthe case of Ceratomontia (Opiliones Insidiatores) The Journal ofArachnology 36 273ndash279 doi101636CH07-931

Murphree C S (1988) Morphology of the dorsal integument of tenopilionid species (Arachnida Opiliones) The Journal of Arachnology16 237ndash252

Park J K andOacuteFoighilD (2000) Sphaeriid and corbiculid clams representseparate heterodont bivalve radiations into freshwater environmentsMolecular Phylogenetics and Evolution 14 75ndash88 doi101006mpev19990691

Peacuterez Gonzaacutelez A (2006) lsquoRevisatildeo Sistemaacutetica e Anaacutelise Filogeneacutetica deStygnommatidae (Arachnida Opiliones Laniatores)rsquo (Museu NacionalUniversidade Federal de Rio de Janeiro Rio de Janeiro Brazil)

Peacuterez Gonzaacutelez A (2007) Stygnommatidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 229ndash232 (Harvard University PressCambridge MA USA)

Peacuterez Gonzaacutelez A (2011) New familial assignment for two harvestmanspecies of the infraorder Grassatores (Arachnida Opiliones Laniatores)Zootaxa 2757 24ndash28

Peacuterez Gonzaacutelez A and Kury A B (2007) Samoidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 224ndash226 (Harvard University PressCambridge MA USA)

Pineau P Henry M Suspegravene R Marchio A Dettai A Debruyne RPetit T Leacutecu A Moisson P Dejean A Wain-Hobson S andVartanian J-P (2005) A universal primer set for PCR amplificationof nuclear histone H4 genes from all animal species Molecular Biologyand Evolution 22 582ndash588 doi101093molbevmsi053

Pinto-da-Rocha R (1997) Systematic review of the Neotropical familyStygnidae (Opiliones Laniatores Gonyleptoidea) Arquivos deZoologia 33 163ndash342

Pinto-da-Rocha R and Kury A B (2003a) Phylogenetic analysis ofSantinezia with description of five new species (Opiliones LaniatoresCranaidae) The Journal of Arachnology 31 173ndash208 doi1016360161-8202(2003)031[0173PAOSWD]20CO2

Pinto-da-Rocha R and Kury A B (2003b) Third species of Guasiniidae(Opiliones Laniatores) with comments on familial relationships TheJournal of Arachnology 31 394ndash399 doi101636H02-59

Pinto-da-Rocha R and Kury A B (2007) Agoristenidae Silhavy 1973 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 171ndash173 (Harvard University PressCambridge MA USA)

Posada D (2005) Modeltest 37 Program and documentation available athttpdarwinuvigoes [Accessed 28 May 2011]

Posada D and Buckley T (2004) Model selection and model averaging inphylogenetics advantages of Akaike information criterion and Bayesianapproaches over likelihood ratio tests Systematic Biology 53 793ndash808doi10108010635150490522304

Posada D and Crandall K A (1998) Modeltest testing the model ofDNA substitution Bioinformatics (Oxford England) 14 817ndash818doi101093bioinformatics149817

Prendini L Weygoldt P and Wheeler W C (2005) Systematics of theDamon variegates group of African whip spiders (ChelicerataAmblypygi) evidence from behaviour morphology and DNAOrganisms Diversity amp Evolution 5 203ndash236 doi101016jode200412004

Rambaut A E (1996) Se-Al sequence alignment editor University ofOxford UK Program and documentation available at httptreebioedacuksoftwarefigtree [Accessed 21 December 2009]

136 Invertebrate Systematics P P Sharma and G Giribet

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 7: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

Genus Petrobunus gen nov

Type species Petrobunus schwendingeri sp nov

Diagnosis

Small Grassatores (body length lt2mm) distinct from otherpetrobunids in the following combination of characters coxaand trochanter of male leg IV greatly incrassate with trochanterIV sub-rectangular in lateral aspect Tarsal formula 3 5 5 5ndash6Pars distalis of penis shaped as the head of a javelin two to threepairs of setae on ventral plate and four setae on each lateralmargin glans free in apical part with parastylar lobe extendingproximally Ovipositor with two ventral setae (one per apicallobe) set apart from one another by a distance equal toapproximately one-third the width of the ovipositor

Distribution

The newly described species are known only from the Philippineislands of Palawan and Panay an undescribed morphospecies

(included in molecular phylogeny as MCZ DNA102668 andMCZ DNA102669) is known from Taiwan

Petrobunus schwendingeri sp nov

(Figs 3ndash6 Tables 3 4)

Material examined

Holotype Male (MHNG) Philippines Panay Sibaliw primary forest450m alt leg E Curio 13i2008 (ex MCZ DNA103572)

Paratypes 1lt (mounted on three SEMstubs [MCZ100872ndash100874] anddissected for genitalia) 2 (1 extracted for DNA [MCZ 100875 MCZDNA103572] 1 dissected for genitalia [MCZ100881]) same collectingdata as holotype 4 same collecting data as holotype (MHNG)

Additional material studied 1 lt juvenile same collecting data asholotype

Diagnosis

Small petrobunid with unarmed ocularium Distinct from otherspecies in the genus in the mesotergum with transverse bands of

a b

c

100 microm

100 microm

100 microm

Fig 4 Petrobunus schwendingeri sp novmale paratype (a) Dorsal view of prosoma andmesotergum (b) posteriorview of opisthosoma with dotted reconstructions of spination based on holotype specimen and (c) dorsal view ofanterior margin of carapace

112 Invertebrate Systematics P P Sharma and G Giribet

a

100 microm

100 microm

100 microm

200 microm

100 microm

100 microm

100 microm

100 microm

200 microm

b

c

d

e

h

i

g

f

Fig 5 Petrobunus schwendingeri sp nov (a) Left chelicer of male paratype (b) left palp of male paratype (c) left leg I of maleparatype (d) left leg II of male paratype (e) left leg III of male paratype ( f ) left leg IV of male paratype (g) left leg IV of femaleparatype (h) trochanter of left leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 113

pigmentation and in the armature of the opisthosomal sternites(two pairs of tubercles on sternite 7 and one pair on sternite 8)Proximal region of femora of all legs with single blunt peg Penis

more elongate than in congeners in the shape of a spear bladewith two pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100875] inparentheses) 168 (164) greatest width of prosoma 076 (076)greatest width of opisthosoma 126 (124) length-to-width ratio133 (132) (Figs 3 6) Body campaniform yellow to darkorange (in alcohol depending on incidence of light) almostentirely with a dense microgranulate surface microstructureEyes present on low well developed ocularium withoutmedian ocularial tubercle Ocularium 012 (012) long and024 (019) wide removed from anterior margin of carapaceAnterior margin of carapace with two pairs of blunt pegs abovecoxae of leg I with outer pair of sub-rectangular shape (Fig 4)Scutal grooves of mesotergum indistinct with mesotergal areasdistinguishable only by transverse bands of pigmentation Freetergites without large tubercles

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged with setosetubercles on anterior margin Genital operculum sub-triangularSpiracles not concealed adjacent to row of tuberclesOpisthosomal sternite 7 with two pairs of large tuberclesdisplaced away from midline Opisthosomal sternite 8 withone pair of smaller tubercles flanking midline Anal plateunarmed (Fig 4)

Chelicerae (Fig 5) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassatefree of ornamentation with dorsal margin bearing several setaeDistal article with delicate dentition free of ornamentation

Palpi (Fig 5) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setae Palpalfemur with two proximal ventral spines in a row and two paireddistal spines (one ventral one mesoventral) Palpal patella with asingle spine directed inward Palpal tibiawith twopairs of spinesand a small basal setose tubercle Palpal tarsus with two pairs ofspines Palpal claw nearly as long as palpal tarsus

Legs IndashIV (Fig 5) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge ventral tubercle and three smaller mesodorsal tuberclesFemora IndashIV with one basal peg on ventral surface with peg freeof granulation Femur III arcuate in males and females free oftubercles Femur IVandpatella IVofmalewith two irregular rowsof mesalmesoventral tubercles Tibia IV of male with multipleirregular rows of tubercles with ventral tubercles enlarged andbulbous distally ventral tubercles enlarged but conical in shapeMetatarsi IndashIV divided distally with distal portion lackingornamentation metatarsus IV of male with two rows of mesalmesoventral tubercles Tarsus IV unornamented Femaletrochanter IV not enlarged leg IV free of tubercles Tarsalclaws IndashIV smooth unmodified Tarsal segmentation 3 5 5 5

Penis (Fig 6) elongate narrow and slender in the shape ofa spear blade Lateral margins gradually coalescing dorsallyresulting in spoon shape in dorsal aspect Ventral surface withtwo pairs of setae lateral margins with four setae each Glans

a

b

c d

050 mm

050 mm

100 microm100 microm

Fig 6 Petrobunus schwendingeri sp nov (a) Female paratype dorsalview (b) female paratype ventral view (c) pars distalis of penis lateral viewand (d) ovipositor dorsal view (one of four dorsal setae broken duringmounting process)

114 Invertebrate Systematics P P Sharma and G Giribet

free in apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 6) composedof twoapical lobes eachbearingtwo dorsal setae one ventral seta and two apical setae Distalsurfaces of apical lobes smooth Bases of dorsal setae in contactBases of ventral setae set apart by a distance approximately equalto one-third the width of the ovipositor

Distribution

Known only from type locality

Etymology

The specific epithet honours Dr Peter J Schwendinger curator atthe MHNG for his inspiration and tireless efforts to advanceknowledge of South-east Asian arachnid fauna

Petrobunus spinifer sp nov

(Figs 7ndash10 Tables 5 6)

Material examined

Holotype Male (MHNG) Philippines Palawan El Nido RegionBulalacao Waterfall primary forest 200ndash450 alt (111304100N1192800000E) leg A Schulz 30xi2009 (ex MHNG PAL-0905)

Paratypes 12 lt 21 (MHNG) same collecting data as holotype (exMHNG PAL-0905) 3 lt (1 dissected for genitalia [MCZ 100888] andmounted on one SEM stub [MCZ 100886] 2 in ethanol [MCZ100877ndash100878]) 3 (1 dissected for genitalia [MCZ 100889] 2 inethanol [MCZ 100879ndash100880]) same collecting data as holotype (exMHNGPAL-0905) 2lt (1mountedononeSEMstub [MCZ100882] 1mounted on two SEM stubs [MCZ 100884ndash100885]) PhilippinesPalawan El Nido Region Mt Singkukan primary forest 300ndash400alt (111300700N 1192805100E) leg A Schulz 26xi2009 (exMHNG PAL-0904)

Additional material studied 6 juveniles same collecting data as holotype(MHNG PAL-0905) 1 lt Philippines Palawan El Nido Region MtSingkukan primary forest 400ndash600 alt (111303800N 1192805500E)leg A Schulz 24xi2009 (MHNG PAL-0903) 6 lt 8 PhilippinesPalawan El Nido Region Mt Singkukan primary forest 300ndash400 alt(111300700N 1192805100E) leg A Schulz 26xi2009 (MHNG PAL-0904)

Diagnosis

Small petrobunidwith unarmedoculariumwithmesotergum freeof pigmentation Distinct from congeners in the armature of thefreeopisthosomal tergites andanal plate (setose tubercules) andofthe opisthosomal sternites (sternites 3ndash6 with single tubercle oneach side forming a line under each coxa IV sternite 7 with twolarge spines directly anteroventrally and sternite 8with an evenlydistributed belt of eight smaller spines) Femur IV of male with asingle tubercle basoventrally Penis narrow in the shapeof a spearblade with three pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100879] inparentheses) 130 (115) greatest width of prosoma 058 (056)greatest width of opisthosoma 079 (080) length-to-width ratio165 (144) (Figs 5 8) Body campaniform yellow (in alcoholdepending on incidence of light) almost entirely with a densemicrogranulate surface microstructure Eyes present on lowwell developed ocularium without median ocularial tubercleOcularium 012 (010) long 018 (016) wide removed fromanterior margin of carapace Anterior margin of carapace withtwo pairs of conical pegs above coxae of leg I Scutal grooves ofmesotergum indistinct free of transverse bands of pigmentationFree tergites with regular belts of setose tubercles (Fig 5)

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged withsetose tubercules on anterior margin Genital operculumsub-triangular Spiracles not concealed anterior to row oftubercules Opisthosomal sternites 3ndash6 each with belt of smallregular tubercles Opisthosomal sternite 7 with two large setosespines directly anteroventrally Opisthosomal sternite 8 withbelt of regular tubercles Two rows of tubercles alignedanteroposteriorly under outer limit of coxae IV Anal platearmed with tubercles (Fig 6)

Chelicerae (Fig 7) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassate

Table 3 Leg measurements of Petrobunus schwendingeri holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 013012 049009 028014 034011 051005 042007 217Leg II 017016 069010 029014 055010 058005 079007 307Leg III 015016 054013 028017 046013 052007 047006 242Leg IV 045045 075014 037020 071019 090009 054007 372

Table 4 Leg measurements of Petrobunus schwendingeri female paratype (ex MCZ DNA103572) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 012015 049012 027013 034010 044006 038007 204Leg II 013018 069011 031013 053010 054006 069006 289Leg III 013017 051012 028015 040012 047007 046006 225Leg IV 024023 061012 031017 050012 071008 052008 289

Molecular phylogeny of Laniatores Invertebrate Systematics 115

free of ornamentation with dorsal margin bearing severalsetae Distal article with delicate dentition free of ornamentation

Palpi (Fig 7) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setaePalpal femur with two proximal ventral spines in a row andtwo paired distal spines (one ventral one mesoventral) Palpalpatella with a single spine directed inward Palpal tibia with twopairs of spines and a small basal setose tubercle Palpal tarsuswith two pairs of spines Palpal claw nearly as long as palpaltarsus

Legs IndashIV (Fig 7) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge setose tubercle ventrally Femora IndashIV without basalpegs femur IV with one large tubercle ventrally Femur IIIarcuate in males and females free of tubercles Femur IV andpatella IV of male with irregular rows of mesalmesoventraltubercles Tibia IV of male with multiple irregular rows oflarge tubercles distally ventral tubercles small not bulbousMetatarsi IndashIV divided distally with distal portion lackingornamentation metatarsus IV of male with two rows ofmesalmesoventral tubercles Tarsus IV unornamented Femaletrochanter IV not enlarged leg IV free of tubercles Tarsal clawsIndashIV smooth unmodified Tarsal segmentation 3 5 5 6

Penis (Fig 8) narrow and slender in the shape of a spearblade Lateral margins gradually coalescing dorsally resultingin spoon shape in dorsal aspect Ventral surface with threepairs of setae lateral margins with four setae each Glans freein apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 8) composedof twoapical lobes eachbearingtwo dorsal setae one ventral seta and two apical setae Distalsurfaces of apical lobes smooth Bases of dorsal setae in contactBases of ventral setae set apart by a distance approximately equalto one-third the width of the ovipositor

a

b

c

050 mm

050 mm

050 mm

Fig 7 Petrobunus spinifer sp nov male holotype (a) Dorsal view (b)lateral view and (c) ventral view

a

b

200 microm

100 microm

Fig 8 Petrobunus spinifer sp nov male paratype (a) Ventral view and(b) dorsal view of anterior margin of carapace

116 Invertebrate Systematics P P Sharma and G Giribet

a

b

c

d

e

h

i

g

f

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

Fig 9 Petrobunus schwendingeri sp nov (a) Left chelicer ofmaleparatype (b) left palp ofmale paratype (c) left leg I ofmale paratype (d) left leg II ofmale paratype (e) right leg III ofmale paratype ( f ) right leg IV ofmale paratype (g) left legIV of female paratype (h) trochanter of right leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 117

Distribution

Known only from type locality and additional localities reportedhere

Etymology

The specific epithet an invariable noun in apposition refers to theenlarged belts of tubercles on the free tergites and opisthosomalsternites of this species Derived from Latin lsquospinarsquo meaninglsquospearrsquo or lsquodartrsquo and lsquoferrersquo meaning lsquoto carry or bearrsquo

Petrobunus torosus sp nov

(Figs 11ndash14 Tables 7 8)

Material examined

Holotype Male (MHNG) Philippines Palawan Puerto Princesa RegionSabang Underground National Park Daylight Hole and Lions Caveprimary forest 100ndash200 alt (100900600N1185301000E) legA Schulz6ndash8xii2009 (ex MHNG PAL-0907)

Paratypes 6 lt 13 (MHNG) same collecting data as holotype(ex MHNG PAL-0907) 3 lt (1 dissected for genitalia and mountedon three SEM stubs [MCZ 100894ndash100896] 2 in ethanol [MCZ100890ndash100891]) 3 (1 dissected for genitalia [MCZ 100902] andmounted on one SEM stub [MCZ 100897] 2 in ethanol [MCZ100892ndash100893]) same collecting data as holotype (ex MHNGPAL-0907) 1 lt (mounted on one SEM stub [MCZ100899]) and 3 (dissected for genitalia [MCZ 100901] and mounted on one SEM stub[MCZ 100898]) Philippines Palawan Puerto Princesa Region SabangUnderground National Park jungle trail (101105500N 1185405900E)leg A Schulz 4xii2009 (ex MHNG PAL-0906)

Additional material studied 6 juveniles same collecting data as holotype(MHNG PAL-0907) 12 lt 3 2 juveniles Philippines PalawanPuerto Princesa Region Sabang Underground National Park jungletrail (101105500N 1185405900E) leg A Schulz 4xii2009 (MHNGPAL-0906)

Diagnosis

Distinct from congeners in the well developed ocularium armedwith median tubercle Mesotergum free of pigmentation as inP spinifer but opisthosomal sternites without large spines(sternites 7ndash9 armed only with small low tubercles) Proximalregion of femora of all legs with single blunt peg Penis widenedin the base of the pars distalis stocky in the shapeof a spear bladewith three pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100892] inparentheses) 152 (150) greatest width of prosoma 070 (068)greatest width of opisthosoma 104 (108) length-to-width ratio

a

b

c d

050 mm

050 mm

20 microm

100 microm

Fig 10 Petrobunus spinifer sp nov (a) Female paratype dorsal view(b) female paratype ventral view (c) pars distalis of penis lateral view and(d) ovipositor dorsal view

Table 5 Leg measurements of Petrobunus spinifer holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011009 032008 022011 024008 034005 036005 159Leg II 011011 046008 018012 036009 040005 068005 219Leg III 014015 044012 024014 032013 043005 041004 198Leg IV 032038 050014 025017 050014 062008 028004 247

118 Invertebrate Systematics P P Sharma and G Giribet

146 (139) (Figs 11 14) Body campaniform yellow to darkorange (in alcohol depending on incidence of light) almostentirely with a dense microgranulate surface microstructureEyes present on low well developed ocularium with medianocularial tubercle Ocularium 011 (011) long 020 (021) wideremoved from anterior margin of carapace Anterior margin ofcarapace with two pairs of blunt pegs above coxae of leg I withouter pair of sub-rectangular andor bifid shape Scutal grooves ofmesotergum indistinct free of transverse bands of pigmentationFree tergites without large tubercles or spines (Fig 12)

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged with setosetubercles on anterior margin Genital operculum sub-triangularSpiracles not concealed anterior to row of tuberclesOpisthosomal sternites with irregular belts of roundedtubercles Anal plate unarmed (Fig 12)

Chelicerae (Fig 13) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassatefree of ornamentation with dorsal margin bearing several setaeDistal article with delicate dentition free of ornamentation

Palpi (Fig 13) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setae Palpalfemur with two proximal ventral spines in a row and two paireddistal spines (one ventral one mesoventral) Palpal patella with asingle spine directed inward Palpal tibiawith twopairs of spinesand a small basal setose tubercle Palpal tarsus with two pairs ofspines Palpal claw as long as palpal tarsus

Legs IndashIV (Fig 13) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge ventral tubercle and three smaller mesodorsal tuberclesFemora IndashIV with one basal peg on ventral surface with peg freeof granulation Femur III arcuate in males and females free oftubercles Femur IVandpatella IVofmalewith two irregular rowsof mesalmesoventral tubercles Tibia IV of male with multipleirregular rows of tubercles with ventral row enlarged and conicaldistally distal-most ventral tubercle composed of two fusedtubercles Metatarsi IndashIV divided distally with distal portionlacking ornamentation metatarsus IV of male with two rows ofmesalmesoventral tubercles Female trochanter IV not enlargedleg IV free of tubercles Tarsal claws IndashIV smooth unmodifiedTarsal segmentation 3 5 5 6

Penis (Fig 14) narrow in the shape of a spear blade widenednear base Lateral margins gradually coalescing dorsallyresulting in spoon shape in dorsal aspect Ventral surface with

Table 6 Leg measurements of Petrobunus spinifer female paratype (ex MHNG PAL-0905) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 033007 021010 024007 025005 029005 143Leg II 013011 037006 023010 034007 026005 051005 184Leg III 014014 029009 022013 029010 027005 035004 156Leg IV 017015 049008 025014 034010 045006 043004 213

a

b

c

050 mm

050 mm

050 mm

Fig 11 Petrobunus torosus sp nov male holotype (a) Dorsal view(b) lateral view and (c) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 119

threepairs of setae lateralmarginswith four setae eachGlans freein apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 14) composed of two apical lobes eachbearing two dorsal setae one ventral seta and two apicalsetae Distal surfaces of apical lobes smooth Bases of dorsalsetae in contact Bases of ventral setae set apart by a distanceapproximately equal to one-third the width of the ovipositor

Distribution

Known only from type locality and additional locality reportedhere

Etymology

The specific epithet refers to the stocky and robust appearanceof the fourth leg in the males of this species Derived from Latinlsquotorosusrsquo meaning lsquomuscularrsquo or lsquobulgingrsquo

Family TITHAEIDAE fam nov

Type genusTithaeusThorell 1891 by present designation andmonotypy

Type species Tithaeus laevigatus Thorell 1891 by original designation

Genera included Tithaeus Thorell 1891 new familial assignmentMetatithaeus Suzuki 1969 new familial assignment

Diagnosis

Medium-sized Grassatores with a low ocularium removed fromthe anterior margin of carapace that differ from Epedanidae inlacking a median spine In some species slight to large hump

situated anterior of ocularium Scutal region divided into fiveareas areas I and II not fused as opposed to EpedanidaeChelicerae typical basal segment not enlarged (as opposed toEpedanidae)Distinct fromPodoctidae in the lack of spines on legI and in the lack of a sexually dimorphic ocularium Tarsalformula 5 8+ 5 6 not reduced (as opposed to Sandokanidaeand Podoctidae) Distitarsi of legs I and II typically with twotarsalia distinguished from Petrobunidae in the trochanter of legIV not enlarged inmales Tarsi III and IVwith unmodified doubleclaws scopulae absent (as opposed to most Samooidea) Distalmargin of ventral plate of penis usually with deep cleft (mostTithaeus) or widening distally into setiferous and conicalstructure (Metatithaeus) glans with simple membranous lobecovering the stylus terminus of stylus either a bifurcate orslightly inflatable lobe absence of prominent parastylar lobes(distinguishing it from Petrobunidae) absence of a ring of setaesurrounding a capsula interna (found in Epedanidae) Ovipositorlobes typically with a pair of ventral and dorsal setae

Remarks

One of dozens of genera placed in the subfamily Phalangodinae(Phalangodidae) by Roewer (1912 1923 1949) Tithaeus wassubsequently extricated and transferred to Epedanidae by Kury(1993 2003 2006) on the basis of the male genitalia althoughthe placement was ambiguous given the absence of typicalepedanid morphology such as elongate and armed pedipalpian erect ocularial spine (absent in Dibuninae) the fusion of scutalareas I and II side-branches in the posterior claws and stoutdentition of the cheliceral fingers (Lian et al 2008) However

a

b

100 microm

100 microm

100 microm

100 microm

c

d

Fig 12 Petrobunus torosus sp novmale paratype (a)Dorsolateral view (b) dorsolateral viewof anteriormargin of carapace(c) ventrolateral view and (d) ventrolateral view of prosomal complex

120 Invertebrate Systematics P P Sharma and G Giribet

comparisons of the male genitalia of a phalangodid (Texella) anepedanid (Kilungius Saracinicinae) and Tithaeus suggested acloser relationship between Epedanidae and Tithaeus in spite ofmarked differences in the stylar lobe and the extent of the basalsac (Lian et al 2008)

Our phylogenetic analyses corroborate a closer relationshipbetween Epedanidae and Tithaeuswith respect to Phalangodidae(which is sister to the remaining Grassatores and thereforedistantly related to both lineages) but the clade Tithaeus+Metatithaeus neither nests within nor is sister to Epedanidae

a

b

c

d

e

h

i

g

f

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

Fig 13 Petrobunus torosus sp nov (a) Left chelicer of male paratype (b) left palp of male paratype (c) left leg I of maleparatype (d) right leg II of male paratype (e) left leg III of male paratype (f) left leg IV of male paratype (g) left leg IV offemale paratype (h) trochanter of left leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 121

in any of the topologies we examinedMoreover the cleft ventralplate forming two prongs in the male genitalia of many Tithaeusspecies in addition to the absence of a ring of setae surroundingthe capsula interna (typical of Epedanidae) suggest that Tithaeus

and related genera (eg Istithaeus Metatithaeus Tithaeommaetc) are not true epedanids but may be more closely related toeither (1) Podoctidae a hypothesis that is supported in someanalyses (bootstrap frequency in ML [BS] = 59 posteriorclade probability given by MrBayes [PP] = 097) or (2) theclade (Podoctidae + Sandokanidae) recovered by the BEASTtopology (posterior clade probability given by BEAST[PPBEAST] = 100)

The inclusion of Tithaeus-like Grassatores in Epedanidaerenders the latter para- or diphyletic and obscures a cleardiagnosis of epedanids as the morphology of Tithaeus (andMetatithaeus) does not accord with many epedanidsynapomorphies Moreover inclusion of Tithaeus andorMetatithaeus within a broader Podoctidae is also unjustifiedbecause this violates many of the synapomorphies ofPodoctidae such as (1) tuberclesspines in dorsal and ventralrows on leg I (2) tubercular bridges (3) a sexually dimorphicbasichelicerite and (4) a sexually dimorphic ocularium

Consequently we erect the family name Tithaeidaeseparating Tithaeus and Metatithaeus from EpedanidaeTithaeidae likely includes the monotypic Roewerian generaIstithaeus Kondosus Sterrhosoma and Tithaeomma but thestatus of these genera requires further investigation and will beaddressed in a forthcoming study

Distribution

Distributed throughout Sundaland the Thai-Malay PeninsulaSumatra Java and Borneo Also reported from northern Vietnamand southern China One doubtful record from West Timor(see Lian et al 2008)

Results

Phylogenetic analysis

Less sequence data are presently available for Briggsusflavescens (partial 28S and COI Derkarabetian et al 2010)with respect to the rest of the data matrix Consequently twoML analyses were conducted including and excluding Briggsusflavescens The ML analysis with all taxa resulted in a treetopology with lnL= ndash8372597 Repeating the analysis withoutBriggsus resulted in a tree topology with lnL= ndash8336108 Thetwo topologies are identical save for the internal relationships ofTravunioidea which includes Briggsidae (Fig 15) Inclusion ofBriggsidae recovers a diphyletic Cladonychiidae with Briggsussister to Holoscotolemon but these relationships are notsupported Exclusion of Briggsidae results in higher nodalsupport frequencies within Travunioidea and recovers a sisterrelationship of Sclerobunidae and the remaining Travunioidea(BS = 75) and a monophyletic Cladonychiidae + Travuniidae(BS = 77) sister to Trojanella Including Briggsus in theanalysis does not affect topology or nodal support in otherparts of the phylogeny Monophyly of Travunioidea isstrongly supported (BS = 100) in either case

Runs of MrBayes ver 312 reached stationarity in 2 000 000generations 2 500 000 generations (25) were hence discardedas burn-in The BI analysis with all taxa resulted in a topologylargely similar to theMLtree (Fig 16)Notable differences are therelative placements of the clade (Gonyleptoidea + Stygnopsidae)

a

b

c d

050 mm

050 mm

20 microm

20 microm

Fig 14 Petrobunus torosus sp nov (a) female paratype dorsal view(b) female paratype ventral view (c) pars distalis of penis lateral view and(d) ovipositor dorsal view

122 Invertebrate Systematics P P Sharma and G Giribet

and the South-east Asian group of families Some differencesexist with respect to supported nodes within superfamilies

Estimation of divergence times

The run of BEAST reached stationarity after 6 000 000generations 10 000 000 generations (20) were discarded asburn-in The tree topology recovered by BEAST (Fig 17) differsfromML andBI topologies in (1) the placement of Sandokanidaeand (2) the relationships between superfamilies Diversificationof Laniatores is dated at ~348Mya Diversification of majorlineages is estimated as follows (Travunioidea+Triaenonychidae)299Mya Grassatores 302Mya Assamiidae +Pyramidopsgroup 232Mya Gonyleptoidea + Stygnopsidae 246MyaGonyleptoidea 230Mya Samooidea + Zalmoxoidea 206Myaand a South-east Asian clade (including Sandokanidae)249Mya These results largely corroborate previous estimatesof divergence times (Giribet et al 2010) but confidence intervalsfor estimated ages are more precise A tree file of estimated agesand 95highest posterior density (HPD) intervals for all nodes isprovided as an Accessory Publication on the InvertebrateSystematics website

Whereas the basal topology of Grassatores is unstable andunsupported most familial and superfamilial relationshipsare consistently recovered across analyses A consensus oftopologies across all analyses is shown in Fig 18

Discussion

A molecular phylogeny of the armoured harvestmen has longproven elusive Laniatores comprises entire genera and familiesthat are endemic to particular provinces of the world In somecases higher taxonomic ranks do not even occur beyond specificislands (eg the New Zealand family SynthetonychiidaeForster 1954) Moreover Laniatores includes the majority ofall described Opiliones species (and over half of all describedfamilies) and new lineages continue to be discoveredConsequently previous efforts to assess Laniatores phylogenyhave been prone to undersampling numerous lineages such asAssamiidae Epedanidae and the superfamilies Samooidea and

Zalmoxoidea (eg Giribet et al 1999 2002 Shultz and Regier2001)

The present study with the inclusion of all families ofarmoured harvestmen described heretofore enables detailedinvestigation of internal relationships of Laniatores Ofprincipal interest are the phylogenetic placement of the twonew families of Laniatores erected herein and the systematicvalidity of defined superfamilies Many of the relationshipsrecovered in our analyses are consistent with traditionalhypotheses based on morphological studies but there are someunexpected results We discuss these in turn

Insidiatores

Within a monophyletic Laniatores recovered in all analyses(BS = 100 PP = 093) the constituent lineages of Insidiatoresform a paraphyletic grade with respect to Grassatores WhileTriaenonychoidea and Travunioidea do form a clade (albeit withlow nodal support) the New Zealand endemic familySynthetonychiidae is recovered as sister to all remainingLaniatores (BS = 78 PP = 100) consistent with the resultsof a recent study (Giribet et al 2010) However the inclusionof more data in fact lowers the nodal support for this sisterrelationship relative to the previous studyrsquos ML analysislikely due to the influence of missing data (in particular only~300 bp out of a targeted 3400 bp of 28S rRNA are presentlyavailable for Synthetonychia) Consequently we do not treat theplacement of Synthetonychiidae as definitive

In all analyses the southern hemisphere Triaenonychidaeform a strongly supported clade that diversified ~200Mya(BS = 100 PP = 100) Their distribution and the age of thiscladersquos diversification are similar to that of the temperateGondwanan cyphophthalmid family Pettalidae (estimated tohave diversified ~183ndash221Mya Giribet et al 2010)suggesting a parallel biogeographical process in these lineagesThe North American triaenonychid Fumontana deprehendorShear 1977 is sister to the southern hemisphere Triaenonychidaein all analyses consistent with previous classification (Giribetand Kury 2007 Thomas and Hedin 2008) but support fora monophyletic Triaenonychoidea is limited and sensitiveto analytical parameters (BS = 57 PP lt 050 PPBEAST = 066)

Table 7 Leg measurements of Petrobunus torosus holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011011 039005 026012 028008 036006 040007 180Leg II 014013 061008 029010 043007 042006 072005 261Leg III 015015 051010 019015 037011 045006 046005 213Leg IV 034035 059012 034017 054015 067007 052006 300

Table 8 Leg measurements of Petrobunus torosus female paratype (ex MHNG PAL-0907) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 041008 022011 028010 037005 035006 174Leg II 010009 052007 023008 033007 037006 069005 224Leg III 014016 046010 025024 036012 042007 041005 204Leg IV 018017 054011 029016 049012 058007 048006 256

Molecular phylogeny of Laniatores Invertebrate Systematics 123

Fig 15 Phylogenetic relationships of Laniatores inferred from maximum likelihood analysis of all molecular data (ln L= ndash8372597) Inset topology ofTravunioidea excluding Briggsidae (ln L= ndash8336108) Numbers on nodes indicate bootstrap resampling frequencies

124 Invertebrate Systematics P P Sharma and G Giribet

We recovered a monophyletic Travunioidea which includesBriggsidae in all analyses (BS = 100PP = 100) corroboratingthe superfamilial placement of briggsids Briggsidae isrecovered sister to either Trojanella (ML) or Holoscotolemon(BI) or part of a grade with both of these taxa (BEAST) butthese placements are not supported (BS lt 50 PPBEAST = 085and PP = 051 respectively) Missing data for Briggsidaedepresses nodal support in ML analyses within Travunioideaobscuring interfamilial relationships In the absence ofBriggsidae we recover a sister relationship betweenSclerobunidae (Zuma acuta Goodnight amp Goodnight 1942)and the remaining Travunioidea (BS = 75) and themonophyly of Travuniidae +Cladonychiidae (BS = 77)

A recent molecular dating of Travunioidea obtained muchyounger dates than estimated herein in spite of similar taxaand molecular loci In that study Derkarabetian et al (2010)investigated the evolution of troglobitism in Sclerobunidae(also referred to as the lsquoNorth American triaenonychidsrsquo)and used the cladonychiid fossil Protoholoscotolemon(38ndash54Mya Ubick and Dunlop 2005) to constrain theminimum age of Travunioidea in addition to calibration pointsderived from geological ages of strata These practicesaccord with the scope of the troglobitism study (thedivergences of interest were comparatively recent ndash Plioceneor younger) but we did not utilise Protoholoscotolemon in ourdating for two reasons (1) we do not obtain an unambiguouslymonophyletic Cladonychiidae in our analyses and (2) theDevonian and Carboniferous fossils we utilised as calibrationpoints are sufficiently old to obtain a result consistent with anEocene cladonychiid fossil The different calibration pointsimplemented in the respective studies therefore account forthe discrepancy in the dating In addition the morphologicalconservatism of Opiliones makes it doubtful that the age ofProtoholoscotolemon is the maximum age of the superfamily

Our sampling of Insidiatores lineages remains limited andbarring the inclusion of Briggsidae additions to taxonomicsampling largely concern Grassatores Consequently continuedsampling and systematic studies of Insidiatores (eg Mendesand Kury 2008 Thomas and Hedin 2008 Derkarabetian et al2010) are instrumental and imperative to addressing outstandingquestions of phylogenetic relationships and morphologicalevolution A phylogeny of Triaenonychidae is particularlywanting

Early diverging Grassatores Phalangodidaeand Sandokanidae

The recovery of a monophyletic Grassatores (supported inall analyses BS = 99 PP = 100) is consistent with severalmorphological synapomorphies uniting this diverse groupsuch as the presence of two tarsal claws on walking legs IIIand IV However the basal topology of Grassatores has longbeen contentious Previously two superfamilies of Grassatoreswere recognised Oncopodoidea (with the single familySandokanidae (formerly Oncopodidae)) and lsquoGonyleptoidearsquo(with the remaining families) (Martens 1976 1986 Martenset al 1981) This dichotomy was largely based upon theunique morphology of Sandokanidae ndash characters such as thescutum completum (fused opisthosomal tergites) reduced tarsal

articles and genitalic structures which are not found in theremaining Grassatores (Martens 1980 Giribet et al 2002Sharma and Giribet 2009) It was alternatively contended thatthese characters constituted autapomorphies of Sandokanidaewhich was nested within lsquoGonyleptoidearsquo itself (Kury 2003)

In all analyses we obtained an initial divergence betweenPhalangodidae and the remaining Grassatores (BS = 100PP = 096) refuting the traditional dichotomy betweenSandokanidae and lsquoGonyleptoidearsquo Therefore we hereindefine Gonyleptoidea as the taxon consisting of AgoristenidaeCosmetidae Cranaidae Gonyleptidae Manaosbiidae andStygnidae The split between Phalangodidae and the remainingGrassatores has been postulated to correspond to the rifting ofthe ancient supercontinents Laurasia and Gondwana as thedistribution of Phalangodidae was believed to be strictlyHolarctic (Giribet et al 2010) However the inclusion of theMadagascar genus Remyus previously placed in Zalmoxidae(Starega 1989) within a monophyletic Phalangodidae indicatesbroader distribution of phalangodids ndash complementing theTriaenonychidae-Fumontana case discussed above Moreoverthe origin of Phalangodidae is estimated to have occurred around302Mya (95 HPD 264ndash335Mya) greatly predating thebreakup of the supercontinents These results indicate thatPhalangodidae may be narrowly defined and we consequentlytransfer Remyus to Phalangodidae (new familial assignment)

The unusual family Sandokanidae has been postulated to besister toPodoctidae (SharmaandGiribet 2009Giribet et al 2010)or to form agradewith Phalangodidae (Kuryrsquos lsquoPhalangodoidearsquopartly) In the present study ML and BI topologies reconstructSandokanidae as sister to the remaining non-phalangodidGrassatores albeit with insignificant nodal support (BS = 21PP = 078) Curiously the topology obtained byBEAST recoversthe clade (Sandokanidae + Podoctidae) nested within a singleclade of South-east Asian families (PPBEAST = 085) Theseresults do not unambiguously favour one hypothesis overanother and the phylogenetic placement of Sandokanidae inthe Grassatores tree therefore remains debatable

Regardless of the inclusion of Sandokanidae within theSouth-east Asian group of families that the sister family to theremaining Grassatores is Phalangodidae not Sandokanidaeindicates that the peculiar morphology of sandokanids is theresult of multiple apomorphic reversals not the retention ofplesiomorphic characters (Martens and Schwendinger 1998)The large scutum and low tarsomere number found inSandokanidae also occur in Trogulidae and Dicranolasmatidae(suborder Dyspnoi) and all Cyphophthalmi and appear to haveevolved convergently This morphology may reflect adaptationsto a shared ecological niche all these groups inhabit leaf litterinclude no arboricolous species and are limited in vagility ndash

although these life history traits are also found in other groupsHowever this hypothesis has yet to be rigorously tested

Sandokanidae is presently one of few families of Grassatoresfor which a molecular phylogeny assessing intergenericrelationships is available (Sharma and Giribet 2009) andconsistent with earlier results the monophyly of Sandokanidaeis strongly supported (BS = 100 PP = 100) as is the initial splitbetweenMartensiellus and the remaining genera (an undescribedspecies was referred to as lsquogen sprsquo by Sharma and Giribet 2009but subsequent morphological investigation revealed this to be

Molecular phylogeny of Laniatores Invertebrate Systematics 125

Fig 16 Phylogenetic relationships of Laniatores inferred fromBayesian inference analysis of allmolecular data Numbers on nodes indicateposterior probabilities

126 Invertebrate Systematics P P Sharma and G Giribet

a miniature species of Martensiellus P J Schwendinger perscomm) (BS = 92 PP = 100) Intergeneric relationshipsof sandokanid genera are contingent upon analytical treatmentof molecular partitions (with additional sandokanid exemplarsdata not shown) reflecting conflict among datasets documentedby Sharma and Giribet (2009)

The other South-east Asian families

Epedanidae was postulated to be sister to Gonyleptoidea in acladistic analysis based on morphological characters (Kury1993) Subsequently Kury (2003) proposed that Epedanidaewas sister to the clade (Assamiidae (Stygnopsidae +Gonyleptoidea)) The single epedanid previously included in amolecular phylogeny was similarly unstable in placement eithernestingwithin Assamiidae or sister to the African lsquophalangodidsrsquo(Conomma and Maiorerus) in neither case with appreciablenodal support (Giribet et al 2010) Furthermore previousinclusion of several lineages (eg Tithaeus) within Epedanidaethat do not bear characters typical of true epedanids ndash sexuallydimorphic chelicera with heavy dentition elongate andspined pedipalpi male genitalia with setae surroundingthe capsula interna ndash has also made this family difficult todefine Consequently we included only Epedaninae (egPseudoepedanus Alloepedanus and Euepedanus) as exemplarsof true epedanids the systematic validity of the remaining threesubfamilies (and particularly the inclusion of Dibuninae) isbeyond the scope of this study and remains to be investigated

The monophyly of each of four South-east Asian families ndashEpedanidae (represented by epedanines) TithaeidaePetrobunidae and Podoctidae ndash is recovered with high nodalsupport (all BS = 100 PP = 100) These lineages are somehowrelated to each other and while they form a clade in bothML andBI analyses this result receives insignificant nodal support(PP = 077) In the topology recovered by BEAST the South-east Asian families form a clade that includes Sandokanidaea result consistent with the distribution of sandokanids albeitwithout support (PPBEAST = 085) Tithaeidae is probably closelyrelated to Podoctidae given the occurrence of a deeply cleftventral plate resulting in two flanking prongs in themale genitaliaof both families (Suzuki 1977 Lian et al 2008 Fig 19) Inaddition the clade (Podoctidae +Tithaeidae) is recovered withmoderate support in ML and BI analyses (BS = 59 PP = 097)In none of the analyses is Tithaeidae nested within or sister toEpedanidae sensu stricto

The morphology of Petrobunidae suggests some relationshipto previously described South-east Asian families oralternatively Phalangodidae but not inclusion within any ofthese (Fig 19) Molecular sequence data do not support anyspecificplacement ofPetrobunidae although it clusterswithotherSouth-east Asian families in all analyses and is recovered sisterto Epedanidae in two topologies (BI and BEAST)

Gonyleptoidea and Stygnopsidae

With over 2500 described species the superfamilyGonyleptoidea constitutes the most diverse and (arguably) themost charismatic lineage of Opiliones with most of this diversityconcentrated in Amazonia (some cosmetids occur as far north asthe mid-Atlantic states of the US) In a previous analysis

relationships of gonyleptoid families were unsupported andordid not accordwithmorphological studies (Giribet et al 2010) Inparticular the placement of the agoristenid exemplar Avimaalbiornata (Goodnight amp Goodnight 1947) ndash the putativesister family to the remaining Gonyleptoidea ndash within aparaphyletic Cranaidae was particularly suspect given thelimited availability of sequence data for Avima (complete 18SrRNA a300-bp fragmentof 28S rRNA andCOI) In addition thesister group of Gonyleptoidea was ambiguous and contingentupon analytical parameters

Redoubling sequencing efforts and addition of taxaparticularly in the case of Agoristenidae (currently sequencedfor 12S rRNA complete 18S rRNA a 2000-bp fragment of 28SrRNA COI H3 and EF-1a) improved the assessment ofgonyleptoid relationships A monophyletic Gonyleptoidea(BS = 58 PP = 066) is recovered sister to the familyStygnopsidae (BS = 57 PP = 100) Within Gonyleptoidea asplit between Agoristenidae and the remaining gonyleptoids isstrongly supported (BS = 100 PP = 100) followed by thedivergence of Stygnidae (BS = 71 PP = 099) Thisplacement of Agoristenidae is supported by morphologicalstudies (Pinto-da-Rocha and Kury 2007) although in aminority of tree topologies sampled in BI analysesAgoristenidae is sister to Stygnopsidae (hence lower nodalsupport for the monophyly of Gonyleptoidea in BI) Theplacement of Manaosbiidae is uncertain it is recoveredsister to either (Gonyleptidae +Cranaidae) (PP = 089) or toCosmetidae (PPBEAST = 092) but these results are notsupported Cranaidae is recovered as monophyletic (BS = 99PP = 100) and nested within a paraphyletic Gonyleptidae

The present sampling of Cosmetidae and Gonyleptidae doesnot do justice to the diversity of these lineages (~700 and 800described species respectively) A phylogenetic assessment ofall 16 subfamilies of Gonyleptidae alone constitutes the subjectof an arduous and exacting study Fortunately cladistic analysesof morphological characters continue to advance phylogeneticinvestigation of subfamilial lineages (eg BourguyiinaeYamaguti and Pinto-da-Rocha 2009 Goniosomatinae DaSilvaandGnaspini 2009HernandariinaeDaSilva andPinto-da-Rocha2010) Elucidating the phylogeny of Gonyleptoidea is one of themost exciting research topics in the study of Opiliones

The Afrotropical families

The third most diverse family of Laniatores Assamiidaeconstitutes the dominant opiliofauna of the African continent(excluding Madagascar) with some lineages occurring in SouthAsia the Indo-Malay Archipelago and Australia (Trionyxellinaeand Dampetrinae) Proposed to be related to EpedanidaeStygnopsidae andor Gonyleptoidea (Kury 2007) on the basisof genitalic structures assamiids were not recovered asmonophyletic in a previous study (paraphyly was induced byeither Epedanidae orAfricanBiantidae) and the placement of thesubfamily Trionyxellinae was particularly suspect (Giribet et al2010) Trionyxellinae was considered a separate family byMello-Leitatildeo (1949) though others considered it nested withinAssamiidae (eg Starega 1992) In our analyses the monophylyof Assamiidae is supported (BS = 79 PP = 100)lsquoTrionyxellinaersquo (Trionyxella and Mysorea both with a

Molecular phylogeny of Laniatores Invertebrate Systematics 127

Fig 17 Evolutionary time tree of Laniatores inferred fromBEASTanalysis of allmolecular data Coloured bars indicate 95highestposterior density (HPD) intervals for nodes of interest Numbers on nodes indicate posterior probabilities asterisks indicate posteriorprobability of 100

128 Invertebrate Systematics P P Sharma and G Giribet

pseudonychium on the third and fourth tarsi) is a diphyletic entitynested within the other Assamiidae (for the node renderingdiphyly BS = 100 PP = 100) disfavouring family status fortrionyxellines

The African lsquophalangodidsrsquo (sometimes called thelsquoPyramidops grouprsquo) were recognised as a new family byStarega (1992) but not formalised and included 13 genera(Conomma Pyramidops and related lineages) Consistentwith this hypothesis we recovered strong support for thePyramidops group (represented by Conomma and cfPyramidops) as a lineage separate from the true Phalangodidae(egBishopella and Scotolemon) recapitulating a previous result(Giribet et al 2010) The African lsquophalangodidsrsquowere recoveredas the sister lineage of Assamiidae although this relationshipis variably supported in our analyses (BS = 40 PP = 095PPBEAST = 100) A review and formal description of thePyramidops group as a new family lsquoPyramidopidaersquo ndash a namewidely available on the internet including GBIF but notformalised ndash is undertaken elsewhere (Sharma et al 2011)

While we have endeavoured to improve the sampling ofAssamiidae from South-east Asia the internal systematics ofthis family remain a high value target for phylogenetic researchHowever revision of assamiid systematics is inherently difficultfor two reasons (1) the family is peppered with questionablehierarchies and monotypic genera (~12 subfamilies and 250genera for less than 500 described species) and (2) occurs insome of the most inaccessible regions of the world namely sub-Saharan Africa

In all analyses the clade (Assamiidae + Pyramidopidae) issister to the clade (Zalmoxoidea + Samooidea) though this resultis only supported in one analysis (PP= 100) The divergence ofthese four lineages is estimated to have occurred 252Mya and isconsistent with diversification in West Tropical Gondwanaoccurring at least 140million years before the fragmentation ofthis terrane (~110Mya)

Zalmoxoidea

As currently defined the largely Neotropical superfamilyZalmoxoidea includes four families FissiphalliidaeGuasiniidae Icaleptidae and Zalmoxidae Guasiniidae hasnever before been included in a molecular phylogeny In thepresent study we sequenced a guasiniid for six genes and ouranalyses strongly support theplacement ofGuasiniidae as sister tothe samooid family Kimulidae (formerly Minuidae) (BS = 86PP = 098 PPBEAST = 099) and this clade in turn sister to anothersamooid family Escadabiidae (BS = 65 PP = 096PPBEAST = 100) The families Fissiphalliidae Icaleptidaeand Zalmoxidae in turn form a separate clade (BS = 100PP = 100 PPBEAST = 100) with strong support for the sisterrelationship of Zalmoxidae and Fissiphalliidae (BS = 99PP = 100 PPBEAST = 100) corroborating relationshipsproposed by morphological studies (Kury and Peacuterez G 2002Pinto-da-Rocha and Kury 2003b)

Previous analyses have suggested that Samooidea (discussedbelow) is a paraphyletic grade with respect to Zalmoxoidea(Giribet et al 2010) In the present analysis the cladeSamooidea + Zalmoxoidea is strongly supported (BS = 85PP = 100 PPBEAST = 100) as previously suggested by PeacuterezGonzaacutelez and Kury (2007) and by excluding Escadabiidae and

Kimulidae Samooidea is rendered a monophyletic entity albeitwith limited support (BS = 53 PP = 062 PPBEAST = 081) Thestrong support from molecular sequence data for the cladeincluding Escadabiidae Kimulidae and the four zalmoxoidfamilies (BS = 89 PP = 100 PPBEAST = 100) suggests thatthese may form a natural group

Re-examination of the morphology of these six families incomparisonwith true samooid lineages (Biantidae Samoidae andStygnommatidae) corroborates the exclusionofEscadabiidae andKimulidae from true Samooidea Escadabiidae and Kimulidae(1) lack the scopula characteristic of Samoidae and stenostygnineBiantidae (2) lack a sexually dimorphic metatarsus IIIcharacteristic of Samoidae Stygnommatidae and stenostygnineBiantidae and (3) lack a penial calyx characteristic of SamoidaeConsistent with placement within Zalmoxoidea EscadabiidaeandKimulidae (1) possess a small oculariumbearing the eyes thatis removed from the margin of the carapace (2) bear a wellmarked dorsal protuberance (bulla) on the proximal segmentof the chelicera that lacks armature and (3) possess sexuallydimorphic leg IV segments particularly the femur and tibiawhich may be variedly arcuate incrassate and spinedAdditionally Escadabiidae Fissiphalliidae and Zalmoxidae allpossess sexually dimorphic tegumental glandopeningson tibia IIwhereas Biantidae Samoidae and Stygnommatidae possessthese structures on metatarsus III (Willemart et al 2010)While data on tegumental gland openings are only availablefor a small handful of species these may constitute significantdiagnostic characters for species wherein sexual dimorphismdoes not manifest itself in the readily observable form ofenlarged and spiny segments

Given the results of our phylogenetic analyses maintainingSamooidea (as currently defined) renders it a paraphyletic gradewith respect to a diphyletic Zalmoxoidea (as currently defined)Consequently based on the aforementioned morphologicalcharacters and robust molecular phylogenetic signal wetransfer Escadabiidae and Kimulidae to Zalmoxoidea

Samooidea

A previous cladistic analysis based upon morphological datasuggested close relationship between six families ndash BiantidaeEscadabiidae Kimulidae Podoctidae Samoidae andStygnommatidae ndash thenceforth known as Samooidea (Kury1993) the only pantropical Laniatores superfamily HoweverPodoctidae does not have any obvious relationship to Samooideaand has subsequently been transferred (Kury 2007) in ouranalyses Podoctidae is sister to Tithaeidae or Sandokanidaeie distantly related to all samooid families Moreover ouranalyses strongly favour the exclusion of Escadabiidae andKimulidae from Samooidea

The remaining three families ndash Biantidae Samoidae andStygnommatidae ndash are distributed in the Neotropics and partsof Africa with a handful of suspect lineages in South-east AsiaRe-examination and reassignment of many Samoidae genera(eg the Indonesian lsquosamoidrsquo Waigeucola palpalis PeacuterezGonzaacutelez 2011) suggest that the range of Samoidae does notinclude South-east Asia Peacuterez Gonzaacutelez and Kury (2007) alsoobserved that the lsquosamoidsrsquo of Africa Madagascar and theSeychelles may not be true Samoidae either Similarlyinclusion of the genus Stygnomimus an Indonesian lineage

Molecular phylogeny of Laniatores Invertebrate Systematics 129

within Stygnommatidae is highly dubious as the twoIndonesian lsquostygnommatidsrsquo are either highly autapomorphic(Stygnomimus conopygus (Roewer 1927)) or described on the

basis of a generic female that is not readily distinguishable fromfemales of other species (Stygnomimus malayensis (Suzuki1970))

Fig 18 Strict consensus of tree topologies obtained by all phylogenetic analyses

130 Invertebrate Systematics P P Sharma and G Giribet

Previous efforts to assess the systematic validity of Samooideaby means of molecular sequence data were limited insofar asonly two Samoidae three Biantidae (all Metabiantes) and twoStygnommatidae were sampled (Giribet et al 2010) Thesampling of Samoidae was especially problematic only asingle Neotropical adult (Pellobunus) and one African juvenilesamoid (lsquoSamoidae gen sprsquo) were included The designation ofthe latter is suspect as juveniles of Samoidae are oftenindistinguishable from the juveniles of other lineages becausemany diagnostic secondary sexual characters in Grassatores(eg spines and incrassate appendages) are not acquired untilafter several postembryonic stages (Townsend et al 2009)

In the present study though the type genus of Samoidae(Samoa from Samoa) was not available we sequenced theclosely related genus Badessa (from Fiji collected byP P S) as well as additional Biantidae and StygnommatidaeOur analyses recovered a monophyletic Samooidea (excludingEscadabiidae and Kimulidae BS = 53 PP = 062) withSamoidae sensu stricto (Pellobunus +Badessa BS = 100PP = 100) nested within a paraphyletic Stygnommatidae aplacement that is supported (BS = 87 PP = 100) Bycontrast the African lsquosamoidrsquo is sister to the AfricanBiantidae a relationship that is also well supported(BS = 100 PP = 100) These relationships suggest a basal

Fig 19 Cladogram of male genitalic evolution in South-east Asian families superimposed upon a schematised molecular phylogeny based on ML and BIanalyses of all molecular data Exemplars (a) Pseudoepedanus doiensis Suzuki 1969 (redrawn from Suzuki 1969) dorsal view (b) Pseudoepedanus doiensisSuzuki 1969 (redrawn from Suzuki 1969) ventral view (c) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) ventral view(d) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) dorsal view (e) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki1976) dorsal view (f) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki 1976) ventral view (g) Petrobunus torosus lateral view (h) ZalmoxidagibberaSuzuki 1969 dorsal view (i)Zalmoxida sp (MCZDNA102677) dorsolateral view (j)Metatithaeus rubidusSuzuki 1969 (redrawn fromSuzuki 1969)ventral view (k)Tithaeus kokutnusSuzuki 1985 (redrawn fromSuzuki 1985) ventral view (l)Tithaeus similisSuzuki 1985 (redrawn fromSuzuki 1985) ventralview (m)DongmoaoshimensisSuzuki 1964 (redrawn fromSuzuki 1964) ventral view (n)Bonea longipalpisSuzuki 1977 (redrawn fromSuzuki 1977) ventralview (o) Santobius annulipes Soslashrensen 1886 (redrawn from Kury and Machado 2009) ventral view (p) Lomanius longipalpus mindanaoensis Suzuki 1977(redrawn from Suzuki 1977) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 131

dichotomy within Samooidea that corresponds to one groupof Neotropical and Pacific lineages and a second group ofAfrican lineages However as we were unable to samplestenostygnine (Neotropical) and Indo-Pacific Biantidae aswell as numerous monotypic genera dubiously placed inSamoidae biogeographical extrapolations for Samooidea aretenuous (discussed below)

The internal relationships of Samooidea suggest that themorphology of Samoidae may have evolved convergently Asthe African samoid is a juvenile (the same specimen previouslysequenced by Giribet et al 2010 now sequenced for additional28S rRNA and other genes) we cannot rule out the possibility ofa monophyletic Samoidae that includes African species (thespecimen in question could be a juvenile biantid) In any casethe paraphyly of Stygnommatidae and putative polyphyly ofSamoidae strongly advocate systematic revision of samooidfamilies as currently defined corroborating hypotheses of non-monophyly based on morphology (Peacuterez Gonzaacutelez 2007 PeacuterezGonzaacutelez and Kury 2007) Our sampling of these families isinsufficient to advocate specific taxonomic action but an ongoing

study of samooidean systematics will shed more light on thevalidity of constituent families (A Peacuterez Gonzaacutelez work inprogress)

Biogeography of Zalmoxoidea and Samooidea

While most superfamilies of Grassatores are restricted to aspecific part of the tropics (eg Neotropics South-east Asia)two are distributed in multiple biogeographical provincesSamooidea occurs in the Neotropics and Afrotropics withquestionable records from South-east Asia Zalmoxoidea isconcentrated in the Neotropics with the exception of oneIndo-Pacific lineage of Zalmoxidae (represented here byZalmoxis sp) The ages and distributions of Samooidea andZalmoxoidea suggest that their biogeography was influencedby the fragmentation of West Tropical Gondwana ndash causingthe former to diverge basally throughout West TropicalGondwanan terranes and the latter to become isolated to theNeotropics (with possible subsequent dispersal)

Fig 20 Ancestral range reconstructions for Samooidea +Zalmoxoidea inferred by Lagrange using stratified models corresponding to two vicariant events(indicated by dotted lines) Coloured squares at terminals indicate ranges occupied by sampled species Coloured squares on nodes indicate ranges reconstructedfor hypothetical ancestors Numbers on nodes indicate relative probability of ranges reconstructed

Fig 21 Best hypothesis of Laniatores relationships based on all available evidence Bracketed nodes indicate non-monophyletic entities Dashed line indicatesambiguity in the placement of Sandokanidae (alternatively placed as shown or as sister to Podoctidae) Exemplars of Laniatores diversity are Synthetonychiaoliveae (Synthetonychiidae) Equitius doriae (Triaenonychidae) Hadziana clavigera (Travuniidae) Erebomaster flavescens flavescens (Cladonychiidae)Scotolemon lespesi (Phalangodidae) Palaeoncopus gunung (Sandokanidae) Santobius sp (Podoctidae) Tithaeus sp (Tithaeidae) Petrobunus spinifer(Petrobunidae) Alloepedanus sp (Epedanidae) Hoplobunus sp (Stygnopsidae) Torreana spinata (Agoristenidae) Stygnoplus clavotibialis (Stygnidae)Metalibitia paraguayensis (Cosmetidae)Acutisoma longipes (Gonyleptidae)Conommaoedipus (Pyramidopsgroup)Mysorea thaiensis (Assamiidae)Lacurbssp (Biantidae) Stygnomma sp (Stygnommatidae) Badessa sp (Samoidae) Guasinia sp (Guasiniidae) Icaleptes sp (Icaleptidae) Fissiphallius chicoi(Fissiphalliidae) Zalmoxis sp (Zalmoxidae) Kimula goodnightiorum (Kimulidae)

132 Invertebrate Systematics P P Sharma and G Giribet

Molecular phylogeny of Laniatores Invertebrate Systematics 133

To test this hypothesis we conducted likelihood analysisof range evolution using the program Lagrange (Ree et al2005 Ree and Smith 2008) for the clade (Zalmoxoidea +Samooidea) The stratified analysis resulted in a globalmaximum likelihood of ndashlnL= 1556 outperforming anunconstrained analysis that did not include any dispersalconstraints (ndashlnL= 1676) Likelihood analysis of rangeoptimisation (Fig 20) indicates that the ancestral range ofSamooidea includes both the Afrotropics and the Neotropics(relative probability pr = 1000) but a subsequent split occursbetween an African lineage (pr = 1000) and a NeotropicalIndo-Pacific lineage with a Neotropical ancestral range (pr = 0986)Samoidea of the Indo-Pacific occur on young oceanic islands(eg Fiji Samoa) indicating recent transoceanic dispersal fromthe Neotropics

Ancestral range reconstructions for Samooidea are allconsistent with estimated divergence times for these clades(diversification of Samooidea predates the rifting of WestAfrica from northern South America) favouring an underlyingvicariant process for the basal topology with subsequent recentdispersal events However these results are contingent upon thepresent sampling which does not include all samooid lineages(eg stenostygnine Biantidae) but basal range reconstructionsare likely unaffected (eg Stenostygninae is exclusivelyNeotropical)

In contrast the ancestor of Zalmoxoidea is reconstructedas singularly Neotropical (pr = 0996) This is consistent withisolation of a zalmoxoid ancestor to Amazonia which thenradiated ~191Mya Subsequent ancestral ranges are alsoreconstructed as Neotropical with high relative probabilityHowever the ancestral range of the clade (Icaleptidae +Fissiphalliidae + Zalmoxidae) is ambiguously reconstructedas either Neotropical (pr = 0935) or Neotropical + Indo-Pacific(pr = 0064) as is the split between Fissiphalliidae andZalmoxidae (Neotropical pr = 0856 Neotropical + Indo-Pacific pr = 0141)

These results suggest that the Indo-Pacific lineage ofZalmoxidae which split from Neotropical Zalmoxidae ~83Myais likely the result of long-distance dispersal from the NeotropicsHowever due to the persistence of transantarctic connectionsbetween the Australian plate and temperate South America untilthe Tertiary a competing vicariant scenario cannot be ruled outwithout densely sampling zalmoxid diversity The biogeographyof Zalmoxidae is presently being explored in greater detail in aseparate study (P P Sharma unpubl data)

Finally the ancestral range of (Samooidea + Zalmoxoidea)includes both Africa and the Neotropics (pr = 0957) consistentwith a tropical West Gondwanan ancestor This resultlends circumstantial evidence to a sister relationship of theAfrotropical families (Assamiidae + Pyramidopidae) and theclade (Samooidea + Zalmoxoidea) recovered in all analyses

The diversification of Grassatores

While numerous interfamilial relationships are supported inthis study particularly among gonyleptoid and zalmoxoidfamilies some relationships between superfamilies ofGrassatores are not supported and are contingent upon

analytical treatments namely the deployment of substitutionmodels and data partitioning (Fig 21) The cause of thisinstability could be related to insufficient data particularly inthe EF-1a partition (the length of an intron which can exceed400 bp in some taxa makes this gene particularly difficult toamplify) However examination of clade divergence timessuggests that rapid diversification of Grassatores lineagescould in part augment phylogenetic uncertainty in basal partsof the topology

The split between Phalangodidae and the remainingGrassatores is estimated to have occurred ~302Mya but aseries of divergences resulted in the origin of all superfamiliallineages between 232 and 271Mya Relative to the estimatedage of Laniatores (348Mya) this 39-million-year period isremarkably narrow and inherently problematic as the amountof phylogenetic signal for a given stem subtending a node isdirectly proportional to the amount of time that the stem inquestion spans (Lanyon 1988 Rokas and Carroll 2006) Thesmall internal edge lengths of the stems corresponding to basaldivergences of non-phalangodid Grassatores (Figs 15 16)combined with the ancient age of lineages derived from thesedivergences result in relationships that are difficult to estimatewithout a large amount of sequence data andor the inclusion ofdata that are less afflicted by homoplasy (because longer edgelengths imply more indel and substitution events on edges)(Whitfield and Lockhart 2007)

We additionally observe that the origins of most Grassatoressuperfamilies occur in the wake of the end-Permian massextinction (~254Mya) Rapid radiation in the wake of a massextinction has occurred in multiple metazoan lineagesthe putative result of relaxed selection and opening ofpreviously occupied ecological niche space (Labandeira andSepkoski 1993 Sahney and Benton 2008) The rapiddiversification of early Grassatores lineages could be anexample of this phenomenon but this hypothesis is difficult totest in the absence of Mesozoic Grassatores fossils (reviewed byDunlop 2007)

Finally we observe that contrary to traditional hierarchiesproposed for Laniatores many of the clades recovered in ouranalyses correspond to geographical regions particularly in thecase of Grassatores For example the southern hemispheretriaenonychids are restricted to temperate Gondwananlandmasses Gonyleptoidea and their sister group Stygnopsidaeform a Neotropical (AmazonianMesoamericanAntillean) cladethat excludes Assamiidae which has been hypothesised to be amember of a broader Gonyleptoidea (Kury and Cokendolpher2000 Mendes and Kury 2007) In our analyses Assamiidae isin fact a member of a largely Afrotropical clade together withthe Pyramidopidae South-east Asian families usually form oneclade (at most two) albeit with limited support Samooideafamilies are divided into two clusters African and NeotropicalWith one exception (described above) Zalmoxoidea is restrictedto the Neotropics The ages that we estimate for Laniatoresradiations are consistent with ancient diversification beforethe fragmentation of Pangaea An ancient diversification inconjunction with the climatic stability of the tropics may in partexplain the comparatively greater diversity of the armouredharvestmen with respect to the other Opiliones suborders

134 Invertebrate Systematics P P Sharma and G Giribet

Acknowledgements

Weare indebted toPeter J Schwendingerwho collected andprovidedmost ofthe material for study from South-east Asia Some Thai and most of theNeotropical Laniatores were obtained from the TIGER (Thailand InventoryGroup for Entomological Research) and LLAMA (Leaf Litter Arthropods ofMeso-America) projects toC Lienhard and J Longino respectivelyMaterialfrom Madagascar was generously contributed by Charles Griswold and theCalifornia Academy of Sciences Jesse Czekanski-Moir in conjunction withthe Belau NationalMuseum contributed elusive specimens from Palau AbelPeacuterezGonzaacutelez identifiedmanyNeotropical species included in the study andcontributed specimens fromCubaRicardoPinto-da-Rocha identified someofthe live photographed animals from the Neotropics Discussions with RonaldMClouseAbelPeacuterezGonzaacutelezAdrianoBKury andCarlosEPrieto refinedmanyof the ideas presentedhereTwoanonymous reviewers and the associateeditor provided comments that helped to improve an earlier version ofthis manuscript Laura Leibensperger sorted and accessioned TIGER andLLAMA material as well as MCZ type material Adam Graham and theCenter forNanoscaleStudies atHarvardUniversityprovided support forSEMwork Collecting efforts in New Caledonia were greatly facilitated by theguidance of Herveacute Jourdan (Institut de rechercheacute pour de developpementNoumea) and his teammembers Collecting efforts in Fiji weremade possibleby Marika Tuiwawa (University of the South Pacific Suva) and his teammembers Hilda Waqa and Tokasaya lsquoToxrsquo Cakacaka we are especiallygrateful to Tox for his good company during fieldwork and to his familyfor graciously enabling a visit toOvalau SuzieYee Shawprovided invaluablelogistical support in Fiji and her sons Colin and Joshua Yee Shaw assistedwith sorting Fijian material Fieldwork in Indonesia and West Africa wassupported by two MCZ Putnam Expedition Grants awarded to RonaldM Clouse and G G (2006) and to G G (2009) respectively Fieldworkin New Caledonia was supported by the Goelet award the Kalathia FamilyTrust and the Explorers Club awarded to P P S in 2006 Fieldwork in Fijiand in Palauwas supported by twoMCZPutnamExpeditionGrants awardedto P P S (2008) and to Ronald M Clouse and P P S (2010) respectivelyP P S was supported by a Faculty of Arts and Sciences Graduate Fellowshipfrom Harvard University

References

Castresana J (2000) Selectionof conservedblocks frommultiple alignmentsfor their use in phylogenetic analysis Molecular Biology and Evolution17 540ndash552

Colgan D J McLauchlan A Wislon G D F Livingston S MacaranasJ Edgecombe G D Cassis G and Gray M R (1998) Molecularphylogenetics of the Arthropoda relationships based on histone H3and U2 snRNA DNA sequences Australian Journal of Zoology 46419ndash437 doi101071ZO98048

DaSilva M B and Gnaspini P (2009) A systematic revision ofGoniosomatinae (Arachnida Opiliones Gonyleptidae) with a cladisticanalysis and biogeographical notes Invertebrate Systematics 23530ndash624 doi101071IS09022

DaSilva M B and Pinto-da-Rocha R (2010) Systematic review andcladistic analysis of the Hernandariinae (Opiliones Gonyleptidae)Zoologia 27 577ndash642

Derkarabetian S Steinmann D B and Hedin M (2010) Repeatedand time-correlated morphological convergence in cave-dwellingharvestmen (Opiliones Laniatores) from montane western NorthAmerica PLoS ONE 5 e10388 doi101371journalpone0010388

Drummond A J and Rambaut A (2007) BEAST Bayesian evolutionaryanalysis by sampling trees BMC Evolutionary Biology 7 214doi1011861471-2148-7-214

Drummond A J Ho S Y W Phillips M J and Rambaut A (2006)Relaxed phylogenetics and dating with confidence PLoS Biology 4 e88doi101371journalpbio0040088

Dunlop J A (2007) Paleontology In lsquoHarvestmen The Biology ofOpilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 247ndash265 (Harvard University Press Cambridge MA USA)

Dunlop J A and Anderson L I (2005) A fossil harvestman (ArachnidaOpiliones) from theMississippian of East Kirkton Scotland The Journalof Arachnology 33 482ndash489 doi10163604-791

Dunlop JAAndersonL IKerpH andHassH (2003)Preservedorgansof Devonian harvestmen Nature 425 916 doi101038425916a

Dunlop J A Anderson L I Kerp H and Hass H (2004) A harvestman(Arachnida Opiliones) from the Early Devonian Rhynie chertsAberdeenshire Scotland Transactions of the Royal Society ofEdinburgh Earth Sciences 94 341ndash354

Edgar R C (2004) MUSCLE multiple sequence alignment with highaccuracy and high throughput Nucleic Acids Research 32 1792ndash1797doi101093nargkh340

Edgecombe G D and Giribet G (2006) A century laterndash a total evidencere-evaluation of scutigeromorph centipedes (Myriapoda Chilopoda)Invertebrate Systematics 20 503ndash525 doi101071IS05044

Edgecombe G D Giribet G and Wheeler W C (2002) Phylogeny ofHenicopidae (Chilopoda Lithobiomorpha) a combined analysis ofmorphology and five molecular loci Systematic Entomology 2731ndash64 doi101046j0307-6970200100163x

FolmerOBlackMHoehWLutzR andVrijenhoekRC (1994)DNAprimers for amplification ofmitochondrial cytochrome c oxidase subunit Ifrom diverse metazoan invertebrates Molecular Marine Biology andBiotechnology 3 294ndash299

Forster R R (1954) The New Zealand harvestmen (sub-order Laniatores)Canterbury Museum Bulletin 2 1ndash329

Giribet G and Kury A B (2007) Phylogeny and biogeography InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 62ndash87 (Harvard University PressCambridge MA USA)

Giribet G Carranza S Baguntildeagrave J Riutort M and Ribera C (1996) Firstmolecular evidence for the existence of a Tardigrada +Arthropoda cladeMolecular Biology and Evolution 13 76ndash84

Giribet G Rambla M Carranza S Baguntildeagrave J Riutort M and Ribera C(1999) Phylogeny of the arachnid order Opiliones (Arthropoda)inferred from a combined approach of complete 18S and partial 28Sribosomal DNA sequences and morphology Molecular Phylogeneticsand Evolution 11 296ndash307 doi101006mpev19980583

Giribet G Edgecombe G D Wheeler W C and Babbitt C (2002)Phylogeny and systematic position of Opiliones a combined analysis ofchelicerate relationships using morphological and molecular dataCladistics 18 5ndash70

Giribet G Vogt L PeacuterezGonzaacutelez A Sharma P andKury A B (2010)A multilocus approach to harvestman (Arachnida Opiliones) phylogenywith emphasis on biogeography and the systematics of LaniatoresCladistics 26 408ndash437

Hara M R Gnaspini P and Machado G (2003) Male egg guardingbehavior in the Neotropical harvestman Ampheres leucopheus (Mello-Leitatildeo 1922) (Opiliones Gonyleptidae) The Journal of Arachnology 31441ndash444 doi101636S02-32

Hedin M Derkarabetian S McCormack M and Richart C (2010) Thephylogenetic utility of the nuclear protein-encoding gene EF-1a forresolving recent divergences in Opiliones emphasizing intronevolution The Journal of Arachnology 38 9ndash20 doi101636HA09-491

Huelsenbeck J P and Ronquist F (2005) Bayesian analyses of molecularevolution using MrBayes In lsquoStatistical Methods in MolecularEvolutionrsquo (Ed R Nielsen) (Springer New York)

HunterRK ProundDNBurns JA Tibbetts JA andTownsendVR(2007) Parental care in the Neotropical harvestman Phareicranauscalcariferus (Opiliones Cranaidae) The Journal of Arachnology 35199ndash201 doi101636ST06-181

Molecular phylogeny of Laniatores Invertebrate Systematics 135

Kocher T D Thoma W K Meyer A Edwards S V Paumlaumlbo SVillablanca F X and Wilson A C (1989) Dynamics ofmitochondrial DNA evolution in animals amplification andsequencing with conserved primers Proceedings of the NationalAcademy of Sciences of the United States of America 86 6196ndash6200doi101073pnas86166196

Kury A B (1993) Anaacutelise filogeneacutetica de Gonyleptoidea (ArachnidaOpiliones Laniatores) PhD Thesis Universidade de Satildeo Paulo SatildeoPaulo Brazil

Kury A B (2003) Annotated catalogue of the Laniatores of the NewWorld (Arachnida Opiliones) Revista Ibeacuterica de AracnologiacuteaVolumen Especial Monograacutefico 1 1ndash337

Kury A B (2006) Checklist of valid genera of Opiliones of theWorld Museu NacionalUFRJ Available from httpwwwmuseunacionalufrjbrmndiAracnologiachecklaniatorhtm [Accessed1 February 2011]

Kury A B (2007) Podoctidae Roewer 1912 In lsquoHarvestmen The Biologyof Opilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 221ndash224 (Harvard University Press Cambridge MA USA)

Kury A B and Cokendolpher J C (2000) Opiliones In lsquoBiodiversidadTaxonomiacutea y Biogeografiacutea de Artoacutepodos de Meacutexico Hacia una Sintesisde su Conocimientorsquo vol 2 (Eds J E Llorente E Gonzaacutelez andN Papavero) pp 137ndash157 (Universidad Nacional Autoacutenoma deMexico Meacutexico DF Mexico)

Kury A B and Machado G (2009) Notes on Santobius from Vanuatu andFiji and the status of the eastern Melanesian Ibalonius (ArachnidaOpiliones Podoctidae) Zoological Studies 48 524ndash538

Kury A B and Peacuterez G A (2002) A new family of Laniatores fromnorthwestern South America (Arachnida Opiliones) Revista Ibeacuterica deAracnologiacutea 6 3ndash11

Labandeira C C and Sepkoski J J (1993) Insect diversity in the fossilrecord Science 261 310ndash315 doi101126science11536548

Lanyon S M (1988) The stochastic mode of molecular evolutionwhat consequences for systematic investigations The Auk 105565ndash573

Lian W-G Zhu M-S and Kury A B (2008) A new species of the genusTithaeus from China (Arachnida Laniatores Epedanidae) Zootaxa1841 53ndash60

Machado G Requena G S Buzatto B A Osses F and Rossetto L M(2004) Five new cases of paternal care in harvestmen (ArachnidaOpiliones) implications for the evolution of male guarding in theNeotropical family Gonyleptidae Sociobiology 44 577ndash598

Martens J (1976) Genitalmorphologie System und Phylogenie derWeberknechte (Arachnida Opiliones) Entomologica GermanicaZeitschrift fuumlr das Gesamtgebiet der Wissenschaftlichen Entomologie3 51ndash68

Martens J (1980) Versuch eines phylogenetischen Systems der OpilionesIn lsquoProceedings 8th International Congress of Arachnology ViennaVerhandlungenrsquo (Ed J Gruber) pp 355ndash360 (Vienna Austria)

Martens J (1986) Die Grossgliederung der Opiliones und die Evolutionder Ordnung (Arachnida) Actas del X Congreso Internacional deAracnologiacutea Jaca 1 289ndash310

Martens J (1993) Further cases of paternal care in Opiliones (Arachnida)Tropical Zoology 6 97ndash107

Martens J and Schwendinger P S (1998) A taxonomic revision ofthe family Oncopodidae I New genera and new species of GnomulusThorell (Opiliones Laniatores) Revue Suisse de Zoologie 105 499ndash555

Martens J Hoheisel U and Goumltze M (1981) Vergleichende Anatomieder Legeroumlhren der Opiliones als Beitrag zur Phylogenie der Ordnung(Arachnida) Zoologische Jahrbucher Abteilung fur Anatomie undOntogenie der Tiere 105 13ndash76

Mello-Leitatildeo C F (1949) Famiacutelias subfamiacutelia espeacutecies e gecircneros novos deopiliotildees e notas de sinoniacutemia Boletim do Museu Nacional Nova SeacuterieZoologia Rio de Janeiro 94 1ndash33

Mendes A C and Kury A B (2007) Stygnopsidae Soslashrensen 1932 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 232ndash234 (Harvard University PressCambridge MA USA)

Mendes A C and Kury A B (2008) Intercontinental Triaenonychidae ndashthe case of Ceratomontia (Opiliones Insidiatores) The Journal ofArachnology 36 273ndash279 doi101636CH07-931

Murphree C S (1988) Morphology of the dorsal integument of tenopilionid species (Arachnida Opiliones) The Journal of Arachnology16 237ndash252

Park J K andOacuteFoighilD (2000) Sphaeriid and corbiculid clams representseparate heterodont bivalve radiations into freshwater environmentsMolecular Phylogenetics and Evolution 14 75ndash88 doi101006mpev19990691

Peacuterez Gonzaacutelez A (2006) lsquoRevisatildeo Sistemaacutetica e Anaacutelise Filogeneacutetica deStygnommatidae (Arachnida Opiliones Laniatores)rsquo (Museu NacionalUniversidade Federal de Rio de Janeiro Rio de Janeiro Brazil)

Peacuterez Gonzaacutelez A (2007) Stygnommatidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 229ndash232 (Harvard University PressCambridge MA USA)

Peacuterez Gonzaacutelez A (2011) New familial assignment for two harvestmanspecies of the infraorder Grassatores (Arachnida Opiliones Laniatores)Zootaxa 2757 24ndash28

Peacuterez Gonzaacutelez A and Kury A B (2007) Samoidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 224ndash226 (Harvard University PressCambridge MA USA)

Pineau P Henry M Suspegravene R Marchio A Dettai A Debruyne RPetit T Leacutecu A Moisson P Dejean A Wain-Hobson S andVartanian J-P (2005) A universal primer set for PCR amplificationof nuclear histone H4 genes from all animal species Molecular Biologyand Evolution 22 582ndash588 doi101093molbevmsi053

Pinto-da-Rocha R (1997) Systematic review of the Neotropical familyStygnidae (Opiliones Laniatores Gonyleptoidea) Arquivos deZoologia 33 163ndash342

Pinto-da-Rocha R and Kury A B (2003a) Phylogenetic analysis ofSantinezia with description of five new species (Opiliones LaniatoresCranaidae) The Journal of Arachnology 31 173ndash208 doi1016360161-8202(2003)031[0173PAOSWD]20CO2

Pinto-da-Rocha R and Kury A B (2003b) Third species of Guasiniidae(Opiliones Laniatores) with comments on familial relationships TheJournal of Arachnology 31 394ndash399 doi101636H02-59

Pinto-da-Rocha R and Kury A B (2007) Agoristenidae Silhavy 1973 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 171ndash173 (Harvard University PressCambridge MA USA)

Posada D (2005) Modeltest 37 Program and documentation available athttpdarwinuvigoes [Accessed 28 May 2011]

Posada D and Buckley T (2004) Model selection and model averaging inphylogenetics advantages of Akaike information criterion and Bayesianapproaches over likelihood ratio tests Systematic Biology 53 793ndash808doi10108010635150490522304

Posada D and Crandall K A (1998) Modeltest testing the model ofDNA substitution Bioinformatics (Oxford England) 14 817ndash818doi101093bioinformatics149817

Prendini L Weygoldt P and Wheeler W C (2005) Systematics of theDamon variegates group of African whip spiders (ChelicerataAmblypygi) evidence from behaviour morphology and DNAOrganisms Diversity amp Evolution 5 203ndash236 doi101016jode200412004

Rambaut A E (1996) Se-Al sequence alignment editor University ofOxford UK Program and documentation available at httptreebioedacuksoftwarefigtree [Accessed 21 December 2009]

136 Invertebrate Systematics P P Sharma and G Giribet

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 8: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

a

100 microm

100 microm

100 microm

200 microm

100 microm

100 microm

100 microm

100 microm

200 microm

b

c

d

e

h

i

g

f

Fig 5 Petrobunus schwendingeri sp nov (a) Left chelicer of male paratype (b) left palp of male paratype (c) left leg I of maleparatype (d) left leg II of male paratype (e) left leg III of male paratype ( f ) left leg IV of male paratype (g) left leg IV of femaleparatype (h) trochanter of left leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 113

pigmentation and in the armature of the opisthosomal sternites(two pairs of tubercles on sternite 7 and one pair on sternite 8)Proximal region of femora of all legs with single blunt peg Penis

more elongate than in congeners in the shape of a spear bladewith two pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100875] inparentheses) 168 (164) greatest width of prosoma 076 (076)greatest width of opisthosoma 126 (124) length-to-width ratio133 (132) (Figs 3 6) Body campaniform yellow to darkorange (in alcohol depending on incidence of light) almostentirely with a dense microgranulate surface microstructureEyes present on low well developed ocularium withoutmedian ocularial tubercle Ocularium 012 (012) long and024 (019) wide removed from anterior margin of carapaceAnterior margin of carapace with two pairs of blunt pegs abovecoxae of leg I with outer pair of sub-rectangular shape (Fig 4)Scutal grooves of mesotergum indistinct with mesotergal areasdistinguishable only by transverse bands of pigmentation Freetergites without large tubercles

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged with setosetubercles on anterior margin Genital operculum sub-triangularSpiracles not concealed adjacent to row of tuberclesOpisthosomal sternite 7 with two pairs of large tuberclesdisplaced away from midline Opisthosomal sternite 8 withone pair of smaller tubercles flanking midline Anal plateunarmed (Fig 4)

Chelicerae (Fig 5) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassatefree of ornamentation with dorsal margin bearing several setaeDistal article with delicate dentition free of ornamentation

Palpi (Fig 5) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setae Palpalfemur with two proximal ventral spines in a row and two paireddistal spines (one ventral one mesoventral) Palpal patella with asingle spine directed inward Palpal tibiawith twopairs of spinesand a small basal setose tubercle Palpal tarsus with two pairs ofspines Palpal claw nearly as long as palpal tarsus

Legs IndashIV (Fig 5) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge ventral tubercle and three smaller mesodorsal tuberclesFemora IndashIV with one basal peg on ventral surface with peg freeof granulation Femur III arcuate in males and females free oftubercles Femur IVandpatella IVofmalewith two irregular rowsof mesalmesoventral tubercles Tibia IV of male with multipleirregular rows of tubercles with ventral tubercles enlarged andbulbous distally ventral tubercles enlarged but conical in shapeMetatarsi IndashIV divided distally with distal portion lackingornamentation metatarsus IV of male with two rows of mesalmesoventral tubercles Tarsus IV unornamented Femaletrochanter IV not enlarged leg IV free of tubercles Tarsalclaws IndashIV smooth unmodified Tarsal segmentation 3 5 5 5

Penis (Fig 6) elongate narrow and slender in the shape ofa spear blade Lateral margins gradually coalescing dorsallyresulting in spoon shape in dorsal aspect Ventral surface withtwo pairs of setae lateral margins with four setae each Glans

a

b

c d

050 mm

050 mm

100 microm100 microm

Fig 6 Petrobunus schwendingeri sp nov (a) Female paratype dorsalview (b) female paratype ventral view (c) pars distalis of penis lateral viewand (d) ovipositor dorsal view (one of four dorsal setae broken duringmounting process)

114 Invertebrate Systematics P P Sharma and G Giribet

free in apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 6) composedof twoapical lobes eachbearingtwo dorsal setae one ventral seta and two apical setae Distalsurfaces of apical lobes smooth Bases of dorsal setae in contactBases of ventral setae set apart by a distance approximately equalto one-third the width of the ovipositor

Distribution

Known only from type locality

Etymology

The specific epithet honours Dr Peter J Schwendinger curator atthe MHNG for his inspiration and tireless efforts to advanceknowledge of South-east Asian arachnid fauna

Petrobunus spinifer sp nov

(Figs 7ndash10 Tables 5 6)

Material examined

Holotype Male (MHNG) Philippines Palawan El Nido RegionBulalacao Waterfall primary forest 200ndash450 alt (111304100N1192800000E) leg A Schulz 30xi2009 (ex MHNG PAL-0905)

Paratypes 12 lt 21 (MHNG) same collecting data as holotype (exMHNG PAL-0905) 3 lt (1 dissected for genitalia [MCZ 100888] andmounted on one SEM stub [MCZ 100886] 2 in ethanol [MCZ100877ndash100878]) 3 (1 dissected for genitalia [MCZ 100889] 2 inethanol [MCZ 100879ndash100880]) same collecting data as holotype (exMHNGPAL-0905) 2lt (1mountedononeSEMstub [MCZ100882] 1mounted on two SEM stubs [MCZ 100884ndash100885]) PhilippinesPalawan El Nido Region Mt Singkukan primary forest 300ndash400alt (111300700N 1192805100E) leg A Schulz 26xi2009 (exMHNG PAL-0904)

Additional material studied 6 juveniles same collecting data as holotype(MHNG PAL-0905) 1 lt Philippines Palawan El Nido Region MtSingkukan primary forest 400ndash600 alt (111303800N 1192805500E)leg A Schulz 24xi2009 (MHNG PAL-0903) 6 lt 8 PhilippinesPalawan El Nido Region Mt Singkukan primary forest 300ndash400 alt(111300700N 1192805100E) leg A Schulz 26xi2009 (MHNG PAL-0904)

Diagnosis

Small petrobunidwith unarmedoculariumwithmesotergum freeof pigmentation Distinct from congeners in the armature of thefreeopisthosomal tergites andanal plate (setose tubercules) andofthe opisthosomal sternites (sternites 3ndash6 with single tubercle oneach side forming a line under each coxa IV sternite 7 with twolarge spines directly anteroventrally and sternite 8with an evenlydistributed belt of eight smaller spines) Femur IV of male with asingle tubercle basoventrally Penis narrow in the shapeof a spearblade with three pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100879] inparentheses) 130 (115) greatest width of prosoma 058 (056)greatest width of opisthosoma 079 (080) length-to-width ratio165 (144) (Figs 5 8) Body campaniform yellow (in alcoholdepending on incidence of light) almost entirely with a densemicrogranulate surface microstructure Eyes present on lowwell developed ocularium without median ocularial tubercleOcularium 012 (010) long 018 (016) wide removed fromanterior margin of carapace Anterior margin of carapace withtwo pairs of conical pegs above coxae of leg I Scutal grooves ofmesotergum indistinct free of transverse bands of pigmentationFree tergites with regular belts of setose tubercles (Fig 5)

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged withsetose tubercules on anterior margin Genital operculumsub-triangular Spiracles not concealed anterior to row oftubercules Opisthosomal sternites 3ndash6 each with belt of smallregular tubercles Opisthosomal sternite 7 with two large setosespines directly anteroventrally Opisthosomal sternite 8 withbelt of regular tubercles Two rows of tubercles alignedanteroposteriorly under outer limit of coxae IV Anal platearmed with tubercles (Fig 6)

Chelicerae (Fig 7) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassate

Table 3 Leg measurements of Petrobunus schwendingeri holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 013012 049009 028014 034011 051005 042007 217Leg II 017016 069010 029014 055010 058005 079007 307Leg III 015016 054013 028017 046013 052007 047006 242Leg IV 045045 075014 037020 071019 090009 054007 372

Table 4 Leg measurements of Petrobunus schwendingeri female paratype (ex MCZ DNA103572) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 012015 049012 027013 034010 044006 038007 204Leg II 013018 069011 031013 053010 054006 069006 289Leg III 013017 051012 028015 040012 047007 046006 225Leg IV 024023 061012 031017 050012 071008 052008 289

Molecular phylogeny of Laniatores Invertebrate Systematics 115

free of ornamentation with dorsal margin bearing severalsetae Distal article with delicate dentition free of ornamentation

Palpi (Fig 7) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setaePalpal femur with two proximal ventral spines in a row andtwo paired distal spines (one ventral one mesoventral) Palpalpatella with a single spine directed inward Palpal tibia with twopairs of spines and a small basal setose tubercle Palpal tarsuswith two pairs of spines Palpal claw nearly as long as palpaltarsus

Legs IndashIV (Fig 7) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge setose tubercle ventrally Femora IndashIV without basalpegs femur IV with one large tubercle ventrally Femur IIIarcuate in males and females free of tubercles Femur IV andpatella IV of male with irregular rows of mesalmesoventraltubercles Tibia IV of male with multiple irregular rows oflarge tubercles distally ventral tubercles small not bulbousMetatarsi IndashIV divided distally with distal portion lackingornamentation metatarsus IV of male with two rows ofmesalmesoventral tubercles Tarsus IV unornamented Femaletrochanter IV not enlarged leg IV free of tubercles Tarsal clawsIndashIV smooth unmodified Tarsal segmentation 3 5 5 6

Penis (Fig 8) narrow and slender in the shape of a spearblade Lateral margins gradually coalescing dorsally resultingin spoon shape in dorsal aspect Ventral surface with threepairs of setae lateral margins with four setae each Glans freein apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 8) composedof twoapical lobes eachbearingtwo dorsal setae one ventral seta and two apical setae Distalsurfaces of apical lobes smooth Bases of dorsal setae in contactBases of ventral setae set apart by a distance approximately equalto one-third the width of the ovipositor

a

b

c

050 mm

050 mm

050 mm

Fig 7 Petrobunus spinifer sp nov male holotype (a) Dorsal view (b)lateral view and (c) ventral view

a

b

200 microm

100 microm

Fig 8 Petrobunus spinifer sp nov male paratype (a) Ventral view and(b) dorsal view of anterior margin of carapace

116 Invertebrate Systematics P P Sharma and G Giribet

a

b

c

d

e

h

i

g

f

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

Fig 9 Petrobunus schwendingeri sp nov (a) Left chelicer ofmaleparatype (b) left palp ofmale paratype (c) left leg I ofmale paratype (d) left leg II ofmale paratype (e) right leg III ofmale paratype ( f ) right leg IV ofmale paratype (g) left legIV of female paratype (h) trochanter of right leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 117

Distribution

Known only from type locality and additional localities reportedhere

Etymology

The specific epithet an invariable noun in apposition refers to theenlarged belts of tubercles on the free tergites and opisthosomalsternites of this species Derived from Latin lsquospinarsquo meaninglsquospearrsquo or lsquodartrsquo and lsquoferrersquo meaning lsquoto carry or bearrsquo

Petrobunus torosus sp nov

(Figs 11ndash14 Tables 7 8)

Material examined

Holotype Male (MHNG) Philippines Palawan Puerto Princesa RegionSabang Underground National Park Daylight Hole and Lions Caveprimary forest 100ndash200 alt (100900600N1185301000E) legA Schulz6ndash8xii2009 (ex MHNG PAL-0907)

Paratypes 6 lt 13 (MHNG) same collecting data as holotype(ex MHNG PAL-0907) 3 lt (1 dissected for genitalia and mountedon three SEM stubs [MCZ 100894ndash100896] 2 in ethanol [MCZ100890ndash100891]) 3 (1 dissected for genitalia [MCZ 100902] andmounted on one SEM stub [MCZ 100897] 2 in ethanol [MCZ100892ndash100893]) same collecting data as holotype (ex MHNGPAL-0907) 1 lt (mounted on one SEM stub [MCZ100899]) and 3 (dissected for genitalia [MCZ 100901] and mounted on one SEM stub[MCZ 100898]) Philippines Palawan Puerto Princesa Region SabangUnderground National Park jungle trail (101105500N 1185405900E)leg A Schulz 4xii2009 (ex MHNG PAL-0906)

Additional material studied 6 juveniles same collecting data as holotype(MHNG PAL-0907) 12 lt 3 2 juveniles Philippines PalawanPuerto Princesa Region Sabang Underground National Park jungletrail (101105500N 1185405900E) leg A Schulz 4xii2009 (MHNGPAL-0906)

Diagnosis

Distinct from congeners in the well developed ocularium armedwith median tubercle Mesotergum free of pigmentation as inP spinifer but opisthosomal sternites without large spines(sternites 7ndash9 armed only with small low tubercles) Proximalregion of femora of all legs with single blunt peg Penis widenedin the base of the pars distalis stocky in the shapeof a spear bladewith three pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100892] inparentheses) 152 (150) greatest width of prosoma 070 (068)greatest width of opisthosoma 104 (108) length-to-width ratio

a

b

c d

050 mm

050 mm

20 microm

100 microm

Fig 10 Petrobunus spinifer sp nov (a) Female paratype dorsal view(b) female paratype ventral view (c) pars distalis of penis lateral view and(d) ovipositor dorsal view

Table 5 Leg measurements of Petrobunus spinifer holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011009 032008 022011 024008 034005 036005 159Leg II 011011 046008 018012 036009 040005 068005 219Leg III 014015 044012 024014 032013 043005 041004 198Leg IV 032038 050014 025017 050014 062008 028004 247

118 Invertebrate Systematics P P Sharma and G Giribet

146 (139) (Figs 11 14) Body campaniform yellow to darkorange (in alcohol depending on incidence of light) almostentirely with a dense microgranulate surface microstructureEyes present on low well developed ocularium with medianocularial tubercle Ocularium 011 (011) long 020 (021) wideremoved from anterior margin of carapace Anterior margin ofcarapace with two pairs of blunt pegs above coxae of leg I withouter pair of sub-rectangular andor bifid shape Scutal grooves ofmesotergum indistinct free of transverse bands of pigmentationFree tergites without large tubercles or spines (Fig 12)

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged with setosetubercles on anterior margin Genital operculum sub-triangularSpiracles not concealed anterior to row of tuberclesOpisthosomal sternites with irregular belts of roundedtubercles Anal plate unarmed (Fig 12)

Chelicerae (Fig 13) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassatefree of ornamentation with dorsal margin bearing several setaeDistal article with delicate dentition free of ornamentation

Palpi (Fig 13) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setae Palpalfemur with two proximal ventral spines in a row and two paireddistal spines (one ventral one mesoventral) Palpal patella with asingle spine directed inward Palpal tibiawith twopairs of spinesand a small basal setose tubercle Palpal tarsus with two pairs ofspines Palpal claw as long as palpal tarsus

Legs IndashIV (Fig 13) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge ventral tubercle and three smaller mesodorsal tuberclesFemora IndashIV with one basal peg on ventral surface with peg freeof granulation Femur III arcuate in males and females free oftubercles Femur IVandpatella IVofmalewith two irregular rowsof mesalmesoventral tubercles Tibia IV of male with multipleirregular rows of tubercles with ventral row enlarged and conicaldistally distal-most ventral tubercle composed of two fusedtubercles Metatarsi IndashIV divided distally with distal portionlacking ornamentation metatarsus IV of male with two rows ofmesalmesoventral tubercles Female trochanter IV not enlargedleg IV free of tubercles Tarsal claws IndashIV smooth unmodifiedTarsal segmentation 3 5 5 6

Penis (Fig 14) narrow in the shape of a spear blade widenednear base Lateral margins gradually coalescing dorsallyresulting in spoon shape in dorsal aspect Ventral surface with

Table 6 Leg measurements of Petrobunus spinifer female paratype (ex MHNG PAL-0905) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 033007 021010 024007 025005 029005 143Leg II 013011 037006 023010 034007 026005 051005 184Leg III 014014 029009 022013 029010 027005 035004 156Leg IV 017015 049008 025014 034010 045006 043004 213

a

b

c

050 mm

050 mm

050 mm

Fig 11 Petrobunus torosus sp nov male holotype (a) Dorsal view(b) lateral view and (c) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 119

threepairs of setae lateralmarginswith four setae eachGlans freein apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 14) composed of two apical lobes eachbearing two dorsal setae one ventral seta and two apicalsetae Distal surfaces of apical lobes smooth Bases of dorsalsetae in contact Bases of ventral setae set apart by a distanceapproximately equal to one-third the width of the ovipositor

Distribution

Known only from type locality and additional locality reportedhere

Etymology

The specific epithet refers to the stocky and robust appearanceof the fourth leg in the males of this species Derived from Latinlsquotorosusrsquo meaning lsquomuscularrsquo or lsquobulgingrsquo

Family TITHAEIDAE fam nov

Type genusTithaeusThorell 1891 by present designation andmonotypy

Type species Tithaeus laevigatus Thorell 1891 by original designation

Genera included Tithaeus Thorell 1891 new familial assignmentMetatithaeus Suzuki 1969 new familial assignment

Diagnosis

Medium-sized Grassatores with a low ocularium removed fromthe anterior margin of carapace that differ from Epedanidae inlacking a median spine In some species slight to large hump

situated anterior of ocularium Scutal region divided into fiveareas areas I and II not fused as opposed to EpedanidaeChelicerae typical basal segment not enlarged (as opposed toEpedanidae)Distinct fromPodoctidae in the lack of spines on legI and in the lack of a sexually dimorphic ocularium Tarsalformula 5 8+ 5 6 not reduced (as opposed to Sandokanidaeand Podoctidae) Distitarsi of legs I and II typically with twotarsalia distinguished from Petrobunidae in the trochanter of legIV not enlarged inmales Tarsi III and IVwith unmodified doubleclaws scopulae absent (as opposed to most Samooidea) Distalmargin of ventral plate of penis usually with deep cleft (mostTithaeus) or widening distally into setiferous and conicalstructure (Metatithaeus) glans with simple membranous lobecovering the stylus terminus of stylus either a bifurcate orslightly inflatable lobe absence of prominent parastylar lobes(distinguishing it from Petrobunidae) absence of a ring of setaesurrounding a capsula interna (found in Epedanidae) Ovipositorlobes typically with a pair of ventral and dorsal setae

Remarks

One of dozens of genera placed in the subfamily Phalangodinae(Phalangodidae) by Roewer (1912 1923 1949) Tithaeus wassubsequently extricated and transferred to Epedanidae by Kury(1993 2003 2006) on the basis of the male genitalia althoughthe placement was ambiguous given the absence of typicalepedanid morphology such as elongate and armed pedipalpian erect ocularial spine (absent in Dibuninae) the fusion of scutalareas I and II side-branches in the posterior claws and stoutdentition of the cheliceral fingers (Lian et al 2008) However

a

b

100 microm

100 microm

100 microm

100 microm

c

d

Fig 12 Petrobunus torosus sp novmale paratype (a)Dorsolateral view (b) dorsolateral viewof anteriormargin of carapace(c) ventrolateral view and (d) ventrolateral view of prosomal complex

120 Invertebrate Systematics P P Sharma and G Giribet

comparisons of the male genitalia of a phalangodid (Texella) anepedanid (Kilungius Saracinicinae) and Tithaeus suggested acloser relationship between Epedanidae and Tithaeus in spite ofmarked differences in the stylar lobe and the extent of the basalsac (Lian et al 2008)

Our phylogenetic analyses corroborate a closer relationshipbetween Epedanidae and Tithaeuswith respect to Phalangodidae(which is sister to the remaining Grassatores and thereforedistantly related to both lineages) but the clade Tithaeus+Metatithaeus neither nests within nor is sister to Epedanidae

a

b

c

d

e

h

i

g

f

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

Fig 13 Petrobunus torosus sp nov (a) Left chelicer of male paratype (b) left palp of male paratype (c) left leg I of maleparatype (d) right leg II of male paratype (e) left leg III of male paratype (f) left leg IV of male paratype (g) left leg IV offemale paratype (h) trochanter of left leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 121

in any of the topologies we examinedMoreover the cleft ventralplate forming two prongs in the male genitalia of many Tithaeusspecies in addition to the absence of a ring of setae surroundingthe capsula interna (typical of Epedanidae) suggest that Tithaeus

and related genera (eg Istithaeus Metatithaeus Tithaeommaetc) are not true epedanids but may be more closely related toeither (1) Podoctidae a hypothesis that is supported in someanalyses (bootstrap frequency in ML [BS] = 59 posteriorclade probability given by MrBayes [PP] = 097) or (2) theclade (Podoctidae + Sandokanidae) recovered by the BEASTtopology (posterior clade probability given by BEAST[PPBEAST] = 100)

The inclusion of Tithaeus-like Grassatores in Epedanidaerenders the latter para- or diphyletic and obscures a cleardiagnosis of epedanids as the morphology of Tithaeus (andMetatithaeus) does not accord with many epedanidsynapomorphies Moreover inclusion of Tithaeus andorMetatithaeus within a broader Podoctidae is also unjustifiedbecause this violates many of the synapomorphies ofPodoctidae such as (1) tuberclesspines in dorsal and ventralrows on leg I (2) tubercular bridges (3) a sexually dimorphicbasichelicerite and (4) a sexually dimorphic ocularium

Consequently we erect the family name Tithaeidaeseparating Tithaeus and Metatithaeus from EpedanidaeTithaeidae likely includes the monotypic Roewerian generaIstithaeus Kondosus Sterrhosoma and Tithaeomma but thestatus of these genera requires further investigation and will beaddressed in a forthcoming study

Distribution

Distributed throughout Sundaland the Thai-Malay PeninsulaSumatra Java and Borneo Also reported from northern Vietnamand southern China One doubtful record from West Timor(see Lian et al 2008)

Results

Phylogenetic analysis

Less sequence data are presently available for Briggsusflavescens (partial 28S and COI Derkarabetian et al 2010)with respect to the rest of the data matrix Consequently twoML analyses were conducted including and excluding Briggsusflavescens The ML analysis with all taxa resulted in a treetopology with lnL= ndash8372597 Repeating the analysis withoutBriggsus resulted in a tree topology with lnL= ndash8336108 Thetwo topologies are identical save for the internal relationships ofTravunioidea which includes Briggsidae (Fig 15) Inclusion ofBriggsidae recovers a diphyletic Cladonychiidae with Briggsussister to Holoscotolemon but these relationships are notsupported Exclusion of Briggsidae results in higher nodalsupport frequencies within Travunioidea and recovers a sisterrelationship of Sclerobunidae and the remaining Travunioidea(BS = 75) and a monophyletic Cladonychiidae + Travuniidae(BS = 77) sister to Trojanella Including Briggsus in theanalysis does not affect topology or nodal support in otherparts of the phylogeny Monophyly of Travunioidea isstrongly supported (BS = 100) in either case

Runs of MrBayes ver 312 reached stationarity in 2 000 000generations 2 500 000 generations (25) were hence discardedas burn-in The BI analysis with all taxa resulted in a topologylargely similar to theMLtree (Fig 16)Notable differences are therelative placements of the clade (Gonyleptoidea + Stygnopsidae)

a

b

c d

050 mm

050 mm

20 microm

20 microm

Fig 14 Petrobunus torosus sp nov (a) female paratype dorsal view(b) female paratype ventral view (c) pars distalis of penis lateral view and(d) ovipositor dorsal view

122 Invertebrate Systematics P P Sharma and G Giribet

and the South-east Asian group of families Some differencesexist with respect to supported nodes within superfamilies

Estimation of divergence times

The run of BEAST reached stationarity after 6 000 000generations 10 000 000 generations (20) were discarded asburn-in The tree topology recovered by BEAST (Fig 17) differsfromML andBI topologies in (1) the placement of Sandokanidaeand (2) the relationships between superfamilies Diversificationof Laniatores is dated at ~348Mya Diversification of majorlineages is estimated as follows (Travunioidea+Triaenonychidae)299Mya Grassatores 302Mya Assamiidae +Pyramidopsgroup 232Mya Gonyleptoidea + Stygnopsidae 246MyaGonyleptoidea 230Mya Samooidea + Zalmoxoidea 206Myaand a South-east Asian clade (including Sandokanidae)249Mya These results largely corroborate previous estimatesof divergence times (Giribet et al 2010) but confidence intervalsfor estimated ages are more precise A tree file of estimated agesand 95highest posterior density (HPD) intervals for all nodes isprovided as an Accessory Publication on the InvertebrateSystematics website

Whereas the basal topology of Grassatores is unstable andunsupported most familial and superfamilial relationshipsare consistently recovered across analyses A consensus oftopologies across all analyses is shown in Fig 18

Discussion

A molecular phylogeny of the armoured harvestmen has longproven elusive Laniatores comprises entire genera and familiesthat are endemic to particular provinces of the world In somecases higher taxonomic ranks do not even occur beyond specificislands (eg the New Zealand family SynthetonychiidaeForster 1954) Moreover Laniatores includes the majority ofall described Opiliones species (and over half of all describedfamilies) and new lineages continue to be discoveredConsequently previous efforts to assess Laniatores phylogenyhave been prone to undersampling numerous lineages such asAssamiidae Epedanidae and the superfamilies Samooidea and

Zalmoxoidea (eg Giribet et al 1999 2002 Shultz and Regier2001)

The present study with the inclusion of all families ofarmoured harvestmen described heretofore enables detailedinvestigation of internal relationships of Laniatores Ofprincipal interest are the phylogenetic placement of the twonew families of Laniatores erected herein and the systematicvalidity of defined superfamilies Many of the relationshipsrecovered in our analyses are consistent with traditionalhypotheses based on morphological studies but there are someunexpected results We discuss these in turn

Insidiatores

Within a monophyletic Laniatores recovered in all analyses(BS = 100 PP = 093) the constituent lineages of Insidiatoresform a paraphyletic grade with respect to Grassatores WhileTriaenonychoidea and Travunioidea do form a clade (albeit withlow nodal support) the New Zealand endemic familySynthetonychiidae is recovered as sister to all remainingLaniatores (BS = 78 PP = 100) consistent with the resultsof a recent study (Giribet et al 2010) However the inclusionof more data in fact lowers the nodal support for this sisterrelationship relative to the previous studyrsquos ML analysislikely due to the influence of missing data (in particular only~300 bp out of a targeted 3400 bp of 28S rRNA are presentlyavailable for Synthetonychia) Consequently we do not treat theplacement of Synthetonychiidae as definitive

In all analyses the southern hemisphere Triaenonychidaeform a strongly supported clade that diversified ~200Mya(BS = 100 PP = 100) Their distribution and the age of thiscladersquos diversification are similar to that of the temperateGondwanan cyphophthalmid family Pettalidae (estimated tohave diversified ~183ndash221Mya Giribet et al 2010)suggesting a parallel biogeographical process in these lineagesThe North American triaenonychid Fumontana deprehendorShear 1977 is sister to the southern hemisphere Triaenonychidaein all analyses consistent with previous classification (Giribetand Kury 2007 Thomas and Hedin 2008) but support fora monophyletic Triaenonychoidea is limited and sensitiveto analytical parameters (BS = 57 PP lt 050 PPBEAST = 066)

Table 7 Leg measurements of Petrobunus torosus holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011011 039005 026012 028008 036006 040007 180Leg II 014013 061008 029010 043007 042006 072005 261Leg III 015015 051010 019015 037011 045006 046005 213Leg IV 034035 059012 034017 054015 067007 052006 300

Table 8 Leg measurements of Petrobunus torosus female paratype (ex MHNG PAL-0907) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 041008 022011 028010 037005 035006 174Leg II 010009 052007 023008 033007 037006 069005 224Leg III 014016 046010 025024 036012 042007 041005 204Leg IV 018017 054011 029016 049012 058007 048006 256

Molecular phylogeny of Laniatores Invertebrate Systematics 123

Fig 15 Phylogenetic relationships of Laniatores inferred from maximum likelihood analysis of all molecular data (ln L= ndash8372597) Inset topology ofTravunioidea excluding Briggsidae (ln L= ndash8336108) Numbers on nodes indicate bootstrap resampling frequencies

124 Invertebrate Systematics P P Sharma and G Giribet

We recovered a monophyletic Travunioidea which includesBriggsidae in all analyses (BS = 100PP = 100) corroboratingthe superfamilial placement of briggsids Briggsidae isrecovered sister to either Trojanella (ML) or Holoscotolemon(BI) or part of a grade with both of these taxa (BEAST) butthese placements are not supported (BS lt 50 PPBEAST = 085and PP = 051 respectively) Missing data for Briggsidaedepresses nodal support in ML analyses within Travunioideaobscuring interfamilial relationships In the absence ofBriggsidae we recover a sister relationship betweenSclerobunidae (Zuma acuta Goodnight amp Goodnight 1942)and the remaining Travunioidea (BS = 75) and themonophyly of Travuniidae +Cladonychiidae (BS = 77)

A recent molecular dating of Travunioidea obtained muchyounger dates than estimated herein in spite of similar taxaand molecular loci In that study Derkarabetian et al (2010)investigated the evolution of troglobitism in Sclerobunidae(also referred to as the lsquoNorth American triaenonychidsrsquo)and used the cladonychiid fossil Protoholoscotolemon(38ndash54Mya Ubick and Dunlop 2005) to constrain theminimum age of Travunioidea in addition to calibration pointsderived from geological ages of strata These practicesaccord with the scope of the troglobitism study (thedivergences of interest were comparatively recent ndash Plioceneor younger) but we did not utilise Protoholoscotolemon in ourdating for two reasons (1) we do not obtain an unambiguouslymonophyletic Cladonychiidae in our analyses and (2) theDevonian and Carboniferous fossils we utilised as calibrationpoints are sufficiently old to obtain a result consistent with anEocene cladonychiid fossil The different calibration pointsimplemented in the respective studies therefore account forthe discrepancy in the dating In addition the morphologicalconservatism of Opiliones makes it doubtful that the age ofProtoholoscotolemon is the maximum age of the superfamily

Our sampling of Insidiatores lineages remains limited andbarring the inclusion of Briggsidae additions to taxonomicsampling largely concern Grassatores Consequently continuedsampling and systematic studies of Insidiatores (eg Mendesand Kury 2008 Thomas and Hedin 2008 Derkarabetian et al2010) are instrumental and imperative to addressing outstandingquestions of phylogenetic relationships and morphologicalevolution A phylogeny of Triaenonychidae is particularlywanting

Early diverging Grassatores Phalangodidaeand Sandokanidae

The recovery of a monophyletic Grassatores (supported inall analyses BS = 99 PP = 100) is consistent with severalmorphological synapomorphies uniting this diverse groupsuch as the presence of two tarsal claws on walking legs IIIand IV However the basal topology of Grassatores has longbeen contentious Previously two superfamilies of Grassatoreswere recognised Oncopodoidea (with the single familySandokanidae (formerly Oncopodidae)) and lsquoGonyleptoidearsquo(with the remaining families) (Martens 1976 1986 Martenset al 1981) This dichotomy was largely based upon theunique morphology of Sandokanidae ndash characters such as thescutum completum (fused opisthosomal tergites) reduced tarsal

articles and genitalic structures which are not found in theremaining Grassatores (Martens 1980 Giribet et al 2002Sharma and Giribet 2009) It was alternatively contended thatthese characters constituted autapomorphies of Sandokanidaewhich was nested within lsquoGonyleptoidearsquo itself (Kury 2003)

In all analyses we obtained an initial divergence betweenPhalangodidae and the remaining Grassatores (BS = 100PP = 096) refuting the traditional dichotomy betweenSandokanidae and lsquoGonyleptoidearsquo Therefore we hereindefine Gonyleptoidea as the taxon consisting of AgoristenidaeCosmetidae Cranaidae Gonyleptidae Manaosbiidae andStygnidae The split between Phalangodidae and the remainingGrassatores has been postulated to correspond to the rifting ofthe ancient supercontinents Laurasia and Gondwana as thedistribution of Phalangodidae was believed to be strictlyHolarctic (Giribet et al 2010) However the inclusion of theMadagascar genus Remyus previously placed in Zalmoxidae(Starega 1989) within a monophyletic Phalangodidae indicatesbroader distribution of phalangodids ndash complementing theTriaenonychidae-Fumontana case discussed above Moreoverthe origin of Phalangodidae is estimated to have occurred around302Mya (95 HPD 264ndash335Mya) greatly predating thebreakup of the supercontinents These results indicate thatPhalangodidae may be narrowly defined and we consequentlytransfer Remyus to Phalangodidae (new familial assignment)

The unusual family Sandokanidae has been postulated to besister toPodoctidae (SharmaandGiribet 2009Giribet et al 2010)or to form agradewith Phalangodidae (Kuryrsquos lsquoPhalangodoidearsquopartly) In the present study ML and BI topologies reconstructSandokanidae as sister to the remaining non-phalangodidGrassatores albeit with insignificant nodal support (BS = 21PP = 078) Curiously the topology obtained byBEAST recoversthe clade (Sandokanidae + Podoctidae) nested within a singleclade of South-east Asian families (PPBEAST = 085) Theseresults do not unambiguously favour one hypothesis overanother and the phylogenetic placement of Sandokanidae inthe Grassatores tree therefore remains debatable

Regardless of the inclusion of Sandokanidae within theSouth-east Asian group of families that the sister family to theremaining Grassatores is Phalangodidae not Sandokanidaeindicates that the peculiar morphology of sandokanids is theresult of multiple apomorphic reversals not the retention ofplesiomorphic characters (Martens and Schwendinger 1998)The large scutum and low tarsomere number found inSandokanidae also occur in Trogulidae and Dicranolasmatidae(suborder Dyspnoi) and all Cyphophthalmi and appear to haveevolved convergently This morphology may reflect adaptationsto a shared ecological niche all these groups inhabit leaf litterinclude no arboricolous species and are limited in vagility ndash

although these life history traits are also found in other groupsHowever this hypothesis has yet to be rigorously tested

Sandokanidae is presently one of few families of Grassatoresfor which a molecular phylogeny assessing intergenericrelationships is available (Sharma and Giribet 2009) andconsistent with earlier results the monophyly of Sandokanidaeis strongly supported (BS = 100 PP = 100) as is the initial splitbetweenMartensiellus and the remaining genera (an undescribedspecies was referred to as lsquogen sprsquo by Sharma and Giribet 2009but subsequent morphological investigation revealed this to be

Molecular phylogeny of Laniatores Invertebrate Systematics 125

Fig 16 Phylogenetic relationships of Laniatores inferred fromBayesian inference analysis of allmolecular data Numbers on nodes indicateposterior probabilities

126 Invertebrate Systematics P P Sharma and G Giribet

a miniature species of Martensiellus P J Schwendinger perscomm) (BS = 92 PP = 100) Intergeneric relationshipsof sandokanid genera are contingent upon analytical treatmentof molecular partitions (with additional sandokanid exemplarsdata not shown) reflecting conflict among datasets documentedby Sharma and Giribet (2009)

The other South-east Asian families

Epedanidae was postulated to be sister to Gonyleptoidea in acladistic analysis based on morphological characters (Kury1993) Subsequently Kury (2003) proposed that Epedanidaewas sister to the clade (Assamiidae (Stygnopsidae +Gonyleptoidea)) The single epedanid previously included in amolecular phylogeny was similarly unstable in placement eithernestingwithin Assamiidae or sister to the African lsquophalangodidsrsquo(Conomma and Maiorerus) in neither case with appreciablenodal support (Giribet et al 2010) Furthermore previousinclusion of several lineages (eg Tithaeus) within Epedanidaethat do not bear characters typical of true epedanids ndash sexuallydimorphic chelicera with heavy dentition elongate andspined pedipalpi male genitalia with setae surroundingthe capsula interna ndash has also made this family difficult todefine Consequently we included only Epedaninae (egPseudoepedanus Alloepedanus and Euepedanus) as exemplarsof true epedanids the systematic validity of the remaining threesubfamilies (and particularly the inclusion of Dibuninae) isbeyond the scope of this study and remains to be investigated

The monophyly of each of four South-east Asian families ndashEpedanidae (represented by epedanines) TithaeidaePetrobunidae and Podoctidae ndash is recovered with high nodalsupport (all BS = 100 PP = 100) These lineages are somehowrelated to each other and while they form a clade in bothML andBI analyses this result receives insignificant nodal support(PP = 077) In the topology recovered by BEAST the South-east Asian families form a clade that includes Sandokanidaea result consistent with the distribution of sandokanids albeitwithout support (PPBEAST = 085) Tithaeidae is probably closelyrelated to Podoctidae given the occurrence of a deeply cleftventral plate resulting in two flanking prongs in themale genitaliaof both families (Suzuki 1977 Lian et al 2008 Fig 19) Inaddition the clade (Podoctidae +Tithaeidae) is recovered withmoderate support in ML and BI analyses (BS = 59 PP = 097)In none of the analyses is Tithaeidae nested within or sister toEpedanidae sensu stricto

The morphology of Petrobunidae suggests some relationshipto previously described South-east Asian families oralternatively Phalangodidae but not inclusion within any ofthese (Fig 19) Molecular sequence data do not support anyspecificplacement ofPetrobunidae although it clusterswithotherSouth-east Asian families in all analyses and is recovered sisterto Epedanidae in two topologies (BI and BEAST)

Gonyleptoidea and Stygnopsidae

With over 2500 described species the superfamilyGonyleptoidea constitutes the most diverse and (arguably) themost charismatic lineage of Opiliones with most of this diversityconcentrated in Amazonia (some cosmetids occur as far north asthe mid-Atlantic states of the US) In a previous analysis

relationships of gonyleptoid families were unsupported andordid not accordwithmorphological studies (Giribet et al 2010) Inparticular the placement of the agoristenid exemplar Avimaalbiornata (Goodnight amp Goodnight 1947) ndash the putativesister family to the remaining Gonyleptoidea ndash within aparaphyletic Cranaidae was particularly suspect given thelimited availability of sequence data for Avima (complete 18SrRNA a300-bp fragmentof 28S rRNA andCOI) In addition thesister group of Gonyleptoidea was ambiguous and contingentupon analytical parameters

Redoubling sequencing efforts and addition of taxaparticularly in the case of Agoristenidae (currently sequencedfor 12S rRNA complete 18S rRNA a 2000-bp fragment of 28SrRNA COI H3 and EF-1a) improved the assessment ofgonyleptoid relationships A monophyletic Gonyleptoidea(BS = 58 PP = 066) is recovered sister to the familyStygnopsidae (BS = 57 PP = 100) Within Gonyleptoidea asplit between Agoristenidae and the remaining gonyleptoids isstrongly supported (BS = 100 PP = 100) followed by thedivergence of Stygnidae (BS = 71 PP = 099) Thisplacement of Agoristenidae is supported by morphologicalstudies (Pinto-da-Rocha and Kury 2007) although in aminority of tree topologies sampled in BI analysesAgoristenidae is sister to Stygnopsidae (hence lower nodalsupport for the monophyly of Gonyleptoidea in BI) Theplacement of Manaosbiidae is uncertain it is recoveredsister to either (Gonyleptidae +Cranaidae) (PP = 089) or toCosmetidae (PPBEAST = 092) but these results are notsupported Cranaidae is recovered as monophyletic (BS = 99PP = 100) and nested within a paraphyletic Gonyleptidae

The present sampling of Cosmetidae and Gonyleptidae doesnot do justice to the diversity of these lineages (~700 and 800described species respectively) A phylogenetic assessment ofall 16 subfamilies of Gonyleptidae alone constitutes the subjectof an arduous and exacting study Fortunately cladistic analysesof morphological characters continue to advance phylogeneticinvestigation of subfamilial lineages (eg BourguyiinaeYamaguti and Pinto-da-Rocha 2009 Goniosomatinae DaSilvaandGnaspini 2009HernandariinaeDaSilva andPinto-da-Rocha2010) Elucidating the phylogeny of Gonyleptoidea is one of themost exciting research topics in the study of Opiliones

The Afrotropical families

The third most diverse family of Laniatores Assamiidaeconstitutes the dominant opiliofauna of the African continent(excluding Madagascar) with some lineages occurring in SouthAsia the Indo-Malay Archipelago and Australia (Trionyxellinaeand Dampetrinae) Proposed to be related to EpedanidaeStygnopsidae andor Gonyleptoidea (Kury 2007) on the basisof genitalic structures assamiids were not recovered asmonophyletic in a previous study (paraphyly was induced byeither Epedanidae orAfricanBiantidae) and the placement of thesubfamily Trionyxellinae was particularly suspect (Giribet et al2010) Trionyxellinae was considered a separate family byMello-Leitatildeo (1949) though others considered it nested withinAssamiidae (eg Starega 1992) In our analyses the monophylyof Assamiidae is supported (BS = 79 PP = 100)lsquoTrionyxellinaersquo (Trionyxella and Mysorea both with a

Molecular phylogeny of Laniatores Invertebrate Systematics 127

Fig 17 Evolutionary time tree of Laniatores inferred fromBEASTanalysis of allmolecular data Coloured bars indicate 95highestposterior density (HPD) intervals for nodes of interest Numbers on nodes indicate posterior probabilities asterisks indicate posteriorprobability of 100

128 Invertebrate Systematics P P Sharma and G Giribet

pseudonychium on the third and fourth tarsi) is a diphyletic entitynested within the other Assamiidae (for the node renderingdiphyly BS = 100 PP = 100) disfavouring family status fortrionyxellines

The African lsquophalangodidsrsquo (sometimes called thelsquoPyramidops grouprsquo) were recognised as a new family byStarega (1992) but not formalised and included 13 genera(Conomma Pyramidops and related lineages) Consistentwith this hypothesis we recovered strong support for thePyramidops group (represented by Conomma and cfPyramidops) as a lineage separate from the true Phalangodidae(egBishopella and Scotolemon) recapitulating a previous result(Giribet et al 2010) The African lsquophalangodidsrsquowere recoveredas the sister lineage of Assamiidae although this relationshipis variably supported in our analyses (BS = 40 PP = 095PPBEAST = 100) A review and formal description of thePyramidops group as a new family lsquoPyramidopidaersquo ndash a namewidely available on the internet including GBIF but notformalised ndash is undertaken elsewhere (Sharma et al 2011)

While we have endeavoured to improve the sampling ofAssamiidae from South-east Asia the internal systematics ofthis family remain a high value target for phylogenetic researchHowever revision of assamiid systematics is inherently difficultfor two reasons (1) the family is peppered with questionablehierarchies and monotypic genera (~12 subfamilies and 250genera for less than 500 described species) and (2) occurs insome of the most inaccessible regions of the world namely sub-Saharan Africa

In all analyses the clade (Assamiidae + Pyramidopidae) issister to the clade (Zalmoxoidea + Samooidea) though this resultis only supported in one analysis (PP= 100) The divergence ofthese four lineages is estimated to have occurred 252Mya and isconsistent with diversification in West Tropical Gondwanaoccurring at least 140million years before the fragmentation ofthis terrane (~110Mya)

Zalmoxoidea

As currently defined the largely Neotropical superfamilyZalmoxoidea includes four families FissiphalliidaeGuasiniidae Icaleptidae and Zalmoxidae Guasiniidae hasnever before been included in a molecular phylogeny In thepresent study we sequenced a guasiniid for six genes and ouranalyses strongly support theplacement ofGuasiniidae as sister tothe samooid family Kimulidae (formerly Minuidae) (BS = 86PP = 098 PPBEAST = 099) and this clade in turn sister to anothersamooid family Escadabiidae (BS = 65 PP = 096PPBEAST = 100) The families Fissiphalliidae Icaleptidaeand Zalmoxidae in turn form a separate clade (BS = 100PP = 100 PPBEAST = 100) with strong support for the sisterrelationship of Zalmoxidae and Fissiphalliidae (BS = 99PP = 100 PPBEAST = 100) corroborating relationshipsproposed by morphological studies (Kury and Peacuterez G 2002Pinto-da-Rocha and Kury 2003b)

Previous analyses have suggested that Samooidea (discussedbelow) is a paraphyletic grade with respect to Zalmoxoidea(Giribet et al 2010) In the present analysis the cladeSamooidea + Zalmoxoidea is strongly supported (BS = 85PP = 100 PPBEAST = 100) as previously suggested by PeacuterezGonzaacutelez and Kury (2007) and by excluding Escadabiidae and

Kimulidae Samooidea is rendered a monophyletic entity albeitwith limited support (BS = 53 PP = 062 PPBEAST = 081) Thestrong support from molecular sequence data for the cladeincluding Escadabiidae Kimulidae and the four zalmoxoidfamilies (BS = 89 PP = 100 PPBEAST = 100) suggests thatthese may form a natural group

Re-examination of the morphology of these six families incomparisonwith true samooid lineages (Biantidae Samoidae andStygnommatidae) corroborates the exclusionofEscadabiidae andKimulidae from true Samooidea Escadabiidae and Kimulidae(1) lack the scopula characteristic of Samoidae and stenostygnineBiantidae (2) lack a sexually dimorphic metatarsus IIIcharacteristic of Samoidae Stygnommatidae and stenostygnineBiantidae and (3) lack a penial calyx characteristic of SamoidaeConsistent with placement within Zalmoxoidea EscadabiidaeandKimulidae (1) possess a small oculariumbearing the eyes thatis removed from the margin of the carapace (2) bear a wellmarked dorsal protuberance (bulla) on the proximal segmentof the chelicera that lacks armature and (3) possess sexuallydimorphic leg IV segments particularly the femur and tibiawhich may be variedly arcuate incrassate and spinedAdditionally Escadabiidae Fissiphalliidae and Zalmoxidae allpossess sexually dimorphic tegumental glandopeningson tibia IIwhereas Biantidae Samoidae and Stygnommatidae possessthese structures on metatarsus III (Willemart et al 2010)While data on tegumental gland openings are only availablefor a small handful of species these may constitute significantdiagnostic characters for species wherein sexual dimorphismdoes not manifest itself in the readily observable form ofenlarged and spiny segments

Given the results of our phylogenetic analyses maintainingSamooidea (as currently defined) renders it a paraphyletic gradewith respect to a diphyletic Zalmoxoidea (as currently defined)Consequently based on the aforementioned morphologicalcharacters and robust molecular phylogenetic signal wetransfer Escadabiidae and Kimulidae to Zalmoxoidea

Samooidea

A previous cladistic analysis based upon morphological datasuggested close relationship between six families ndash BiantidaeEscadabiidae Kimulidae Podoctidae Samoidae andStygnommatidae ndash thenceforth known as Samooidea (Kury1993) the only pantropical Laniatores superfamily HoweverPodoctidae does not have any obvious relationship to Samooideaand has subsequently been transferred (Kury 2007) in ouranalyses Podoctidae is sister to Tithaeidae or Sandokanidaeie distantly related to all samooid families Moreover ouranalyses strongly favour the exclusion of Escadabiidae andKimulidae from Samooidea

The remaining three families ndash Biantidae Samoidae andStygnommatidae ndash are distributed in the Neotropics and partsof Africa with a handful of suspect lineages in South-east AsiaRe-examination and reassignment of many Samoidae genera(eg the Indonesian lsquosamoidrsquo Waigeucola palpalis PeacuterezGonzaacutelez 2011) suggest that the range of Samoidae does notinclude South-east Asia Peacuterez Gonzaacutelez and Kury (2007) alsoobserved that the lsquosamoidsrsquo of Africa Madagascar and theSeychelles may not be true Samoidae either Similarlyinclusion of the genus Stygnomimus an Indonesian lineage

Molecular phylogeny of Laniatores Invertebrate Systematics 129

within Stygnommatidae is highly dubious as the twoIndonesian lsquostygnommatidsrsquo are either highly autapomorphic(Stygnomimus conopygus (Roewer 1927)) or described on the

basis of a generic female that is not readily distinguishable fromfemales of other species (Stygnomimus malayensis (Suzuki1970))

Fig 18 Strict consensus of tree topologies obtained by all phylogenetic analyses

130 Invertebrate Systematics P P Sharma and G Giribet

Previous efforts to assess the systematic validity of Samooideaby means of molecular sequence data were limited insofar asonly two Samoidae three Biantidae (all Metabiantes) and twoStygnommatidae were sampled (Giribet et al 2010) Thesampling of Samoidae was especially problematic only asingle Neotropical adult (Pellobunus) and one African juvenilesamoid (lsquoSamoidae gen sprsquo) were included The designation ofthe latter is suspect as juveniles of Samoidae are oftenindistinguishable from the juveniles of other lineages becausemany diagnostic secondary sexual characters in Grassatores(eg spines and incrassate appendages) are not acquired untilafter several postembryonic stages (Townsend et al 2009)

In the present study though the type genus of Samoidae(Samoa from Samoa) was not available we sequenced theclosely related genus Badessa (from Fiji collected byP P S) as well as additional Biantidae and StygnommatidaeOur analyses recovered a monophyletic Samooidea (excludingEscadabiidae and Kimulidae BS = 53 PP = 062) withSamoidae sensu stricto (Pellobunus +Badessa BS = 100PP = 100) nested within a paraphyletic Stygnommatidae aplacement that is supported (BS = 87 PP = 100) Bycontrast the African lsquosamoidrsquo is sister to the AfricanBiantidae a relationship that is also well supported(BS = 100 PP = 100) These relationships suggest a basal

Fig 19 Cladogram of male genitalic evolution in South-east Asian families superimposed upon a schematised molecular phylogeny based on ML and BIanalyses of all molecular data Exemplars (a) Pseudoepedanus doiensis Suzuki 1969 (redrawn from Suzuki 1969) dorsal view (b) Pseudoepedanus doiensisSuzuki 1969 (redrawn from Suzuki 1969) ventral view (c) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) ventral view(d) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) dorsal view (e) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki1976) dorsal view (f) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki 1976) ventral view (g) Petrobunus torosus lateral view (h) ZalmoxidagibberaSuzuki 1969 dorsal view (i)Zalmoxida sp (MCZDNA102677) dorsolateral view (j)Metatithaeus rubidusSuzuki 1969 (redrawn fromSuzuki 1969)ventral view (k)Tithaeus kokutnusSuzuki 1985 (redrawn fromSuzuki 1985) ventral view (l)Tithaeus similisSuzuki 1985 (redrawn fromSuzuki 1985) ventralview (m)DongmoaoshimensisSuzuki 1964 (redrawn fromSuzuki 1964) ventral view (n)Bonea longipalpisSuzuki 1977 (redrawn fromSuzuki 1977) ventralview (o) Santobius annulipes Soslashrensen 1886 (redrawn from Kury and Machado 2009) ventral view (p) Lomanius longipalpus mindanaoensis Suzuki 1977(redrawn from Suzuki 1977) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 131

dichotomy within Samooidea that corresponds to one groupof Neotropical and Pacific lineages and a second group ofAfrican lineages However as we were unable to samplestenostygnine (Neotropical) and Indo-Pacific Biantidae aswell as numerous monotypic genera dubiously placed inSamoidae biogeographical extrapolations for Samooidea aretenuous (discussed below)

The internal relationships of Samooidea suggest that themorphology of Samoidae may have evolved convergently Asthe African samoid is a juvenile (the same specimen previouslysequenced by Giribet et al 2010 now sequenced for additional28S rRNA and other genes) we cannot rule out the possibility ofa monophyletic Samoidae that includes African species (thespecimen in question could be a juvenile biantid) In any casethe paraphyly of Stygnommatidae and putative polyphyly ofSamoidae strongly advocate systematic revision of samooidfamilies as currently defined corroborating hypotheses of non-monophyly based on morphology (Peacuterez Gonzaacutelez 2007 PeacuterezGonzaacutelez and Kury 2007) Our sampling of these families isinsufficient to advocate specific taxonomic action but an ongoing

study of samooidean systematics will shed more light on thevalidity of constituent families (A Peacuterez Gonzaacutelez work inprogress)

Biogeography of Zalmoxoidea and Samooidea

While most superfamilies of Grassatores are restricted to aspecific part of the tropics (eg Neotropics South-east Asia)two are distributed in multiple biogeographical provincesSamooidea occurs in the Neotropics and Afrotropics withquestionable records from South-east Asia Zalmoxoidea isconcentrated in the Neotropics with the exception of oneIndo-Pacific lineage of Zalmoxidae (represented here byZalmoxis sp) The ages and distributions of Samooidea andZalmoxoidea suggest that their biogeography was influencedby the fragmentation of West Tropical Gondwana ndash causingthe former to diverge basally throughout West TropicalGondwanan terranes and the latter to become isolated to theNeotropics (with possible subsequent dispersal)

Fig 20 Ancestral range reconstructions for Samooidea +Zalmoxoidea inferred by Lagrange using stratified models corresponding to two vicariant events(indicated by dotted lines) Coloured squares at terminals indicate ranges occupied by sampled species Coloured squares on nodes indicate ranges reconstructedfor hypothetical ancestors Numbers on nodes indicate relative probability of ranges reconstructed

Fig 21 Best hypothesis of Laniatores relationships based on all available evidence Bracketed nodes indicate non-monophyletic entities Dashed line indicatesambiguity in the placement of Sandokanidae (alternatively placed as shown or as sister to Podoctidae) Exemplars of Laniatores diversity are Synthetonychiaoliveae (Synthetonychiidae) Equitius doriae (Triaenonychidae) Hadziana clavigera (Travuniidae) Erebomaster flavescens flavescens (Cladonychiidae)Scotolemon lespesi (Phalangodidae) Palaeoncopus gunung (Sandokanidae) Santobius sp (Podoctidae) Tithaeus sp (Tithaeidae) Petrobunus spinifer(Petrobunidae) Alloepedanus sp (Epedanidae) Hoplobunus sp (Stygnopsidae) Torreana spinata (Agoristenidae) Stygnoplus clavotibialis (Stygnidae)Metalibitia paraguayensis (Cosmetidae)Acutisoma longipes (Gonyleptidae)Conommaoedipus (Pyramidopsgroup)Mysorea thaiensis (Assamiidae)Lacurbssp (Biantidae) Stygnomma sp (Stygnommatidae) Badessa sp (Samoidae) Guasinia sp (Guasiniidae) Icaleptes sp (Icaleptidae) Fissiphallius chicoi(Fissiphalliidae) Zalmoxis sp (Zalmoxidae) Kimula goodnightiorum (Kimulidae)

132 Invertebrate Systematics P P Sharma and G Giribet

Molecular phylogeny of Laniatores Invertebrate Systematics 133

To test this hypothesis we conducted likelihood analysisof range evolution using the program Lagrange (Ree et al2005 Ree and Smith 2008) for the clade (Zalmoxoidea +Samooidea) The stratified analysis resulted in a globalmaximum likelihood of ndashlnL= 1556 outperforming anunconstrained analysis that did not include any dispersalconstraints (ndashlnL= 1676) Likelihood analysis of rangeoptimisation (Fig 20) indicates that the ancestral range ofSamooidea includes both the Afrotropics and the Neotropics(relative probability pr = 1000) but a subsequent split occursbetween an African lineage (pr = 1000) and a NeotropicalIndo-Pacific lineage with a Neotropical ancestral range (pr = 0986)Samoidea of the Indo-Pacific occur on young oceanic islands(eg Fiji Samoa) indicating recent transoceanic dispersal fromthe Neotropics

Ancestral range reconstructions for Samooidea are allconsistent with estimated divergence times for these clades(diversification of Samooidea predates the rifting of WestAfrica from northern South America) favouring an underlyingvicariant process for the basal topology with subsequent recentdispersal events However these results are contingent upon thepresent sampling which does not include all samooid lineages(eg stenostygnine Biantidae) but basal range reconstructionsare likely unaffected (eg Stenostygninae is exclusivelyNeotropical)

In contrast the ancestor of Zalmoxoidea is reconstructedas singularly Neotropical (pr = 0996) This is consistent withisolation of a zalmoxoid ancestor to Amazonia which thenradiated ~191Mya Subsequent ancestral ranges are alsoreconstructed as Neotropical with high relative probabilityHowever the ancestral range of the clade (Icaleptidae +Fissiphalliidae + Zalmoxidae) is ambiguously reconstructedas either Neotropical (pr = 0935) or Neotropical + Indo-Pacific(pr = 0064) as is the split between Fissiphalliidae andZalmoxidae (Neotropical pr = 0856 Neotropical + Indo-Pacific pr = 0141)

These results suggest that the Indo-Pacific lineage ofZalmoxidae which split from Neotropical Zalmoxidae ~83Myais likely the result of long-distance dispersal from the NeotropicsHowever due to the persistence of transantarctic connectionsbetween the Australian plate and temperate South America untilthe Tertiary a competing vicariant scenario cannot be ruled outwithout densely sampling zalmoxid diversity The biogeographyof Zalmoxidae is presently being explored in greater detail in aseparate study (P P Sharma unpubl data)

Finally the ancestral range of (Samooidea + Zalmoxoidea)includes both Africa and the Neotropics (pr = 0957) consistentwith a tropical West Gondwanan ancestor This resultlends circumstantial evidence to a sister relationship of theAfrotropical families (Assamiidae + Pyramidopidae) and theclade (Samooidea + Zalmoxoidea) recovered in all analyses

The diversification of Grassatores

While numerous interfamilial relationships are supported inthis study particularly among gonyleptoid and zalmoxoidfamilies some relationships between superfamilies ofGrassatores are not supported and are contingent upon

analytical treatments namely the deployment of substitutionmodels and data partitioning (Fig 21) The cause of thisinstability could be related to insufficient data particularly inthe EF-1a partition (the length of an intron which can exceed400 bp in some taxa makes this gene particularly difficult toamplify) However examination of clade divergence timessuggests that rapid diversification of Grassatores lineagescould in part augment phylogenetic uncertainty in basal partsof the topology

The split between Phalangodidae and the remainingGrassatores is estimated to have occurred ~302Mya but aseries of divergences resulted in the origin of all superfamiliallineages between 232 and 271Mya Relative to the estimatedage of Laniatores (348Mya) this 39-million-year period isremarkably narrow and inherently problematic as the amountof phylogenetic signal for a given stem subtending a node isdirectly proportional to the amount of time that the stem inquestion spans (Lanyon 1988 Rokas and Carroll 2006) Thesmall internal edge lengths of the stems corresponding to basaldivergences of non-phalangodid Grassatores (Figs 15 16)combined with the ancient age of lineages derived from thesedivergences result in relationships that are difficult to estimatewithout a large amount of sequence data andor the inclusion ofdata that are less afflicted by homoplasy (because longer edgelengths imply more indel and substitution events on edges)(Whitfield and Lockhart 2007)

We additionally observe that the origins of most Grassatoressuperfamilies occur in the wake of the end-Permian massextinction (~254Mya) Rapid radiation in the wake of a massextinction has occurred in multiple metazoan lineagesthe putative result of relaxed selection and opening ofpreviously occupied ecological niche space (Labandeira andSepkoski 1993 Sahney and Benton 2008) The rapiddiversification of early Grassatores lineages could be anexample of this phenomenon but this hypothesis is difficult totest in the absence of Mesozoic Grassatores fossils (reviewed byDunlop 2007)

Finally we observe that contrary to traditional hierarchiesproposed for Laniatores many of the clades recovered in ouranalyses correspond to geographical regions particularly in thecase of Grassatores For example the southern hemispheretriaenonychids are restricted to temperate Gondwananlandmasses Gonyleptoidea and their sister group Stygnopsidaeform a Neotropical (AmazonianMesoamericanAntillean) cladethat excludes Assamiidae which has been hypothesised to be amember of a broader Gonyleptoidea (Kury and Cokendolpher2000 Mendes and Kury 2007) In our analyses Assamiidae isin fact a member of a largely Afrotropical clade together withthe Pyramidopidae South-east Asian families usually form oneclade (at most two) albeit with limited support Samooideafamilies are divided into two clusters African and NeotropicalWith one exception (described above) Zalmoxoidea is restrictedto the Neotropics The ages that we estimate for Laniatoresradiations are consistent with ancient diversification beforethe fragmentation of Pangaea An ancient diversification inconjunction with the climatic stability of the tropics may in partexplain the comparatively greater diversity of the armouredharvestmen with respect to the other Opiliones suborders

134 Invertebrate Systematics P P Sharma and G Giribet

Acknowledgements

Weare indebted toPeter J Schwendingerwho collected andprovidedmost ofthe material for study from South-east Asia Some Thai and most of theNeotropical Laniatores were obtained from the TIGER (Thailand InventoryGroup for Entomological Research) and LLAMA (Leaf Litter Arthropods ofMeso-America) projects toC Lienhard and J Longino respectivelyMaterialfrom Madagascar was generously contributed by Charles Griswold and theCalifornia Academy of Sciences Jesse Czekanski-Moir in conjunction withthe Belau NationalMuseum contributed elusive specimens from Palau AbelPeacuterezGonzaacutelez identifiedmanyNeotropical species included in the study andcontributed specimens fromCubaRicardoPinto-da-Rocha identified someofthe live photographed animals from the Neotropics Discussions with RonaldMClouseAbelPeacuterezGonzaacutelezAdrianoBKury andCarlosEPrieto refinedmanyof the ideas presentedhereTwoanonymous reviewers and the associateeditor provided comments that helped to improve an earlier version ofthis manuscript Laura Leibensperger sorted and accessioned TIGER andLLAMA material as well as MCZ type material Adam Graham and theCenter forNanoscaleStudies atHarvardUniversityprovided support forSEMwork Collecting efforts in New Caledonia were greatly facilitated by theguidance of Herveacute Jourdan (Institut de rechercheacute pour de developpementNoumea) and his teammembers Collecting efforts in Fiji weremade possibleby Marika Tuiwawa (University of the South Pacific Suva) and his teammembers Hilda Waqa and Tokasaya lsquoToxrsquo Cakacaka we are especiallygrateful to Tox for his good company during fieldwork and to his familyfor graciously enabling a visit toOvalau SuzieYee Shawprovided invaluablelogistical support in Fiji and her sons Colin and Joshua Yee Shaw assistedwith sorting Fijian material Fieldwork in Indonesia and West Africa wassupported by two MCZ Putnam Expedition Grants awarded to RonaldM Clouse and G G (2006) and to G G (2009) respectively Fieldworkin New Caledonia was supported by the Goelet award the Kalathia FamilyTrust and the Explorers Club awarded to P P S in 2006 Fieldwork in Fijiand in Palauwas supported by twoMCZPutnamExpeditionGrants awardedto P P S (2008) and to Ronald M Clouse and P P S (2010) respectivelyP P S was supported by a Faculty of Arts and Sciences Graduate Fellowshipfrom Harvard University

References

Castresana J (2000) Selectionof conservedblocks frommultiple alignmentsfor their use in phylogenetic analysis Molecular Biology and Evolution17 540ndash552

Colgan D J McLauchlan A Wislon G D F Livingston S MacaranasJ Edgecombe G D Cassis G and Gray M R (1998) Molecularphylogenetics of the Arthropoda relationships based on histone H3and U2 snRNA DNA sequences Australian Journal of Zoology 46419ndash437 doi101071ZO98048

DaSilva M B and Gnaspini P (2009) A systematic revision ofGoniosomatinae (Arachnida Opiliones Gonyleptidae) with a cladisticanalysis and biogeographical notes Invertebrate Systematics 23530ndash624 doi101071IS09022

DaSilva M B and Pinto-da-Rocha R (2010) Systematic review andcladistic analysis of the Hernandariinae (Opiliones Gonyleptidae)Zoologia 27 577ndash642

Derkarabetian S Steinmann D B and Hedin M (2010) Repeatedand time-correlated morphological convergence in cave-dwellingharvestmen (Opiliones Laniatores) from montane western NorthAmerica PLoS ONE 5 e10388 doi101371journalpone0010388

Drummond A J and Rambaut A (2007) BEAST Bayesian evolutionaryanalysis by sampling trees BMC Evolutionary Biology 7 214doi1011861471-2148-7-214

Drummond A J Ho S Y W Phillips M J and Rambaut A (2006)Relaxed phylogenetics and dating with confidence PLoS Biology 4 e88doi101371journalpbio0040088

Dunlop J A (2007) Paleontology In lsquoHarvestmen The Biology ofOpilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 247ndash265 (Harvard University Press Cambridge MA USA)

Dunlop J A and Anderson L I (2005) A fossil harvestman (ArachnidaOpiliones) from theMississippian of East Kirkton Scotland The Journalof Arachnology 33 482ndash489 doi10163604-791

Dunlop JAAndersonL IKerpH andHassH (2003)Preservedorgansof Devonian harvestmen Nature 425 916 doi101038425916a

Dunlop J A Anderson L I Kerp H and Hass H (2004) A harvestman(Arachnida Opiliones) from the Early Devonian Rhynie chertsAberdeenshire Scotland Transactions of the Royal Society ofEdinburgh Earth Sciences 94 341ndash354

Edgar R C (2004) MUSCLE multiple sequence alignment with highaccuracy and high throughput Nucleic Acids Research 32 1792ndash1797doi101093nargkh340

Edgecombe G D and Giribet G (2006) A century laterndash a total evidencere-evaluation of scutigeromorph centipedes (Myriapoda Chilopoda)Invertebrate Systematics 20 503ndash525 doi101071IS05044

Edgecombe G D Giribet G and Wheeler W C (2002) Phylogeny ofHenicopidae (Chilopoda Lithobiomorpha) a combined analysis ofmorphology and five molecular loci Systematic Entomology 2731ndash64 doi101046j0307-6970200100163x

FolmerOBlackMHoehWLutzR andVrijenhoekRC (1994)DNAprimers for amplification ofmitochondrial cytochrome c oxidase subunit Ifrom diverse metazoan invertebrates Molecular Marine Biology andBiotechnology 3 294ndash299

Forster R R (1954) The New Zealand harvestmen (sub-order Laniatores)Canterbury Museum Bulletin 2 1ndash329

Giribet G and Kury A B (2007) Phylogeny and biogeography InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 62ndash87 (Harvard University PressCambridge MA USA)

Giribet G Carranza S Baguntildeagrave J Riutort M and Ribera C (1996) Firstmolecular evidence for the existence of a Tardigrada +Arthropoda cladeMolecular Biology and Evolution 13 76ndash84

Giribet G Rambla M Carranza S Baguntildeagrave J Riutort M and Ribera C(1999) Phylogeny of the arachnid order Opiliones (Arthropoda)inferred from a combined approach of complete 18S and partial 28Sribosomal DNA sequences and morphology Molecular Phylogeneticsand Evolution 11 296ndash307 doi101006mpev19980583

Giribet G Edgecombe G D Wheeler W C and Babbitt C (2002)Phylogeny and systematic position of Opiliones a combined analysis ofchelicerate relationships using morphological and molecular dataCladistics 18 5ndash70

Giribet G Vogt L PeacuterezGonzaacutelez A Sharma P andKury A B (2010)A multilocus approach to harvestman (Arachnida Opiliones) phylogenywith emphasis on biogeography and the systematics of LaniatoresCladistics 26 408ndash437

Hara M R Gnaspini P and Machado G (2003) Male egg guardingbehavior in the Neotropical harvestman Ampheres leucopheus (Mello-Leitatildeo 1922) (Opiliones Gonyleptidae) The Journal of Arachnology 31441ndash444 doi101636S02-32

Hedin M Derkarabetian S McCormack M and Richart C (2010) Thephylogenetic utility of the nuclear protein-encoding gene EF-1a forresolving recent divergences in Opiliones emphasizing intronevolution The Journal of Arachnology 38 9ndash20 doi101636HA09-491

Huelsenbeck J P and Ronquist F (2005) Bayesian analyses of molecularevolution using MrBayes In lsquoStatistical Methods in MolecularEvolutionrsquo (Ed R Nielsen) (Springer New York)

HunterRK ProundDNBurns JA Tibbetts JA andTownsendVR(2007) Parental care in the Neotropical harvestman Phareicranauscalcariferus (Opiliones Cranaidae) The Journal of Arachnology 35199ndash201 doi101636ST06-181

Molecular phylogeny of Laniatores Invertebrate Systematics 135

Kocher T D Thoma W K Meyer A Edwards S V Paumlaumlbo SVillablanca F X and Wilson A C (1989) Dynamics ofmitochondrial DNA evolution in animals amplification andsequencing with conserved primers Proceedings of the NationalAcademy of Sciences of the United States of America 86 6196ndash6200doi101073pnas86166196

Kury A B (1993) Anaacutelise filogeneacutetica de Gonyleptoidea (ArachnidaOpiliones Laniatores) PhD Thesis Universidade de Satildeo Paulo SatildeoPaulo Brazil

Kury A B (2003) Annotated catalogue of the Laniatores of the NewWorld (Arachnida Opiliones) Revista Ibeacuterica de AracnologiacuteaVolumen Especial Monograacutefico 1 1ndash337

Kury A B (2006) Checklist of valid genera of Opiliones of theWorld Museu NacionalUFRJ Available from httpwwwmuseunacionalufrjbrmndiAracnologiachecklaniatorhtm [Accessed1 February 2011]

Kury A B (2007) Podoctidae Roewer 1912 In lsquoHarvestmen The Biologyof Opilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 221ndash224 (Harvard University Press Cambridge MA USA)

Kury A B and Cokendolpher J C (2000) Opiliones In lsquoBiodiversidadTaxonomiacutea y Biogeografiacutea de Artoacutepodos de Meacutexico Hacia una Sintesisde su Conocimientorsquo vol 2 (Eds J E Llorente E Gonzaacutelez andN Papavero) pp 137ndash157 (Universidad Nacional Autoacutenoma deMexico Meacutexico DF Mexico)

Kury A B and Machado G (2009) Notes on Santobius from Vanuatu andFiji and the status of the eastern Melanesian Ibalonius (ArachnidaOpiliones Podoctidae) Zoological Studies 48 524ndash538

Kury A B and Peacuterez G A (2002) A new family of Laniatores fromnorthwestern South America (Arachnida Opiliones) Revista Ibeacuterica deAracnologiacutea 6 3ndash11

Labandeira C C and Sepkoski J J (1993) Insect diversity in the fossilrecord Science 261 310ndash315 doi101126science11536548

Lanyon S M (1988) The stochastic mode of molecular evolutionwhat consequences for systematic investigations The Auk 105565ndash573

Lian W-G Zhu M-S and Kury A B (2008) A new species of the genusTithaeus from China (Arachnida Laniatores Epedanidae) Zootaxa1841 53ndash60

Machado G Requena G S Buzatto B A Osses F and Rossetto L M(2004) Five new cases of paternal care in harvestmen (ArachnidaOpiliones) implications for the evolution of male guarding in theNeotropical family Gonyleptidae Sociobiology 44 577ndash598

Martens J (1976) Genitalmorphologie System und Phylogenie derWeberknechte (Arachnida Opiliones) Entomologica GermanicaZeitschrift fuumlr das Gesamtgebiet der Wissenschaftlichen Entomologie3 51ndash68

Martens J (1980) Versuch eines phylogenetischen Systems der OpilionesIn lsquoProceedings 8th International Congress of Arachnology ViennaVerhandlungenrsquo (Ed J Gruber) pp 355ndash360 (Vienna Austria)

Martens J (1986) Die Grossgliederung der Opiliones und die Evolutionder Ordnung (Arachnida) Actas del X Congreso Internacional deAracnologiacutea Jaca 1 289ndash310

Martens J (1993) Further cases of paternal care in Opiliones (Arachnida)Tropical Zoology 6 97ndash107

Martens J and Schwendinger P S (1998) A taxonomic revision ofthe family Oncopodidae I New genera and new species of GnomulusThorell (Opiliones Laniatores) Revue Suisse de Zoologie 105 499ndash555

Martens J Hoheisel U and Goumltze M (1981) Vergleichende Anatomieder Legeroumlhren der Opiliones als Beitrag zur Phylogenie der Ordnung(Arachnida) Zoologische Jahrbucher Abteilung fur Anatomie undOntogenie der Tiere 105 13ndash76

Mello-Leitatildeo C F (1949) Famiacutelias subfamiacutelia espeacutecies e gecircneros novos deopiliotildees e notas de sinoniacutemia Boletim do Museu Nacional Nova SeacuterieZoologia Rio de Janeiro 94 1ndash33

Mendes A C and Kury A B (2007) Stygnopsidae Soslashrensen 1932 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 232ndash234 (Harvard University PressCambridge MA USA)

Mendes A C and Kury A B (2008) Intercontinental Triaenonychidae ndashthe case of Ceratomontia (Opiliones Insidiatores) The Journal ofArachnology 36 273ndash279 doi101636CH07-931

Murphree C S (1988) Morphology of the dorsal integument of tenopilionid species (Arachnida Opiliones) The Journal of Arachnology16 237ndash252

Park J K andOacuteFoighilD (2000) Sphaeriid and corbiculid clams representseparate heterodont bivalve radiations into freshwater environmentsMolecular Phylogenetics and Evolution 14 75ndash88 doi101006mpev19990691

Peacuterez Gonzaacutelez A (2006) lsquoRevisatildeo Sistemaacutetica e Anaacutelise Filogeneacutetica deStygnommatidae (Arachnida Opiliones Laniatores)rsquo (Museu NacionalUniversidade Federal de Rio de Janeiro Rio de Janeiro Brazil)

Peacuterez Gonzaacutelez A (2007) Stygnommatidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 229ndash232 (Harvard University PressCambridge MA USA)

Peacuterez Gonzaacutelez A (2011) New familial assignment for two harvestmanspecies of the infraorder Grassatores (Arachnida Opiliones Laniatores)Zootaxa 2757 24ndash28

Peacuterez Gonzaacutelez A and Kury A B (2007) Samoidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 224ndash226 (Harvard University PressCambridge MA USA)

Pineau P Henry M Suspegravene R Marchio A Dettai A Debruyne RPetit T Leacutecu A Moisson P Dejean A Wain-Hobson S andVartanian J-P (2005) A universal primer set for PCR amplificationof nuclear histone H4 genes from all animal species Molecular Biologyand Evolution 22 582ndash588 doi101093molbevmsi053

Pinto-da-Rocha R (1997) Systematic review of the Neotropical familyStygnidae (Opiliones Laniatores Gonyleptoidea) Arquivos deZoologia 33 163ndash342

Pinto-da-Rocha R and Kury A B (2003a) Phylogenetic analysis ofSantinezia with description of five new species (Opiliones LaniatoresCranaidae) The Journal of Arachnology 31 173ndash208 doi1016360161-8202(2003)031[0173PAOSWD]20CO2

Pinto-da-Rocha R and Kury A B (2003b) Third species of Guasiniidae(Opiliones Laniatores) with comments on familial relationships TheJournal of Arachnology 31 394ndash399 doi101636H02-59

Pinto-da-Rocha R and Kury A B (2007) Agoristenidae Silhavy 1973 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 171ndash173 (Harvard University PressCambridge MA USA)

Posada D (2005) Modeltest 37 Program and documentation available athttpdarwinuvigoes [Accessed 28 May 2011]

Posada D and Buckley T (2004) Model selection and model averaging inphylogenetics advantages of Akaike information criterion and Bayesianapproaches over likelihood ratio tests Systematic Biology 53 793ndash808doi10108010635150490522304

Posada D and Crandall K A (1998) Modeltest testing the model ofDNA substitution Bioinformatics (Oxford England) 14 817ndash818doi101093bioinformatics149817

Prendini L Weygoldt P and Wheeler W C (2005) Systematics of theDamon variegates group of African whip spiders (ChelicerataAmblypygi) evidence from behaviour morphology and DNAOrganisms Diversity amp Evolution 5 203ndash236 doi101016jode200412004

Rambaut A E (1996) Se-Al sequence alignment editor University ofOxford UK Program and documentation available at httptreebioedacuksoftwarefigtree [Accessed 21 December 2009]

136 Invertebrate Systematics P P Sharma and G Giribet

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 9: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

pigmentation and in the armature of the opisthosomal sternites(two pairs of tubercles on sternite 7 and one pair on sternite 8)Proximal region of femora of all legs with single blunt peg Penis

more elongate than in congeners in the shape of a spear bladewith two pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100875] inparentheses) 168 (164) greatest width of prosoma 076 (076)greatest width of opisthosoma 126 (124) length-to-width ratio133 (132) (Figs 3 6) Body campaniform yellow to darkorange (in alcohol depending on incidence of light) almostentirely with a dense microgranulate surface microstructureEyes present on low well developed ocularium withoutmedian ocularial tubercle Ocularium 012 (012) long and024 (019) wide removed from anterior margin of carapaceAnterior margin of carapace with two pairs of blunt pegs abovecoxae of leg I with outer pair of sub-rectangular shape (Fig 4)Scutal grooves of mesotergum indistinct with mesotergal areasdistinguishable only by transverse bands of pigmentation Freetergites without large tubercles

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged with setosetubercles on anterior margin Genital operculum sub-triangularSpiracles not concealed adjacent to row of tuberclesOpisthosomal sternite 7 with two pairs of large tuberclesdisplaced away from midline Opisthosomal sternite 8 withone pair of smaller tubercles flanking midline Anal plateunarmed (Fig 4)

Chelicerae (Fig 5) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassatefree of ornamentation with dorsal margin bearing several setaeDistal article with delicate dentition free of ornamentation

Palpi (Fig 5) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setae Palpalfemur with two proximal ventral spines in a row and two paireddistal spines (one ventral one mesoventral) Palpal patella with asingle spine directed inward Palpal tibiawith twopairs of spinesand a small basal setose tubercle Palpal tarsus with two pairs ofspines Palpal claw nearly as long as palpal tarsus

Legs IndashIV (Fig 5) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge ventral tubercle and three smaller mesodorsal tuberclesFemora IndashIV with one basal peg on ventral surface with peg freeof granulation Femur III arcuate in males and females free oftubercles Femur IVandpatella IVofmalewith two irregular rowsof mesalmesoventral tubercles Tibia IV of male with multipleirregular rows of tubercles with ventral tubercles enlarged andbulbous distally ventral tubercles enlarged but conical in shapeMetatarsi IndashIV divided distally with distal portion lackingornamentation metatarsus IV of male with two rows of mesalmesoventral tubercles Tarsus IV unornamented Femaletrochanter IV not enlarged leg IV free of tubercles Tarsalclaws IndashIV smooth unmodified Tarsal segmentation 3 5 5 5

Penis (Fig 6) elongate narrow and slender in the shape ofa spear blade Lateral margins gradually coalescing dorsallyresulting in spoon shape in dorsal aspect Ventral surface withtwo pairs of setae lateral margins with four setae each Glans

a

b

c d

050 mm

050 mm

100 microm100 microm

Fig 6 Petrobunus schwendingeri sp nov (a) Female paratype dorsalview (b) female paratype ventral view (c) pars distalis of penis lateral viewand (d) ovipositor dorsal view (one of four dorsal setae broken duringmounting process)

114 Invertebrate Systematics P P Sharma and G Giribet

free in apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 6) composedof twoapical lobes eachbearingtwo dorsal setae one ventral seta and two apical setae Distalsurfaces of apical lobes smooth Bases of dorsal setae in contactBases of ventral setae set apart by a distance approximately equalto one-third the width of the ovipositor

Distribution

Known only from type locality

Etymology

The specific epithet honours Dr Peter J Schwendinger curator atthe MHNG for his inspiration and tireless efforts to advanceknowledge of South-east Asian arachnid fauna

Petrobunus spinifer sp nov

(Figs 7ndash10 Tables 5 6)

Material examined

Holotype Male (MHNG) Philippines Palawan El Nido RegionBulalacao Waterfall primary forest 200ndash450 alt (111304100N1192800000E) leg A Schulz 30xi2009 (ex MHNG PAL-0905)

Paratypes 12 lt 21 (MHNG) same collecting data as holotype (exMHNG PAL-0905) 3 lt (1 dissected for genitalia [MCZ 100888] andmounted on one SEM stub [MCZ 100886] 2 in ethanol [MCZ100877ndash100878]) 3 (1 dissected for genitalia [MCZ 100889] 2 inethanol [MCZ 100879ndash100880]) same collecting data as holotype (exMHNGPAL-0905) 2lt (1mountedononeSEMstub [MCZ100882] 1mounted on two SEM stubs [MCZ 100884ndash100885]) PhilippinesPalawan El Nido Region Mt Singkukan primary forest 300ndash400alt (111300700N 1192805100E) leg A Schulz 26xi2009 (exMHNG PAL-0904)

Additional material studied 6 juveniles same collecting data as holotype(MHNG PAL-0905) 1 lt Philippines Palawan El Nido Region MtSingkukan primary forest 400ndash600 alt (111303800N 1192805500E)leg A Schulz 24xi2009 (MHNG PAL-0903) 6 lt 8 PhilippinesPalawan El Nido Region Mt Singkukan primary forest 300ndash400 alt(111300700N 1192805100E) leg A Schulz 26xi2009 (MHNG PAL-0904)

Diagnosis

Small petrobunidwith unarmedoculariumwithmesotergum freeof pigmentation Distinct from congeners in the armature of thefreeopisthosomal tergites andanal plate (setose tubercules) andofthe opisthosomal sternites (sternites 3ndash6 with single tubercle oneach side forming a line under each coxa IV sternite 7 with twolarge spines directly anteroventrally and sternite 8with an evenlydistributed belt of eight smaller spines) Femur IV of male with asingle tubercle basoventrally Penis narrow in the shapeof a spearblade with three pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100879] inparentheses) 130 (115) greatest width of prosoma 058 (056)greatest width of opisthosoma 079 (080) length-to-width ratio165 (144) (Figs 5 8) Body campaniform yellow (in alcoholdepending on incidence of light) almost entirely with a densemicrogranulate surface microstructure Eyes present on lowwell developed ocularium without median ocularial tubercleOcularium 012 (010) long 018 (016) wide removed fromanterior margin of carapace Anterior margin of carapace withtwo pairs of conical pegs above coxae of leg I Scutal grooves ofmesotergum indistinct free of transverse bands of pigmentationFree tergites with regular belts of setose tubercles (Fig 5)

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged withsetose tubercules on anterior margin Genital operculumsub-triangular Spiracles not concealed anterior to row oftubercules Opisthosomal sternites 3ndash6 each with belt of smallregular tubercles Opisthosomal sternite 7 with two large setosespines directly anteroventrally Opisthosomal sternite 8 withbelt of regular tubercles Two rows of tubercles alignedanteroposteriorly under outer limit of coxae IV Anal platearmed with tubercles (Fig 6)

Chelicerae (Fig 7) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassate

Table 3 Leg measurements of Petrobunus schwendingeri holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 013012 049009 028014 034011 051005 042007 217Leg II 017016 069010 029014 055010 058005 079007 307Leg III 015016 054013 028017 046013 052007 047006 242Leg IV 045045 075014 037020 071019 090009 054007 372

Table 4 Leg measurements of Petrobunus schwendingeri female paratype (ex MCZ DNA103572) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 012015 049012 027013 034010 044006 038007 204Leg II 013018 069011 031013 053010 054006 069006 289Leg III 013017 051012 028015 040012 047007 046006 225Leg IV 024023 061012 031017 050012 071008 052008 289

Molecular phylogeny of Laniatores Invertebrate Systematics 115

free of ornamentation with dorsal margin bearing severalsetae Distal article with delicate dentition free of ornamentation

Palpi (Fig 7) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setaePalpal femur with two proximal ventral spines in a row andtwo paired distal spines (one ventral one mesoventral) Palpalpatella with a single spine directed inward Palpal tibia with twopairs of spines and a small basal setose tubercle Palpal tarsuswith two pairs of spines Palpal claw nearly as long as palpaltarsus

Legs IndashIV (Fig 7) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge setose tubercle ventrally Femora IndashIV without basalpegs femur IV with one large tubercle ventrally Femur IIIarcuate in males and females free of tubercles Femur IV andpatella IV of male with irregular rows of mesalmesoventraltubercles Tibia IV of male with multiple irregular rows oflarge tubercles distally ventral tubercles small not bulbousMetatarsi IndashIV divided distally with distal portion lackingornamentation metatarsus IV of male with two rows ofmesalmesoventral tubercles Tarsus IV unornamented Femaletrochanter IV not enlarged leg IV free of tubercles Tarsal clawsIndashIV smooth unmodified Tarsal segmentation 3 5 5 6

Penis (Fig 8) narrow and slender in the shape of a spearblade Lateral margins gradually coalescing dorsally resultingin spoon shape in dorsal aspect Ventral surface with threepairs of setae lateral margins with four setae each Glans freein apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 8) composedof twoapical lobes eachbearingtwo dorsal setae one ventral seta and two apical setae Distalsurfaces of apical lobes smooth Bases of dorsal setae in contactBases of ventral setae set apart by a distance approximately equalto one-third the width of the ovipositor

a

b

c

050 mm

050 mm

050 mm

Fig 7 Petrobunus spinifer sp nov male holotype (a) Dorsal view (b)lateral view and (c) ventral view

a

b

200 microm

100 microm

Fig 8 Petrobunus spinifer sp nov male paratype (a) Ventral view and(b) dorsal view of anterior margin of carapace

116 Invertebrate Systematics P P Sharma and G Giribet

a

b

c

d

e

h

i

g

f

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

Fig 9 Petrobunus schwendingeri sp nov (a) Left chelicer ofmaleparatype (b) left palp ofmale paratype (c) left leg I ofmale paratype (d) left leg II ofmale paratype (e) right leg III ofmale paratype ( f ) right leg IV ofmale paratype (g) left legIV of female paratype (h) trochanter of right leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 117

Distribution

Known only from type locality and additional localities reportedhere

Etymology

The specific epithet an invariable noun in apposition refers to theenlarged belts of tubercles on the free tergites and opisthosomalsternites of this species Derived from Latin lsquospinarsquo meaninglsquospearrsquo or lsquodartrsquo and lsquoferrersquo meaning lsquoto carry or bearrsquo

Petrobunus torosus sp nov

(Figs 11ndash14 Tables 7 8)

Material examined

Holotype Male (MHNG) Philippines Palawan Puerto Princesa RegionSabang Underground National Park Daylight Hole and Lions Caveprimary forest 100ndash200 alt (100900600N1185301000E) legA Schulz6ndash8xii2009 (ex MHNG PAL-0907)

Paratypes 6 lt 13 (MHNG) same collecting data as holotype(ex MHNG PAL-0907) 3 lt (1 dissected for genitalia and mountedon three SEM stubs [MCZ 100894ndash100896] 2 in ethanol [MCZ100890ndash100891]) 3 (1 dissected for genitalia [MCZ 100902] andmounted on one SEM stub [MCZ 100897] 2 in ethanol [MCZ100892ndash100893]) same collecting data as holotype (ex MHNGPAL-0907) 1 lt (mounted on one SEM stub [MCZ100899]) and 3 (dissected for genitalia [MCZ 100901] and mounted on one SEM stub[MCZ 100898]) Philippines Palawan Puerto Princesa Region SabangUnderground National Park jungle trail (101105500N 1185405900E)leg A Schulz 4xii2009 (ex MHNG PAL-0906)

Additional material studied 6 juveniles same collecting data as holotype(MHNG PAL-0907) 12 lt 3 2 juveniles Philippines PalawanPuerto Princesa Region Sabang Underground National Park jungletrail (101105500N 1185405900E) leg A Schulz 4xii2009 (MHNGPAL-0906)

Diagnosis

Distinct from congeners in the well developed ocularium armedwith median tubercle Mesotergum free of pigmentation as inP spinifer but opisthosomal sternites without large spines(sternites 7ndash9 armed only with small low tubercles) Proximalregion of femora of all legs with single blunt peg Penis widenedin the base of the pars distalis stocky in the shapeof a spear bladewith three pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100892] inparentheses) 152 (150) greatest width of prosoma 070 (068)greatest width of opisthosoma 104 (108) length-to-width ratio

a

b

c d

050 mm

050 mm

20 microm

100 microm

Fig 10 Petrobunus spinifer sp nov (a) Female paratype dorsal view(b) female paratype ventral view (c) pars distalis of penis lateral view and(d) ovipositor dorsal view

Table 5 Leg measurements of Petrobunus spinifer holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011009 032008 022011 024008 034005 036005 159Leg II 011011 046008 018012 036009 040005 068005 219Leg III 014015 044012 024014 032013 043005 041004 198Leg IV 032038 050014 025017 050014 062008 028004 247

118 Invertebrate Systematics P P Sharma and G Giribet

146 (139) (Figs 11 14) Body campaniform yellow to darkorange (in alcohol depending on incidence of light) almostentirely with a dense microgranulate surface microstructureEyes present on low well developed ocularium with medianocularial tubercle Ocularium 011 (011) long 020 (021) wideremoved from anterior margin of carapace Anterior margin ofcarapace with two pairs of blunt pegs above coxae of leg I withouter pair of sub-rectangular andor bifid shape Scutal grooves ofmesotergum indistinct free of transverse bands of pigmentationFree tergites without large tubercles or spines (Fig 12)

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged with setosetubercles on anterior margin Genital operculum sub-triangularSpiracles not concealed anterior to row of tuberclesOpisthosomal sternites with irregular belts of roundedtubercles Anal plate unarmed (Fig 12)

Chelicerae (Fig 13) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassatefree of ornamentation with dorsal margin bearing several setaeDistal article with delicate dentition free of ornamentation

Palpi (Fig 13) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setae Palpalfemur with two proximal ventral spines in a row and two paireddistal spines (one ventral one mesoventral) Palpal patella with asingle spine directed inward Palpal tibiawith twopairs of spinesand a small basal setose tubercle Palpal tarsus with two pairs ofspines Palpal claw as long as palpal tarsus

Legs IndashIV (Fig 13) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge ventral tubercle and three smaller mesodorsal tuberclesFemora IndashIV with one basal peg on ventral surface with peg freeof granulation Femur III arcuate in males and females free oftubercles Femur IVandpatella IVofmalewith two irregular rowsof mesalmesoventral tubercles Tibia IV of male with multipleirregular rows of tubercles with ventral row enlarged and conicaldistally distal-most ventral tubercle composed of two fusedtubercles Metatarsi IndashIV divided distally with distal portionlacking ornamentation metatarsus IV of male with two rows ofmesalmesoventral tubercles Female trochanter IV not enlargedleg IV free of tubercles Tarsal claws IndashIV smooth unmodifiedTarsal segmentation 3 5 5 6

Penis (Fig 14) narrow in the shape of a spear blade widenednear base Lateral margins gradually coalescing dorsallyresulting in spoon shape in dorsal aspect Ventral surface with

Table 6 Leg measurements of Petrobunus spinifer female paratype (ex MHNG PAL-0905) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 033007 021010 024007 025005 029005 143Leg II 013011 037006 023010 034007 026005 051005 184Leg III 014014 029009 022013 029010 027005 035004 156Leg IV 017015 049008 025014 034010 045006 043004 213

a

b

c

050 mm

050 mm

050 mm

Fig 11 Petrobunus torosus sp nov male holotype (a) Dorsal view(b) lateral view and (c) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 119

threepairs of setae lateralmarginswith four setae eachGlans freein apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 14) composed of two apical lobes eachbearing two dorsal setae one ventral seta and two apicalsetae Distal surfaces of apical lobes smooth Bases of dorsalsetae in contact Bases of ventral setae set apart by a distanceapproximately equal to one-third the width of the ovipositor

Distribution

Known only from type locality and additional locality reportedhere

Etymology

The specific epithet refers to the stocky and robust appearanceof the fourth leg in the males of this species Derived from Latinlsquotorosusrsquo meaning lsquomuscularrsquo or lsquobulgingrsquo

Family TITHAEIDAE fam nov

Type genusTithaeusThorell 1891 by present designation andmonotypy

Type species Tithaeus laevigatus Thorell 1891 by original designation

Genera included Tithaeus Thorell 1891 new familial assignmentMetatithaeus Suzuki 1969 new familial assignment

Diagnosis

Medium-sized Grassatores with a low ocularium removed fromthe anterior margin of carapace that differ from Epedanidae inlacking a median spine In some species slight to large hump

situated anterior of ocularium Scutal region divided into fiveareas areas I and II not fused as opposed to EpedanidaeChelicerae typical basal segment not enlarged (as opposed toEpedanidae)Distinct fromPodoctidae in the lack of spines on legI and in the lack of a sexually dimorphic ocularium Tarsalformula 5 8+ 5 6 not reduced (as opposed to Sandokanidaeand Podoctidae) Distitarsi of legs I and II typically with twotarsalia distinguished from Petrobunidae in the trochanter of legIV not enlarged inmales Tarsi III and IVwith unmodified doubleclaws scopulae absent (as opposed to most Samooidea) Distalmargin of ventral plate of penis usually with deep cleft (mostTithaeus) or widening distally into setiferous and conicalstructure (Metatithaeus) glans with simple membranous lobecovering the stylus terminus of stylus either a bifurcate orslightly inflatable lobe absence of prominent parastylar lobes(distinguishing it from Petrobunidae) absence of a ring of setaesurrounding a capsula interna (found in Epedanidae) Ovipositorlobes typically with a pair of ventral and dorsal setae

Remarks

One of dozens of genera placed in the subfamily Phalangodinae(Phalangodidae) by Roewer (1912 1923 1949) Tithaeus wassubsequently extricated and transferred to Epedanidae by Kury(1993 2003 2006) on the basis of the male genitalia althoughthe placement was ambiguous given the absence of typicalepedanid morphology such as elongate and armed pedipalpian erect ocularial spine (absent in Dibuninae) the fusion of scutalareas I and II side-branches in the posterior claws and stoutdentition of the cheliceral fingers (Lian et al 2008) However

a

b

100 microm

100 microm

100 microm

100 microm

c

d

Fig 12 Petrobunus torosus sp novmale paratype (a)Dorsolateral view (b) dorsolateral viewof anteriormargin of carapace(c) ventrolateral view and (d) ventrolateral view of prosomal complex

120 Invertebrate Systematics P P Sharma and G Giribet

comparisons of the male genitalia of a phalangodid (Texella) anepedanid (Kilungius Saracinicinae) and Tithaeus suggested acloser relationship between Epedanidae and Tithaeus in spite ofmarked differences in the stylar lobe and the extent of the basalsac (Lian et al 2008)

Our phylogenetic analyses corroborate a closer relationshipbetween Epedanidae and Tithaeuswith respect to Phalangodidae(which is sister to the remaining Grassatores and thereforedistantly related to both lineages) but the clade Tithaeus+Metatithaeus neither nests within nor is sister to Epedanidae

a

b

c

d

e

h

i

g

f

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

Fig 13 Petrobunus torosus sp nov (a) Left chelicer of male paratype (b) left palp of male paratype (c) left leg I of maleparatype (d) right leg II of male paratype (e) left leg III of male paratype (f) left leg IV of male paratype (g) left leg IV offemale paratype (h) trochanter of left leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 121

in any of the topologies we examinedMoreover the cleft ventralplate forming two prongs in the male genitalia of many Tithaeusspecies in addition to the absence of a ring of setae surroundingthe capsula interna (typical of Epedanidae) suggest that Tithaeus

and related genera (eg Istithaeus Metatithaeus Tithaeommaetc) are not true epedanids but may be more closely related toeither (1) Podoctidae a hypothesis that is supported in someanalyses (bootstrap frequency in ML [BS] = 59 posteriorclade probability given by MrBayes [PP] = 097) or (2) theclade (Podoctidae + Sandokanidae) recovered by the BEASTtopology (posterior clade probability given by BEAST[PPBEAST] = 100)

The inclusion of Tithaeus-like Grassatores in Epedanidaerenders the latter para- or diphyletic and obscures a cleardiagnosis of epedanids as the morphology of Tithaeus (andMetatithaeus) does not accord with many epedanidsynapomorphies Moreover inclusion of Tithaeus andorMetatithaeus within a broader Podoctidae is also unjustifiedbecause this violates many of the synapomorphies ofPodoctidae such as (1) tuberclesspines in dorsal and ventralrows on leg I (2) tubercular bridges (3) a sexually dimorphicbasichelicerite and (4) a sexually dimorphic ocularium

Consequently we erect the family name Tithaeidaeseparating Tithaeus and Metatithaeus from EpedanidaeTithaeidae likely includes the monotypic Roewerian generaIstithaeus Kondosus Sterrhosoma and Tithaeomma but thestatus of these genera requires further investigation and will beaddressed in a forthcoming study

Distribution

Distributed throughout Sundaland the Thai-Malay PeninsulaSumatra Java and Borneo Also reported from northern Vietnamand southern China One doubtful record from West Timor(see Lian et al 2008)

Results

Phylogenetic analysis

Less sequence data are presently available for Briggsusflavescens (partial 28S and COI Derkarabetian et al 2010)with respect to the rest of the data matrix Consequently twoML analyses were conducted including and excluding Briggsusflavescens The ML analysis with all taxa resulted in a treetopology with lnL= ndash8372597 Repeating the analysis withoutBriggsus resulted in a tree topology with lnL= ndash8336108 Thetwo topologies are identical save for the internal relationships ofTravunioidea which includes Briggsidae (Fig 15) Inclusion ofBriggsidae recovers a diphyletic Cladonychiidae with Briggsussister to Holoscotolemon but these relationships are notsupported Exclusion of Briggsidae results in higher nodalsupport frequencies within Travunioidea and recovers a sisterrelationship of Sclerobunidae and the remaining Travunioidea(BS = 75) and a monophyletic Cladonychiidae + Travuniidae(BS = 77) sister to Trojanella Including Briggsus in theanalysis does not affect topology or nodal support in otherparts of the phylogeny Monophyly of Travunioidea isstrongly supported (BS = 100) in either case

Runs of MrBayes ver 312 reached stationarity in 2 000 000generations 2 500 000 generations (25) were hence discardedas burn-in The BI analysis with all taxa resulted in a topologylargely similar to theMLtree (Fig 16)Notable differences are therelative placements of the clade (Gonyleptoidea + Stygnopsidae)

a

b

c d

050 mm

050 mm

20 microm

20 microm

Fig 14 Petrobunus torosus sp nov (a) female paratype dorsal view(b) female paratype ventral view (c) pars distalis of penis lateral view and(d) ovipositor dorsal view

122 Invertebrate Systematics P P Sharma and G Giribet

and the South-east Asian group of families Some differencesexist with respect to supported nodes within superfamilies

Estimation of divergence times

The run of BEAST reached stationarity after 6 000 000generations 10 000 000 generations (20) were discarded asburn-in The tree topology recovered by BEAST (Fig 17) differsfromML andBI topologies in (1) the placement of Sandokanidaeand (2) the relationships between superfamilies Diversificationof Laniatores is dated at ~348Mya Diversification of majorlineages is estimated as follows (Travunioidea+Triaenonychidae)299Mya Grassatores 302Mya Assamiidae +Pyramidopsgroup 232Mya Gonyleptoidea + Stygnopsidae 246MyaGonyleptoidea 230Mya Samooidea + Zalmoxoidea 206Myaand a South-east Asian clade (including Sandokanidae)249Mya These results largely corroborate previous estimatesof divergence times (Giribet et al 2010) but confidence intervalsfor estimated ages are more precise A tree file of estimated agesand 95highest posterior density (HPD) intervals for all nodes isprovided as an Accessory Publication on the InvertebrateSystematics website

Whereas the basal topology of Grassatores is unstable andunsupported most familial and superfamilial relationshipsare consistently recovered across analyses A consensus oftopologies across all analyses is shown in Fig 18

Discussion

A molecular phylogeny of the armoured harvestmen has longproven elusive Laniatores comprises entire genera and familiesthat are endemic to particular provinces of the world In somecases higher taxonomic ranks do not even occur beyond specificislands (eg the New Zealand family SynthetonychiidaeForster 1954) Moreover Laniatores includes the majority ofall described Opiliones species (and over half of all describedfamilies) and new lineages continue to be discoveredConsequently previous efforts to assess Laniatores phylogenyhave been prone to undersampling numerous lineages such asAssamiidae Epedanidae and the superfamilies Samooidea and

Zalmoxoidea (eg Giribet et al 1999 2002 Shultz and Regier2001)

The present study with the inclusion of all families ofarmoured harvestmen described heretofore enables detailedinvestigation of internal relationships of Laniatores Ofprincipal interest are the phylogenetic placement of the twonew families of Laniatores erected herein and the systematicvalidity of defined superfamilies Many of the relationshipsrecovered in our analyses are consistent with traditionalhypotheses based on morphological studies but there are someunexpected results We discuss these in turn

Insidiatores

Within a monophyletic Laniatores recovered in all analyses(BS = 100 PP = 093) the constituent lineages of Insidiatoresform a paraphyletic grade with respect to Grassatores WhileTriaenonychoidea and Travunioidea do form a clade (albeit withlow nodal support) the New Zealand endemic familySynthetonychiidae is recovered as sister to all remainingLaniatores (BS = 78 PP = 100) consistent with the resultsof a recent study (Giribet et al 2010) However the inclusionof more data in fact lowers the nodal support for this sisterrelationship relative to the previous studyrsquos ML analysislikely due to the influence of missing data (in particular only~300 bp out of a targeted 3400 bp of 28S rRNA are presentlyavailable for Synthetonychia) Consequently we do not treat theplacement of Synthetonychiidae as definitive

In all analyses the southern hemisphere Triaenonychidaeform a strongly supported clade that diversified ~200Mya(BS = 100 PP = 100) Their distribution and the age of thiscladersquos diversification are similar to that of the temperateGondwanan cyphophthalmid family Pettalidae (estimated tohave diversified ~183ndash221Mya Giribet et al 2010)suggesting a parallel biogeographical process in these lineagesThe North American triaenonychid Fumontana deprehendorShear 1977 is sister to the southern hemisphere Triaenonychidaein all analyses consistent with previous classification (Giribetand Kury 2007 Thomas and Hedin 2008) but support fora monophyletic Triaenonychoidea is limited and sensitiveto analytical parameters (BS = 57 PP lt 050 PPBEAST = 066)

Table 7 Leg measurements of Petrobunus torosus holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011011 039005 026012 028008 036006 040007 180Leg II 014013 061008 029010 043007 042006 072005 261Leg III 015015 051010 019015 037011 045006 046005 213Leg IV 034035 059012 034017 054015 067007 052006 300

Table 8 Leg measurements of Petrobunus torosus female paratype (ex MHNG PAL-0907) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 041008 022011 028010 037005 035006 174Leg II 010009 052007 023008 033007 037006 069005 224Leg III 014016 046010 025024 036012 042007 041005 204Leg IV 018017 054011 029016 049012 058007 048006 256

Molecular phylogeny of Laniatores Invertebrate Systematics 123

Fig 15 Phylogenetic relationships of Laniatores inferred from maximum likelihood analysis of all molecular data (ln L= ndash8372597) Inset topology ofTravunioidea excluding Briggsidae (ln L= ndash8336108) Numbers on nodes indicate bootstrap resampling frequencies

124 Invertebrate Systematics P P Sharma and G Giribet

We recovered a monophyletic Travunioidea which includesBriggsidae in all analyses (BS = 100PP = 100) corroboratingthe superfamilial placement of briggsids Briggsidae isrecovered sister to either Trojanella (ML) or Holoscotolemon(BI) or part of a grade with both of these taxa (BEAST) butthese placements are not supported (BS lt 50 PPBEAST = 085and PP = 051 respectively) Missing data for Briggsidaedepresses nodal support in ML analyses within Travunioideaobscuring interfamilial relationships In the absence ofBriggsidae we recover a sister relationship betweenSclerobunidae (Zuma acuta Goodnight amp Goodnight 1942)and the remaining Travunioidea (BS = 75) and themonophyly of Travuniidae +Cladonychiidae (BS = 77)

A recent molecular dating of Travunioidea obtained muchyounger dates than estimated herein in spite of similar taxaand molecular loci In that study Derkarabetian et al (2010)investigated the evolution of troglobitism in Sclerobunidae(also referred to as the lsquoNorth American triaenonychidsrsquo)and used the cladonychiid fossil Protoholoscotolemon(38ndash54Mya Ubick and Dunlop 2005) to constrain theminimum age of Travunioidea in addition to calibration pointsderived from geological ages of strata These practicesaccord with the scope of the troglobitism study (thedivergences of interest were comparatively recent ndash Plioceneor younger) but we did not utilise Protoholoscotolemon in ourdating for two reasons (1) we do not obtain an unambiguouslymonophyletic Cladonychiidae in our analyses and (2) theDevonian and Carboniferous fossils we utilised as calibrationpoints are sufficiently old to obtain a result consistent with anEocene cladonychiid fossil The different calibration pointsimplemented in the respective studies therefore account forthe discrepancy in the dating In addition the morphologicalconservatism of Opiliones makes it doubtful that the age ofProtoholoscotolemon is the maximum age of the superfamily

Our sampling of Insidiatores lineages remains limited andbarring the inclusion of Briggsidae additions to taxonomicsampling largely concern Grassatores Consequently continuedsampling and systematic studies of Insidiatores (eg Mendesand Kury 2008 Thomas and Hedin 2008 Derkarabetian et al2010) are instrumental and imperative to addressing outstandingquestions of phylogenetic relationships and morphologicalevolution A phylogeny of Triaenonychidae is particularlywanting

Early diverging Grassatores Phalangodidaeand Sandokanidae

The recovery of a monophyletic Grassatores (supported inall analyses BS = 99 PP = 100) is consistent with severalmorphological synapomorphies uniting this diverse groupsuch as the presence of two tarsal claws on walking legs IIIand IV However the basal topology of Grassatores has longbeen contentious Previously two superfamilies of Grassatoreswere recognised Oncopodoidea (with the single familySandokanidae (formerly Oncopodidae)) and lsquoGonyleptoidearsquo(with the remaining families) (Martens 1976 1986 Martenset al 1981) This dichotomy was largely based upon theunique morphology of Sandokanidae ndash characters such as thescutum completum (fused opisthosomal tergites) reduced tarsal

articles and genitalic structures which are not found in theremaining Grassatores (Martens 1980 Giribet et al 2002Sharma and Giribet 2009) It was alternatively contended thatthese characters constituted autapomorphies of Sandokanidaewhich was nested within lsquoGonyleptoidearsquo itself (Kury 2003)

In all analyses we obtained an initial divergence betweenPhalangodidae and the remaining Grassatores (BS = 100PP = 096) refuting the traditional dichotomy betweenSandokanidae and lsquoGonyleptoidearsquo Therefore we hereindefine Gonyleptoidea as the taxon consisting of AgoristenidaeCosmetidae Cranaidae Gonyleptidae Manaosbiidae andStygnidae The split between Phalangodidae and the remainingGrassatores has been postulated to correspond to the rifting ofthe ancient supercontinents Laurasia and Gondwana as thedistribution of Phalangodidae was believed to be strictlyHolarctic (Giribet et al 2010) However the inclusion of theMadagascar genus Remyus previously placed in Zalmoxidae(Starega 1989) within a monophyletic Phalangodidae indicatesbroader distribution of phalangodids ndash complementing theTriaenonychidae-Fumontana case discussed above Moreoverthe origin of Phalangodidae is estimated to have occurred around302Mya (95 HPD 264ndash335Mya) greatly predating thebreakup of the supercontinents These results indicate thatPhalangodidae may be narrowly defined and we consequentlytransfer Remyus to Phalangodidae (new familial assignment)

The unusual family Sandokanidae has been postulated to besister toPodoctidae (SharmaandGiribet 2009Giribet et al 2010)or to form agradewith Phalangodidae (Kuryrsquos lsquoPhalangodoidearsquopartly) In the present study ML and BI topologies reconstructSandokanidae as sister to the remaining non-phalangodidGrassatores albeit with insignificant nodal support (BS = 21PP = 078) Curiously the topology obtained byBEAST recoversthe clade (Sandokanidae + Podoctidae) nested within a singleclade of South-east Asian families (PPBEAST = 085) Theseresults do not unambiguously favour one hypothesis overanother and the phylogenetic placement of Sandokanidae inthe Grassatores tree therefore remains debatable

Regardless of the inclusion of Sandokanidae within theSouth-east Asian group of families that the sister family to theremaining Grassatores is Phalangodidae not Sandokanidaeindicates that the peculiar morphology of sandokanids is theresult of multiple apomorphic reversals not the retention ofplesiomorphic characters (Martens and Schwendinger 1998)The large scutum and low tarsomere number found inSandokanidae also occur in Trogulidae and Dicranolasmatidae(suborder Dyspnoi) and all Cyphophthalmi and appear to haveevolved convergently This morphology may reflect adaptationsto a shared ecological niche all these groups inhabit leaf litterinclude no arboricolous species and are limited in vagility ndash

although these life history traits are also found in other groupsHowever this hypothesis has yet to be rigorously tested

Sandokanidae is presently one of few families of Grassatoresfor which a molecular phylogeny assessing intergenericrelationships is available (Sharma and Giribet 2009) andconsistent with earlier results the monophyly of Sandokanidaeis strongly supported (BS = 100 PP = 100) as is the initial splitbetweenMartensiellus and the remaining genera (an undescribedspecies was referred to as lsquogen sprsquo by Sharma and Giribet 2009but subsequent morphological investigation revealed this to be

Molecular phylogeny of Laniatores Invertebrate Systematics 125

Fig 16 Phylogenetic relationships of Laniatores inferred fromBayesian inference analysis of allmolecular data Numbers on nodes indicateposterior probabilities

126 Invertebrate Systematics P P Sharma and G Giribet

a miniature species of Martensiellus P J Schwendinger perscomm) (BS = 92 PP = 100) Intergeneric relationshipsof sandokanid genera are contingent upon analytical treatmentof molecular partitions (with additional sandokanid exemplarsdata not shown) reflecting conflict among datasets documentedby Sharma and Giribet (2009)

The other South-east Asian families

Epedanidae was postulated to be sister to Gonyleptoidea in acladistic analysis based on morphological characters (Kury1993) Subsequently Kury (2003) proposed that Epedanidaewas sister to the clade (Assamiidae (Stygnopsidae +Gonyleptoidea)) The single epedanid previously included in amolecular phylogeny was similarly unstable in placement eithernestingwithin Assamiidae or sister to the African lsquophalangodidsrsquo(Conomma and Maiorerus) in neither case with appreciablenodal support (Giribet et al 2010) Furthermore previousinclusion of several lineages (eg Tithaeus) within Epedanidaethat do not bear characters typical of true epedanids ndash sexuallydimorphic chelicera with heavy dentition elongate andspined pedipalpi male genitalia with setae surroundingthe capsula interna ndash has also made this family difficult todefine Consequently we included only Epedaninae (egPseudoepedanus Alloepedanus and Euepedanus) as exemplarsof true epedanids the systematic validity of the remaining threesubfamilies (and particularly the inclusion of Dibuninae) isbeyond the scope of this study and remains to be investigated

The monophyly of each of four South-east Asian families ndashEpedanidae (represented by epedanines) TithaeidaePetrobunidae and Podoctidae ndash is recovered with high nodalsupport (all BS = 100 PP = 100) These lineages are somehowrelated to each other and while they form a clade in bothML andBI analyses this result receives insignificant nodal support(PP = 077) In the topology recovered by BEAST the South-east Asian families form a clade that includes Sandokanidaea result consistent with the distribution of sandokanids albeitwithout support (PPBEAST = 085) Tithaeidae is probably closelyrelated to Podoctidae given the occurrence of a deeply cleftventral plate resulting in two flanking prongs in themale genitaliaof both families (Suzuki 1977 Lian et al 2008 Fig 19) Inaddition the clade (Podoctidae +Tithaeidae) is recovered withmoderate support in ML and BI analyses (BS = 59 PP = 097)In none of the analyses is Tithaeidae nested within or sister toEpedanidae sensu stricto

The morphology of Petrobunidae suggests some relationshipto previously described South-east Asian families oralternatively Phalangodidae but not inclusion within any ofthese (Fig 19) Molecular sequence data do not support anyspecificplacement ofPetrobunidae although it clusterswithotherSouth-east Asian families in all analyses and is recovered sisterto Epedanidae in two topologies (BI and BEAST)

Gonyleptoidea and Stygnopsidae

With over 2500 described species the superfamilyGonyleptoidea constitutes the most diverse and (arguably) themost charismatic lineage of Opiliones with most of this diversityconcentrated in Amazonia (some cosmetids occur as far north asthe mid-Atlantic states of the US) In a previous analysis

relationships of gonyleptoid families were unsupported andordid not accordwithmorphological studies (Giribet et al 2010) Inparticular the placement of the agoristenid exemplar Avimaalbiornata (Goodnight amp Goodnight 1947) ndash the putativesister family to the remaining Gonyleptoidea ndash within aparaphyletic Cranaidae was particularly suspect given thelimited availability of sequence data for Avima (complete 18SrRNA a300-bp fragmentof 28S rRNA andCOI) In addition thesister group of Gonyleptoidea was ambiguous and contingentupon analytical parameters

Redoubling sequencing efforts and addition of taxaparticularly in the case of Agoristenidae (currently sequencedfor 12S rRNA complete 18S rRNA a 2000-bp fragment of 28SrRNA COI H3 and EF-1a) improved the assessment ofgonyleptoid relationships A monophyletic Gonyleptoidea(BS = 58 PP = 066) is recovered sister to the familyStygnopsidae (BS = 57 PP = 100) Within Gonyleptoidea asplit between Agoristenidae and the remaining gonyleptoids isstrongly supported (BS = 100 PP = 100) followed by thedivergence of Stygnidae (BS = 71 PP = 099) Thisplacement of Agoristenidae is supported by morphologicalstudies (Pinto-da-Rocha and Kury 2007) although in aminority of tree topologies sampled in BI analysesAgoristenidae is sister to Stygnopsidae (hence lower nodalsupport for the monophyly of Gonyleptoidea in BI) Theplacement of Manaosbiidae is uncertain it is recoveredsister to either (Gonyleptidae +Cranaidae) (PP = 089) or toCosmetidae (PPBEAST = 092) but these results are notsupported Cranaidae is recovered as monophyletic (BS = 99PP = 100) and nested within a paraphyletic Gonyleptidae

The present sampling of Cosmetidae and Gonyleptidae doesnot do justice to the diversity of these lineages (~700 and 800described species respectively) A phylogenetic assessment ofall 16 subfamilies of Gonyleptidae alone constitutes the subjectof an arduous and exacting study Fortunately cladistic analysesof morphological characters continue to advance phylogeneticinvestigation of subfamilial lineages (eg BourguyiinaeYamaguti and Pinto-da-Rocha 2009 Goniosomatinae DaSilvaandGnaspini 2009HernandariinaeDaSilva andPinto-da-Rocha2010) Elucidating the phylogeny of Gonyleptoidea is one of themost exciting research topics in the study of Opiliones

The Afrotropical families

The third most diverse family of Laniatores Assamiidaeconstitutes the dominant opiliofauna of the African continent(excluding Madagascar) with some lineages occurring in SouthAsia the Indo-Malay Archipelago and Australia (Trionyxellinaeand Dampetrinae) Proposed to be related to EpedanidaeStygnopsidae andor Gonyleptoidea (Kury 2007) on the basisof genitalic structures assamiids were not recovered asmonophyletic in a previous study (paraphyly was induced byeither Epedanidae orAfricanBiantidae) and the placement of thesubfamily Trionyxellinae was particularly suspect (Giribet et al2010) Trionyxellinae was considered a separate family byMello-Leitatildeo (1949) though others considered it nested withinAssamiidae (eg Starega 1992) In our analyses the monophylyof Assamiidae is supported (BS = 79 PP = 100)lsquoTrionyxellinaersquo (Trionyxella and Mysorea both with a

Molecular phylogeny of Laniatores Invertebrate Systematics 127

Fig 17 Evolutionary time tree of Laniatores inferred fromBEASTanalysis of allmolecular data Coloured bars indicate 95highestposterior density (HPD) intervals for nodes of interest Numbers on nodes indicate posterior probabilities asterisks indicate posteriorprobability of 100

128 Invertebrate Systematics P P Sharma and G Giribet

pseudonychium on the third and fourth tarsi) is a diphyletic entitynested within the other Assamiidae (for the node renderingdiphyly BS = 100 PP = 100) disfavouring family status fortrionyxellines

The African lsquophalangodidsrsquo (sometimes called thelsquoPyramidops grouprsquo) were recognised as a new family byStarega (1992) but not formalised and included 13 genera(Conomma Pyramidops and related lineages) Consistentwith this hypothesis we recovered strong support for thePyramidops group (represented by Conomma and cfPyramidops) as a lineage separate from the true Phalangodidae(egBishopella and Scotolemon) recapitulating a previous result(Giribet et al 2010) The African lsquophalangodidsrsquowere recoveredas the sister lineage of Assamiidae although this relationshipis variably supported in our analyses (BS = 40 PP = 095PPBEAST = 100) A review and formal description of thePyramidops group as a new family lsquoPyramidopidaersquo ndash a namewidely available on the internet including GBIF but notformalised ndash is undertaken elsewhere (Sharma et al 2011)

While we have endeavoured to improve the sampling ofAssamiidae from South-east Asia the internal systematics ofthis family remain a high value target for phylogenetic researchHowever revision of assamiid systematics is inherently difficultfor two reasons (1) the family is peppered with questionablehierarchies and monotypic genera (~12 subfamilies and 250genera for less than 500 described species) and (2) occurs insome of the most inaccessible regions of the world namely sub-Saharan Africa

In all analyses the clade (Assamiidae + Pyramidopidae) issister to the clade (Zalmoxoidea + Samooidea) though this resultis only supported in one analysis (PP= 100) The divergence ofthese four lineages is estimated to have occurred 252Mya and isconsistent with diversification in West Tropical Gondwanaoccurring at least 140million years before the fragmentation ofthis terrane (~110Mya)

Zalmoxoidea

As currently defined the largely Neotropical superfamilyZalmoxoidea includes four families FissiphalliidaeGuasiniidae Icaleptidae and Zalmoxidae Guasiniidae hasnever before been included in a molecular phylogeny In thepresent study we sequenced a guasiniid for six genes and ouranalyses strongly support theplacement ofGuasiniidae as sister tothe samooid family Kimulidae (formerly Minuidae) (BS = 86PP = 098 PPBEAST = 099) and this clade in turn sister to anothersamooid family Escadabiidae (BS = 65 PP = 096PPBEAST = 100) The families Fissiphalliidae Icaleptidaeand Zalmoxidae in turn form a separate clade (BS = 100PP = 100 PPBEAST = 100) with strong support for the sisterrelationship of Zalmoxidae and Fissiphalliidae (BS = 99PP = 100 PPBEAST = 100) corroborating relationshipsproposed by morphological studies (Kury and Peacuterez G 2002Pinto-da-Rocha and Kury 2003b)

Previous analyses have suggested that Samooidea (discussedbelow) is a paraphyletic grade with respect to Zalmoxoidea(Giribet et al 2010) In the present analysis the cladeSamooidea + Zalmoxoidea is strongly supported (BS = 85PP = 100 PPBEAST = 100) as previously suggested by PeacuterezGonzaacutelez and Kury (2007) and by excluding Escadabiidae and

Kimulidae Samooidea is rendered a monophyletic entity albeitwith limited support (BS = 53 PP = 062 PPBEAST = 081) Thestrong support from molecular sequence data for the cladeincluding Escadabiidae Kimulidae and the four zalmoxoidfamilies (BS = 89 PP = 100 PPBEAST = 100) suggests thatthese may form a natural group

Re-examination of the morphology of these six families incomparisonwith true samooid lineages (Biantidae Samoidae andStygnommatidae) corroborates the exclusionofEscadabiidae andKimulidae from true Samooidea Escadabiidae and Kimulidae(1) lack the scopula characteristic of Samoidae and stenostygnineBiantidae (2) lack a sexually dimorphic metatarsus IIIcharacteristic of Samoidae Stygnommatidae and stenostygnineBiantidae and (3) lack a penial calyx characteristic of SamoidaeConsistent with placement within Zalmoxoidea EscadabiidaeandKimulidae (1) possess a small oculariumbearing the eyes thatis removed from the margin of the carapace (2) bear a wellmarked dorsal protuberance (bulla) on the proximal segmentof the chelicera that lacks armature and (3) possess sexuallydimorphic leg IV segments particularly the femur and tibiawhich may be variedly arcuate incrassate and spinedAdditionally Escadabiidae Fissiphalliidae and Zalmoxidae allpossess sexually dimorphic tegumental glandopeningson tibia IIwhereas Biantidae Samoidae and Stygnommatidae possessthese structures on metatarsus III (Willemart et al 2010)While data on tegumental gland openings are only availablefor a small handful of species these may constitute significantdiagnostic characters for species wherein sexual dimorphismdoes not manifest itself in the readily observable form ofenlarged and spiny segments

Given the results of our phylogenetic analyses maintainingSamooidea (as currently defined) renders it a paraphyletic gradewith respect to a diphyletic Zalmoxoidea (as currently defined)Consequently based on the aforementioned morphologicalcharacters and robust molecular phylogenetic signal wetransfer Escadabiidae and Kimulidae to Zalmoxoidea

Samooidea

A previous cladistic analysis based upon morphological datasuggested close relationship between six families ndash BiantidaeEscadabiidae Kimulidae Podoctidae Samoidae andStygnommatidae ndash thenceforth known as Samooidea (Kury1993) the only pantropical Laniatores superfamily HoweverPodoctidae does not have any obvious relationship to Samooideaand has subsequently been transferred (Kury 2007) in ouranalyses Podoctidae is sister to Tithaeidae or Sandokanidaeie distantly related to all samooid families Moreover ouranalyses strongly favour the exclusion of Escadabiidae andKimulidae from Samooidea

The remaining three families ndash Biantidae Samoidae andStygnommatidae ndash are distributed in the Neotropics and partsof Africa with a handful of suspect lineages in South-east AsiaRe-examination and reassignment of many Samoidae genera(eg the Indonesian lsquosamoidrsquo Waigeucola palpalis PeacuterezGonzaacutelez 2011) suggest that the range of Samoidae does notinclude South-east Asia Peacuterez Gonzaacutelez and Kury (2007) alsoobserved that the lsquosamoidsrsquo of Africa Madagascar and theSeychelles may not be true Samoidae either Similarlyinclusion of the genus Stygnomimus an Indonesian lineage

Molecular phylogeny of Laniatores Invertebrate Systematics 129

within Stygnommatidae is highly dubious as the twoIndonesian lsquostygnommatidsrsquo are either highly autapomorphic(Stygnomimus conopygus (Roewer 1927)) or described on the

basis of a generic female that is not readily distinguishable fromfemales of other species (Stygnomimus malayensis (Suzuki1970))

Fig 18 Strict consensus of tree topologies obtained by all phylogenetic analyses

130 Invertebrate Systematics P P Sharma and G Giribet

Previous efforts to assess the systematic validity of Samooideaby means of molecular sequence data were limited insofar asonly two Samoidae three Biantidae (all Metabiantes) and twoStygnommatidae were sampled (Giribet et al 2010) Thesampling of Samoidae was especially problematic only asingle Neotropical adult (Pellobunus) and one African juvenilesamoid (lsquoSamoidae gen sprsquo) were included The designation ofthe latter is suspect as juveniles of Samoidae are oftenindistinguishable from the juveniles of other lineages becausemany diagnostic secondary sexual characters in Grassatores(eg spines and incrassate appendages) are not acquired untilafter several postembryonic stages (Townsend et al 2009)

In the present study though the type genus of Samoidae(Samoa from Samoa) was not available we sequenced theclosely related genus Badessa (from Fiji collected byP P S) as well as additional Biantidae and StygnommatidaeOur analyses recovered a monophyletic Samooidea (excludingEscadabiidae and Kimulidae BS = 53 PP = 062) withSamoidae sensu stricto (Pellobunus +Badessa BS = 100PP = 100) nested within a paraphyletic Stygnommatidae aplacement that is supported (BS = 87 PP = 100) Bycontrast the African lsquosamoidrsquo is sister to the AfricanBiantidae a relationship that is also well supported(BS = 100 PP = 100) These relationships suggest a basal

Fig 19 Cladogram of male genitalic evolution in South-east Asian families superimposed upon a schematised molecular phylogeny based on ML and BIanalyses of all molecular data Exemplars (a) Pseudoepedanus doiensis Suzuki 1969 (redrawn from Suzuki 1969) dorsal view (b) Pseudoepedanus doiensisSuzuki 1969 (redrawn from Suzuki 1969) ventral view (c) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) ventral view(d) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) dorsal view (e) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki1976) dorsal view (f) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki 1976) ventral view (g) Petrobunus torosus lateral view (h) ZalmoxidagibberaSuzuki 1969 dorsal view (i)Zalmoxida sp (MCZDNA102677) dorsolateral view (j)Metatithaeus rubidusSuzuki 1969 (redrawn fromSuzuki 1969)ventral view (k)Tithaeus kokutnusSuzuki 1985 (redrawn fromSuzuki 1985) ventral view (l)Tithaeus similisSuzuki 1985 (redrawn fromSuzuki 1985) ventralview (m)DongmoaoshimensisSuzuki 1964 (redrawn fromSuzuki 1964) ventral view (n)Bonea longipalpisSuzuki 1977 (redrawn fromSuzuki 1977) ventralview (o) Santobius annulipes Soslashrensen 1886 (redrawn from Kury and Machado 2009) ventral view (p) Lomanius longipalpus mindanaoensis Suzuki 1977(redrawn from Suzuki 1977) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 131

dichotomy within Samooidea that corresponds to one groupof Neotropical and Pacific lineages and a second group ofAfrican lineages However as we were unable to samplestenostygnine (Neotropical) and Indo-Pacific Biantidae aswell as numerous monotypic genera dubiously placed inSamoidae biogeographical extrapolations for Samooidea aretenuous (discussed below)

The internal relationships of Samooidea suggest that themorphology of Samoidae may have evolved convergently Asthe African samoid is a juvenile (the same specimen previouslysequenced by Giribet et al 2010 now sequenced for additional28S rRNA and other genes) we cannot rule out the possibility ofa monophyletic Samoidae that includes African species (thespecimen in question could be a juvenile biantid) In any casethe paraphyly of Stygnommatidae and putative polyphyly ofSamoidae strongly advocate systematic revision of samooidfamilies as currently defined corroborating hypotheses of non-monophyly based on morphology (Peacuterez Gonzaacutelez 2007 PeacuterezGonzaacutelez and Kury 2007) Our sampling of these families isinsufficient to advocate specific taxonomic action but an ongoing

study of samooidean systematics will shed more light on thevalidity of constituent families (A Peacuterez Gonzaacutelez work inprogress)

Biogeography of Zalmoxoidea and Samooidea

While most superfamilies of Grassatores are restricted to aspecific part of the tropics (eg Neotropics South-east Asia)two are distributed in multiple biogeographical provincesSamooidea occurs in the Neotropics and Afrotropics withquestionable records from South-east Asia Zalmoxoidea isconcentrated in the Neotropics with the exception of oneIndo-Pacific lineage of Zalmoxidae (represented here byZalmoxis sp) The ages and distributions of Samooidea andZalmoxoidea suggest that their biogeography was influencedby the fragmentation of West Tropical Gondwana ndash causingthe former to diverge basally throughout West TropicalGondwanan terranes and the latter to become isolated to theNeotropics (with possible subsequent dispersal)

Fig 20 Ancestral range reconstructions for Samooidea +Zalmoxoidea inferred by Lagrange using stratified models corresponding to two vicariant events(indicated by dotted lines) Coloured squares at terminals indicate ranges occupied by sampled species Coloured squares on nodes indicate ranges reconstructedfor hypothetical ancestors Numbers on nodes indicate relative probability of ranges reconstructed

Fig 21 Best hypothesis of Laniatores relationships based on all available evidence Bracketed nodes indicate non-monophyletic entities Dashed line indicatesambiguity in the placement of Sandokanidae (alternatively placed as shown or as sister to Podoctidae) Exemplars of Laniatores diversity are Synthetonychiaoliveae (Synthetonychiidae) Equitius doriae (Triaenonychidae) Hadziana clavigera (Travuniidae) Erebomaster flavescens flavescens (Cladonychiidae)Scotolemon lespesi (Phalangodidae) Palaeoncopus gunung (Sandokanidae) Santobius sp (Podoctidae) Tithaeus sp (Tithaeidae) Petrobunus spinifer(Petrobunidae) Alloepedanus sp (Epedanidae) Hoplobunus sp (Stygnopsidae) Torreana spinata (Agoristenidae) Stygnoplus clavotibialis (Stygnidae)Metalibitia paraguayensis (Cosmetidae)Acutisoma longipes (Gonyleptidae)Conommaoedipus (Pyramidopsgroup)Mysorea thaiensis (Assamiidae)Lacurbssp (Biantidae) Stygnomma sp (Stygnommatidae) Badessa sp (Samoidae) Guasinia sp (Guasiniidae) Icaleptes sp (Icaleptidae) Fissiphallius chicoi(Fissiphalliidae) Zalmoxis sp (Zalmoxidae) Kimula goodnightiorum (Kimulidae)

132 Invertebrate Systematics P P Sharma and G Giribet

Molecular phylogeny of Laniatores Invertebrate Systematics 133

To test this hypothesis we conducted likelihood analysisof range evolution using the program Lagrange (Ree et al2005 Ree and Smith 2008) for the clade (Zalmoxoidea +Samooidea) The stratified analysis resulted in a globalmaximum likelihood of ndashlnL= 1556 outperforming anunconstrained analysis that did not include any dispersalconstraints (ndashlnL= 1676) Likelihood analysis of rangeoptimisation (Fig 20) indicates that the ancestral range ofSamooidea includes both the Afrotropics and the Neotropics(relative probability pr = 1000) but a subsequent split occursbetween an African lineage (pr = 1000) and a NeotropicalIndo-Pacific lineage with a Neotropical ancestral range (pr = 0986)Samoidea of the Indo-Pacific occur on young oceanic islands(eg Fiji Samoa) indicating recent transoceanic dispersal fromthe Neotropics

Ancestral range reconstructions for Samooidea are allconsistent with estimated divergence times for these clades(diversification of Samooidea predates the rifting of WestAfrica from northern South America) favouring an underlyingvicariant process for the basal topology with subsequent recentdispersal events However these results are contingent upon thepresent sampling which does not include all samooid lineages(eg stenostygnine Biantidae) but basal range reconstructionsare likely unaffected (eg Stenostygninae is exclusivelyNeotropical)

In contrast the ancestor of Zalmoxoidea is reconstructedas singularly Neotropical (pr = 0996) This is consistent withisolation of a zalmoxoid ancestor to Amazonia which thenradiated ~191Mya Subsequent ancestral ranges are alsoreconstructed as Neotropical with high relative probabilityHowever the ancestral range of the clade (Icaleptidae +Fissiphalliidae + Zalmoxidae) is ambiguously reconstructedas either Neotropical (pr = 0935) or Neotropical + Indo-Pacific(pr = 0064) as is the split between Fissiphalliidae andZalmoxidae (Neotropical pr = 0856 Neotropical + Indo-Pacific pr = 0141)

These results suggest that the Indo-Pacific lineage ofZalmoxidae which split from Neotropical Zalmoxidae ~83Myais likely the result of long-distance dispersal from the NeotropicsHowever due to the persistence of transantarctic connectionsbetween the Australian plate and temperate South America untilthe Tertiary a competing vicariant scenario cannot be ruled outwithout densely sampling zalmoxid diversity The biogeographyof Zalmoxidae is presently being explored in greater detail in aseparate study (P P Sharma unpubl data)

Finally the ancestral range of (Samooidea + Zalmoxoidea)includes both Africa and the Neotropics (pr = 0957) consistentwith a tropical West Gondwanan ancestor This resultlends circumstantial evidence to a sister relationship of theAfrotropical families (Assamiidae + Pyramidopidae) and theclade (Samooidea + Zalmoxoidea) recovered in all analyses

The diversification of Grassatores

While numerous interfamilial relationships are supported inthis study particularly among gonyleptoid and zalmoxoidfamilies some relationships between superfamilies ofGrassatores are not supported and are contingent upon

analytical treatments namely the deployment of substitutionmodels and data partitioning (Fig 21) The cause of thisinstability could be related to insufficient data particularly inthe EF-1a partition (the length of an intron which can exceed400 bp in some taxa makes this gene particularly difficult toamplify) However examination of clade divergence timessuggests that rapid diversification of Grassatores lineagescould in part augment phylogenetic uncertainty in basal partsof the topology

The split between Phalangodidae and the remainingGrassatores is estimated to have occurred ~302Mya but aseries of divergences resulted in the origin of all superfamiliallineages between 232 and 271Mya Relative to the estimatedage of Laniatores (348Mya) this 39-million-year period isremarkably narrow and inherently problematic as the amountof phylogenetic signal for a given stem subtending a node isdirectly proportional to the amount of time that the stem inquestion spans (Lanyon 1988 Rokas and Carroll 2006) Thesmall internal edge lengths of the stems corresponding to basaldivergences of non-phalangodid Grassatores (Figs 15 16)combined with the ancient age of lineages derived from thesedivergences result in relationships that are difficult to estimatewithout a large amount of sequence data andor the inclusion ofdata that are less afflicted by homoplasy (because longer edgelengths imply more indel and substitution events on edges)(Whitfield and Lockhart 2007)

We additionally observe that the origins of most Grassatoressuperfamilies occur in the wake of the end-Permian massextinction (~254Mya) Rapid radiation in the wake of a massextinction has occurred in multiple metazoan lineagesthe putative result of relaxed selection and opening ofpreviously occupied ecological niche space (Labandeira andSepkoski 1993 Sahney and Benton 2008) The rapiddiversification of early Grassatores lineages could be anexample of this phenomenon but this hypothesis is difficult totest in the absence of Mesozoic Grassatores fossils (reviewed byDunlop 2007)

Finally we observe that contrary to traditional hierarchiesproposed for Laniatores many of the clades recovered in ouranalyses correspond to geographical regions particularly in thecase of Grassatores For example the southern hemispheretriaenonychids are restricted to temperate Gondwananlandmasses Gonyleptoidea and their sister group Stygnopsidaeform a Neotropical (AmazonianMesoamericanAntillean) cladethat excludes Assamiidae which has been hypothesised to be amember of a broader Gonyleptoidea (Kury and Cokendolpher2000 Mendes and Kury 2007) In our analyses Assamiidae isin fact a member of a largely Afrotropical clade together withthe Pyramidopidae South-east Asian families usually form oneclade (at most two) albeit with limited support Samooideafamilies are divided into two clusters African and NeotropicalWith one exception (described above) Zalmoxoidea is restrictedto the Neotropics The ages that we estimate for Laniatoresradiations are consistent with ancient diversification beforethe fragmentation of Pangaea An ancient diversification inconjunction with the climatic stability of the tropics may in partexplain the comparatively greater diversity of the armouredharvestmen with respect to the other Opiliones suborders

134 Invertebrate Systematics P P Sharma and G Giribet

Acknowledgements

Weare indebted toPeter J Schwendingerwho collected andprovidedmost ofthe material for study from South-east Asia Some Thai and most of theNeotropical Laniatores were obtained from the TIGER (Thailand InventoryGroup for Entomological Research) and LLAMA (Leaf Litter Arthropods ofMeso-America) projects toC Lienhard and J Longino respectivelyMaterialfrom Madagascar was generously contributed by Charles Griswold and theCalifornia Academy of Sciences Jesse Czekanski-Moir in conjunction withthe Belau NationalMuseum contributed elusive specimens from Palau AbelPeacuterezGonzaacutelez identifiedmanyNeotropical species included in the study andcontributed specimens fromCubaRicardoPinto-da-Rocha identified someofthe live photographed animals from the Neotropics Discussions with RonaldMClouseAbelPeacuterezGonzaacutelezAdrianoBKury andCarlosEPrieto refinedmanyof the ideas presentedhereTwoanonymous reviewers and the associateeditor provided comments that helped to improve an earlier version ofthis manuscript Laura Leibensperger sorted and accessioned TIGER andLLAMA material as well as MCZ type material Adam Graham and theCenter forNanoscaleStudies atHarvardUniversityprovided support forSEMwork Collecting efforts in New Caledonia were greatly facilitated by theguidance of Herveacute Jourdan (Institut de rechercheacute pour de developpementNoumea) and his teammembers Collecting efforts in Fiji weremade possibleby Marika Tuiwawa (University of the South Pacific Suva) and his teammembers Hilda Waqa and Tokasaya lsquoToxrsquo Cakacaka we are especiallygrateful to Tox for his good company during fieldwork and to his familyfor graciously enabling a visit toOvalau SuzieYee Shawprovided invaluablelogistical support in Fiji and her sons Colin and Joshua Yee Shaw assistedwith sorting Fijian material Fieldwork in Indonesia and West Africa wassupported by two MCZ Putnam Expedition Grants awarded to RonaldM Clouse and G G (2006) and to G G (2009) respectively Fieldworkin New Caledonia was supported by the Goelet award the Kalathia FamilyTrust and the Explorers Club awarded to P P S in 2006 Fieldwork in Fijiand in Palauwas supported by twoMCZPutnamExpeditionGrants awardedto P P S (2008) and to Ronald M Clouse and P P S (2010) respectivelyP P S was supported by a Faculty of Arts and Sciences Graduate Fellowshipfrom Harvard University

References

Castresana J (2000) Selectionof conservedblocks frommultiple alignmentsfor their use in phylogenetic analysis Molecular Biology and Evolution17 540ndash552

Colgan D J McLauchlan A Wislon G D F Livingston S MacaranasJ Edgecombe G D Cassis G and Gray M R (1998) Molecularphylogenetics of the Arthropoda relationships based on histone H3and U2 snRNA DNA sequences Australian Journal of Zoology 46419ndash437 doi101071ZO98048

DaSilva M B and Gnaspini P (2009) A systematic revision ofGoniosomatinae (Arachnida Opiliones Gonyleptidae) with a cladisticanalysis and biogeographical notes Invertebrate Systematics 23530ndash624 doi101071IS09022

DaSilva M B and Pinto-da-Rocha R (2010) Systematic review andcladistic analysis of the Hernandariinae (Opiliones Gonyleptidae)Zoologia 27 577ndash642

Derkarabetian S Steinmann D B and Hedin M (2010) Repeatedand time-correlated morphological convergence in cave-dwellingharvestmen (Opiliones Laniatores) from montane western NorthAmerica PLoS ONE 5 e10388 doi101371journalpone0010388

Drummond A J and Rambaut A (2007) BEAST Bayesian evolutionaryanalysis by sampling trees BMC Evolutionary Biology 7 214doi1011861471-2148-7-214

Drummond A J Ho S Y W Phillips M J and Rambaut A (2006)Relaxed phylogenetics and dating with confidence PLoS Biology 4 e88doi101371journalpbio0040088

Dunlop J A (2007) Paleontology In lsquoHarvestmen The Biology ofOpilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 247ndash265 (Harvard University Press Cambridge MA USA)

Dunlop J A and Anderson L I (2005) A fossil harvestman (ArachnidaOpiliones) from theMississippian of East Kirkton Scotland The Journalof Arachnology 33 482ndash489 doi10163604-791

Dunlop JAAndersonL IKerpH andHassH (2003)Preservedorgansof Devonian harvestmen Nature 425 916 doi101038425916a

Dunlop J A Anderson L I Kerp H and Hass H (2004) A harvestman(Arachnida Opiliones) from the Early Devonian Rhynie chertsAberdeenshire Scotland Transactions of the Royal Society ofEdinburgh Earth Sciences 94 341ndash354

Edgar R C (2004) MUSCLE multiple sequence alignment with highaccuracy and high throughput Nucleic Acids Research 32 1792ndash1797doi101093nargkh340

Edgecombe G D and Giribet G (2006) A century laterndash a total evidencere-evaluation of scutigeromorph centipedes (Myriapoda Chilopoda)Invertebrate Systematics 20 503ndash525 doi101071IS05044

Edgecombe G D Giribet G and Wheeler W C (2002) Phylogeny ofHenicopidae (Chilopoda Lithobiomorpha) a combined analysis ofmorphology and five molecular loci Systematic Entomology 2731ndash64 doi101046j0307-6970200100163x

FolmerOBlackMHoehWLutzR andVrijenhoekRC (1994)DNAprimers for amplification ofmitochondrial cytochrome c oxidase subunit Ifrom diverse metazoan invertebrates Molecular Marine Biology andBiotechnology 3 294ndash299

Forster R R (1954) The New Zealand harvestmen (sub-order Laniatores)Canterbury Museum Bulletin 2 1ndash329

Giribet G and Kury A B (2007) Phylogeny and biogeography InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 62ndash87 (Harvard University PressCambridge MA USA)

Giribet G Carranza S Baguntildeagrave J Riutort M and Ribera C (1996) Firstmolecular evidence for the existence of a Tardigrada +Arthropoda cladeMolecular Biology and Evolution 13 76ndash84

Giribet G Rambla M Carranza S Baguntildeagrave J Riutort M and Ribera C(1999) Phylogeny of the arachnid order Opiliones (Arthropoda)inferred from a combined approach of complete 18S and partial 28Sribosomal DNA sequences and morphology Molecular Phylogeneticsand Evolution 11 296ndash307 doi101006mpev19980583

Giribet G Edgecombe G D Wheeler W C and Babbitt C (2002)Phylogeny and systematic position of Opiliones a combined analysis ofchelicerate relationships using morphological and molecular dataCladistics 18 5ndash70

Giribet G Vogt L PeacuterezGonzaacutelez A Sharma P andKury A B (2010)A multilocus approach to harvestman (Arachnida Opiliones) phylogenywith emphasis on biogeography and the systematics of LaniatoresCladistics 26 408ndash437

Hara M R Gnaspini P and Machado G (2003) Male egg guardingbehavior in the Neotropical harvestman Ampheres leucopheus (Mello-Leitatildeo 1922) (Opiliones Gonyleptidae) The Journal of Arachnology 31441ndash444 doi101636S02-32

Hedin M Derkarabetian S McCormack M and Richart C (2010) Thephylogenetic utility of the nuclear protein-encoding gene EF-1a forresolving recent divergences in Opiliones emphasizing intronevolution The Journal of Arachnology 38 9ndash20 doi101636HA09-491

Huelsenbeck J P and Ronquist F (2005) Bayesian analyses of molecularevolution using MrBayes In lsquoStatistical Methods in MolecularEvolutionrsquo (Ed R Nielsen) (Springer New York)

HunterRK ProundDNBurns JA Tibbetts JA andTownsendVR(2007) Parental care in the Neotropical harvestman Phareicranauscalcariferus (Opiliones Cranaidae) The Journal of Arachnology 35199ndash201 doi101636ST06-181

Molecular phylogeny of Laniatores Invertebrate Systematics 135

Kocher T D Thoma W K Meyer A Edwards S V Paumlaumlbo SVillablanca F X and Wilson A C (1989) Dynamics ofmitochondrial DNA evolution in animals amplification andsequencing with conserved primers Proceedings of the NationalAcademy of Sciences of the United States of America 86 6196ndash6200doi101073pnas86166196

Kury A B (1993) Anaacutelise filogeneacutetica de Gonyleptoidea (ArachnidaOpiliones Laniatores) PhD Thesis Universidade de Satildeo Paulo SatildeoPaulo Brazil

Kury A B (2003) Annotated catalogue of the Laniatores of the NewWorld (Arachnida Opiliones) Revista Ibeacuterica de AracnologiacuteaVolumen Especial Monograacutefico 1 1ndash337

Kury A B (2006) Checklist of valid genera of Opiliones of theWorld Museu NacionalUFRJ Available from httpwwwmuseunacionalufrjbrmndiAracnologiachecklaniatorhtm [Accessed1 February 2011]

Kury A B (2007) Podoctidae Roewer 1912 In lsquoHarvestmen The Biologyof Opilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 221ndash224 (Harvard University Press Cambridge MA USA)

Kury A B and Cokendolpher J C (2000) Opiliones In lsquoBiodiversidadTaxonomiacutea y Biogeografiacutea de Artoacutepodos de Meacutexico Hacia una Sintesisde su Conocimientorsquo vol 2 (Eds J E Llorente E Gonzaacutelez andN Papavero) pp 137ndash157 (Universidad Nacional Autoacutenoma deMexico Meacutexico DF Mexico)

Kury A B and Machado G (2009) Notes on Santobius from Vanuatu andFiji and the status of the eastern Melanesian Ibalonius (ArachnidaOpiliones Podoctidae) Zoological Studies 48 524ndash538

Kury A B and Peacuterez G A (2002) A new family of Laniatores fromnorthwestern South America (Arachnida Opiliones) Revista Ibeacuterica deAracnologiacutea 6 3ndash11

Labandeira C C and Sepkoski J J (1993) Insect diversity in the fossilrecord Science 261 310ndash315 doi101126science11536548

Lanyon S M (1988) The stochastic mode of molecular evolutionwhat consequences for systematic investigations The Auk 105565ndash573

Lian W-G Zhu M-S and Kury A B (2008) A new species of the genusTithaeus from China (Arachnida Laniatores Epedanidae) Zootaxa1841 53ndash60

Machado G Requena G S Buzatto B A Osses F and Rossetto L M(2004) Five new cases of paternal care in harvestmen (ArachnidaOpiliones) implications for the evolution of male guarding in theNeotropical family Gonyleptidae Sociobiology 44 577ndash598

Martens J (1976) Genitalmorphologie System und Phylogenie derWeberknechte (Arachnida Opiliones) Entomologica GermanicaZeitschrift fuumlr das Gesamtgebiet der Wissenschaftlichen Entomologie3 51ndash68

Martens J (1980) Versuch eines phylogenetischen Systems der OpilionesIn lsquoProceedings 8th International Congress of Arachnology ViennaVerhandlungenrsquo (Ed J Gruber) pp 355ndash360 (Vienna Austria)

Martens J (1986) Die Grossgliederung der Opiliones und die Evolutionder Ordnung (Arachnida) Actas del X Congreso Internacional deAracnologiacutea Jaca 1 289ndash310

Martens J (1993) Further cases of paternal care in Opiliones (Arachnida)Tropical Zoology 6 97ndash107

Martens J and Schwendinger P S (1998) A taxonomic revision ofthe family Oncopodidae I New genera and new species of GnomulusThorell (Opiliones Laniatores) Revue Suisse de Zoologie 105 499ndash555

Martens J Hoheisel U and Goumltze M (1981) Vergleichende Anatomieder Legeroumlhren der Opiliones als Beitrag zur Phylogenie der Ordnung(Arachnida) Zoologische Jahrbucher Abteilung fur Anatomie undOntogenie der Tiere 105 13ndash76

Mello-Leitatildeo C F (1949) Famiacutelias subfamiacutelia espeacutecies e gecircneros novos deopiliotildees e notas de sinoniacutemia Boletim do Museu Nacional Nova SeacuterieZoologia Rio de Janeiro 94 1ndash33

Mendes A C and Kury A B (2007) Stygnopsidae Soslashrensen 1932 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 232ndash234 (Harvard University PressCambridge MA USA)

Mendes A C and Kury A B (2008) Intercontinental Triaenonychidae ndashthe case of Ceratomontia (Opiliones Insidiatores) The Journal ofArachnology 36 273ndash279 doi101636CH07-931

Murphree C S (1988) Morphology of the dorsal integument of tenopilionid species (Arachnida Opiliones) The Journal of Arachnology16 237ndash252

Park J K andOacuteFoighilD (2000) Sphaeriid and corbiculid clams representseparate heterodont bivalve radiations into freshwater environmentsMolecular Phylogenetics and Evolution 14 75ndash88 doi101006mpev19990691

Peacuterez Gonzaacutelez A (2006) lsquoRevisatildeo Sistemaacutetica e Anaacutelise Filogeneacutetica deStygnommatidae (Arachnida Opiliones Laniatores)rsquo (Museu NacionalUniversidade Federal de Rio de Janeiro Rio de Janeiro Brazil)

Peacuterez Gonzaacutelez A (2007) Stygnommatidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 229ndash232 (Harvard University PressCambridge MA USA)

Peacuterez Gonzaacutelez A (2011) New familial assignment for two harvestmanspecies of the infraorder Grassatores (Arachnida Opiliones Laniatores)Zootaxa 2757 24ndash28

Peacuterez Gonzaacutelez A and Kury A B (2007) Samoidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 224ndash226 (Harvard University PressCambridge MA USA)

Pineau P Henry M Suspegravene R Marchio A Dettai A Debruyne RPetit T Leacutecu A Moisson P Dejean A Wain-Hobson S andVartanian J-P (2005) A universal primer set for PCR amplificationof nuclear histone H4 genes from all animal species Molecular Biologyand Evolution 22 582ndash588 doi101093molbevmsi053

Pinto-da-Rocha R (1997) Systematic review of the Neotropical familyStygnidae (Opiliones Laniatores Gonyleptoidea) Arquivos deZoologia 33 163ndash342

Pinto-da-Rocha R and Kury A B (2003a) Phylogenetic analysis ofSantinezia with description of five new species (Opiliones LaniatoresCranaidae) The Journal of Arachnology 31 173ndash208 doi1016360161-8202(2003)031[0173PAOSWD]20CO2

Pinto-da-Rocha R and Kury A B (2003b) Third species of Guasiniidae(Opiliones Laniatores) with comments on familial relationships TheJournal of Arachnology 31 394ndash399 doi101636H02-59

Pinto-da-Rocha R and Kury A B (2007) Agoristenidae Silhavy 1973 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 171ndash173 (Harvard University PressCambridge MA USA)

Posada D (2005) Modeltest 37 Program and documentation available athttpdarwinuvigoes [Accessed 28 May 2011]

Posada D and Buckley T (2004) Model selection and model averaging inphylogenetics advantages of Akaike information criterion and Bayesianapproaches over likelihood ratio tests Systematic Biology 53 793ndash808doi10108010635150490522304

Posada D and Crandall K A (1998) Modeltest testing the model ofDNA substitution Bioinformatics (Oxford England) 14 817ndash818doi101093bioinformatics149817

Prendini L Weygoldt P and Wheeler W C (2005) Systematics of theDamon variegates group of African whip spiders (ChelicerataAmblypygi) evidence from behaviour morphology and DNAOrganisms Diversity amp Evolution 5 203ndash236 doi101016jode200412004

Rambaut A E (1996) Se-Al sequence alignment editor University ofOxford UK Program and documentation available at httptreebioedacuksoftwarefigtree [Accessed 21 December 2009]

136 Invertebrate Systematics P P Sharma and G Giribet

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 10: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

free in apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 6) composedof twoapical lobes eachbearingtwo dorsal setae one ventral seta and two apical setae Distalsurfaces of apical lobes smooth Bases of dorsal setae in contactBases of ventral setae set apart by a distance approximately equalto one-third the width of the ovipositor

Distribution

Known only from type locality

Etymology

The specific epithet honours Dr Peter J Schwendinger curator atthe MHNG for his inspiration and tireless efforts to advanceknowledge of South-east Asian arachnid fauna

Petrobunus spinifer sp nov

(Figs 7ndash10 Tables 5 6)

Material examined

Holotype Male (MHNG) Philippines Palawan El Nido RegionBulalacao Waterfall primary forest 200ndash450 alt (111304100N1192800000E) leg A Schulz 30xi2009 (ex MHNG PAL-0905)

Paratypes 12 lt 21 (MHNG) same collecting data as holotype (exMHNG PAL-0905) 3 lt (1 dissected for genitalia [MCZ 100888] andmounted on one SEM stub [MCZ 100886] 2 in ethanol [MCZ100877ndash100878]) 3 (1 dissected for genitalia [MCZ 100889] 2 inethanol [MCZ 100879ndash100880]) same collecting data as holotype (exMHNGPAL-0905) 2lt (1mountedononeSEMstub [MCZ100882] 1mounted on two SEM stubs [MCZ 100884ndash100885]) PhilippinesPalawan El Nido Region Mt Singkukan primary forest 300ndash400alt (111300700N 1192805100E) leg A Schulz 26xi2009 (exMHNG PAL-0904)

Additional material studied 6 juveniles same collecting data as holotype(MHNG PAL-0905) 1 lt Philippines Palawan El Nido Region MtSingkukan primary forest 400ndash600 alt (111303800N 1192805500E)leg A Schulz 24xi2009 (MHNG PAL-0903) 6 lt 8 PhilippinesPalawan El Nido Region Mt Singkukan primary forest 300ndash400 alt(111300700N 1192805100E) leg A Schulz 26xi2009 (MHNG PAL-0904)

Diagnosis

Small petrobunidwith unarmedoculariumwithmesotergum freeof pigmentation Distinct from congeners in the armature of thefreeopisthosomal tergites andanal plate (setose tubercules) andofthe opisthosomal sternites (sternites 3ndash6 with single tubercle oneach side forming a line under each coxa IV sternite 7 with twolarge spines directly anteroventrally and sternite 8with an evenlydistributed belt of eight smaller spines) Femur IV of male with asingle tubercle basoventrally Penis narrow in the shapeof a spearblade with three pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100879] inparentheses) 130 (115) greatest width of prosoma 058 (056)greatest width of opisthosoma 079 (080) length-to-width ratio165 (144) (Figs 5 8) Body campaniform yellow (in alcoholdepending on incidence of light) almost entirely with a densemicrogranulate surface microstructure Eyes present on lowwell developed ocularium without median ocularial tubercleOcularium 012 (010) long 018 (016) wide removed fromanterior margin of carapace Anterior margin of carapace withtwo pairs of conical pegs above coxae of leg I Scutal grooves ofmesotergum indistinct free of transverse bands of pigmentationFree tergites with regular belts of setose tubercles (Fig 5)

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged withsetose tubercules on anterior margin Genital operculumsub-triangular Spiracles not concealed anterior to row oftubercules Opisthosomal sternites 3ndash6 each with belt of smallregular tubercles Opisthosomal sternite 7 with two large setosespines directly anteroventrally Opisthosomal sternite 8 withbelt of regular tubercles Two rows of tubercles alignedanteroposteriorly under outer limit of coxae IV Anal platearmed with tubercles (Fig 6)

Chelicerae (Fig 7) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassate

Table 3 Leg measurements of Petrobunus schwendingeri holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 013012 049009 028014 034011 051005 042007 217Leg II 017016 069010 029014 055010 058005 079007 307Leg III 015016 054013 028017 046013 052007 047006 242Leg IV 045045 075014 037020 071019 090009 054007 372

Table 4 Leg measurements of Petrobunus schwendingeri female paratype (ex MCZ DNA103572) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 012015 049012 027013 034010 044006 038007 204Leg II 013018 069011 031013 053010 054006 069006 289Leg III 013017 051012 028015 040012 047007 046006 225Leg IV 024023 061012 031017 050012 071008 052008 289

Molecular phylogeny of Laniatores Invertebrate Systematics 115

free of ornamentation with dorsal margin bearing severalsetae Distal article with delicate dentition free of ornamentation

Palpi (Fig 7) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setaePalpal femur with two proximal ventral spines in a row andtwo paired distal spines (one ventral one mesoventral) Palpalpatella with a single spine directed inward Palpal tibia with twopairs of spines and a small basal setose tubercle Palpal tarsuswith two pairs of spines Palpal claw nearly as long as palpaltarsus

Legs IndashIV (Fig 7) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge setose tubercle ventrally Femora IndashIV without basalpegs femur IV with one large tubercle ventrally Femur IIIarcuate in males and females free of tubercles Femur IV andpatella IV of male with irregular rows of mesalmesoventraltubercles Tibia IV of male with multiple irregular rows oflarge tubercles distally ventral tubercles small not bulbousMetatarsi IndashIV divided distally with distal portion lackingornamentation metatarsus IV of male with two rows ofmesalmesoventral tubercles Tarsus IV unornamented Femaletrochanter IV not enlarged leg IV free of tubercles Tarsal clawsIndashIV smooth unmodified Tarsal segmentation 3 5 5 6

Penis (Fig 8) narrow and slender in the shape of a spearblade Lateral margins gradually coalescing dorsally resultingin spoon shape in dorsal aspect Ventral surface with threepairs of setae lateral margins with four setae each Glans freein apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 8) composedof twoapical lobes eachbearingtwo dorsal setae one ventral seta and two apical setae Distalsurfaces of apical lobes smooth Bases of dorsal setae in contactBases of ventral setae set apart by a distance approximately equalto one-third the width of the ovipositor

a

b

c

050 mm

050 mm

050 mm

Fig 7 Petrobunus spinifer sp nov male holotype (a) Dorsal view (b)lateral view and (c) ventral view

a

b

200 microm

100 microm

Fig 8 Petrobunus spinifer sp nov male paratype (a) Ventral view and(b) dorsal view of anterior margin of carapace

116 Invertebrate Systematics P P Sharma and G Giribet

a

b

c

d

e

h

i

g

f

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

Fig 9 Petrobunus schwendingeri sp nov (a) Left chelicer ofmaleparatype (b) left palp ofmale paratype (c) left leg I ofmale paratype (d) left leg II ofmale paratype (e) right leg III ofmale paratype ( f ) right leg IV ofmale paratype (g) left legIV of female paratype (h) trochanter of right leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 117

Distribution

Known only from type locality and additional localities reportedhere

Etymology

The specific epithet an invariable noun in apposition refers to theenlarged belts of tubercles on the free tergites and opisthosomalsternites of this species Derived from Latin lsquospinarsquo meaninglsquospearrsquo or lsquodartrsquo and lsquoferrersquo meaning lsquoto carry or bearrsquo

Petrobunus torosus sp nov

(Figs 11ndash14 Tables 7 8)

Material examined

Holotype Male (MHNG) Philippines Palawan Puerto Princesa RegionSabang Underground National Park Daylight Hole and Lions Caveprimary forest 100ndash200 alt (100900600N1185301000E) legA Schulz6ndash8xii2009 (ex MHNG PAL-0907)

Paratypes 6 lt 13 (MHNG) same collecting data as holotype(ex MHNG PAL-0907) 3 lt (1 dissected for genitalia and mountedon three SEM stubs [MCZ 100894ndash100896] 2 in ethanol [MCZ100890ndash100891]) 3 (1 dissected for genitalia [MCZ 100902] andmounted on one SEM stub [MCZ 100897] 2 in ethanol [MCZ100892ndash100893]) same collecting data as holotype (ex MHNGPAL-0907) 1 lt (mounted on one SEM stub [MCZ100899]) and 3 (dissected for genitalia [MCZ 100901] and mounted on one SEM stub[MCZ 100898]) Philippines Palawan Puerto Princesa Region SabangUnderground National Park jungle trail (101105500N 1185405900E)leg A Schulz 4xii2009 (ex MHNG PAL-0906)

Additional material studied 6 juveniles same collecting data as holotype(MHNG PAL-0907) 12 lt 3 2 juveniles Philippines PalawanPuerto Princesa Region Sabang Underground National Park jungletrail (101105500N 1185405900E) leg A Schulz 4xii2009 (MHNGPAL-0906)

Diagnosis

Distinct from congeners in the well developed ocularium armedwith median tubercle Mesotergum free of pigmentation as inP spinifer but opisthosomal sternites without large spines(sternites 7ndash9 armed only with small low tubercles) Proximalregion of femora of all legs with single blunt peg Penis widenedin the base of the pars distalis stocky in the shapeof a spear bladewith three pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100892] inparentheses) 152 (150) greatest width of prosoma 070 (068)greatest width of opisthosoma 104 (108) length-to-width ratio

a

b

c d

050 mm

050 mm

20 microm

100 microm

Fig 10 Petrobunus spinifer sp nov (a) Female paratype dorsal view(b) female paratype ventral view (c) pars distalis of penis lateral view and(d) ovipositor dorsal view

Table 5 Leg measurements of Petrobunus spinifer holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011009 032008 022011 024008 034005 036005 159Leg II 011011 046008 018012 036009 040005 068005 219Leg III 014015 044012 024014 032013 043005 041004 198Leg IV 032038 050014 025017 050014 062008 028004 247

118 Invertebrate Systematics P P Sharma and G Giribet

146 (139) (Figs 11 14) Body campaniform yellow to darkorange (in alcohol depending on incidence of light) almostentirely with a dense microgranulate surface microstructureEyes present on low well developed ocularium with medianocularial tubercle Ocularium 011 (011) long 020 (021) wideremoved from anterior margin of carapace Anterior margin ofcarapace with two pairs of blunt pegs above coxae of leg I withouter pair of sub-rectangular andor bifid shape Scutal grooves ofmesotergum indistinct free of transverse bands of pigmentationFree tergites without large tubercles or spines (Fig 12)

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged with setosetubercles on anterior margin Genital operculum sub-triangularSpiracles not concealed anterior to row of tuberclesOpisthosomal sternites with irregular belts of roundedtubercles Anal plate unarmed (Fig 12)

Chelicerae (Fig 13) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassatefree of ornamentation with dorsal margin bearing several setaeDistal article with delicate dentition free of ornamentation

Palpi (Fig 13) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setae Palpalfemur with two proximal ventral spines in a row and two paireddistal spines (one ventral one mesoventral) Palpal patella with asingle spine directed inward Palpal tibiawith twopairs of spinesand a small basal setose tubercle Palpal tarsus with two pairs ofspines Palpal claw as long as palpal tarsus

Legs IndashIV (Fig 13) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge ventral tubercle and three smaller mesodorsal tuberclesFemora IndashIV with one basal peg on ventral surface with peg freeof granulation Femur III arcuate in males and females free oftubercles Femur IVandpatella IVofmalewith two irregular rowsof mesalmesoventral tubercles Tibia IV of male with multipleirregular rows of tubercles with ventral row enlarged and conicaldistally distal-most ventral tubercle composed of two fusedtubercles Metatarsi IndashIV divided distally with distal portionlacking ornamentation metatarsus IV of male with two rows ofmesalmesoventral tubercles Female trochanter IV not enlargedleg IV free of tubercles Tarsal claws IndashIV smooth unmodifiedTarsal segmentation 3 5 5 6

Penis (Fig 14) narrow in the shape of a spear blade widenednear base Lateral margins gradually coalescing dorsallyresulting in spoon shape in dorsal aspect Ventral surface with

Table 6 Leg measurements of Petrobunus spinifer female paratype (ex MHNG PAL-0905) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 033007 021010 024007 025005 029005 143Leg II 013011 037006 023010 034007 026005 051005 184Leg III 014014 029009 022013 029010 027005 035004 156Leg IV 017015 049008 025014 034010 045006 043004 213

a

b

c

050 mm

050 mm

050 mm

Fig 11 Petrobunus torosus sp nov male holotype (a) Dorsal view(b) lateral view and (c) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 119

threepairs of setae lateralmarginswith four setae eachGlans freein apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 14) composed of two apical lobes eachbearing two dorsal setae one ventral seta and two apicalsetae Distal surfaces of apical lobes smooth Bases of dorsalsetae in contact Bases of ventral setae set apart by a distanceapproximately equal to one-third the width of the ovipositor

Distribution

Known only from type locality and additional locality reportedhere

Etymology

The specific epithet refers to the stocky and robust appearanceof the fourth leg in the males of this species Derived from Latinlsquotorosusrsquo meaning lsquomuscularrsquo or lsquobulgingrsquo

Family TITHAEIDAE fam nov

Type genusTithaeusThorell 1891 by present designation andmonotypy

Type species Tithaeus laevigatus Thorell 1891 by original designation

Genera included Tithaeus Thorell 1891 new familial assignmentMetatithaeus Suzuki 1969 new familial assignment

Diagnosis

Medium-sized Grassatores with a low ocularium removed fromthe anterior margin of carapace that differ from Epedanidae inlacking a median spine In some species slight to large hump

situated anterior of ocularium Scutal region divided into fiveareas areas I and II not fused as opposed to EpedanidaeChelicerae typical basal segment not enlarged (as opposed toEpedanidae)Distinct fromPodoctidae in the lack of spines on legI and in the lack of a sexually dimorphic ocularium Tarsalformula 5 8+ 5 6 not reduced (as opposed to Sandokanidaeand Podoctidae) Distitarsi of legs I and II typically with twotarsalia distinguished from Petrobunidae in the trochanter of legIV not enlarged inmales Tarsi III and IVwith unmodified doubleclaws scopulae absent (as opposed to most Samooidea) Distalmargin of ventral plate of penis usually with deep cleft (mostTithaeus) or widening distally into setiferous and conicalstructure (Metatithaeus) glans with simple membranous lobecovering the stylus terminus of stylus either a bifurcate orslightly inflatable lobe absence of prominent parastylar lobes(distinguishing it from Petrobunidae) absence of a ring of setaesurrounding a capsula interna (found in Epedanidae) Ovipositorlobes typically with a pair of ventral and dorsal setae

Remarks

One of dozens of genera placed in the subfamily Phalangodinae(Phalangodidae) by Roewer (1912 1923 1949) Tithaeus wassubsequently extricated and transferred to Epedanidae by Kury(1993 2003 2006) on the basis of the male genitalia althoughthe placement was ambiguous given the absence of typicalepedanid morphology such as elongate and armed pedipalpian erect ocularial spine (absent in Dibuninae) the fusion of scutalareas I and II side-branches in the posterior claws and stoutdentition of the cheliceral fingers (Lian et al 2008) However

a

b

100 microm

100 microm

100 microm

100 microm

c

d

Fig 12 Petrobunus torosus sp novmale paratype (a)Dorsolateral view (b) dorsolateral viewof anteriormargin of carapace(c) ventrolateral view and (d) ventrolateral view of prosomal complex

120 Invertebrate Systematics P P Sharma and G Giribet

comparisons of the male genitalia of a phalangodid (Texella) anepedanid (Kilungius Saracinicinae) and Tithaeus suggested acloser relationship between Epedanidae and Tithaeus in spite ofmarked differences in the stylar lobe and the extent of the basalsac (Lian et al 2008)

Our phylogenetic analyses corroborate a closer relationshipbetween Epedanidae and Tithaeuswith respect to Phalangodidae(which is sister to the remaining Grassatores and thereforedistantly related to both lineages) but the clade Tithaeus+Metatithaeus neither nests within nor is sister to Epedanidae

a

b

c

d

e

h

i

g

f

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

Fig 13 Petrobunus torosus sp nov (a) Left chelicer of male paratype (b) left palp of male paratype (c) left leg I of maleparatype (d) right leg II of male paratype (e) left leg III of male paratype (f) left leg IV of male paratype (g) left leg IV offemale paratype (h) trochanter of left leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 121

in any of the topologies we examinedMoreover the cleft ventralplate forming two prongs in the male genitalia of many Tithaeusspecies in addition to the absence of a ring of setae surroundingthe capsula interna (typical of Epedanidae) suggest that Tithaeus

and related genera (eg Istithaeus Metatithaeus Tithaeommaetc) are not true epedanids but may be more closely related toeither (1) Podoctidae a hypothesis that is supported in someanalyses (bootstrap frequency in ML [BS] = 59 posteriorclade probability given by MrBayes [PP] = 097) or (2) theclade (Podoctidae + Sandokanidae) recovered by the BEASTtopology (posterior clade probability given by BEAST[PPBEAST] = 100)

The inclusion of Tithaeus-like Grassatores in Epedanidaerenders the latter para- or diphyletic and obscures a cleardiagnosis of epedanids as the morphology of Tithaeus (andMetatithaeus) does not accord with many epedanidsynapomorphies Moreover inclusion of Tithaeus andorMetatithaeus within a broader Podoctidae is also unjustifiedbecause this violates many of the synapomorphies ofPodoctidae such as (1) tuberclesspines in dorsal and ventralrows on leg I (2) tubercular bridges (3) a sexually dimorphicbasichelicerite and (4) a sexually dimorphic ocularium

Consequently we erect the family name Tithaeidaeseparating Tithaeus and Metatithaeus from EpedanidaeTithaeidae likely includes the monotypic Roewerian generaIstithaeus Kondosus Sterrhosoma and Tithaeomma but thestatus of these genera requires further investigation and will beaddressed in a forthcoming study

Distribution

Distributed throughout Sundaland the Thai-Malay PeninsulaSumatra Java and Borneo Also reported from northern Vietnamand southern China One doubtful record from West Timor(see Lian et al 2008)

Results

Phylogenetic analysis

Less sequence data are presently available for Briggsusflavescens (partial 28S and COI Derkarabetian et al 2010)with respect to the rest of the data matrix Consequently twoML analyses were conducted including and excluding Briggsusflavescens The ML analysis with all taxa resulted in a treetopology with lnL= ndash8372597 Repeating the analysis withoutBriggsus resulted in a tree topology with lnL= ndash8336108 Thetwo topologies are identical save for the internal relationships ofTravunioidea which includes Briggsidae (Fig 15) Inclusion ofBriggsidae recovers a diphyletic Cladonychiidae with Briggsussister to Holoscotolemon but these relationships are notsupported Exclusion of Briggsidae results in higher nodalsupport frequencies within Travunioidea and recovers a sisterrelationship of Sclerobunidae and the remaining Travunioidea(BS = 75) and a monophyletic Cladonychiidae + Travuniidae(BS = 77) sister to Trojanella Including Briggsus in theanalysis does not affect topology or nodal support in otherparts of the phylogeny Monophyly of Travunioidea isstrongly supported (BS = 100) in either case

Runs of MrBayes ver 312 reached stationarity in 2 000 000generations 2 500 000 generations (25) were hence discardedas burn-in The BI analysis with all taxa resulted in a topologylargely similar to theMLtree (Fig 16)Notable differences are therelative placements of the clade (Gonyleptoidea + Stygnopsidae)

a

b

c d

050 mm

050 mm

20 microm

20 microm

Fig 14 Petrobunus torosus sp nov (a) female paratype dorsal view(b) female paratype ventral view (c) pars distalis of penis lateral view and(d) ovipositor dorsal view

122 Invertebrate Systematics P P Sharma and G Giribet

and the South-east Asian group of families Some differencesexist with respect to supported nodes within superfamilies

Estimation of divergence times

The run of BEAST reached stationarity after 6 000 000generations 10 000 000 generations (20) were discarded asburn-in The tree topology recovered by BEAST (Fig 17) differsfromML andBI topologies in (1) the placement of Sandokanidaeand (2) the relationships between superfamilies Diversificationof Laniatores is dated at ~348Mya Diversification of majorlineages is estimated as follows (Travunioidea+Triaenonychidae)299Mya Grassatores 302Mya Assamiidae +Pyramidopsgroup 232Mya Gonyleptoidea + Stygnopsidae 246MyaGonyleptoidea 230Mya Samooidea + Zalmoxoidea 206Myaand a South-east Asian clade (including Sandokanidae)249Mya These results largely corroborate previous estimatesof divergence times (Giribet et al 2010) but confidence intervalsfor estimated ages are more precise A tree file of estimated agesand 95highest posterior density (HPD) intervals for all nodes isprovided as an Accessory Publication on the InvertebrateSystematics website

Whereas the basal topology of Grassatores is unstable andunsupported most familial and superfamilial relationshipsare consistently recovered across analyses A consensus oftopologies across all analyses is shown in Fig 18

Discussion

A molecular phylogeny of the armoured harvestmen has longproven elusive Laniatores comprises entire genera and familiesthat are endemic to particular provinces of the world In somecases higher taxonomic ranks do not even occur beyond specificislands (eg the New Zealand family SynthetonychiidaeForster 1954) Moreover Laniatores includes the majority ofall described Opiliones species (and over half of all describedfamilies) and new lineages continue to be discoveredConsequently previous efforts to assess Laniatores phylogenyhave been prone to undersampling numerous lineages such asAssamiidae Epedanidae and the superfamilies Samooidea and

Zalmoxoidea (eg Giribet et al 1999 2002 Shultz and Regier2001)

The present study with the inclusion of all families ofarmoured harvestmen described heretofore enables detailedinvestigation of internal relationships of Laniatores Ofprincipal interest are the phylogenetic placement of the twonew families of Laniatores erected herein and the systematicvalidity of defined superfamilies Many of the relationshipsrecovered in our analyses are consistent with traditionalhypotheses based on morphological studies but there are someunexpected results We discuss these in turn

Insidiatores

Within a monophyletic Laniatores recovered in all analyses(BS = 100 PP = 093) the constituent lineages of Insidiatoresform a paraphyletic grade with respect to Grassatores WhileTriaenonychoidea and Travunioidea do form a clade (albeit withlow nodal support) the New Zealand endemic familySynthetonychiidae is recovered as sister to all remainingLaniatores (BS = 78 PP = 100) consistent with the resultsof a recent study (Giribet et al 2010) However the inclusionof more data in fact lowers the nodal support for this sisterrelationship relative to the previous studyrsquos ML analysislikely due to the influence of missing data (in particular only~300 bp out of a targeted 3400 bp of 28S rRNA are presentlyavailable for Synthetonychia) Consequently we do not treat theplacement of Synthetonychiidae as definitive

In all analyses the southern hemisphere Triaenonychidaeform a strongly supported clade that diversified ~200Mya(BS = 100 PP = 100) Their distribution and the age of thiscladersquos diversification are similar to that of the temperateGondwanan cyphophthalmid family Pettalidae (estimated tohave diversified ~183ndash221Mya Giribet et al 2010)suggesting a parallel biogeographical process in these lineagesThe North American triaenonychid Fumontana deprehendorShear 1977 is sister to the southern hemisphere Triaenonychidaein all analyses consistent with previous classification (Giribetand Kury 2007 Thomas and Hedin 2008) but support fora monophyletic Triaenonychoidea is limited and sensitiveto analytical parameters (BS = 57 PP lt 050 PPBEAST = 066)

Table 7 Leg measurements of Petrobunus torosus holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011011 039005 026012 028008 036006 040007 180Leg II 014013 061008 029010 043007 042006 072005 261Leg III 015015 051010 019015 037011 045006 046005 213Leg IV 034035 059012 034017 054015 067007 052006 300

Table 8 Leg measurements of Petrobunus torosus female paratype (ex MHNG PAL-0907) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 041008 022011 028010 037005 035006 174Leg II 010009 052007 023008 033007 037006 069005 224Leg III 014016 046010 025024 036012 042007 041005 204Leg IV 018017 054011 029016 049012 058007 048006 256

Molecular phylogeny of Laniatores Invertebrate Systematics 123

Fig 15 Phylogenetic relationships of Laniatores inferred from maximum likelihood analysis of all molecular data (ln L= ndash8372597) Inset topology ofTravunioidea excluding Briggsidae (ln L= ndash8336108) Numbers on nodes indicate bootstrap resampling frequencies

124 Invertebrate Systematics P P Sharma and G Giribet

We recovered a monophyletic Travunioidea which includesBriggsidae in all analyses (BS = 100PP = 100) corroboratingthe superfamilial placement of briggsids Briggsidae isrecovered sister to either Trojanella (ML) or Holoscotolemon(BI) or part of a grade with both of these taxa (BEAST) butthese placements are not supported (BS lt 50 PPBEAST = 085and PP = 051 respectively) Missing data for Briggsidaedepresses nodal support in ML analyses within Travunioideaobscuring interfamilial relationships In the absence ofBriggsidae we recover a sister relationship betweenSclerobunidae (Zuma acuta Goodnight amp Goodnight 1942)and the remaining Travunioidea (BS = 75) and themonophyly of Travuniidae +Cladonychiidae (BS = 77)

A recent molecular dating of Travunioidea obtained muchyounger dates than estimated herein in spite of similar taxaand molecular loci In that study Derkarabetian et al (2010)investigated the evolution of troglobitism in Sclerobunidae(also referred to as the lsquoNorth American triaenonychidsrsquo)and used the cladonychiid fossil Protoholoscotolemon(38ndash54Mya Ubick and Dunlop 2005) to constrain theminimum age of Travunioidea in addition to calibration pointsderived from geological ages of strata These practicesaccord with the scope of the troglobitism study (thedivergences of interest were comparatively recent ndash Plioceneor younger) but we did not utilise Protoholoscotolemon in ourdating for two reasons (1) we do not obtain an unambiguouslymonophyletic Cladonychiidae in our analyses and (2) theDevonian and Carboniferous fossils we utilised as calibrationpoints are sufficiently old to obtain a result consistent with anEocene cladonychiid fossil The different calibration pointsimplemented in the respective studies therefore account forthe discrepancy in the dating In addition the morphologicalconservatism of Opiliones makes it doubtful that the age ofProtoholoscotolemon is the maximum age of the superfamily

Our sampling of Insidiatores lineages remains limited andbarring the inclusion of Briggsidae additions to taxonomicsampling largely concern Grassatores Consequently continuedsampling and systematic studies of Insidiatores (eg Mendesand Kury 2008 Thomas and Hedin 2008 Derkarabetian et al2010) are instrumental and imperative to addressing outstandingquestions of phylogenetic relationships and morphologicalevolution A phylogeny of Triaenonychidae is particularlywanting

Early diverging Grassatores Phalangodidaeand Sandokanidae

The recovery of a monophyletic Grassatores (supported inall analyses BS = 99 PP = 100) is consistent with severalmorphological synapomorphies uniting this diverse groupsuch as the presence of two tarsal claws on walking legs IIIand IV However the basal topology of Grassatores has longbeen contentious Previously two superfamilies of Grassatoreswere recognised Oncopodoidea (with the single familySandokanidae (formerly Oncopodidae)) and lsquoGonyleptoidearsquo(with the remaining families) (Martens 1976 1986 Martenset al 1981) This dichotomy was largely based upon theunique morphology of Sandokanidae ndash characters such as thescutum completum (fused opisthosomal tergites) reduced tarsal

articles and genitalic structures which are not found in theremaining Grassatores (Martens 1980 Giribet et al 2002Sharma and Giribet 2009) It was alternatively contended thatthese characters constituted autapomorphies of Sandokanidaewhich was nested within lsquoGonyleptoidearsquo itself (Kury 2003)

In all analyses we obtained an initial divergence betweenPhalangodidae and the remaining Grassatores (BS = 100PP = 096) refuting the traditional dichotomy betweenSandokanidae and lsquoGonyleptoidearsquo Therefore we hereindefine Gonyleptoidea as the taxon consisting of AgoristenidaeCosmetidae Cranaidae Gonyleptidae Manaosbiidae andStygnidae The split between Phalangodidae and the remainingGrassatores has been postulated to correspond to the rifting ofthe ancient supercontinents Laurasia and Gondwana as thedistribution of Phalangodidae was believed to be strictlyHolarctic (Giribet et al 2010) However the inclusion of theMadagascar genus Remyus previously placed in Zalmoxidae(Starega 1989) within a monophyletic Phalangodidae indicatesbroader distribution of phalangodids ndash complementing theTriaenonychidae-Fumontana case discussed above Moreoverthe origin of Phalangodidae is estimated to have occurred around302Mya (95 HPD 264ndash335Mya) greatly predating thebreakup of the supercontinents These results indicate thatPhalangodidae may be narrowly defined and we consequentlytransfer Remyus to Phalangodidae (new familial assignment)

The unusual family Sandokanidae has been postulated to besister toPodoctidae (SharmaandGiribet 2009Giribet et al 2010)or to form agradewith Phalangodidae (Kuryrsquos lsquoPhalangodoidearsquopartly) In the present study ML and BI topologies reconstructSandokanidae as sister to the remaining non-phalangodidGrassatores albeit with insignificant nodal support (BS = 21PP = 078) Curiously the topology obtained byBEAST recoversthe clade (Sandokanidae + Podoctidae) nested within a singleclade of South-east Asian families (PPBEAST = 085) Theseresults do not unambiguously favour one hypothesis overanother and the phylogenetic placement of Sandokanidae inthe Grassatores tree therefore remains debatable

Regardless of the inclusion of Sandokanidae within theSouth-east Asian group of families that the sister family to theremaining Grassatores is Phalangodidae not Sandokanidaeindicates that the peculiar morphology of sandokanids is theresult of multiple apomorphic reversals not the retention ofplesiomorphic characters (Martens and Schwendinger 1998)The large scutum and low tarsomere number found inSandokanidae also occur in Trogulidae and Dicranolasmatidae(suborder Dyspnoi) and all Cyphophthalmi and appear to haveevolved convergently This morphology may reflect adaptationsto a shared ecological niche all these groups inhabit leaf litterinclude no arboricolous species and are limited in vagility ndash

although these life history traits are also found in other groupsHowever this hypothesis has yet to be rigorously tested

Sandokanidae is presently one of few families of Grassatoresfor which a molecular phylogeny assessing intergenericrelationships is available (Sharma and Giribet 2009) andconsistent with earlier results the monophyly of Sandokanidaeis strongly supported (BS = 100 PP = 100) as is the initial splitbetweenMartensiellus and the remaining genera (an undescribedspecies was referred to as lsquogen sprsquo by Sharma and Giribet 2009but subsequent morphological investigation revealed this to be

Molecular phylogeny of Laniatores Invertebrate Systematics 125

Fig 16 Phylogenetic relationships of Laniatores inferred fromBayesian inference analysis of allmolecular data Numbers on nodes indicateposterior probabilities

126 Invertebrate Systematics P P Sharma and G Giribet

a miniature species of Martensiellus P J Schwendinger perscomm) (BS = 92 PP = 100) Intergeneric relationshipsof sandokanid genera are contingent upon analytical treatmentof molecular partitions (with additional sandokanid exemplarsdata not shown) reflecting conflict among datasets documentedby Sharma and Giribet (2009)

The other South-east Asian families

Epedanidae was postulated to be sister to Gonyleptoidea in acladistic analysis based on morphological characters (Kury1993) Subsequently Kury (2003) proposed that Epedanidaewas sister to the clade (Assamiidae (Stygnopsidae +Gonyleptoidea)) The single epedanid previously included in amolecular phylogeny was similarly unstable in placement eithernestingwithin Assamiidae or sister to the African lsquophalangodidsrsquo(Conomma and Maiorerus) in neither case with appreciablenodal support (Giribet et al 2010) Furthermore previousinclusion of several lineages (eg Tithaeus) within Epedanidaethat do not bear characters typical of true epedanids ndash sexuallydimorphic chelicera with heavy dentition elongate andspined pedipalpi male genitalia with setae surroundingthe capsula interna ndash has also made this family difficult todefine Consequently we included only Epedaninae (egPseudoepedanus Alloepedanus and Euepedanus) as exemplarsof true epedanids the systematic validity of the remaining threesubfamilies (and particularly the inclusion of Dibuninae) isbeyond the scope of this study and remains to be investigated

The monophyly of each of four South-east Asian families ndashEpedanidae (represented by epedanines) TithaeidaePetrobunidae and Podoctidae ndash is recovered with high nodalsupport (all BS = 100 PP = 100) These lineages are somehowrelated to each other and while they form a clade in bothML andBI analyses this result receives insignificant nodal support(PP = 077) In the topology recovered by BEAST the South-east Asian families form a clade that includes Sandokanidaea result consistent with the distribution of sandokanids albeitwithout support (PPBEAST = 085) Tithaeidae is probably closelyrelated to Podoctidae given the occurrence of a deeply cleftventral plate resulting in two flanking prongs in themale genitaliaof both families (Suzuki 1977 Lian et al 2008 Fig 19) Inaddition the clade (Podoctidae +Tithaeidae) is recovered withmoderate support in ML and BI analyses (BS = 59 PP = 097)In none of the analyses is Tithaeidae nested within or sister toEpedanidae sensu stricto

The morphology of Petrobunidae suggests some relationshipto previously described South-east Asian families oralternatively Phalangodidae but not inclusion within any ofthese (Fig 19) Molecular sequence data do not support anyspecificplacement ofPetrobunidae although it clusterswithotherSouth-east Asian families in all analyses and is recovered sisterto Epedanidae in two topologies (BI and BEAST)

Gonyleptoidea and Stygnopsidae

With over 2500 described species the superfamilyGonyleptoidea constitutes the most diverse and (arguably) themost charismatic lineage of Opiliones with most of this diversityconcentrated in Amazonia (some cosmetids occur as far north asthe mid-Atlantic states of the US) In a previous analysis

relationships of gonyleptoid families were unsupported andordid not accordwithmorphological studies (Giribet et al 2010) Inparticular the placement of the agoristenid exemplar Avimaalbiornata (Goodnight amp Goodnight 1947) ndash the putativesister family to the remaining Gonyleptoidea ndash within aparaphyletic Cranaidae was particularly suspect given thelimited availability of sequence data for Avima (complete 18SrRNA a300-bp fragmentof 28S rRNA andCOI) In addition thesister group of Gonyleptoidea was ambiguous and contingentupon analytical parameters

Redoubling sequencing efforts and addition of taxaparticularly in the case of Agoristenidae (currently sequencedfor 12S rRNA complete 18S rRNA a 2000-bp fragment of 28SrRNA COI H3 and EF-1a) improved the assessment ofgonyleptoid relationships A monophyletic Gonyleptoidea(BS = 58 PP = 066) is recovered sister to the familyStygnopsidae (BS = 57 PP = 100) Within Gonyleptoidea asplit between Agoristenidae and the remaining gonyleptoids isstrongly supported (BS = 100 PP = 100) followed by thedivergence of Stygnidae (BS = 71 PP = 099) Thisplacement of Agoristenidae is supported by morphologicalstudies (Pinto-da-Rocha and Kury 2007) although in aminority of tree topologies sampled in BI analysesAgoristenidae is sister to Stygnopsidae (hence lower nodalsupport for the monophyly of Gonyleptoidea in BI) Theplacement of Manaosbiidae is uncertain it is recoveredsister to either (Gonyleptidae +Cranaidae) (PP = 089) or toCosmetidae (PPBEAST = 092) but these results are notsupported Cranaidae is recovered as monophyletic (BS = 99PP = 100) and nested within a paraphyletic Gonyleptidae

The present sampling of Cosmetidae and Gonyleptidae doesnot do justice to the diversity of these lineages (~700 and 800described species respectively) A phylogenetic assessment ofall 16 subfamilies of Gonyleptidae alone constitutes the subjectof an arduous and exacting study Fortunately cladistic analysesof morphological characters continue to advance phylogeneticinvestigation of subfamilial lineages (eg BourguyiinaeYamaguti and Pinto-da-Rocha 2009 Goniosomatinae DaSilvaandGnaspini 2009HernandariinaeDaSilva andPinto-da-Rocha2010) Elucidating the phylogeny of Gonyleptoidea is one of themost exciting research topics in the study of Opiliones

The Afrotropical families

The third most diverse family of Laniatores Assamiidaeconstitutes the dominant opiliofauna of the African continent(excluding Madagascar) with some lineages occurring in SouthAsia the Indo-Malay Archipelago and Australia (Trionyxellinaeand Dampetrinae) Proposed to be related to EpedanidaeStygnopsidae andor Gonyleptoidea (Kury 2007) on the basisof genitalic structures assamiids were not recovered asmonophyletic in a previous study (paraphyly was induced byeither Epedanidae orAfricanBiantidae) and the placement of thesubfamily Trionyxellinae was particularly suspect (Giribet et al2010) Trionyxellinae was considered a separate family byMello-Leitatildeo (1949) though others considered it nested withinAssamiidae (eg Starega 1992) In our analyses the monophylyof Assamiidae is supported (BS = 79 PP = 100)lsquoTrionyxellinaersquo (Trionyxella and Mysorea both with a

Molecular phylogeny of Laniatores Invertebrate Systematics 127

Fig 17 Evolutionary time tree of Laniatores inferred fromBEASTanalysis of allmolecular data Coloured bars indicate 95highestposterior density (HPD) intervals for nodes of interest Numbers on nodes indicate posterior probabilities asterisks indicate posteriorprobability of 100

128 Invertebrate Systematics P P Sharma and G Giribet

pseudonychium on the third and fourth tarsi) is a diphyletic entitynested within the other Assamiidae (for the node renderingdiphyly BS = 100 PP = 100) disfavouring family status fortrionyxellines

The African lsquophalangodidsrsquo (sometimes called thelsquoPyramidops grouprsquo) were recognised as a new family byStarega (1992) but not formalised and included 13 genera(Conomma Pyramidops and related lineages) Consistentwith this hypothesis we recovered strong support for thePyramidops group (represented by Conomma and cfPyramidops) as a lineage separate from the true Phalangodidae(egBishopella and Scotolemon) recapitulating a previous result(Giribet et al 2010) The African lsquophalangodidsrsquowere recoveredas the sister lineage of Assamiidae although this relationshipis variably supported in our analyses (BS = 40 PP = 095PPBEAST = 100) A review and formal description of thePyramidops group as a new family lsquoPyramidopidaersquo ndash a namewidely available on the internet including GBIF but notformalised ndash is undertaken elsewhere (Sharma et al 2011)

While we have endeavoured to improve the sampling ofAssamiidae from South-east Asia the internal systematics ofthis family remain a high value target for phylogenetic researchHowever revision of assamiid systematics is inherently difficultfor two reasons (1) the family is peppered with questionablehierarchies and monotypic genera (~12 subfamilies and 250genera for less than 500 described species) and (2) occurs insome of the most inaccessible regions of the world namely sub-Saharan Africa

In all analyses the clade (Assamiidae + Pyramidopidae) issister to the clade (Zalmoxoidea + Samooidea) though this resultis only supported in one analysis (PP= 100) The divergence ofthese four lineages is estimated to have occurred 252Mya and isconsistent with diversification in West Tropical Gondwanaoccurring at least 140million years before the fragmentation ofthis terrane (~110Mya)

Zalmoxoidea

As currently defined the largely Neotropical superfamilyZalmoxoidea includes four families FissiphalliidaeGuasiniidae Icaleptidae and Zalmoxidae Guasiniidae hasnever before been included in a molecular phylogeny In thepresent study we sequenced a guasiniid for six genes and ouranalyses strongly support theplacement ofGuasiniidae as sister tothe samooid family Kimulidae (formerly Minuidae) (BS = 86PP = 098 PPBEAST = 099) and this clade in turn sister to anothersamooid family Escadabiidae (BS = 65 PP = 096PPBEAST = 100) The families Fissiphalliidae Icaleptidaeand Zalmoxidae in turn form a separate clade (BS = 100PP = 100 PPBEAST = 100) with strong support for the sisterrelationship of Zalmoxidae and Fissiphalliidae (BS = 99PP = 100 PPBEAST = 100) corroborating relationshipsproposed by morphological studies (Kury and Peacuterez G 2002Pinto-da-Rocha and Kury 2003b)

Previous analyses have suggested that Samooidea (discussedbelow) is a paraphyletic grade with respect to Zalmoxoidea(Giribet et al 2010) In the present analysis the cladeSamooidea + Zalmoxoidea is strongly supported (BS = 85PP = 100 PPBEAST = 100) as previously suggested by PeacuterezGonzaacutelez and Kury (2007) and by excluding Escadabiidae and

Kimulidae Samooidea is rendered a monophyletic entity albeitwith limited support (BS = 53 PP = 062 PPBEAST = 081) Thestrong support from molecular sequence data for the cladeincluding Escadabiidae Kimulidae and the four zalmoxoidfamilies (BS = 89 PP = 100 PPBEAST = 100) suggests thatthese may form a natural group

Re-examination of the morphology of these six families incomparisonwith true samooid lineages (Biantidae Samoidae andStygnommatidae) corroborates the exclusionofEscadabiidae andKimulidae from true Samooidea Escadabiidae and Kimulidae(1) lack the scopula characteristic of Samoidae and stenostygnineBiantidae (2) lack a sexually dimorphic metatarsus IIIcharacteristic of Samoidae Stygnommatidae and stenostygnineBiantidae and (3) lack a penial calyx characteristic of SamoidaeConsistent with placement within Zalmoxoidea EscadabiidaeandKimulidae (1) possess a small oculariumbearing the eyes thatis removed from the margin of the carapace (2) bear a wellmarked dorsal protuberance (bulla) on the proximal segmentof the chelicera that lacks armature and (3) possess sexuallydimorphic leg IV segments particularly the femur and tibiawhich may be variedly arcuate incrassate and spinedAdditionally Escadabiidae Fissiphalliidae and Zalmoxidae allpossess sexually dimorphic tegumental glandopeningson tibia IIwhereas Biantidae Samoidae and Stygnommatidae possessthese structures on metatarsus III (Willemart et al 2010)While data on tegumental gland openings are only availablefor a small handful of species these may constitute significantdiagnostic characters for species wherein sexual dimorphismdoes not manifest itself in the readily observable form ofenlarged and spiny segments

Given the results of our phylogenetic analyses maintainingSamooidea (as currently defined) renders it a paraphyletic gradewith respect to a diphyletic Zalmoxoidea (as currently defined)Consequently based on the aforementioned morphologicalcharacters and robust molecular phylogenetic signal wetransfer Escadabiidae and Kimulidae to Zalmoxoidea

Samooidea

A previous cladistic analysis based upon morphological datasuggested close relationship between six families ndash BiantidaeEscadabiidae Kimulidae Podoctidae Samoidae andStygnommatidae ndash thenceforth known as Samooidea (Kury1993) the only pantropical Laniatores superfamily HoweverPodoctidae does not have any obvious relationship to Samooideaand has subsequently been transferred (Kury 2007) in ouranalyses Podoctidae is sister to Tithaeidae or Sandokanidaeie distantly related to all samooid families Moreover ouranalyses strongly favour the exclusion of Escadabiidae andKimulidae from Samooidea

The remaining three families ndash Biantidae Samoidae andStygnommatidae ndash are distributed in the Neotropics and partsof Africa with a handful of suspect lineages in South-east AsiaRe-examination and reassignment of many Samoidae genera(eg the Indonesian lsquosamoidrsquo Waigeucola palpalis PeacuterezGonzaacutelez 2011) suggest that the range of Samoidae does notinclude South-east Asia Peacuterez Gonzaacutelez and Kury (2007) alsoobserved that the lsquosamoidsrsquo of Africa Madagascar and theSeychelles may not be true Samoidae either Similarlyinclusion of the genus Stygnomimus an Indonesian lineage

Molecular phylogeny of Laniatores Invertebrate Systematics 129

within Stygnommatidae is highly dubious as the twoIndonesian lsquostygnommatidsrsquo are either highly autapomorphic(Stygnomimus conopygus (Roewer 1927)) or described on the

basis of a generic female that is not readily distinguishable fromfemales of other species (Stygnomimus malayensis (Suzuki1970))

Fig 18 Strict consensus of tree topologies obtained by all phylogenetic analyses

130 Invertebrate Systematics P P Sharma and G Giribet

Previous efforts to assess the systematic validity of Samooideaby means of molecular sequence data were limited insofar asonly two Samoidae three Biantidae (all Metabiantes) and twoStygnommatidae were sampled (Giribet et al 2010) Thesampling of Samoidae was especially problematic only asingle Neotropical adult (Pellobunus) and one African juvenilesamoid (lsquoSamoidae gen sprsquo) were included The designation ofthe latter is suspect as juveniles of Samoidae are oftenindistinguishable from the juveniles of other lineages becausemany diagnostic secondary sexual characters in Grassatores(eg spines and incrassate appendages) are not acquired untilafter several postembryonic stages (Townsend et al 2009)

In the present study though the type genus of Samoidae(Samoa from Samoa) was not available we sequenced theclosely related genus Badessa (from Fiji collected byP P S) as well as additional Biantidae and StygnommatidaeOur analyses recovered a monophyletic Samooidea (excludingEscadabiidae and Kimulidae BS = 53 PP = 062) withSamoidae sensu stricto (Pellobunus +Badessa BS = 100PP = 100) nested within a paraphyletic Stygnommatidae aplacement that is supported (BS = 87 PP = 100) Bycontrast the African lsquosamoidrsquo is sister to the AfricanBiantidae a relationship that is also well supported(BS = 100 PP = 100) These relationships suggest a basal

Fig 19 Cladogram of male genitalic evolution in South-east Asian families superimposed upon a schematised molecular phylogeny based on ML and BIanalyses of all molecular data Exemplars (a) Pseudoepedanus doiensis Suzuki 1969 (redrawn from Suzuki 1969) dorsal view (b) Pseudoepedanus doiensisSuzuki 1969 (redrawn from Suzuki 1969) ventral view (c) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) ventral view(d) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) dorsal view (e) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki1976) dorsal view (f) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki 1976) ventral view (g) Petrobunus torosus lateral view (h) ZalmoxidagibberaSuzuki 1969 dorsal view (i)Zalmoxida sp (MCZDNA102677) dorsolateral view (j)Metatithaeus rubidusSuzuki 1969 (redrawn fromSuzuki 1969)ventral view (k)Tithaeus kokutnusSuzuki 1985 (redrawn fromSuzuki 1985) ventral view (l)Tithaeus similisSuzuki 1985 (redrawn fromSuzuki 1985) ventralview (m)DongmoaoshimensisSuzuki 1964 (redrawn fromSuzuki 1964) ventral view (n)Bonea longipalpisSuzuki 1977 (redrawn fromSuzuki 1977) ventralview (o) Santobius annulipes Soslashrensen 1886 (redrawn from Kury and Machado 2009) ventral view (p) Lomanius longipalpus mindanaoensis Suzuki 1977(redrawn from Suzuki 1977) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 131

dichotomy within Samooidea that corresponds to one groupof Neotropical and Pacific lineages and a second group ofAfrican lineages However as we were unable to samplestenostygnine (Neotropical) and Indo-Pacific Biantidae aswell as numerous monotypic genera dubiously placed inSamoidae biogeographical extrapolations for Samooidea aretenuous (discussed below)

The internal relationships of Samooidea suggest that themorphology of Samoidae may have evolved convergently Asthe African samoid is a juvenile (the same specimen previouslysequenced by Giribet et al 2010 now sequenced for additional28S rRNA and other genes) we cannot rule out the possibility ofa monophyletic Samoidae that includes African species (thespecimen in question could be a juvenile biantid) In any casethe paraphyly of Stygnommatidae and putative polyphyly ofSamoidae strongly advocate systematic revision of samooidfamilies as currently defined corroborating hypotheses of non-monophyly based on morphology (Peacuterez Gonzaacutelez 2007 PeacuterezGonzaacutelez and Kury 2007) Our sampling of these families isinsufficient to advocate specific taxonomic action but an ongoing

study of samooidean systematics will shed more light on thevalidity of constituent families (A Peacuterez Gonzaacutelez work inprogress)

Biogeography of Zalmoxoidea and Samooidea

While most superfamilies of Grassatores are restricted to aspecific part of the tropics (eg Neotropics South-east Asia)two are distributed in multiple biogeographical provincesSamooidea occurs in the Neotropics and Afrotropics withquestionable records from South-east Asia Zalmoxoidea isconcentrated in the Neotropics with the exception of oneIndo-Pacific lineage of Zalmoxidae (represented here byZalmoxis sp) The ages and distributions of Samooidea andZalmoxoidea suggest that their biogeography was influencedby the fragmentation of West Tropical Gondwana ndash causingthe former to diverge basally throughout West TropicalGondwanan terranes and the latter to become isolated to theNeotropics (with possible subsequent dispersal)

Fig 20 Ancestral range reconstructions for Samooidea +Zalmoxoidea inferred by Lagrange using stratified models corresponding to two vicariant events(indicated by dotted lines) Coloured squares at terminals indicate ranges occupied by sampled species Coloured squares on nodes indicate ranges reconstructedfor hypothetical ancestors Numbers on nodes indicate relative probability of ranges reconstructed

Fig 21 Best hypothesis of Laniatores relationships based on all available evidence Bracketed nodes indicate non-monophyletic entities Dashed line indicatesambiguity in the placement of Sandokanidae (alternatively placed as shown or as sister to Podoctidae) Exemplars of Laniatores diversity are Synthetonychiaoliveae (Synthetonychiidae) Equitius doriae (Triaenonychidae) Hadziana clavigera (Travuniidae) Erebomaster flavescens flavescens (Cladonychiidae)Scotolemon lespesi (Phalangodidae) Palaeoncopus gunung (Sandokanidae) Santobius sp (Podoctidae) Tithaeus sp (Tithaeidae) Petrobunus spinifer(Petrobunidae) Alloepedanus sp (Epedanidae) Hoplobunus sp (Stygnopsidae) Torreana spinata (Agoristenidae) Stygnoplus clavotibialis (Stygnidae)Metalibitia paraguayensis (Cosmetidae)Acutisoma longipes (Gonyleptidae)Conommaoedipus (Pyramidopsgroup)Mysorea thaiensis (Assamiidae)Lacurbssp (Biantidae) Stygnomma sp (Stygnommatidae) Badessa sp (Samoidae) Guasinia sp (Guasiniidae) Icaleptes sp (Icaleptidae) Fissiphallius chicoi(Fissiphalliidae) Zalmoxis sp (Zalmoxidae) Kimula goodnightiorum (Kimulidae)

132 Invertebrate Systematics P P Sharma and G Giribet

Molecular phylogeny of Laniatores Invertebrate Systematics 133

To test this hypothesis we conducted likelihood analysisof range evolution using the program Lagrange (Ree et al2005 Ree and Smith 2008) for the clade (Zalmoxoidea +Samooidea) The stratified analysis resulted in a globalmaximum likelihood of ndashlnL= 1556 outperforming anunconstrained analysis that did not include any dispersalconstraints (ndashlnL= 1676) Likelihood analysis of rangeoptimisation (Fig 20) indicates that the ancestral range ofSamooidea includes both the Afrotropics and the Neotropics(relative probability pr = 1000) but a subsequent split occursbetween an African lineage (pr = 1000) and a NeotropicalIndo-Pacific lineage with a Neotropical ancestral range (pr = 0986)Samoidea of the Indo-Pacific occur on young oceanic islands(eg Fiji Samoa) indicating recent transoceanic dispersal fromthe Neotropics

Ancestral range reconstructions for Samooidea are allconsistent with estimated divergence times for these clades(diversification of Samooidea predates the rifting of WestAfrica from northern South America) favouring an underlyingvicariant process for the basal topology with subsequent recentdispersal events However these results are contingent upon thepresent sampling which does not include all samooid lineages(eg stenostygnine Biantidae) but basal range reconstructionsare likely unaffected (eg Stenostygninae is exclusivelyNeotropical)

In contrast the ancestor of Zalmoxoidea is reconstructedas singularly Neotropical (pr = 0996) This is consistent withisolation of a zalmoxoid ancestor to Amazonia which thenradiated ~191Mya Subsequent ancestral ranges are alsoreconstructed as Neotropical with high relative probabilityHowever the ancestral range of the clade (Icaleptidae +Fissiphalliidae + Zalmoxidae) is ambiguously reconstructedas either Neotropical (pr = 0935) or Neotropical + Indo-Pacific(pr = 0064) as is the split between Fissiphalliidae andZalmoxidae (Neotropical pr = 0856 Neotropical + Indo-Pacific pr = 0141)

These results suggest that the Indo-Pacific lineage ofZalmoxidae which split from Neotropical Zalmoxidae ~83Myais likely the result of long-distance dispersal from the NeotropicsHowever due to the persistence of transantarctic connectionsbetween the Australian plate and temperate South America untilthe Tertiary a competing vicariant scenario cannot be ruled outwithout densely sampling zalmoxid diversity The biogeographyof Zalmoxidae is presently being explored in greater detail in aseparate study (P P Sharma unpubl data)

Finally the ancestral range of (Samooidea + Zalmoxoidea)includes both Africa and the Neotropics (pr = 0957) consistentwith a tropical West Gondwanan ancestor This resultlends circumstantial evidence to a sister relationship of theAfrotropical families (Assamiidae + Pyramidopidae) and theclade (Samooidea + Zalmoxoidea) recovered in all analyses

The diversification of Grassatores

While numerous interfamilial relationships are supported inthis study particularly among gonyleptoid and zalmoxoidfamilies some relationships between superfamilies ofGrassatores are not supported and are contingent upon

analytical treatments namely the deployment of substitutionmodels and data partitioning (Fig 21) The cause of thisinstability could be related to insufficient data particularly inthe EF-1a partition (the length of an intron which can exceed400 bp in some taxa makes this gene particularly difficult toamplify) However examination of clade divergence timessuggests that rapid diversification of Grassatores lineagescould in part augment phylogenetic uncertainty in basal partsof the topology

The split between Phalangodidae and the remainingGrassatores is estimated to have occurred ~302Mya but aseries of divergences resulted in the origin of all superfamiliallineages between 232 and 271Mya Relative to the estimatedage of Laniatores (348Mya) this 39-million-year period isremarkably narrow and inherently problematic as the amountof phylogenetic signal for a given stem subtending a node isdirectly proportional to the amount of time that the stem inquestion spans (Lanyon 1988 Rokas and Carroll 2006) Thesmall internal edge lengths of the stems corresponding to basaldivergences of non-phalangodid Grassatores (Figs 15 16)combined with the ancient age of lineages derived from thesedivergences result in relationships that are difficult to estimatewithout a large amount of sequence data andor the inclusion ofdata that are less afflicted by homoplasy (because longer edgelengths imply more indel and substitution events on edges)(Whitfield and Lockhart 2007)

We additionally observe that the origins of most Grassatoressuperfamilies occur in the wake of the end-Permian massextinction (~254Mya) Rapid radiation in the wake of a massextinction has occurred in multiple metazoan lineagesthe putative result of relaxed selection and opening ofpreviously occupied ecological niche space (Labandeira andSepkoski 1993 Sahney and Benton 2008) The rapiddiversification of early Grassatores lineages could be anexample of this phenomenon but this hypothesis is difficult totest in the absence of Mesozoic Grassatores fossils (reviewed byDunlop 2007)

Finally we observe that contrary to traditional hierarchiesproposed for Laniatores many of the clades recovered in ouranalyses correspond to geographical regions particularly in thecase of Grassatores For example the southern hemispheretriaenonychids are restricted to temperate Gondwananlandmasses Gonyleptoidea and their sister group Stygnopsidaeform a Neotropical (AmazonianMesoamericanAntillean) cladethat excludes Assamiidae which has been hypothesised to be amember of a broader Gonyleptoidea (Kury and Cokendolpher2000 Mendes and Kury 2007) In our analyses Assamiidae isin fact a member of a largely Afrotropical clade together withthe Pyramidopidae South-east Asian families usually form oneclade (at most two) albeit with limited support Samooideafamilies are divided into two clusters African and NeotropicalWith one exception (described above) Zalmoxoidea is restrictedto the Neotropics The ages that we estimate for Laniatoresradiations are consistent with ancient diversification beforethe fragmentation of Pangaea An ancient diversification inconjunction with the climatic stability of the tropics may in partexplain the comparatively greater diversity of the armouredharvestmen with respect to the other Opiliones suborders

134 Invertebrate Systematics P P Sharma and G Giribet

Acknowledgements

Weare indebted toPeter J Schwendingerwho collected andprovidedmost ofthe material for study from South-east Asia Some Thai and most of theNeotropical Laniatores were obtained from the TIGER (Thailand InventoryGroup for Entomological Research) and LLAMA (Leaf Litter Arthropods ofMeso-America) projects toC Lienhard and J Longino respectivelyMaterialfrom Madagascar was generously contributed by Charles Griswold and theCalifornia Academy of Sciences Jesse Czekanski-Moir in conjunction withthe Belau NationalMuseum contributed elusive specimens from Palau AbelPeacuterezGonzaacutelez identifiedmanyNeotropical species included in the study andcontributed specimens fromCubaRicardoPinto-da-Rocha identified someofthe live photographed animals from the Neotropics Discussions with RonaldMClouseAbelPeacuterezGonzaacutelezAdrianoBKury andCarlosEPrieto refinedmanyof the ideas presentedhereTwoanonymous reviewers and the associateeditor provided comments that helped to improve an earlier version ofthis manuscript Laura Leibensperger sorted and accessioned TIGER andLLAMA material as well as MCZ type material Adam Graham and theCenter forNanoscaleStudies atHarvardUniversityprovided support forSEMwork Collecting efforts in New Caledonia were greatly facilitated by theguidance of Herveacute Jourdan (Institut de rechercheacute pour de developpementNoumea) and his teammembers Collecting efforts in Fiji weremade possibleby Marika Tuiwawa (University of the South Pacific Suva) and his teammembers Hilda Waqa and Tokasaya lsquoToxrsquo Cakacaka we are especiallygrateful to Tox for his good company during fieldwork and to his familyfor graciously enabling a visit toOvalau SuzieYee Shawprovided invaluablelogistical support in Fiji and her sons Colin and Joshua Yee Shaw assistedwith sorting Fijian material Fieldwork in Indonesia and West Africa wassupported by two MCZ Putnam Expedition Grants awarded to RonaldM Clouse and G G (2006) and to G G (2009) respectively Fieldworkin New Caledonia was supported by the Goelet award the Kalathia FamilyTrust and the Explorers Club awarded to P P S in 2006 Fieldwork in Fijiand in Palauwas supported by twoMCZPutnamExpeditionGrants awardedto P P S (2008) and to Ronald M Clouse and P P S (2010) respectivelyP P S was supported by a Faculty of Arts and Sciences Graduate Fellowshipfrom Harvard University

References

Castresana J (2000) Selectionof conservedblocks frommultiple alignmentsfor their use in phylogenetic analysis Molecular Biology and Evolution17 540ndash552

Colgan D J McLauchlan A Wislon G D F Livingston S MacaranasJ Edgecombe G D Cassis G and Gray M R (1998) Molecularphylogenetics of the Arthropoda relationships based on histone H3and U2 snRNA DNA sequences Australian Journal of Zoology 46419ndash437 doi101071ZO98048

DaSilva M B and Gnaspini P (2009) A systematic revision ofGoniosomatinae (Arachnida Opiliones Gonyleptidae) with a cladisticanalysis and biogeographical notes Invertebrate Systematics 23530ndash624 doi101071IS09022

DaSilva M B and Pinto-da-Rocha R (2010) Systematic review andcladistic analysis of the Hernandariinae (Opiliones Gonyleptidae)Zoologia 27 577ndash642

Derkarabetian S Steinmann D B and Hedin M (2010) Repeatedand time-correlated morphological convergence in cave-dwellingharvestmen (Opiliones Laniatores) from montane western NorthAmerica PLoS ONE 5 e10388 doi101371journalpone0010388

Drummond A J and Rambaut A (2007) BEAST Bayesian evolutionaryanalysis by sampling trees BMC Evolutionary Biology 7 214doi1011861471-2148-7-214

Drummond A J Ho S Y W Phillips M J and Rambaut A (2006)Relaxed phylogenetics and dating with confidence PLoS Biology 4 e88doi101371journalpbio0040088

Dunlop J A (2007) Paleontology In lsquoHarvestmen The Biology ofOpilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 247ndash265 (Harvard University Press Cambridge MA USA)

Dunlop J A and Anderson L I (2005) A fossil harvestman (ArachnidaOpiliones) from theMississippian of East Kirkton Scotland The Journalof Arachnology 33 482ndash489 doi10163604-791

Dunlop JAAndersonL IKerpH andHassH (2003)Preservedorgansof Devonian harvestmen Nature 425 916 doi101038425916a

Dunlop J A Anderson L I Kerp H and Hass H (2004) A harvestman(Arachnida Opiliones) from the Early Devonian Rhynie chertsAberdeenshire Scotland Transactions of the Royal Society ofEdinburgh Earth Sciences 94 341ndash354

Edgar R C (2004) MUSCLE multiple sequence alignment with highaccuracy and high throughput Nucleic Acids Research 32 1792ndash1797doi101093nargkh340

Edgecombe G D and Giribet G (2006) A century laterndash a total evidencere-evaluation of scutigeromorph centipedes (Myriapoda Chilopoda)Invertebrate Systematics 20 503ndash525 doi101071IS05044

Edgecombe G D Giribet G and Wheeler W C (2002) Phylogeny ofHenicopidae (Chilopoda Lithobiomorpha) a combined analysis ofmorphology and five molecular loci Systematic Entomology 2731ndash64 doi101046j0307-6970200100163x

FolmerOBlackMHoehWLutzR andVrijenhoekRC (1994)DNAprimers for amplification ofmitochondrial cytochrome c oxidase subunit Ifrom diverse metazoan invertebrates Molecular Marine Biology andBiotechnology 3 294ndash299

Forster R R (1954) The New Zealand harvestmen (sub-order Laniatores)Canterbury Museum Bulletin 2 1ndash329

Giribet G and Kury A B (2007) Phylogeny and biogeography InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 62ndash87 (Harvard University PressCambridge MA USA)

Giribet G Carranza S Baguntildeagrave J Riutort M and Ribera C (1996) Firstmolecular evidence for the existence of a Tardigrada +Arthropoda cladeMolecular Biology and Evolution 13 76ndash84

Giribet G Rambla M Carranza S Baguntildeagrave J Riutort M and Ribera C(1999) Phylogeny of the arachnid order Opiliones (Arthropoda)inferred from a combined approach of complete 18S and partial 28Sribosomal DNA sequences and morphology Molecular Phylogeneticsand Evolution 11 296ndash307 doi101006mpev19980583

Giribet G Edgecombe G D Wheeler W C and Babbitt C (2002)Phylogeny and systematic position of Opiliones a combined analysis ofchelicerate relationships using morphological and molecular dataCladistics 18 5ndash70

Giribet G Vogt L PeacuterezGonzaacutelez A Sharma P andKury A B (2010)A multilocus approach to harvestman (Arachnida Opiliones) phylogenywith emphasis on biogeography and the systematics of LaniatoresCladistics 26 408ndash437

Hara M R Gnaspini P and Machado G (2003) Male egg guardingbehavior in the Neotropical harvestman Ampheres leucopheus (Mello-Leitatildeo 1922) (Opiliones Gonyleptidae) The Journal of Arachnology 31441ndash444 doi101636S02-32

Hedin M Derkarabetian S McCormack M and Richart C (2010) Thephylogenetic utility of the nuclear protein-encoding gene EF-1a forresolving recent divergences in Opiliones emphasizing intronevolution The Journal of Arachnology 38 9ndash20 doi101636HA09-491

Huelsenbeck J P and Ronquist F (2005) Bayesian analyses of molecularevolution using MrBayes In lsquoStatistical Methods in MolecularEvolutionrsquo (Ed R Nielsen) (Springer New York)

HunterRK ProundDNBurns JA Tibbetts JA andTownsendVR(2007) Parental care in the Neotropical harvestman Phareicranauscalcariferus (Opiliones Cranaidae) The Journal of Arachnology 35199ndash201 doi101636ST06-181

Molecular phylogeny of Laniatores Invertebrate Systematics 135

Kocher T D Thoma W K Meyer A Edwards S V Paumlaumlbo SVillablanca F X and Wilson A C (1989) Dynamics ofmitochondrial DNA evolution in animals amplification andsequencing with conserved primers Proceedings of the NationalAcademy of Sciences of the United States of America 86 6196ndash6200doi101073pnas86166196

Kury A B (1993) Anaacutelise filogeneacutetica de Gonyleptoidea (ArachnidaOpiliones Laniatores) PhD Thesis Universidade de Satildeo Paulo SatildeoPaulo Brazil

Kury A B (2003) Annotated catalogue of the Laniatores of the NewWorld (Arachnida Opiliones) Revista Ibeacuterica de AracnologiacuteaVolumen Especial Monograacutefico 1 1ndash337

Kury A B (2006) Checklist of valid genera of Opiliones of theWorld Museu NacionalUFRJ Available from httpwwwmuseunacionalufrjbrmndiAracnologiachecklaniatorhtm [Accessed1 February 2011]

Kury A B (2007) Podoctidae Roewer 1912 In lsquoHarvestmen The Biologyof Opilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 221ndash224 (Harvard University Press Cambridge MA USA)

Kury A B and Cokendolpher J C (2000) Opiliones In lsquoBiodiversidadTaxonomiacutea y Biogeografiacutea de Artoacutepodos de Meacutexico Hacia una Sintesisde su Conocimientorsquo vol 2 (Eds J E Llorente E Gonzaacutelez andN Papavero) pp 137ndash157 (Universidad Nacional Autoacutenoma deMexico Meacutexico DF Mexico)

Kury A B and Machado G (2009) Notes on Santobius from Vanuatu andFiji and the status of the eastern Melanesian Ibalonius (ArachnidaOpiliones Podoctidae) Zoological Studies 48 524ndash538

Kury A B and Peacuterez G A (2002) A new family of Laniatores fromnorthwestern South America (Arachnida Opiliones) Revista Ibeacuterica deAracnologiacutea 6 3ndash11

Labandeira C C and Sepkoski J J (1993) Insect diversity in the fossilrecord Science 261 310ndash315 doi101126science11536548

Lanyon S M (1988) The stochastic mode of molecular evolutionwhat consequences for systematic investigations The Auk 105565ndash573

Lian W-G Zhu M-S and Kury A B (2008) A new species of the genusTithaeus from China (Arachnida Laniatores Epedanidae) Zootaxa1841 53ndash60

Machado G Requena G S Buzatto B A Osses F and Rossetto L M(2004) Five new cases of paternal care in harvestmen (ArachnidaOpiliones) implications for the evolution of male guarding in theNeotropical family Gonyleptidae Sociobiology 44 577ndash598

Martens J (1976) Genitalmorphologie System und Phylogenie derWeberknechte (Arachnida Opiliones) Entomologica GermanicaZeitschrift fuumlr das Gesamtgebiet der Wissenschaftlichen Entomologie3 51ndash68

Martens J (1980) Versuch eines phylogenetischen Systems der OpilionesIn lsquoProceedings 8th International Congress of Arachnology ViennaVerhandlungenrsquo (Ed J Gruber) pp 355ndash360 (Vienna Austria)

Martens J (1986) Die Grossgliederung der Opiliones und die Evolutionder Ordnung (Arachnida) Actas del X Congreso Internacional deAracnologiacutea Jaca 1 289ndash310

Martens J (1993) Further cases of paternal care in Opiliones (Arachnida)Tropical Zoology 6 97ndash107

Martens J and Schwendinger P S (1998) A taxonomic revision ofthe family Oncopodidae I New genera and new species of GnomulusThorell (Opiliones Laniatores) Revue Suisse de Zoologie 105 499ndash555

Martens J Hoheisel U and Goumltze M (1981) Vergleichende Anatomieder Legeroumlhren der Opiliones als Beitrag zur Phylogenie der Ordnung(Arachnida) Zoologische Jahrbucher Abteilung fur Anatomie undOntogenie der Tiere 105 13ndash76

Mello-Leitatildeo C F (1949) Famiacutelias subfamiacutelia espeacutecies e gecircneros novos deopiliotildees e notas de sinoniacutemia Boletim do Museu Nacional Nova SeacuterieZoologia Rio de Janeiro 94 1ndash33

Mendes A C and Kury A B (2007) Stygnopsidae Soslashrensen 1932 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 232ndash234 (Harvard University PressCambridge MA USA)

Mendes A C and Kury A B (2008) Intercontinental Triaenonychidae ndashthe case of Ceratomontia (Opiliones Insidiatores) The Journal ofArachnology 36 273ndash279 doi101636CH07-931

Murphree C S (1988) Morphology of the dorsal integument of tenopilionid species (Arachnida Opiliones) The Journal of Arachnology16 237ndash252

Park J K andOacuteFoighilD (2000) Sphaeriid and corbiculid clams representseparate heterodont bivalve radiations into freshwater environmentsMolecular Phylogenetics and Evolution 14 75ndash88 doi101006mpev19990691

Peacuterez Gonzaacutelez A (2006) lsquoRevisatildeo Sistemaacutetica e Anaacutelise Filogeneacutetica deStygnommatidae (Arachnida Opiliones Laniatores)rsquo (Museu NacionalUniversidade Federal de Rio de Janeiro Rio de Janeiro Brazil)

Peacuterez Gonzaacutelez A (2007) Stygnommatidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 229ndash232 (Harvard University PressCambridge MA USA)

Peacuterez Gonzaacutelez A (2011) New familial assignment for two harvestmanspecies of the infraorder Grassatores (Arachnida Opiliones Laniatores)Zootaxa 2757 24ndash28

Peacuterez Gonzaacutelez A and Kury A B (2007) Samoidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 224ndash226 (Harvard University PressCambridge MA USA)

Pineau P Henry M Suspegravene R Marchio A Dettai A Debruyne RPetit T Leacutecu A Moisson P Dejean A Wain-Hobson S andVartanian J-P (2005) A universal primer set for PCR amplificationof nuclear histone H4 genes from all animal species Molecular Biologyand Evolution 22 582ndash588 doi101093molbevmsi053

Pinto-da-Rocha R (1997) Systematic review of the Neotropical familyStygnidae (Opiliones Laniatores Gonyleptoidea) Arquivos deZoologia 33 163ndash342

Pinto-da-Rocha R and Kury A B (2003a) Phylogenetic analysis ofSantinezia with description of five new species (Opiliones LaniatoresCranaidae) The Journal of Arachnology 31 173ndash208 doi1016360161-8202(2003)031[0173PAOSWD]20CO2

Pinto-da-Rocha R and Kury A B (2003b) Third species of Guasiniidae(Opiliones Laniatores) with comments on familial relationships TheJournal of Arachnology 31 394ndash399 doi101636H02-59

Pinto-da-Rocha R and Kury A B (2007) Agoristenidae Silhavy 1973 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 171ndash173 (Harvard University PressCambridge MA USA)

Posada D (2005) Modeltest 37 Program and documentation available athttpdarwinuvigoes [Accessed 28 May 2011]

Posada D and Buckley T (2004) Model selection and model averaging inphylogenetics advantages of Akaike information criterion and Bayesianapproaches over likelihood ratio tests Systematic Biology 53 793ndash808doi10108010635150490522304

Posada D and Crandall K A (1998) Modeltest testing the model ofDNA substitution Bioinformatics (Oxford England) 14 817ndash818doi101093bioinformatics149817

Prendini L Weygoldt P and Wheeler W C (2005) Systematics of theDamon variegates group of African whip spiders (ChelicerataAmblypygi) evidence from behaviour morphology and DNAOrganisms Diversity amp Evolution 5 203ndash236 doi101016jode200412004

Rambaut A E (1996) Se-Al sequence alignment editor University ofOxford UK Program and documentation available at httptreebioedacuksoftwarefigtree [Accessed 21 December 2009]

136 Invertebrate Systematics P P Sharma and G Giribet

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 11: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

free of ornamentation with dorsal margin bearing severalsetae Distal article with delicate dentition free of ornamentation

Palpi (Fig 7) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setaePalpal femur with two proximal ventral spines in a row andtwo paired distal spines (one ventral one mesoventral) Palpalpatella with a single spine directed inward Palpal tibia with twopairs of spines and a small basal setose tubercle Palpal tarsuswith two pairs of spines Palpal claw nearly as long as palpaltarsus

Legs IndashIV (Fig 7) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge setose tubercle ventrally Femora IndashIV without basalpegs femur IV with one large tubercle ventrally Femur IIIarcuate in males and females free of tubercles Femur IV andpatella IV of male with irregular rows of mesalmesoventraltubercles Tibia IV of male with multiple irregular rows oflarge tubercles distally ventral tubercles small not bulbousMetatarsi IndashIV divided distally with distal portion lackingornamentation metatarsus IV of male with two rows ofmesalmesoventral tubercles Tarsus IV unornamented Femaletrochanter IV not enlarged leg IV free of tubercles Tarsal clawsIndashIV smooth unmodified Tarsal segmentation 3 5 5 6

Penis (Fig 8) narrow and slender in the shape of a spearblade Lateral margins gradually coalescing dorsally resultingin spoon shape in dorsal aspect Ventral surface with threepairs of setae lateral margins with four setae each Glans freein apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 8) composedof twoapical lobes eachbearingtwo dorsal setae one ventral seta and two apical setae Distalsurfaces of apical lobes smooth Bases of dorsal setae in contactBases of ventral setae set apart by a distance approximately equalto one-third the width of the ovipositor

a

b

c

050 mm

050 mm

050 mm

Fig 7 Petrobunus spinifer sp nov male holotype (a) Dorsal view (b)lateral view and (c) ventral view

a

b

200 microm

100 microm

Fig 8 Petrobunus spinifer sp nov male paratype (a) Ventral view and(b) dorsal view of anterior margin of carapace

116 Invertebrate Systematics P P Sharma and G Giribet

a

b

c

d

e

h

i

g

f

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

Fig 9 Petrobunus schwendingeri sp nov (a) Left chelicer ofmaleparatype (b) left palp ofmale paratype (c) left leg I ofmale paratype (d) left leg II ofmale paratype (e) right leg III ofmale paratype ( f ) right leg IV ofmale paratype (g) left legIV of female paratype (h) trochanter of right leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 117

Distribution

Known only from type locality and additional localities reportedhere

Etymology

The specific epithet an invariable noun in apposition refers to theenlarged belts of tubercles on the free tergites and opisthosomalsternites of this species Derived from Latin lsquospinarsquo meaninglsquospearrsquo or lsquodartrsquo and lsquoferrersquo meaning lsquoto carry or bearrsquo

Petrobunus torosus sp nov

(Figs 11ndash14 Tables 7 8)

Material examined

Holotype Male (MHNG) Philippines Palawan Puerto Princesa RegionSabang Underground National Park Daylight Hole and Lions Caveprimary forest 100ndash200 alt (100900600N1185301000E) legA Schulz6ndash8xii2009 (ex MHNG PAL-0907)

Paratypes 6 lt 13 (MHNG) same collecting data as holotype(ex MHNG PAL-0907) 3 lt (1 dissected for genitalia and mountedon three SEM stubs [MCZ 100894ndash100896] 2 in ethanol [MCZ100890ndash100891]) 3 (1 dissected for genitalia [MCZ 100902] andmounted on one SEM stub [MCZ 100897] 2 in ethanol [MCZ100892ndash100893]) same collecting data as holotype (ex MHNGPAL-0907) 1 lt (mounted on one SEM stub [MCZ100899]) and 3 (dissected for genitalia [MCZ 100901] and mounted on one SEM stub[MCZ 100898]) Philippines Palawan Puerto Princesa Region SabangUnderground National Park jungle trail (101105500N 1185405900E)leg A Schulz 4xii2009 (ex MHNG PAL-0906)

Additional material studied 6 juveniles same collecting data as holotype(MHNG PAL-0907) 12 lt 3 2 juveniles Philippines PalawanPuerto Princesa Region Sabang Underground National Park jungletrail (101105500N 1185405900E) leg A Schulz 4xii2009 (MHNGPAL-0906)

Diagnosis

Distinct from congeners in the well developed ocularium armedwith median tubercle Mesotergum free of pigmentation as inP spinifer but opisthosomal sternites without large spines(sternites 7ndash9 armed only with small low tubercles) Proximalregion of femora of all legs with single blunt peg Penis widenedin the base of the pars distalis stocky in the shapeof a spear bladewith three pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100892] inparentheses) 152 (150) greatest width of prosoma 070 (068)greatest width of opisthosoma 104 (108) length-to-width ratio

a

b

c d

050 mm

050 mm

20 microm

100 microm

Fig 10 Petrobunus spinifer sp nov (a) Female paratype dorsal view(b) female paratype ventral view (c) pars distalis of penis lateral view and(d) ovipositor dorsal view

Table 5 Leg measurements of Petrobunus spinifer holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011009 032008 022011 024008 034005 036005 159Leg II 011011 046008 018012 036009 040005 068005 219Leg III 014015 044012 024014 032013 043005 041004 198Leg IV 032038 050014 025017 050014 062008 028004 247

118 Invertebrate Systematics P P Sharma and G Giribet

146 (139) (Figs 11 14) Body campaniform yellow to darkorange (in alcohol depending on incidence of light) almostentirely with a dense microgranulate surface microstructureEyes present on low well developed ocularium with medianocularial tubercle Ocularium 011 (011) long 020 (021) wideremoved from anterior margin of carapace Anterior margin ofcarapace with two pairs of blunt pegs above coxae of leg I withouter pair of sub-rectangular andor bifid shape Scutal grooves ofmesotergum indistinct free of transverse bands of pigmentationFree tergites without large tubercles or spines (Fig 12)

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged with setosetubercles on anterior margin Genital operculum sub-triangularSpiracles not concealed anterior to row of tuberclesOpisthosomal sternites with irregular belts of roundedtubercles Anal plate unarmed (Fig 12)

Chelicerae (Fig 13) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassatefree of ornamentation with dorsal margin bearing several setaeDistal article with delicate dentition free of ornamentation

Palpi (Fig 13) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setae Palpalfemur with two proximal ventral spines in a row and two paireddistal spines (one ventral one mesoventral) Palpal patella with asingle spine directed inward Palpal tibiawith twopairs of spinesand a small basal setose tubercle Palpal tarsus with two pairs ofspines Palpal claw as long as palpal tarsus

Legs IndashIV (Fig 13) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge ventral tubercle and three smaller mesodorsal tuberclesFemora IndashIV with one basal peg on ventral surface with peg freeof granulation Femur III arcuate in males and females free oftubercles Femur IVandpatella IVofmalewith two irregular rowsof mesalmesoventral tubercles Tibia IV of male with multipleirregular rows of tubercles with ventral row enlarged and conicaldistally distal-most ventral tubercle composed of two fusedtubercles Metatarsi IndashIV divided distally with distal portionlacking ornamentation metatarsus IV of male with two rows ofmesalmesoventral tubercles Female trochanter IV not enlargedleg IV free of tubercles Tarsal claws IndashIV smooth unmodifiedTarsal segmentation 3 5 5 6

Penis (Fig 14) narrow in the shape of a spear blade widenednear base Lateral margins gradually coalescing dorsallyresulting in spoon shape in dorsal aspect Ventral surface with

Table 6 Leg measurements of Petrobunus spinifer female paratype (ex MHNG PAL-0905) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 033007 021010 024007 025005 029005 143Leg II 013011 037006 023010 034007 026005 051005 184Leg III 014014 029009 022013 029010 027005 035004 156Leg IV 017015 049008 025014 034010 045006 043004 213

a

b

c

050 mm

050 mm

050 mm

Fig 11 Petrobunus torosus sp nov male holotype (a) Dorsal view(b) lateral view and (c) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 119

threepairs of setae lateralmarginswith four setae eachGlans freein apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 14) composed of two apical lobes eachbearing two dorsal setae one ventral seta and two apicalsetae Distal surfaces of apical lobes smooth Bases of dorsalsetae in contact Bases of ventral setae set apart by a distanceapproximately equal to one-third the width of the ovipositor

Distribution

Known only from type locality and additional locality reportedhere

Etymology

The specific epithet refers to the stocky and robust appearanceof the fourth leg in the males of this species Derived from Latinlsquotorosusrsquo meaning lsquomuscularrsquo or lsquobulgingrsquo

Family TITHAEIDAE fam nov

Type genusTithaeusThorell 1891 by present designation andmonotypy

Type species Tithaeus laevigatus Thorell 1891 by original designation

Genera included Tithaeus Thorell 1891 new familial assignmentMetatithaeus Suzuki 1969 new familial assignment

Diagnosis

Medium-sized Grassatores with a low ocularium removed fromthe anterior margin of carapace that differ from Epedanidae inlacking a median spine In some species slight to large hump

situated anterior of ocularium Scutal region divided into fiveareas areas I and II not fused as opposed to EpedanidaeChelicerae typical basal segment not enlarged (as opposed toEpedanidae)Distinct fromPodoctidae in the lack of spines on legI and in the lack of a sexually dimorphic ocularium Tarsalformula 5 8+ 5 6 not reduced (as opposed to Sandokanidaeand Podoctidae) Distitarsi of legs I and II typically with twotarsalia distinguished from Petrobunidae in the trochanter of legIV not enlarged inmales Tarsi III and IVwith unmodified doubleclaws scopulae absent (as opposed to most Samooidea) Distalmargin of ventral plate of penis usually with deep cleft (mostTithaeus) or widening distally into setiferous and conicalstructure (Metatithaeus) glans with simple membranous lobecovering the stylus terminus of stylus either a bifurcate orslightly inflatable lobe absence of prominent parastylar lobes(distinguishing it from Petrobunidae) absence of a ring of setaesurrounding a capsula interna (found in Epedanidae) Ovipositorlobes typically with a pair of ventral and dorsal setae

Remarks

One of dozens of genera placed in the subfamily Phalangodinae(Phalangodidae) by Roewer (1912 1923 1949) Tithaeus wassubsequently extricated and transferred to Epedanidae by Kury(1993 2003 2006) on the basis of the male genitalia althoughthe placement was ambiguous given the absence of typicalepedanid morphology such as elongate and armed pedipalpian erect ocularial spine (absent in Dibuninae) the fusion of scutalareas I and II side-branches in the posterior claws and stoutdentition of the cheliceral fingers (Lian et al 2008) However

a

b

100 microm

100 microm

100 microm

100 microm

c

d

Fig 12 Petrobunus torosus sp novmale paratype (a)Dorsolateral view (b) dorsolateral viewof anteriormargin of carapace(c) ventrolateral view and (d) ventrolateral view of prosomal complex

120 Invertebrate Systematics P P Sharma and G Giribet

comparisons of the male genitalia of a phalangodid (Texella) anepedanid (Kilungius Saracinicinae) and Tithaeus suggested acloser relationship between Epedanidae and Tithaeus in spite ofmarked differences in the stylar lobe and the extent of the basalsac (Lian et al 2008)

Our phylogenetic analyses corroborate a closer relationshipbetween Epedanidae and Tithaeuswith respect to Phalangodidae(which is sister to the remaining Grassatores and thereforedistantly related to both lineages) but the clade Tithaeus+Metatithaeus neither nests within nor is sister to Epedanidae

a

b

c

d

e

h

i

g

f

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

Fig 13 Petrobunus torosus sp nov (a) Left chelicer of male paratype (b) left palp of male paratype (c) left leg I of maleparatype (d) right leg II of male paratype (e) left leg III of male paratype (f) left leg IV of male paratype (g) left leg IV offemale paratype (h) trochanter of left leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 121

in any of the topologies we examinedMoreover the cleft ventralplate forming two prongs in the male genitalia of many Tithaeusspecies in addition to the absence of a ring of setae surroundingthe capsula interna (typical of Epedanidae) suggest that Tithaeus

and related genera (eg Istithaeus Metatithaeus Tithaeommaetc) are not true epedanids but may be more closely related toeither (1) Podoctidae a hypothesis that is supported in someanalyses (bootstrap frequency in ML [BS] = 59 posteriorclade probability given by MrBayes [PP] = 097) or (2) theclade (Podoctidae + Sandokanidae) recovered by the BEASTtopology (posterior clade probability given by BEAST[PPBEAST] = 100)

The inclusion of Tithaeus-like Grassatores in Epedanidaerenders the latter para- or diphyletic and obscures a cleardiagnosis of epedanids as the morphology of Tithaeus (andMetatithaeus) does not accord with many epedanidsynapomorphies Moreover inclusion of Tithaeus andorMetatithaeus within a broader Podoctidae is also unjustifiedbecause this violates many of the synapomorphies ofPodoctidae such as (1) tuberclesspines in dorsal and ventralrows on leg I (2) tubercular bridges (3) a sexually dimorphicbasichelicerite and (4) a sexually dimorphic ocularium

Consequently we erect the family name Tithaeidaeseparating Tithaeus and Metatithaeus from EpedanidaeTithaeidae likely includes the monotypic Roewerian generaIstithaeus Kondosus Sterrhosoma and Tithaeomma but thestatus of these genera requires further investigation and will beaddressed in a forthcoming study

Distribution

Distributed throughout Sundaland the Thai-Malay PeninsulaSumatra Java and Borneo Also reported from northern Vietnamand southern China One doubtful record from West Timor(see Lian et al 2008)

Results

Phylogenetic analysis

Less sequence data are presently available for Briggsusflavescens (partial 28S and COI Derkarabetian et al 2010)with respect to the rest of the data matrix Consequently twoML analyses were conducted including and excluding Briggsusflavescens The ML analysis with all taxa resulted in a treetopology with lnL= ndash8372597 Repeating the analysis withoutBriggsus resulted in a tree topology with lnL= ndash8336108 Thetwo topologies are identical save for the internal relationships ofTravunioidea which includes Briggsidae (Fig 15) Inclusion ofBriggsidae recovers a diphyletic Cladonychiidae with Briggsussister to Holoscotolemon but these relationships are notsupported Exclusion of Briggsidae results in higher nodalsupport frequencies within Travunioidea and recovers a sisterrelationship of Sclerobunidae and the remaining Travunioidea(BS = 75) and a monophyletic Cladonychiidae + Travuniidae(BS = 77) sister to Trojanella Including Briggsus in theanalysis does not affect topology or nodal support in otherparts of the phylogeny Monophyly of Travunioidea isstrongly supported (BS = 100) in either case

Runs of MrBayes ver 312 reached stationarity in 2 000 000generations 2 500 000 generations (25) were hence discardedas burn-in The BI analysis with all taxa resulted in a topologylargely similar to theMLtree (Fig 16)Notable differences are therelative placements of the clade (Gonyleptoidea + Stygnopsidae)

a

b

c d

050 mm

050 mm

20 microm

20 microm

Fig 14 Petrobunus torosus sp nov (a) female paratype dorsal view(b) female paratype ventral view (c) pars distalis of penis lateral view and(d) ovipositor dorsal view

122 Invertebrate Systematics P P Sharma and G Giribet

and the South-east Asian group of families Some differencesexist with respect to supported nodes within superfamilies

Estimation of divergence times

The run of BEAST reached stationarity after 6 000 000generations 10 000 000 generations (20) were discarded asburn-in The tree topology recovered by BEAST (Fig 17) differsfromML andBI topologies in (1) the placement of Sandokanidaeand (2) the relationships between superfamilies Diversificationof Laniatores is dated at ~348Mya Diversification of majorlineages is estimated as follows (Travunioidea+Triaenonychidae)299Mya Grassatores 302Mya Assamiidae +Pyramidopsgroup 232Mya Gonyleptoidea + Stygnopsidae 246MyaGonyleptoidea 230Mya Samooidea + Zalmoxoidea 206Myaand a South-east Asian clade (including Sandokanidae)249Mya These results largely corroborate previous estimatesof divergence times (Giribet et al 2010) but confidence intervalsfor estimated ages are more precise A tree file of estimated agesand 95highest posterior density (HPD) intervals for all nodes isprovided as an Accessory Publication on the InvertebrateSystematics website

Whereas the basal topology of Grassatores is unstable andunsupported most familial and superfamilial relationshipsare consistently recovered across analyses A consensus oftopologies across all analyses is shown in Fig 18

Discussion

A molecular phylogeny of the armoured harvestmen has longproven elusive Laniatores comprises entire genera and familiesthat are endemic to particular provinces of the world In somecases higher taxonomic ranks do not even occur beyond specificislands (eg the New Zealand family SynthetonychiidaeForster 1954) Moreover Laniatores includes the majority ofall described Opiliones species (and over half of all describedfamilies) and new lineages continue to be discoveredConsequently previous efforts to assess Laniatores phylogenyhave been prone to undersampling numerous lineages such asAssamiidae Epedanidae and the superfamilies Samooidea and

Zalmoxoidea (eg Giribet et al 1999 2002 Shultz and Regier2001)

The present study with the inclusion of all families ofarmoured harvestmen described heretofore enables detailedinvestigation of internal relationships of Laniatores Ofprincipal interest are the phylogenetic placement of the twonew families of Laniatores erected herein and the systematicvalidity of defined superfamilies Many of the relationshipsrecovered in our analyses are consistent with traditionalhypotheses based on morphological studies but there are someunexpected results We discuss these in turn

Insidiatores

Within a monophyletic Laniatores recovered in all analyses(BS = 100 PP = 093) the constituent lineages of Insidiatoresform a paraphyletic grade with respect to Grassatores WhileTriaenonychoidea and Travunioidea do form a clade (albeit withlow nodal support) the New Zealand endemic familySynthetonychiidae is recovered as sister to all remainingLaniatores (BS = 78 PP = 100) consistent with the resultsof a recent study (Giribet et al 2010) However the inclusionof more data in fact lowers the nodal support for this sisterrelationship relative to the previous studyrsquos ML analysislikely due to the influence of missing data (in particular only~300 bp out of a targeted 3400 bp of 28S rRNA are presentlyavailable for Synthetonychia) Consequently we do not treat theplacement of Synthetonychiidae as definitive

In all analyses the southern hemisphere Triaenonychidaeform a strongly supported clade that diversified ~200Mya(BS = 100 PP = 100) Their distribution and the age of thiscladersquos diversification are similar to that of the temperateGondwanan cyphophthalmid family Pettalidae (estimated tohave diversified ~183ndash221Mya Giribet et al 2010)suggesting a parallel biogeographical process in these lineagesThe North American triaenonychid Fumontana deprehendorShear 1977 is sister to the southern hemisphere Triaenonychidaein all analyses consistent with previous classification (Giribetand Kury 2007 Thomas and Hedin 2008) but support fora monophyletic Triaenonychoidea is limited and sensitiveto analytical parameters (BS = 57 PP lt 050 PPBEAST = 066)

Table 7 Leg measurements of Petrobunus torosus holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011011 039005 026012 028008 036006 040007 180Leg II 014013 061008 029010 043007 042006 072005 261Leg III 015015 051010 019015 037011 045006 046005 213Leg IV 034035 059012 034017 054015 067007 052006 300

Table 8 Leg measurements of Petrobunus torosus female paratype (ex MHNG PAL-0907) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 041008 022011 028010 037005 035006 174Leg II 010009 052007 023008 033007 037006 069005 224Leg III 014016 046010 025024 036012 042007 041005 204Leg IV 018017 054011 029016 049012 058007 048006 256

Molecular phylogeny of Laniatores Invertebrate Systematics 123

Fig 15 Phylogenetic relationships of Laniatores inferred from maximum likelihood analysis of all molecular data (ln L= ndash8372597) Inset topology ofTravunioidea excluding Briggsidae (ln L= ndash8336108) Numbers on nodes indicate bootstrap resampling frequencies

124 Invertebrate Systematics P P Sharma and G Giribet

We recovered a monophyletic Travunioidea which includesBriggsidae in all analyses (BS = 100PP = 100) corroboratingthe superfamilial placement of briggsids Briggsidae isrecovered sister to either Trojanella (ML) or Holoscotolemon(BI) or part of a grade with both of these taxa (BEAST) butthese placements are not supported (BS lt 50 PPBEAST = 085and PP = 051 respectively) Missing data for Briggsidaedepresses nodal support in ML analyses within Travunioideaobscuring interfamilial relationships In the absence ofBriggsidae we recover a sister relationship betweenSclerobunidae (Zuma acuta Goodnight amp Goodnight 1942)and the remaining Travunioidea (BS = 75) and themonophyly of Travuniidae +Cladonychiidae (BS = 77)

A recent molecular dating of Travunioidea obtained muchyounger dates than estimated herein in spite of similar taxaand molecular loci In that study Derkarabetian et al (2010)investigated the evolution of troglobitism in Sclerobunidae(also referred to as the lsquoNorth American triaenonychidsrsquo)and used the cladonychiid fossil Protoholoscotolemon(38ndash54Mya Ubick and Dunlop 2005) to constrain theminimum age of Travunioidea in addition to calibration pointsderived from geological ages of strata These practicesaccord with the scope of the troglobitism study (thedivergences of interest were comparatively recent ndash Plioceneor younger) but we did not utilise Protoholoscotolemon in ourdating for two reasons (1) we do not obtain an unambiguouslymonophyletic Cladonychiidae in our analyses and (2) theDevonian and Carboniferous fossils we utilised as calibrationpoints are sufficiently old to obtain a result consistent with anEocene cladonychiid fossil The different calibration pointsimplemented in the respective studies therefore account forthe discrepancy in the dating In addition the morphologicalconservatism of Opiliones makes it doubtful that the age ofProtoholoscotolemon is the maximum age of the superfamily

Our sampling of Insidiatores lineages remains limited andbarring the inclusion of Briggsidae additions to taxonomicsampling largely concern Grassatores Consequently continuedsampling and systematic studies of Insidiatores (eg Mendesand Kury 2008 Thomas and Hedin 2008 Derkarabetian et al2010) are instrumental and imperative to addressing outstandingquestions of phylogenetic relationships and morphologicalevolution A phylogeny of Triaenonychidae is particularlywanting

Early diverging Grassatores Phalangodidaeand Sandokanidae

The recovery of a monophyletic Grassatores (supported inall analyses BS = 99 PP = 100) is consistent with severalmorphological synapomorphies uniting this diverse groupsuch as the presence of two tarsal claws on walking legs IIIand IV However the basal topology of Grassatores has longbeen contentious Previously two superfamilies of Grassatoreswere recognised Oncopodoidea (with the single familySandokanidae (formerly Oncopodidae)) and lsquoGonyleptoidearsquo(with the remaining families) (Martens 1976 1986 Martenset al 1981) This dichotomy was largely based upon theunique morphology of Sandokanidae ndash characters such as thescutum completum (fused opisthosomal tergites) reduced tarsal

articles and genitalic structures which are not found in theremaining Grassatores (Martens 1980 Giribet et al 2002Sharma and Giribet 2009) It was alternatively contended thatthese characters constituted autapomorphies of Sandokanidaewhich was nested within lsquoGonyleptoidearsquo itself (Kury 2003)

In all analyses we obtained an initial divergence betweenPhalangodidae and the remaining Grassatores (BS = 100PP = 096) refuting the traditional dichotomy betweenSandokanidae and lsquoGonyleptoidearsquo Therefore we hereindefine Gonyleptoidea as the taxon consisting of AgoristenidaeCosmetidae Cranaidae Gonyleptidae Manaosbiidae andStygnidae The split between Phalangodidae and the remainingGrassatores has been postulated to correspond to the rifting ofthe ancient supercontinents Laurasia and Gondwana as thedistribution of Phalangodidae was believed to be strictlyHolarctic (Giribet et al 2010) However the inclusion of theMadagascar genus Remyus previously placed in Zalmoxidae(Starega 1989) within a monophyletic Phalangodidae indicatesbroader distribution of phalangodids ndash complementing theTriaenonychidae-Fumontana case discussed above Moreoverthe origin of Phalangodidae is estimated to have occurred around302Mya (95 HPD 264ndash335Mya) greatly predating thebreakup of the supercontinents These results indicate thatPhalangodidae may be narrowly defined and we consequentlytransfer Remyus to Phalangodidae (new familial assignment)

The unusual family Sandokanidae has been postulated to besister toPodoctidae (SharmaandGiribet 2009Giribet et al 2010)or to form agradewith Phalangodidae (Kuryrsquos lsquoPhalangodoidearsquopartly) In the present study ML and BI topologies reconstructSandokanidae as sister to the remaining non-phalangodidGrassatores albeit with insignificant nodal support (BS = 21PP = 078) Curiously the topology obtained byBEAST recoversthe clade (Sandokanidae + Podoctidae) nested within a singleclade of South-east Asian families (PPBEAST = 085) Theseresults do not unambiguously favour one hypothesis overanother and the phylogenetic placement of Sandokanidae inthe Grassatores tree therefore remains debatable

Regardless of the inclusion of Sandokanidae within theSouth-east Asian group of families that the sister family to theremaining Grassatores is Phalangodidae not Sandokanidaeindicates that the peculiar morphology of sandokanids is theresult of multiple apomorphic reversals not the retention ofplesiomorphic characters (Martens and Schwendinger 1998)The large scutum and low tarsomere number found inSandokanidae also occur in Trogulidae and Dicranolasmatidae(suborder Dyspnoi) and all Cyphophthalmi and appear to haveevolved convergently This morphology may reflect adaptationsto a shared ecological niche all these groups inhabit leaf litterinclude no arboricolous species and are limited in vagility ndash

although these life history traits are also found in other groupsHowever this hypothesis has yet to be rigorously tested

Sandokanidae is presently one of few families of Grassatoresfor which a molecular phylogeny assessing intergenericrelationships is available (Sharma and Giribet 2009) andconsistent with earlier results the monophyly of Sandokanidaeis strongly supported (BS = 100 PP = 100) as is the initial splitbetweenMartensiellus and the remaining genera (an undescribedspecies was referred to as lsquogen sprsquo by Sharma and Giribet 2009but subsequent morphological investigation revealed this to be

Molecular phylogeny of Laniatores Invertebrate Systematics 125

Fig 16 Phylogenetic relationships of Laniatores inferred fromBayesian inference analysis of allmolecular data Numbers on nodes indicateposterior probabilities

126 Invertebrate Systematics P P Sharma and G Giribet

a miniature species of Martensiellus P J Schwendinger perscomm) (BS = 92 PP = 100) Intergeneric relationshipsof sandokanid genera are contingent upon analytical treatmentof molecular partitions (with additional sandokanid exemplarsdata not shown) reflecting conflict among datasets documentedby Sharma and Giribet (2009)

The other South-east Asian families

Epedanidae was postulated to be sister to Gonyleptoidea in acladistic analysis based on morphological characters (Kury1993) Subsequently Kury (2003) proposed that Epedanidaewas sister to the clade (Assamiidae (Stygnopsidae +Gonyleptoidea)) The single epedanid previously included in amolecular phylogeny was similarly unstable in placement eithernestingwithin Assamiidae or sister to the African lsquophalangodidsrsquo(Conomma and Maiorerus) in neither case with appreciablenodal support (Giribet et al 2010) Furthermore previousinclusion of several lineages (eg Tithaeus) within Epedanidaethat do not bear characters typical of true epedanids ndash sexuallydimorphic chelicera with heavy dentition elongate andspined pedipalpi male genitalia with setae surroundingthe capsula interna ndash has also made this family difficult todefine Consequently we included only Epedaninae (egPseudoepedanus Alloepedanus and Euepedanus) as exemplarsof true epedanids the systematic validity of the remaining threesubfamilies (and particularly the inclusion of Dibuninae) isbeyond the scope of this study and remains to be investigated

The monophyly of each of four South-east Asian families ndashEpedanidae (represented by epedanines) TithaeidaePetrobunidae and Podoctidae ndash is recovered with high nodalsupport (all BS = 100 PP = 100) These lineages are somehowrelated to each other and while they form a clade in bothML andBI analyses this result receives insignificant nodal support(PP = 077) In the topology recovered by BEAST the South-east Asian families form a clade that includes Sandokanidaea result consistent with the distribution of sandokanids albeitwithout support (PPBEAST = 085) Tithaeidae is probably closelyrelated to Podoctidae given the occurrence of a deeply cleftventral plate resulting in two flanking prongs in themale genitaliaof both families (Suzuki 1977 Lian et al 2008 Fig 19) Inaddition the clade (Podoctidae +Tithaeidae) is recovered withmoderate support in ML and BI analyses (BS = 59 PP = 097)In none of the analyses is Tithaeidae nested within or sister toEpedanidae sensu stricto

The morphology of Petrobunidae suggests some relationshipto previously described South-east Asian families oralternatively Phalangodidae but not inclusion within any ofthese (Fig 19) Molecular sequence data do not support anyspecificplacement ofPetrobunidae although it clusterswithotherSouth-east Asian families in all analyses and is recovered sisterto Epedanidae in two topologies (BI and BEAST)

Gonyleptoidea and Stygnopsidae

With over 2500 described species the superfamilyGonyleptoidea constitutes the most diverse and (arguably) themost charismatic lineage of Opiliones with most of this diversityconcentrated in Amazonia (some cosmetids occur as far north asthe mid-Atlantic states of the US) In a previous analysis

relationships of gonyleptoid families were unsupported andordid not accordwithmorphological studies (Giribet et al 2010) Inparticular the placement of the agoristenid exemplar Avimaalbiornata (Goodnight amp Goodnight 1947) ndash the putativesister family to the remaining Gonyleptoidea ndash within aparaphyletic Cranaidae was particularly suspect given thelimited availability of sequence data for Avima (complete 18SrRNA a300-bp fragmentof 28S rRNA andCOI) In addition thesister group of Gonyleptoidea was ambiguous and contingentupon analytical parameters

Redoubling sequencing efforts and addition of taxaparticularly in the case of Agoristenidae (currently sequencedfor 12S rRNA complete 18S rRNA a 2000-bp fragment of 28SrRNA COI H3 and EF-1a) improved the assessment ofgonyleptoid relationships A monophyletic Gonyleptoidea(BS = 58 PP = 066) is recovered sister to the familyStygnopsidae (BS = 57 PP = 100) Within Gonyleptoidea asplit between Agoristenidae and the remaining gonyleptoids isstrongly supported (BS = 100 PP = 100) followed by thedivergence of Stygnidae (BS = 71 PP = 099) Thisplacement of Agoristenidae is supported by morphologicalstudies (Pinto-da-Rocha and Kury 2007) although in aminority of tree topologies sampled in BI analysesAgoristenidae is sister to Stygnopsidae (hence lower nodalsupport for the monophyly of Gonyleptoidea in BI) Theplacement of Manaosbiidae is uncertain it is recoveredsister to either (Gonyleptidae +Cranaidae) (PP = 089) or toCosmetidae (PPBEAST = 092) but these results are notsupported Cranaidae is recovered as monophyletic (BS = 99PP = 100) and nested within a paraphyletic Gonyleptidae

The present sampling of Cosmetidae and Gonyleptidae doesnot do justice to the diversity of these lineages (~700 and 800described species respectively) A phylogenetic assessment ofall 16 subfamilies of Gonyleptidae alone constitutes the subjectof an arduous and exacting study Fortunately cladistic analysesof morphological characters continue to advance phylogeneticinvestigation of subfamilial lineages (eg BourguyiinaeYamaguti and Pinto-da-Rocha 2009 Goniosomatinae DaSilvaandGnaspini 2009HernandariinaeDaSilva andPinto-da-Rocha2010) Elucidating the phylogeny of Gonyleptoidea is one of themost exciting research topics in the study of Opiliones

The Afrotropical families

The third most diverse family of Laniatores Assamiidaeconstitutes the dominant opiliofauna of the African continent(excluding Madagascar) with some lineages occurring in SouthAsia the Indo-Malay Archipelago and Australia (Trionyxellinaeand Dampetrinae) Proposed to be related to EpedanidaeStygnopsidae andor Gonyleptoidea (Kury 2007) on the basisof genitalic structures assamiids were not recovered asmonophyletic in a previous study (paraphyly was induced byeither Epedanidae orAfricanBiantidae) and the placement of thesubfamily Trionyxellinae was particularly suspect (Giribet et al2010) Trionyxellinae was considered a separate family byMello-Leitatildeo (1949) though others considered it nested withinAssamiidae (eg Starega 1992) In our analyses the monophylyof Assamiidae is supported (BS = 79 PP = 100)lsquoTrionyxellinaersquo (Trionyxella and Mysorea both with a

Molecular phylogeny of Laniatores Invertebrate Systematics 127

Fig 17 Evolutionary time tree of Laniatores inferred fromBEASTanalysis of allmolecular data Coloured bars indicate 95highestposterior density (HPD) intervals for nodes of interest Numbers on nodes indicate posterior probabilities asterisks indicate posteriorprobability of 100

128 Invertebrate Systematics P P Sharma and G Giribet

pseudonychium on the third and fourth tarsi) is a diphyletic entitynested within the other Assamiidae (for the node renderingdiphyly BS = 100 PP = 100) disfavouring family status fortrionyxellines

The African lsquophalangodidsrsquo (sometimes called thelsquoPyramidops grouprsquo) were recognised as a new family byStarega (1992) but not formalised and included 13 genera(Conomma Pyramidops and related lineages) Consistentwith this hypothesis we recovered strong support for thePyramidops group (represented by Conomma and cfPyramidops) as a lineage separate from the true Phalangodidae(egBishopella and Scotolemon) recapitulating a previous result(Giribet et al 2010) The African lsquophalangodidsrsquowere recoveredas the sister lineage of Assamiidae although this relationshipis variably supported in our analyses (BS = 40 PP = 095PPBEAST = 100) A review and formal description of thePyramidops group as a new family lsquoPyramidopidaersquo ndash a namewidely available on the internet including GBIF but notformalised ndash is undertaken elsewhere (Sharma et al 2011)

While we have endeavoured to improve the sampling ofAssamiidae from South-east Asia the internal systematics ofthis family remain a high value target for phylogenetic researchHowever revision of assamiid systematics is inherently difficultfor two reasons (1) the family is peppered with questionablehierarchies and monotypic genera (~12 subfamilies and 250genera for less than 500 described species) and (2) occurs insome of the most inaccessible regions of the world namely sub-Saharan Africa

In all analyses the clade (Assamiidae + Pyramidopidae) issister to the clade (Zalmoxoidea + Samooidea) though this resultis only supported in one analysis (PP= 100) The divergence ofthese four lineages is estimated to have occurred 252Mya and isconsistent with diversification in West Tropical Gondwanaoccurring at least 140million years before the fragmentation ofthis terrane (~110Mya)

Zalmoxoidea

As currently defined the largely Neotropical superfamilyZalmoxoidea includes four families FissiphalliidaeGuasiniidae Icaleptidae and Zalmoxidae Guasiniidae hasnever before been included in a molecular phylogeny In thepresent study we sequenced a guasiniid for six genes and ouranalyses strongly support theplacement ofGuasiniidae as sister tothe samooid family Kimulidae (formerly Minuidae) (BS = 86PP = 098 PPBEAST = 099) and this clade in turn sister to anothersamooid family Escadabiidae (BS = 65 PP = 096PPBEAST = 100) The families Fissiphalliidae Icaleptidaeand Zalmoxidae in turn form a separate clade (BS = 100PP = 100 PPBEAST = 100) with strong support for the sisterrelationship of Zalmoxidae and Fissiphalliidae (BS = 99PP = 100 PPBEAST = 100) corroborating relationshipsproposed by morphological studies (Kury and Peacuterez G 2002Pinto-da-Rocha and Kury 2003b)

Previous analyses have suggested that Samooidea (discussedbelow) is a paraphyletic grade with respect to Zalmoxoidea(Giribet et al 2010) In the present analysis the cladeSamooidea + Zalmoxoidea is strongly supported (BS = 85PP = 100 PPBEAST = 100) as previously suggested by PeacuterezGonzaacutelez and Kury (2007) and by excluding Escadabiidae and

Kimulidae Samooidea is rendered a monophyletic entity albeitwith limited support (BS = 53 PP = 062 PPBEAST = 081) Thestrong support from molecular sequence data for the cladeincluding Escadabiidae Kimulidae and the four zalmoxoidfamilies (BS = 89 PP = 100 PPBEAST = 100) suggests thatthese may form a natural group

Re-examination of the morphology of these six families incomparisonwith true samooid lineages (Biantidae Samoidae andStygnommatidae) corroborates the exclusionofEscadabiidae andKimulidae from true Samooidea Escadabiidae and Kimulidae(1) lack the scopula characteristic of Samoidae and stenostygnineBiantidae (2) lack a sexually dimorphic metatarsus IIIcharacteristic of Samoidae Stygnommatidae and stenostygnineBiantidae and (3) lack a penial calyx characteristic of SamoidaeConsistent with placement within Zalmoxoidea EscadabiidaeandKimulidae (1) possess a small oculariumbearing the eyes thatis removed from the margin of the carapace (2) bear a wellmarked dorsal protuberance (bulla) on the proximal segmentof the chelicera that lacks armature and (3) possess sexuallydimorphic leg IV segments particularly the femur and tibiawhich may be variedly arcuate incrassate and spinedAdditionally Escadabiidae Fissiphalliidae and Zalmoxidae allpossess sexually dimorphic tegumental glandopeningson tibia IIwhereas Biantidae Samoidae and Stygnommatidae possessthese structures on metatarsus III (Willemart et al 2010)While data on tegumental gland openings are only availablefor a small handful of species these may constitute significantdiagnostic characters for species wherein sexual dimorphismdoes not manifest itself in the readily observable form ofenlarged and spiny segments

Given the results of our phylogenetic analyses maintainingSamooidea (as currently defined) renders it a paraphyletic gradewith respect to a diphyletic Zalmoxoidea (as currently defined)Consequently based on the aforementioned morphologicalcharacters and robust molecular phylogenetic signal wetransfer Escadabiidae and Kimulidae to Zalmoxoidea

Samooidea

A previous cladistic analysis based upon morphological datasuggested close relationship between six families ndash BiantidaeEscadabiidae Kimulidae Podoctidae Samoidae andStygnommatidae ndash thenceforth known as Samooidea (Kury1993) the only pantropical Laniatores superfamily HoweverPodoctidae does not have any obvious relationship to Samooideaand has subsequently been transferred (Kury 2007) in ouranalyses Podoctidae is sister to Tithaeidae or Sandokanidaeie distantly related to all samooid families Moreover ouranalyses strongly favour the exclusion of Escadabiidae andKimulidae from Samooidea

The remaining three families ndash Biantidae Samoidae andStygnommatidae ndash are distributed in the Neotropics and partsof Africa with a handful of suspect lineages in South-east AsiaRe-examination and reassignment of many Samoidae genera(eg the Indonesian lsquosamoidrsquo Waigeucola palpalis PeacuterezGonzaacutelez 2011) suggest that the range of Samoidae does notinclude South-east Asia Peacuterez Gonzaacutelez and Kury (2007) alsoobserved that the lsquosamoidsrsquo of Africa Madagascar and theSeychelles may not be true Samoidae either Similarlyinclusion of the genus Stygnomimus an Indonesian lineage

Molecular phylogeny of Laniatores Invertebrate Systematics 129

within Stygnommatidae is highly dubious as the twoIndonesian lsquostygnommatidsrsquo are either highly autapomorphic(Stygnomimus conopygus (Roewer 1927)) or described on the

basis of a generic female that is not readily distinguishable fromfemales of other species (Stygnomimus malayensis (Suzuki1970))

Fig 18 Strict consensus of tree topologies obtained by all phylogenetic analyses

130 Invertebrate Systematics P P Sharma and G Giribet

Previous efforts to assess the systematic validity of Samooideaby means of molecular sequence data were limited insofar asonly two Samoidae three Biantidae (all Metabiantes) and twoStygnommatidae were sampled (Giribet et al 2010) Thesampling of Samoidae was especially problematic only asingle Neotropical adult (Pellobunus) and one African juvenilesamoid (lsquoSamoidae gen sprsquo) were included The designation ofthe latter is suspect as juveniles of Samoidae are oftenindistinguishable from the juveniles of other lineages becausemany diagnostic secondary sexual characters in Grassatores(eg spines and incrassate appendages) are not acquired untilafter several postembryonic stages (Townsend et al 2009)

In the present study though the type genus of Samoidae(Samoa from Samoa) was not available we sequenced theclosely related genus Badessa (from Fiji collected byP P S) as well as additional Biantidae and StygnommatidaeOur analyses recovered a monophyletic Samooidea (excludingEscadabiidae and Kimulidae BS = 53 PP = 062) withSamoidae sensu stricto (Pellobunus +Badessa BS = 100PP = 100) nested within a paraphyletic Stygnommatidae aplacement that is supported (BS = 87 PP = 100) Bycontrast the African lsquosamoidrsquo is sister to the AfricanBiantidae a relationship that is also well supported(BS = 100 PP = 100) These relationships suggest a basal

Fig 19 Cladogram of male genitalic evolution in South-east Asian families superimposed upon a schematised molecular phylogeny based on ML and BIanalyses of all molecular data Exemplars (a) Pseudoepedanus doiensis Suzuki 1969 (redrawn from Suzuki 1969) dorsal view (b) Pseudoepedanus doiensisSuzuki 1969 (redrawn from Suzuki 1969) ventral view (c) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) ventral view(d) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) dorsal view (e) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki1976) dorsal view (f) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki 1976) ventral view (g) Petrobunus torosus lateral view (h) ZalmoxidagibberaSuzuki 1969 dorsal view (i)Zalmoxida sp (MCZDNA102677) dorsolateral view (j)Metatithaeus rubidusSuzuki 1969 (redrawn fromSuzuki 1969)ventral view (k)Tithaeus kokutnusSuzuki 1985 (redrawn fromSuzuki 1985) ventral view (l)Tithaeus similisSuzuki 1985 (redrawn fromSuzuki 1985) ventralview (m)DongmoaoshimensisSuzuki 1964 (redrawn fromSuzuki 1964) ventral view (n)Bonea longipalpisSuzuki 1977 (redrawn fromSuzuki 1977) ventralview (o) Santobius annulipes Soslashrensen 1886 (redrawn from Kury and Machado 2009) ventral view (p) Lomanius longipalpus mindanaoensis Suzuki 1977(redrawn from Suzuki 1977) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 131

dichotomy within Samooidea that corresponds to one groupof Neotropical and Pacific lineages and a second group ofAfrican lineages However as we were unable to samplestenostygnine (Neotropical) and Indo-Pacific Biantidae aswell as numerous monotypic genera dubiously placed inSamoidae biogeographical extrapolations for Samooidea aretenuous (discussed below)

The internal relationships of Samooidea suggest that themorphology of Samoidae may have evolved convergently Asthe African samoid is a juvenile (the same specimen previouslysequenced by Giribet et al 2010 now sequenced for additional28S rRNA and other genes) we cannot rule out the possibility ofa monophyletic Samoidae that includes African species (thespecimen in question could be a juvenile biantid) In any casethe paraphyly of Stygnommatidae and putative polyphyly ofSamoidae strongly advocate systematic revision of samooidfamilies as currently defined corroborating hypotheses of non-monophyly based on morphology (Peacuterez Gonzaacutelez 2007 PeacuterezGonzaacutelez and Kury 2007) Our sampling of these families isinsufficient to advocate specific taxonomic action but an ongoing

study of samooidean systematics will shed more light on thevalidity of constituent families (A Peacuterez Gonzaacutelez work inprogress)

Biogeography of Zalmoxoidea and Samooidea

While most superfamilies of Grassatores are restricted to aspecific part of the tropics (eg Neotropics South-east Asia)two are distributed in multiple biogeographical provincesSamooidea occurs in the Neotropics and Afrotropics withquestionable records from South-east Asia Zalmoxoidea isconcentrated in the Neotropics with the exception of oneIndo-Pacific lineage of Zalmoxidae (represented here byZalmoxis sp) The ages and distributions of Samooidea andZalmoxoidea suggest that their biogeography was influencedby the fragmentation of West Tropical Gondwana ndash causingthe former to diverge basally throughout West TropicalGondwanan terranes and the latter to become isolated to theNeotropics (with possible subsequent dispersal)

Fig 20 Ancestral range reconstructions for Samooidea +Zalmoxoidea inferred by Lagrange using stratified models corresponding to two vicariant events(indicated by dotted lines) Coloured squares at terminals indicate ranges occupied by sampled species Coloured squares on nodes indicate ranges reconstructedfor hypothetical ancestors Numbers on nodes indicate relative probability of ranges reconstructed

Fig 21 Best hypothesis of Laniatores relationships based on all available evidence Bracketed nodes indicate non-monophyletic entities Dashed line indicatesambiguity in the placement of Sandokanidae (alternatively placed as shown or as sister to Podoctidae) Exemplars of Laniatores diversity are Synthetonychiaoliveae (Synthetonychiidae) Equitius doriae (Triaenonychidae) Hadziana clavigera (Travuniidae) Erebomaster flavescens flavescens (Cladonychiidae)Scotolemon lespesi (Phalangodidae) Palaeoncopus gunung (Sandokanidae) Santobius sp (Podoctidae) Tithaeus sp (Tithaeidae) Petrobunus spinifer(Petrobunidae) Alloepedanus sp (Epedanidae) Hoplobunus sp (Stygnopsidae) Torreana spinata (Agoristenidae) Stygnoplus clavotibialis (Stygnidae)Metalibitia paraguayensis (Cosmetidae)Acutisoma longipes (Gonyleptidae)Conommaoedipus (Pyramidopsgroup)Mysorea thaiensis (Assamiidae)Lacurbssp (Biantidae) Stygnomma sp (Stygnommatidae) Badessa sp (Samoidae) Guasinia sp (Guasiniidae) Icaleptes sp (Icaleptidae) Fissiphallius chicoi(Fissiphalliidae) Zalmoxis sp (Zalmoxidae) Kimula goodnightiorum (Kimulidae)

132 Invertebrate Systematics P P Sharma and G Giribet

Molecular phylogeny of Laniatores Invertebrate Systematics 133

To test this hypothesis we conducted likelihood analysisof range evolution using the program Lagrange (Ree et al2005 Ree and Smith 2008) for the clade (Zalmoxoidea +Samooidea) The stratified analysis resulted in a globalmaximum likelihood of ndashlnL= 1556 outperforming anunconstrained analysis that did not include any dispersalconstraints (ndashlnL= 1676) Likelihood analysis of rangeoptimisation (Fig 20) indicates that the ancestral range ofSamooidea includes both the Afrotropics and the Neotropics(relative probability pr = 1000) but a subsequent split occursbetween an African lineage (pr = 1000) and a NeotropicalIndo-Pacific lineage with a Neotropical ancestral range (pr = 0986)Samoidea of the Indo-Pacific occur on young oceanic islands(eg Fiji Samoa) indicating recent transoceanic dispersal fromthe Neotropics

Ancestral range reconstructions for Samooidea are allconsistent with estimated divergence times for these clades(diversification of Samooidea predates the rifting of WestAfrica from northern South America) favouring an underlyingvicariant process for the basal topology with subsequent recentdispersal events However these results are contingent upon thepresent sampling which does not include all samooid lineages(eg stenostygnine Biantidae) but basal range reconstructionsare likely unaffected (eg Stenostygninae is exclusivelyNeotropical)

In contrast the ancestor of Zalmoxoidea is reconstructedas singularly Neotropical (pr = 0996) This is consistent withisolation of a zalmoxoid ancestor to Amazonia which thenradiated ~191Mya Subsequent ancestral ranges are alsoreconstructed as Neotropical with high relative probabilityHowever the ancestral range of the clade (Icaleptidae +Fissiphalliidae + Zalmoxidae) is ambiguously reconstructedas either Neotropical (pr = 0935) or Neotropical + Indo-Pacific(pr = 0064) as is the split between Fissiphalliidae andZalmoxidae (Neotropical pr = 0856 Neotropical + Indo-Pacific pr = 0141)

These results suggest that the Indo-Pacific lineage ofZalmoxidae which split from Neotropical Zalmoxidae ~83Myais likely the result of long-distance dispersal from the NeotropicsHowever due to the persistence of transantarctic connectionsbetween the Australian plate and temperate South America untilthe Tertiary a competing vicariant scenario cannot be ruled outwithout densely sampling zalmoxid diversity The biogeographyof Zalmoxidae is presently being explored in greater detail in aseparate study (P P Sharma unpubl data)

Finally the ancestral range of (Samooidea + Zalmoxoidea)includes both Africa and the Neotropics (pr = 0957) consistentwith a tropical West Gondwanan ancestor This resultlends circumstantial evidence to a sister relationship of theAfrotropical families (Assamiidae + Pyramidopidae) and theclade (Samooidea + Zalmoxoidea) recovered in all analyses

The diversification of Grassatores

While numerous interfamilial relationships are supported inthis study particularly among gonyleptoid and zalmoxoidfamilies some relationships between superfamilies ofGrassatores are not supported and are contingent upon

analytical treatments namely the deployment of substitutionmodels and data partitioning (Fig 21) The cause of thisinstability could be related to insufficient data particularly inthe EF-1a partition (the length of an intron which can exceed400 bp in some taxa makes this gene particularly difficult toamplify) However examination of clade divergence timessuggests that rapid diversification of Grassatores lineagescould in part augment phylogenetic uncertainty in basal partsof the topology

The split between Phalangodidae and the remainingGrassatores is estimated to have occurred ~302Mya but aseries of divergences resulted in the origin of all superfamiliallineages between 232 and 271Mya Relative to the estimatedage of Laniatores (348Mya) this 39-million-year period isremarkably narrow and inherently problematic as the amountof phylogenetic signal for a given stem subtending a node isdirectly proportional to the amount of time that the stem inquestion spans (Lanyon 1988 Rokas and Carroll 2006) Thesmall internal edge lengths of the stems corresponding to basaldivergences of non-phalangodid Grassatores (Figs 15 16)combined with the ancient age of lineages derived from thesedivergences result in relationships that are difficult to estimatewithout a large amount of sequence data andor the inclusion ofdata that are less afflicted by homoplasy (because longer edgelengths imply more indel and substitution events on edges)(Whitfield and Lockhart 2007)

We additionally observe that the origins of most Grassatoressuperfamilies occur in the wake of the end-Permian massextinction (~254Mya) Rapid radiation in the wake of a massextinction has occurred in multiple metazoan lineagesthe putative result of relaxed selection and opening ofpreviously occupied ecological niche space (Labandeira andSepkoski 1993 Sahney and Benton 2008) The rapiddiversification of early Grassatores lineages could be anexample of this phenomenon but this hypothesis is difficult totest in the absence of Mesozoic Grassatores fossils (reviewed byDunlop 2007)

Finally we observe that contrary to traditional hierarchiesproposed for Laniatores many of the clades recovered in ouranalyses correspond to geographical regions particularly in thecase of Grassatores For example the southern hemispheretriaenonychids are restricted to temperate Gondwananlandmasses Gonyleptoidea and their sister group Stygnopsidaeform a Neotropical (AmazonianMesoamericanAntillean) cladethat excludes Assamiidae which has been hypothesised to be amember of a broader Gonyleptoidea (Kury and Cokendolpher2000 Mendes and Kury 2007) In our analyses Assamiidae isin fact a member of a largely Afrotropical clade together withthe Pyramidopidae South-east Asian families usually form oneclade (at most two) albeit with limited support Samooideafamilies are divided into two clusters African and NeotropicalWith one exception (described above) Zalmoxoidea is restrictedto the Neotropics The ages that we estimate for Laniatoresradiations are consistent with ancient diversification beforethe fragmentation of Pangaea An ancient diversification inconjunction with the climatic stability of the tropics may in partexplain the comparatively greater diversity of the armouredharvestmen with respect to the other Opiliones suborders

134 Invertebrate Systematics P P Sharma and G Giribet

Acknowledgements

Weare indebted toPeter J Schwendingerwho collected andprovidedmost ofthe material for study from South-east Asia Some Thai and most of theNeotropical Laniatores were obtained from the TIGER (Thailand InventoryGroup for Entomological Research) and LLAMA (Leaf Litter Arthropods ofMeso-America) projects toC Lienhard and J Longino respectivelyMaterialfrom Madagascar was generously contributed by Charles Griswold and theCalifornia Academy of Sciences Jesse Czekanski-Moir in conjunction withthe Belau NationalMuseum contributed elusive specimens from Palau AbelPeacuterezGonzaacutelez identifiedmanyNeotropical species included in the study andcontributed specimens fromCubaRicardoPinto-da-Rocha identified someofthe live photographed animals from the Neotropics Discussions with RonaldMClouseAbelPeacuterezGonzaacutelezAdrianoBKury andCarlosEPrieto refinedmanyof the ideas presentedhereTwoanonymous reviewers and the associateeditor provided comments that helped to improve an earlier version ofthis manuscript Laura Leibensperger sorted and accessioned TIGER andLLAMA material as well as MCZ type material Adam Graham and theCenter forNanoscaleStudies atHarvardUniversityprovided support forSEMwork Collecting efforts in New Caledonia were greatly facilitated by theguidance of Herveacute Jourdan (Institut de rechercheacute pour de developpementNoumea) and his teammembers Collecting efforts in Fiji weremade possibleby Marika Tuiwawa (University of the South Pacific Suva) and his teammembers Hilda Waqa and Tokasaya lsquoToxrsquo Cakacaka we are especiallygrateful to Tox for his good company during fieldwork and to his familyfor graciously enabling a visit toOvalau SuzieYee Shawprovided invaluablelogistical support in Fiji and her sons Colin and Joshua Yee Shaw assistedwith sorting Fijian material Fieldwork in Indonesia and West Africa wassupported by two MCZ Putnam Expedition Grants awarded to RonaldM Clouse and G G (2006) and to G G (2009) respectively Fieldworkin New Caledonia was supported by the Goelet award the Kalathia FamilyTrust and the Explorers Club awarded to P P S in 2006 Fieldwork in Fijiand in Palauwas supported by twoMCZPutnamExpeditionGrants awardedto P P S (2008) and to Ronald M Clouse and P P S (2010) respectivelyP P S was supported by a Faculty of Arts and Sciences Graduate Fellowshipfrom Harvard University

References

Castresana J (2000) Selectionof conservedblocks frommultiple alignmentsfor their use in phylogenetic analysis Molecular Biology and Evolution17 540ndash552

Colgan D J McLauchlan A Wislon G D F Livingston S MacaranasJ Edgecombe G D Cassis G and Gray M R (1998) Molecularphylogenetics of the Arthropoda relationships based on histone H3and U2 snRNA DNA sequences Australian Journal of Zoology 46419ndash437 doi101071ZO98048

DaSilva M B and Gnaspini P (2009) A systematic revision ofGoniosomatinae (Arachnida Opiliones Gonyleptidae) with a cladisticanalysis and biogeographical notes Invertebrate Systematics 23530ndash624 doi101071IS09022

DaSilva M B and Pinto-da-Rocha R (2010) Systematic review andcladistic analysis of the Hernandariinae (Opiliones Gonyleptidae)Zoologia 27 577ndash642

Derkarabetian S Steinmann D B and Hedin M (2010) Repeatedand time-correlated morphological convergence in cave-dwellingharvestmen (Opiliones Laniatores) from montane western NorthAmerica PLoS ONE 5 e10388 doi101371journalpone0010388

Drummond A J and Rambaut A (2007) BEAST Bayesian evolutionaryanalysis by sampling trees BMC Evolutionary Biology 7 214doi1011861471-2148-7-214

Drummond A J Ho S Y W Phillips M J and Rambaut A (2006)Relaxed phylogenetics and dating with confidence PLoS Biology 4 e88doi101371journalpbio0040088

Dunlop J A (2007) Paleontology In lsquoHarvestmen The Biology ofOpilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 247ndash265 (Harvard University Press Cambridge MA USA)

Dunlop J A and Anderson L I (2005) A fossil harvestman (ArachnidaOpiliones) from theMississippian of East Kirkton Scotland The Journalof Arachnology 33 482ndash489 doi10163604-791

Dunlop JAAndersonL IKerpH andHassH (2003)Preservedorgansof Devonian harvestmen Nature 425 916 doi101038425916a

Dunlop J A Anderson L I Kerp H and Hass H (2004) A harvestman(Arachnida Opiliones) from the Early Devonian Rhynie chertsAberdeenshire Scotland Transactions of the Royal Society ofEdinburgh Earth Sciences 94 341ndash354

Edgar R C (2004) MUSCLE multiple sequence alignment with highaccuracy and high throughput Nucleic Acids Research 32 1792ndash1797doi101093nargkh340

Edgecombe G D and Giribet G (2006) A century laterndash a total evidencere-evaluation of scutigeromorph centipedes (Myriapoda Chilopoda)Invertebrate Systematics 20 503ndash525 doi101071IS05044

Edgecombe G D Giribet G and Wheeler W C (2002) Phylogeny ofHenicopidae (Chilopoda Lithobiomorpha) a combined analysis ofmorphology and five molecular loci Systematic Entomology 2731ndash64 doi101046j0307-6970200100163x

FolmerOBlackMHoehWLutzR andVrijenhoekRC (1994)DNAprimers for amplification ofmitochondrial cytochrome c oxidase subunit Ifrom diverse metazoan invertebrates Molecular Marine Biology andBiotechnology 3 294ndash299

Forster R R (1954) The New Zealand harvestmen (sub-order Laniatores)Canterbury Museum Bulletin 2 1ndash329

Giribet G and Kury A B (2007) Phylogeny and biogeography InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 62ndash87 (Harvard University PressCambridge MA USA)

Giribet G Carranza S Baguntildeagrave J Riutort M and Ribera C (1996) Firstmolecular evidence for the existence of a Tardigrada +Arthropoda cladeMolecular Biology and Evolution 13 76ndash84

Giribet G Rambla M Carranza S Baguntildeagrave J Riutort M and Ribera C(1999) Phylogeny of the arachnid order Opiliones (Arthropoda)inferred from a combined approach of complete 18S and partial 28Sribosomal DNA sequences and morphology Molecular Phylogeneticsand Evolution 11 296ndash307 doi101006mpev19980583

Giribet G Edgecombe G D Wheeler W C and Babbitt C (2002)Phylogeny and systematic position of Opiliones a combined analysis ofchelicerate relationships using morphological and molecular dataCladistics 18 5ndash70

Giribet G Vogt L PeacuterezGonzaacutelez A Sharma P andKury A B (2010)A multilocus approach to harvestman (Arachnida Opiliones) phylogenywith emphasis on biogeography and the systematics of LaniatoresCladistics 26 408ndash437

Hara M R Gnaspini P and Machado G (2003) Male egg guardingbehavior in the Neotropical harvestman Ampheres leucopheus (Mello-Leitatildeo 1922) (Opiliones Gonyleptidae) The Journal of Arachnology 31441ndash444 doi101636S02-32

Hedin M Derkarabetian S McCormack M and Richart C (2010) Thephylogenetic utility of the nuclear protein-encoding gene EF-1a forresolving recent divergences in Opiliones emphasizing intronevolution The Journal of Arachnology 38 9ndash20 doi101636HA09-491

Huelsenbeck J P and Ronquist F (2005) Bayesian analyses of molecularevolution using MrBayes In lsquoStatistical Methods in MolecularEvolutionrsquo (Ed R Nielsen) (Springer New York)

HunterRK ProundDNBurns JA Tibbetts JA andTownsendVR(2007) Parental care in the Neotropical harvestman Phareicranauscalcariferus (Opiliones Cranaidae) The Journal of Arachnology 35199ndash201 doi101636ST06-181

Molecular phylogeny of Laniatores Invertebrate Systematics 135

Kocher T D Thoma W K Meyer A Edwards S V Paumlaumlbo SVillablanca F X and Wilson A C (1989) Dynamics ofmitochondrial DNA evolution in animals amplification andsequencing with conserved primers Proceedings of the NationalAcademy of Sciences of the United States of America 86 6196ndash6200doi101073pnas86166196

Kury A B (1993) Anaacutelise filogeneacutetica de Gonyleptoidea (ArachnidaOpiliones Laniatores) PhD Thesis Universidade de Satildeo Paulo SatildeoPaulo Brazil

Kury A B (2003) Annotated catalogue of the Laniatores of the NewWorld (Arachnida Opiliones) Revista Ibeacuterica de AracnologiacuteaVolumen Especial Monograacutefico 1 1ndash337

Kury A B (2006) Checklist of valid genera of Opiliones of theWorld Museu NacionalUFRJ Available from httpwwwmuseunacionalufrjbrmndiAracnologiachecklaniatorhtm [Accessed1 February 2011]

Kury A B (2007) Podoctidae Roewer 1912 In lsquoHarvestmen The Biologyof Opilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 221ndash224 (Harvard University Press Cambridge MA USA)

Kury A B and Cokendolpher J C (2000) Opiliones In lsquoBiodiversidadTaxonomiacutea y Biogeografiacutea de Artoacutepodos de Meacutexico Hacia una Sintesisde su Conocimientorsquo vol 2 (Eds J E Llorente E Gonzaacutelez andN Papavero) pp 137ndash157 (Universidad Nacional Autoacutenoma deMexico Meacutexico DF Mexico)

Kury A B and Machado G (2009) Notes on Santobius from Vanuatu andFiji and the status of the eastern Melanesian Ibalonius (ArachnidaOpiliones Podoctidae) Zoological Studies 48 524ndash538

Kury A B and Peacuterez G A (2002) A new family of Laniatores fromnorthwestern South America (Arachnida Opiliones) Revista Ibeacuterica deAracnologiacutea 6 3ndash11

Labandeira C C and Sepkoski J J (1993) Insect diversity in the fossilrecord Science 261 310ndash315 doi101126science11536548

Lanyon S M (1988) The stochastic mode of molecular evolutionwhat consequences for systematic investigations The Auk 105565ndash573

Lian W-G Zhu M-S and Kury A B (2008) A new species of the genusTithaeus from China (Arachnida Laniatores Epedanidae) Zootaxa1841 53ndash60

Machado G Requena G S Buzatto B A Osses F and Rossetto L M(2004) Five new cases of paternal care in harvestmen (ArachnidaOpiliones) implications for the evolution of male guarding in theNeotropical family Gonyleptidae Sociobiology 44 577ndash598

Martens J (1976) Genitalmorphologie System und Phylogenie derWeberknechte (Arachnida Opiliones) Entomologica GermanicaZeitschrift fuumlr das Gesamtgebiet der Wissenschaftlichen Entomologie3 51ndash68

Martens J (1980) Versuch eines phylogenetischen Systems der OpilionesIn lsquoProceedings 8th International Congress of Arachnology ViennaVerhandlungenrsquo (Ed J Gruber) pp 355ndash360 (Vienna Austria)

Martens J (1986) Die Grossgliederung der Opiliones und die Evolutionder Ordnung (Arachnida) Actas del X Congreso Internacional deAracnologiacutea Jaca 1 289ndash310

Martens J (1993) Further cases of paternal care in Opiliones (Arachnida)Tropical Zoology 6 97ndash107

Martens J and Schwendinger P S (1998) A taxonomic revision ofthe family Oncopodidae I New genera and new species of GnomulusThorell (Opiliones Laniatores) Revue Suisse de Zoologie 105 499ndash555

Martens J Hoheisel U and Goumltze M (1981) Vergleichende Anatomieder Legeroumlhren der Opiliones als Beitrag zur Phylogenie der Ordnung(Arachnida) Zoologische Jahrbucher Abteilung fur Anatomie undOntogenie der Tiere 105 13ndash76

Mello-Leitatildeo C F (1949) Famiacutelias subfamiacutelia espeacutecies e gecircneros novos deopiliotildees e notas de sinoniacutemia Boletim do Museu Nacional Nova SeacuterieZoologia Rio de Janeiro 94 1ndash33

Mendes A C and Kury A B (2007) Stygnopsidae Soslashrensen 1932 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 232ndash234 (Harvard University PressCambridge MA USA)

Mendes A C and Kury A B (2008) Intercontinental Triaenonychidae ndashthe case of Ceratomontia (Opiliones Insidiatores) The Journal ofArachnology 36 273ndash279 doi101636CH07-931

Murphree C S (1988) Morphology of the dorsal integument of tenopilionid species (Arachnida Opiliones) The Journal of Arachnology16 237ndash252

Park J K andOacuteFoighilD (2000) Sphaeriid and corbiculid clams representseparate heterodont bivalve radiations into freshwater environmentsMolecular Phylogenetics and Evolution 14 75ndash88 doi101006mpev19990691

Peacuterez Gonzaacutelez A (2006) lsquoRevisatildeo Sistemaacutetica e Anaacutelise Filogeneacutetica deStygnommatidae (Arachnida Opiliones Laniatores)rsquo (Museu NacionalUniversidade Federal de Rio de Janeiro Rio de Janeiro Brazil)

Peacuterez Gonzaacutelez A (2007) Stygnommatidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 229ndash232 (Harvard University PressCambridge MA USA)

Peacuterez Gonzaacutelez A (2011) New familial assignment for two harvestmanspecies of the infraorder Grassatores (Arachnida Opiliones Laniatores)Zootaxa 2757 24ndash28

Peacuterez Gonzaacutelez A and Kury A B (2007) Samoidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 224ndash226 (Harvard University PressCambridge MA USA)

Pineau P Henry M Suspegravene R Marchio A Dettai A Debruyne RPetit T Leacutecu A Moisson P Dejean A Wain-Hobson S andVartanian J-P (2005) A universal primer set for PCR amplificationof nuclear histone H4 genes from all animal species Molecular Biologyand Evolution 22 582ndash588 doi101093molbevmsi053

Pinto-da-Rocha R (1997) Systematic review of the Neotropical familyStygnidae (Opiliones Laniatores Gonyleptoidea) Arquivos deZoologia 33 163ndash342

Pinto-da-Rocha R and Kury A B (2003a) Phylogenetic analysis ofSantinezia with description of five new species (Opiliones LaniatoresCranaidae) The Journal of Arachnology 31 173ndash208 doi1016360161-8202(2003)031[0173PAOSWD]20CO2

Pinto-da-Rocha R and Kury A B (2003b) Third species of Guasiniidae(Opiliones Laniatores) with comments on familial relationships TheJournal of Arachnology 31 394ndash399 doi101636H02-59

Pinto-da-Rocha R and Kury A B (2007) Agoristenidae Silhavy 1973 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 171ndash173 (Harvard University PressCambridge MA USA)

Posada D (2005) Modeltest 37 Program and documentation available athttpdarwinuvigoes [Accessed 28 May 2011]

Posada D and Buckley T (2004) Model selection and model averaging inphylogenetics advantages of Akaike information criterion and Bayesianapproaches over likelihood ratio tests Systematic Biology 53 793ndash808doi10108010635150490522304

Posada D and Crandall K A (1998) Modeltest testing the model ofDNA substitution Bioinformatics (Oxford England) 14 817ndash818doi101093bioinformatics149817

Prendini L Weygoldt P and Wheeler W C (2005) Systematics of theDamon variegates group of African whip spiders (ChelicerataAmblypygi) evidence from behaviour morphology and DNAOrganisms Diversity amp Evolution 5 203ndash236 doi101016jode200412004

Rambaut A E (1996) Se-Al sequence alignment editor University ofOxford UK Program and documentation available at httptreebioedacuksoftwarefigtree [Accessed 21 December 2009]

136 Invertebrate Systematics P P Sharma and G Giribet

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 12: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

a

b

c

d

e

h

i

g

f

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

Fig 9 Petrobunus schwendingeri sp nov (a) Left chelicer ofmaleparatype (b) left palp ofmale paratype (c) left leg I ofmale paratype (d) left leg II ofmale paratype (e) right leg III ofmale paratype ( f ) right leg IV ofmale paratype (g) left legIV of female paratype (h) trochanter of right leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 117

Distribution

Known only from type locality and additional localities reportedhere

Etymology

The specific epithet an invariable noun in apposition refers to theenlarged belts of tubercles on the free tergites and opisthosomalsternites of this species Derived from Latin lsquospinarsquo meaninglsquospearrsquo or lsquodartrsquo and lsquoferrersquo meaning lsquoto carry or bearrsquo

Petrobunus torosus sp nov

(Figs 11ndash14 Tables 7 8)

Material examined

Holotype Male (MHNG) Philippines Palawan Puerto Princesa RegionSabang Underground National Park Daylight Hole and Lions Caveprimary forest 100ndash200 alt (100900600N1185301000E) legA Schulz6ndash8xii2009 (ex MHNG PAL-0907)

Paratypes 6 lt 13 (MHNG) same collecting data as holotype(ex MHNG PAL-0907) 3 lt (1 dissected for genitalia and mountedon three SEM stubs [MCZ 100894ndash100896] 2 in ethanol [MCZ100890ndash100891]) 3 (1 dissected for genitalia [MCZ 100902] andmounted on one SEM stub [MCZ 100897] 2 in ethanol [MCZ100892ndash100893]) same collecting data as holotype (ex MHNGPAL-0907) 1 lt (mounted on one SEM stub [MCZ100899]) and 3 (dissected for genitalia [MCZ 100901] and mounted on one SEM stub[MCZ 100898]) Philippines Palawan Puerto Princesa Region SabangUnderground National Park jungle trail (101105500N 1185405900E)leg A Schulz 4xii2009 (ex MHNG PAL-0906)

Additional material studied 6 juveniles same collecting data as holotype(MHNG PAL-0907) 12 lt 3 2 juveniles Philippines PalawanPuerto Princesa Region Sabang Underground National Park jungletrail (101105500N 1185405900E) leg A Schulz 4xii2009 (MHNGPAL-0906)

Diagnosis

Distinct from congeners in the well developed ocularium armedwith median tubercle Mesotergum free of pigmentation as inP spinifer but opisthosomal sternites without large spines(sternites 7ndash9 armed only with small low tubercles) Proximalregion of femora of all legs with single blunt peg Penis widenedin the base of the pars distalis stocky in the shapeof a spear bladewith three pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100892] inparentheses) 152 (150) greatest width of prosoma 070 (068)greatest width of opisthosoma 104 (108) length-to-width ratio

a

b

c d

050 mm

050 mm

20 microm

100 microm

Fig 10 Petrobunus spinifer sp nov (a) Female paratype dorsal view(b) female paratype ventral view (c) pars distalis of penis lateral view and(d) ovipositor dorsal view

Table 5 Leg measurements of Petrobunus spinifer holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011009 032008 022011 024008 034005 036005 159Leg II 011011 046008 018012 036009 040005 068005 219Leg III 014015 044012 024014 032013 043005 041004 198Leg IV 032038 050014 025017 050014 062008 028004 247

118 Invertebrate Systematics P P Sharma and G Giribet

146 (139) (Figs 11 14) Body campaniform yellow to darkorange (in alcohol depending on incidence of light) almostentirely with a dense microgranulate surface microstructureEyes present on low well developed ocularium with medianocularial tubercle Ocularium 011 (011) long 020 (021) wideremoved from anterior margin of carapace Anterior margin ofcarapace with two pairs of blunt pegs above coxae of leg I withouter pair of sub-rectangular andor bifid shape Scutal grooves ofmesotergum indistinct free of transverse bands of pigmentationFree tergites without large tubercles or spines (Fig 12)

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged with setosetubercles on anterior margin Genital operculum sub-triangularSpiracles not concealed anterior to row of tuberclesOpisthosomal sternites with irregular belts of roundedtubercles Anal plate unarmed (Fig 12)

Chelicerae (Fig 13) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassatefree of ornamentation with dorsal margin bearing several setaeDistal article with delicate dentition free of ornamentation

Palpi (Fig 13) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setae Palpalfemur with two proximal ventral spines in a row and two paireddistal spines (one ventral one mesoventral) Palpal patella with asingle spine directed inward Palpal tibiawith twopairs of spinesand a small basal setose tubercle Palpal tarsus with two pairs ofspines Palpal claw as long as palpal tarsus

Legs IndashIV (Fig 13) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge ventral tubercle and three smaller mesodorsal tuberclesFemora IndashIV with one basal peg on ventral surface with peg freeof granulation Femur III arcuate in males and females free oftubercles Femur IVandpatella IVofmalewith two irregular rowsof mesalmesoventral tubercles Tibia IV of male with multipleirregular rows of tubercles with ventral row enlarged and conicaldistally distal-most ventral tubercle composed of two fusedtubercles Metatarsi IndashIV divided distally with distal portionlacking ornamentation metatarsus IV of male with two rows ofmesalmesoventral tubercles Female trochanter IV not enlargedleg IV free of tubercles Tarsal claws IndashIV smooth unmodifiedTarsal segmentation 3 5 5 6

Penis (Fig 14) narrow in the shape of a spear blade widenednear base Lateral margins gradually coalescing dorsallyresulting in spoon shape in dorsal aspect Ventral surface with

Table 6 Leg measurements of Petrobunus spinifer female paratype (ex MHNG PAL-0905) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 033007 021010 024007 025005 029005 143Leg II 013011 037006 023010 034007 026005 051005 184Leg III 014014 029009 022013 029010 027005 035004 156Leg IV 017015 049008 025014 034010 045006 043004 213

a

b

c

050 mm

050 mm

050 mm

Fig 11 Petrobunus torosus sp nov male holotype (a) Dorsal view(b) lateral view and (c) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 119

threepairs of setae lateralmarginswith four setae eachGlans freein apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 14) composed of two apical lobes eachbearing two dorsal setae one ventral seta and two apicalsetae Distal surfaces of apical lobes smooth Bases of dorsalsetae in contact Bases of ventral setae set apart by a distanceapproximately equal to one-third the width of the ovipositor

Distribution

Known only from type locality and additional locality reportedhere

Etymology

The specific epithet refers to the stocky and robust appearanceof the fourth leg in the males of this species Derived from Latinlsquotorosusrsquo meaning lsquomuscularrsquo or lsquobulgingrsquo

Family TITHAEIDAE fam nov

Type genusTithaeusThorell 1891 by present designation andmonotypy

Type species Tithaeus laevigatus Thorell 1891 by original designation

Genera included Tithaeus Thorell 1891 new familial assignmentMetatithaeus Suzuki 1969 new familial assignment

Diagnosis

Medium-sized Grassatores with a low ocularium removed fromthe anterior margin of carapace that differ from Epedanidae inlacking a median spine In some species slight to large hump

situated anterior of ocularium Scutal region divided into fiveareas areas I and II not fused as opposed to EpedanidaeChelicerae typical basal segment not enlarged (as opposed toEpedanidae)Distinct fromPodoctidae in the lack of spines on legI and in the lack of a sexually dimorphic ocularium Tarsalformula 5 8+ 5 6 not reduced (as opposed to Sandokanidaeand Podoctidae) Distitarsi of legs I and II typically with twotarsalia distinguished from Petrobunidae in the trochanter of legIV not enlarged inmales Tarsi III and IVwith unmodified doubleclaws scopulae absent (as opposed to most Samooidea) Distalmargin of ventral plate of penis usually with deep cleft (mostTithaeus) or widening distally into setiferous and conicalstructure (Metatithaeus) glans with simple membranous lobecovering the stylus terminus of stylus either a bifurcate orslightly inflatable lobe absence of prominent parastylar lobes(distinguishing it from Petrobunidae) absence of a ring of setaesurrounding a capsula interna (found in Epedanidae) Ovipositorlobes typically with a pair of ventral and dorsal setae

Remarks

One of dozens of genera placed in the subfamily Phalangodinae(Phalangodidae) by Roewer (1912 1923 1949) Tithaeus wassubsequently extricated and transferred to Epedanidae by Kury(1993 2003 2006) on the basis of the male genitalia althoughthe placement was ambiguous given the absence of typicalepedanid morphology such as elongate and armed pedipalpian erect ocularial spine (absent in Dibuninae) the fusion of scutalareas I and II side-branches in the posterior claws and stoutdentition of the cheliceral fingers (Lian et al 2008) However

a

b

100 microm

100 microm

100 microm

100 microm

c

d

Fig 12 Petrobunus torosus sp novmale paratype (a)Dorsolateral view (b) dorsolateral viewof anteriormargin of carapace(c) ventrolateral view and (d) ventrolateral view of prosomal complex

120 Invertebrate Systematics P P Sharma and G Giribet

comparisons of the male genitalia of a phalangodid (Texella) anepedanid (Kilungius Saracinicinae) and Tithaeus suggested acloser relationship between Epedanidae and Tithaeus in spite ofmarked differences in the stylar lobe and the extent of the basalsac (Lian et al 2008)

Our phylogenetic analyses corroborate a closer relationshipbetween Epedanidae and Tithaeuswith respect to Phalangodidae(which is sister to the remaining Grassatores and thereforedistantly related to both lineages) but the clade Tithaeus+Metatithaeus neither nests within nor is sister to Epedanidae

a

b

c

d

e

h

i

g

f

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

Fig 13 Petrobunus torosus sp nov (a) Left chelicer of male paratype (b) left palp of male paratype (c) left leg I of maleparatype (d) right leg II of male paratype (e) left leg III of male paratype (f) left leg IV of male paratype (g) left leg IV offemale paratype (h) trochanter of left leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 121

in any of the topologies we examinedMoreover the cleft ventralplate forming two prongs in the male genitalia of many Tithaeusspecies in addition to the absence of a ring of setae surroundingthe capsula interna (typical of Epedanidae) suggest that Tithaeus

and related genera (eg Istithaeus Metatithaeus Tithaeommaetc) are not true epedanids but may be more closely related toeither (1) Podoctidae a hypothesis that is supported in someanalyses (bootstrap frequency in ML [BS] = 59 posteriorclade probability given by MrBayes [PP] = 097) or (2) theclade (Podoctidae + Sandokanidae) recovered by the BEASTtopology (posterior clade probability given by BEAST[PPBEAST] = 100)

The inclusion of Tithaeus-like Grassatores in Epedanidaerenders the latter para- or diphyletic and obscures a cleardiagnosis of epedanids as the morphology of Tithaeus (andMetatithaeus) does not accord with many epedanidsynapomorphies Moreover inclusion of Tithaeus andorMetatithaeus within a broader Podoctidae is also unjustifiedbecause this violates many of the synapomorphies ofPodoctidae such as (1) tuberclesspines in dorsal and ventralrows on leg I (2) tubercular bridges (3) a sexually dimorphicbasichelicerite and (4) a sexually dimorphic ocularium

Consequently we erect the family name Tithaeidaeseparating Tithaeus and Metatithaeus from EpedanidaeTithaeidae likely includes the monotypic Roewerian generaIstithaeus Kondosus Sterrhosoma and Tithaeomma but thestatus of these genera requires further investigation and will beaddressed in a forthcoming study

Distribution

Distributed throughout Sundaland the Thai-Malay PeninsulaSumatra Java and Borneo Also reported from northern Vietnamand southern China One doubtful record from West Timor(see Lian et al 2008)

Results

Phylogenetic analysis

Less sequence data are presently available for Briggsusflavescens (partial 28S and COI Derkarabetian et al 2010)with respect to the rest of the data matrix Consequently twoML analyses were conducted including and excluding Briggsusflavescens The ML analysis with all taxa resulted in a treetopology with lnL= ndash8372597 Repeating the analysis withoutBriggsus resulted in a tree topology with lnL= ndash8336108 Thetwo topologies are identical save for the internal relationships ofTravunioidea which includes Briggsidae (Fig 15) Inclusion ofBriggsidae recovers a diphyletic Cladonychiidae with Briggsussister to Holoscotolemon but these relationships are notsupported Exclusion of Briggsidae results in higher nodalsupport frequencies within Travunioidea and recovers a sisterrelationship of Sclerobunidae and the remaining Travunioidea(BS = 75) and a monophyletic Cladonychiidae + Travuniidae(BS = 77) sister to Trojanella Including Briggsus in theanalysis does not affect topology or nodal support in otherparts of the phylogeny Monophyly of Travunioidea isstrongly supported (BS = 100) in either case

Runs of MrBayes ver 312 reached stationarity in 2 000 000generations 2 500 000 generations (25) were hence discardedas burn-in The BI analysis with all taxa resulted in a topologylargely similar to theMLtree (Fig 16)Notable differences are therelative placements of the clade (Gonyleptoidea + Stygnopsidae)

a

b

c d

050 mm

050 mm

20 microm

20 microm

Fig 14 Petrobunus torosus sp nov (a) female paratype dorsal view(b) female paratype ventral view (c) pars distalis of penis lateral view and(d) ovipositor dorsal view

122 Invertebrate Systematics P P Sharma and G Giribet

and the South-east Asian group of families Some differencesexist with respect to supported nodes within superfamilies

Estimation of divergence times

The run of BEAST reached stationarity after 6 000 000generations 10 000 000 generations (20) were discarded asburn-in The tree topology recovered by BEAST (Fig 17) differsfromML andBI topologies in (1) the placement of Sandokanidaeand (2) the relationships between superfamilies Diversificationof Laniatores is dated at ~348Mya Diversification of majorlineages is estimated as follows (Travunioidea+Triaenonychidae)299Mya Grassatores 302Mya Assamiidae +Pyramidopsgroup 232Mya Gonyleptoidea + Stygnopsidae 246MyaGonyleptoidea 230Mya Samooidea + Zalmoxoidea 206Myaand a South-east Asian clade (including Sandokanidae)249Mya These results largely corroborate previous estimatesof divergence times (Giribet et al 2010) but confidence intervalsfor estimated ages are more precise A tree file of estimated agesand 95highest posterior density (HPD) intervals for all nodes isprovided as an Accessory Publication on the InvertebrateSystematics website

Whereas the basal topology of Grassatores is unstable andunsupported most familial and superfamilial relationshipsare consistently recovered across analyses A consensus oftopologies across all analyses is shown in Fig 18

Discussion

A molecular phylogeny of the armoured harvestmen has longproven elusive Laniatores comprises entire genera and familiesthat are endemic to particular provinces of the world In somecases higher taxonomic ranks do not even occur beyond specificislands (eg the New Zealand family SynthetonychiidaeForster 1954) Moreover Laniatores includes the majority ofall described Opiliones species (and over half of all describedfamilies) and new lineages continue to be discoveredConsequently previous efforts to assess Laniatores phylogenyhave been prone to undersampling numerous lineages such asAssamiidae Epedanidae and the superfamilies Samooidea and

Zalmoxoidea (eg Giribet et al 1999 2002 Shultz and Regier2001)

The present study with the inclusion of all families ofarmoured harvestmen described heretofore enables detailedinvestigation of internal relationships of Laniatores Ofprincipal interest are the phylogenetic placement of the twonew families of Laniatores erected herein and the systematicvalidity of defined superfamilies Many of the relationshipsrecovered in our analyses are consistent with traditionalhypotheses based on morphological studies but there are someunexpected results We discuss these in turn

Insidiatores

Within a monophyletic Laniatores recovered in all analyses(BS = 100 PP = 093) the constituent lineages of Insidiatoresform a paraphyletic grade with respect to Grassatores WhileTriaenonychoidea and Travunioidea do form a clade (albeit withlow nodal support) the New Zealand endemic familySynthetonychiidae is recovered as sister to all remainingLaniatores (BS = 78 PP = 100) consistent with the resultsof a recent study (Giribet et al 2010) However the inclusionof more data in fact lowers the nodal support for this sisterrelationship relative to the previous studyrsquos ML analysislikely due to the influence of missing data (in particular only~300 bp out of a targeted 3400 bp of 28S rRNA are presentlyavailable for Synthetonychia) Consequently we do not treat theplacement of Synthetonychiidae as definitive

In all analyses the southern hemisphere Triaenonychidaeform a strongly supported clade that diversified ~200Mya(BS = 100 PP = 100) Their distribution and the age of thiscladersquos diversification are similar to that of the temperateGondwanan cyphophthalmid family Pettalidae (estimated tohave diversified ~183ndash221Mya Giribet et al 2010)suggesting a parallel biogeographical process in these lineagesThe North American triaenonychid Fumontana deprehendorShear 1977 is sister to the southern hemisphere Triaenonychidaein all analyses consistent with previous classification (Giribetand Kury 2007 Thomas and Hedin 2008) but support fora monophyletic Triaenonychoidea is limited and sensitiveto analytical parameters (BS = 57 PP lt 050 PPBEAST = 066)

Table 7 Leg measurements of Petrobunus torosus holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011011 039005 026012 028008 036006 040007 180Leg II 014013 061008 029010 043007 042006 072005 261Leg III 015015 051010 019015 037011 045006 046005 213Leg IV 034035 059012 034017 054015 067007 052006 300

Table 8 Leg measurements of Petrobunus torosus female paratype (ex MHNG PAL-0907) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 041008 022011 028010 037005 035006 174Leg II 010009 052007 023008 033007 037006 069005 224Leg III 014016 046010 025024 036012 042007 041005 204Leg IV 018017 054011 029016 049012 058007 048006 256

Molecular phylogeny of Laniatores Invertebrate Systematics 123

Fig 15 Phylogenetic relationships of Laniatores inferred from maximum likelihood analysis of all molecular data (ln L= ndash8372597) Inset topology ofTravunioidea excluding Briggsidae (ln L= ndash8336108) Numbers on nodes indicate bootstrap resampling frequencies

124 Invertebrate Systematics P P Sharma and G Giribet

We recovered a monophyletic Travunioidea which includesBriggsidae in all analyses (BS = 100PP = 100) corroboratingthe superfamilial placement of briggsids Briggsidae isrecovered sister to either Trojanella (ML) or Holoscotolemon(BI) or part of a grade with both of these taxa (BEAST) butthese placements are not supported (BS lt 50 PPBEAST = 085and PP = 051 respectively) Missing data for Briggsidaedepresses nodal support in ML analyses within Travunioideaobscuring interfamilial relationships In the absence ofBriggsidae we recover a sister relationship betweenSclerobunidae (Zuma acuta Goodnight amp Goodnight 1942)and the remaining Travunioidea (BS = 75) and themonophyly of Travuniidae +Cladonychiidae (BS = 77)

A recent molecular dating of Travunioidea obtained muchyounger dates than estimated herein in spite of similar taxaand molecular loci In that study Derkarabetian et al (2010)investigated the evolution of troglobitism in Sclerobunidae(also referred to as the lsquoNorth American triaenonychidsrsquo)and used the cladonychiid fossil Protoholoscotolemon(38ndash54Mya Ubick and Dunlop 2005) to constrain theminimum age of Travunioidea in addition to calibration pointsderived from geological ages of strata These practicesaccord with the scope of the troglobitism study (thedivergences of interest were comparatively recent ndash Plioceneor younger) but we did not utilise Protoholoscotolemon in ourdating for two reasons (1) we do not obtain an unambiguouslymonophyletic Cladonychiidae in our analyses and (2) theDevonian and Carboniferous fossils we utilised as calibrationpoints are sufficiently old to obtain a result consistent with anEocene cladonychiid fossil The different calibration pointsimplemented in the respective studies therefore account forthe discrepancy in the dating In addition the morphologicalconservatism of Opiliones makes it doubtful that the age ofProtoholoscotolemon is the maximum age of the superfamily

Our sampling of Insidiatores lineages remains limited andbarring the inclusion of Briggsidae additions to taxonomicsampling largely concern Grassatores Consequently continuedsampling and systematic studies of Insidiatores (eg Mendesand Kury 2008 Thomas and Hedin 2008 Derkarabetian et al2010) are instrumental and imperative to addressing outstandingquestions of phylogenetic relationships and morphologicalevolution A phylogeny of Triaenonychidae is particularlywanting

Early diverging Grassatores Phalangodidaeand Sandokanidae

The recovery of a monophyletic Grassatores (supported inall analyses BS = 99 PP = 100) is consistent with severalmorphological synapomorphies uniting this diverse groupsuch as the presence of two tarsal claws on walking legs IIIand IV However the basal topology of Grassatores has longbeen contentious Previously two superfamilies of Grassatoreswere recognised Oncopodoidea (with the single familySandokanidae (formerly Oncopodidae)) and lsquoGonyleptoidearsquo(with the remaining families) (Martens 1976 1986 Martenset al 1981) This dichotomy was largely based upon theunique morphology of Sandokanidae ndash characters such as thescutum completum (fused opisthosomal tergites) reduced tarsal

articles and genitalic structures which are not found in theremaining Grassatores (Martens 1980 Giribet et al 2002Sharma and Giribet 2009) It was alternatively contended thatthese characters constituted autapomorphies of Sandokanidaewhich was nested within lsquoGonyleptoidearsquo itself (Kury 2003)

In all analyses we obtained an initial divergence betweenPhalangodidae and the remaining Grassatores (BS = 100PP = 096) refuting the traditional dichotomy betweenSandokanidae and lsquoGonyleptoidearsquo Therefore we hereindefine Gonyleptoidea as the taxon consisting of AgoristenidaeCosmetidae Cranaidae Gonyleptidae Manaosbiidae andStygnidae The split between Phalangodidae and the remainingGrassatores has been postulated to correspond to the rifting ofthe ancient supercontinents Laurasia and Gondwana as thedistribution of Phalangodidae was believed to be strictlyHolarctic (Giribet et al 2010) However the inclusion of theMadagascar genus Remyus previously placed in Zalmoxidae(Starega 1989) within a monophyletic Phalangodidae indicatesbroader distribution of phalangodids ndash complementing theTriaenonychidae-Fumontana case discussed above Moreoverthe origin of Phalangodidae is estimated to have occurred around302Mya (95 HPD 264ndash335Mya) greatly predating thebreakup of the supercontinents These results indicate thatPhalangodidae may be narrowly defined and we consequentlytransfer Remyus to Phalangodidae (new familial assignment)

The unusual family Sandokanidae has been postulated to besister toPodoctidae (SharmaandGiribet 2009Giribet et al 2010)or to form agradewith Phalangodidae (Kuryrsquos lsquoPhalangodoidearsquopartly) In the present study ML and BI topologies reconstructSandokanidae as sister to the remaining non-phalangodidGrassatores albeit with insignificant nodal support (BS = 21PP = 078) Curiously the topology obtained byBEAST recoversthe clade (Sandokanidae + Podoctidae) nested within a singleclade of South-east Asian families (PPBEAST = 085) Theseresults do not unambiguously favour one hypothesis overanother and the phylogenetic placement of Sandokanidae inthe Grassatores tree therefore remains debatable

Regardless of the inclusion of Sandokanidae within theSouth-east Asian group of families that the sister family to theremaining Grassatores is Phalangodidae not Sandokanidaeindicates that the peculiar morphology of sandokanids is theresult of multiple apomorphic reversals not the retention ofplesiomorphic characters (Martens and Schwendinger 1998)The large scutum and low tarsomere number found inSandokanidae also occur in Trogulidae and Dicranolasmatidae(suborder Dyspnoi) and all Cyphophthalmi and appear to haveevolved convergently This morphology may reflect adaptationsto a shared ecological niche all these groups inhabit leaf litterinclude no arboricolous species and are limited in vagility ndash

although these life history traits are also found in other groupsHowever this hypothesis has yet to be rigorously tested

Sandokanidae is presently one of few families of Grassatoresfor which a molecular phylogeny assessing intergenericrelationships is available (Sharma and Giribet 2009) andconsistent with earlier results the monophyly of Sandokanidaeis strongly supported (BS = 100 PP = 100) as is the initial splitbetweenMartensiellus and the remaining genera (an undescribedspecies was referred to as lsquogen sprsquo by Sharma and Giribet 2009but subsequent morphological investigation revealed this to be

Molecular phylogeny of Laniatores Invertebrate Systematics 125

Fig 16 Phylogenetic relationships of Laniatores inferred fromBayesian inference analysis of allmolecular data Numbers on nodes indicateposterior probabilities

126 Invertebrate Systematics P P Sharma and G Giribet

a miniature species of Martensiellus P J Schwendinger perscomm) (BS = 92 PP = 100) Intergeneric relationshipsof sandokanid genera are contingent upon analytical treatmentof molecular partitions (with additional sandokanid exemplarsdata not shown) reflecting conflict among datasets documentedby Sharma and Giribet (2009)

The other South-east Asian families

Epedanidae was postulated to be sister to Gonyleptoidea in acladistic analysis based on morphological characters (Kury1993) Subsequently Kury (2003) proposed that Epedanidaewas sister to the clade (Assamiidae (Stygnopsidae +Gonyleptoidea)) The single epedanid previously included in amolecular phylogeny was similarly unstable in placement eithernestingwithin Assamiidae or sister to the African lsquophalangodidsrsquo(Conomma and Maiorerus) in neither case with appreciablenodal support (Giribet et al 2010) Furthermore previousinclusion of several lineages (eg Tithaeus) within Epedanidaethat do not bear characters typical of true epedanids ndash sexuallydimorphic chelicera with heavy dentition elongate andspined pedipalpi male genitalia with setae surroundingthe capsula interna ndash has also made this family difficult todefine Consequently we included only Epedaninae (egPseudoepedanus Alloepedanus and Euepedanus) as exemplarsof true epedanids the systematic validity of the remaining threesubfamilies (and particularly the inclusion of Dibuninae) isbeyond the scope of this study and remains to be investigated

The monophyly of each of four South-east Asian families ndashEpedanidae (represented by epedanines) TithaeidaePetrobunidae and Podoctidae ndash is recovered with high nodalsupport (all BS = 100 PP = 100) These lineages are somehowrelated to each other and while they form a clade in bothML andBI analyses this result receives insignificant nodal support(PP = 077) In the topology recovered by BEAST the South-east Asian families form a clade that includes Sandokanidaea result consistent with the distribution of sandokanids albeitwithout support (PPBEAST = 085) Tithaeidae is probably closelyrelated to Podoctidae given the occurrence of a deeply cleftventral plate resulting in two flanking prongs in themale genitaliaof both families (Suzuki 1977 Lian et al 2008 Fig 19) Inaddition the clade (Podoctidae +Tithaeidae) is recovered withmoderate support in ML and BI analyses (BS = 59 PP = 097)In none of the analyses is Tithaeidae nested within or sister toEpedanidae sensu stricto

The morphology of Petrobunidae suggests some relationshipto previously described South-east Asian families oralternatively Phalangodidae but not inclusion within any ofthese (Fig 19) Molecular sequence data do not support anyspecificplacement ofPetrobunidae although it clusterswithotherSouth-east Asian families in all analyses and is recovered sisterto Epedanidae in two topologies (BI and BEAST)

Gonyleptoidea and Stygnopsidae

With over 2500 described species the superfamilyGonyleptoidea constitutes the most diverse and (arguably) themost charismatic lineage of Opiliones with most of this diversityconcentrated in Amazonia (some cosmetids occur as far north asthe mid-Atlantic states of the US) In a previous analysis

relationships of gonyleptoid families were unsupported andordid not accordwithmorphological studies (Giribet et al 2010) Inparticular the placement of the agoristenid exemplar Avimaalbiornata (Goodnight amp Goodnight 1947) ndash the putativesister family to the remaining Gonyleptoidea ndash within aparaphyletic Cranaidae was particularly suspect given thelimited availability of sequence data for Avima (complete 18SrRNA a300-bp fragmentof 28S rRNA andCOI) In addition thesister group of Gonyleptoidea was ambiguous and contingentupon analytical parameters

Redoubling sequencing efforts and addition of taxaparticularly in the case of Agoristenidae (currently sequencedfor 12S rRNA complete 18S rRNA a 2000-bp fragment of 28SrRNA COI H3 and EF-1a) improved the assessment ofgonyleptoid relationships A monophyletic Gonyleptoidea(BS = 58 PP = 066) is recovered sister to the familyStygnopsidae (BS = 57 PP = 100) Within Gonyleptoidea asplit between Agoristenidae and the remaining gonyleptoids isstrongly supported (BS = 100 PP = 100) followed by thedivergence of Stygnidae (BS = 71 PP = 099) Thisplacement of Agoristenidae is supported by morphologicalstudies (Pinto-da-Rocha and Kury 2007) although in aminority of tree topologies sampled in BI analysesAgoristenidae is sister to Stygnopsidae (hence lower nodalsupport for the monophyly of Gonyleptoidea in BI) Theplacement of Manaosbiidae is uncertain it is recoveredsister to either (Gonyleptidae +Cranaidae) (PP = 089) or toCosmetidae (PPBEAST = 092) but these results are notsupported Cranaidae is recovered as monophyletic (BS = 99PP = 100) and nested within a paraphyletic Gonyleptidae

The present sampling of Cosmetidae and Gonyleptidae doesnot do justice to the diversity of these lineages (~700 and 800described species respectively) A phylogenetic assessment ofall 16 subfamilies of Gonyleptidae alone constitutes the subjectof an arduous and exacting study Fortunately cladistic analysesof morphological characters continue to advance phylogeneticinvestigation of subfamilial lineages (eg BourguyiinaeYamaguti and Pinto-da-Rocha 2009 Goniosomatinae DaSilvaandGnaspini 2009HernandariinaeDaSilva andPinto-da-Rocha2010) Elucidating the phylogeny of Gonyleptoidea is one of themost exciting research topics in the study of Opiliones

The Afrotropical families

The third most diverse family of Laniatores Assamiidaeconstitutes the dominant opiliofauna of the African continent(excluding Madagascar) with some lineages occurring in SouthAsia the Indo-Malay Archipelago and Australia (Trionyxellinaeand Dampetrinae) Proposed to be related to EpedanidaeStygnopsidae andor Gonyleptoidea (Kury 2007) on the basisof genitalic structures assamiids were not recovered asmonophyletic in a previous study (paraphyly was induced byeither Epedanidae orAfricanBiantidae) and the placement of thesubfamily Trionyxellinae was particularly suspect (Giribet et al2010) Trionyxellinae was considered a separate family byMello-Leitatildeo (1949) though others considered it nested withinAssamiidae (eg Starega 1992) In our analyses the monophylyof Assamiidae is supported (BS = 79 PP = 100)lsquoTrionyxellinaersquo (Trionyxella and Mysorea both with a

Molecular phylogeny of Laniatores Invertebrate Systematics 127

Fig 17 Evolutionary time tree of Laniatores inferred fromBEASTanalysis of allmolecular data Coloured bars indicate 95highestposterior density (HPD) intervals for nodes of interest Numbers on nodes indicate posterior probabilities asterisks indicate posteriorprobability of 100

128 Invertebrate Systematics P P Sharma and G Giribet

pseudonychium on the third and fourth tarsi) is a diphyletic entitynested within the other Assamiidae (for the node renderingdiphyly BS = 100 PP = 100) disfavouring family status fortrionyxellines

The African lsquophalangodidsrsquo (sometimes called thelsquoPyramidops grouprsquo) were recognised as a new family byStarega (1992) but not formalised and included 13 genera(Conomma Pyramidops and related lineages) Consistentwith this hypothesis we recovered strong support for thePyramidops group (represented by Conomma and cfPyramidops) as a lineage separate from the true Phalangodidae(egBishopella and Scotolemon) recapitulating a previous result(Giribet et al 2010) The African lsquophalangodidsrsquowere recoveredas the sister lineage of Assamiidae although this relationshipis variably supported in our analyses (BS = 40 PP = 095PPBEAST = 100) A review and formal description of thePyramidops group as a new family lsquoPyramidopidaersquo ndash a namewidely available on the internet including GBIF but notformalised ndash is undertaken elsewhere (Sharma et al 2011)

While we have endeavoured to improve the sampling ofAssamiidae from South-east Asia the internal systematics ofthis family remain a high value target for phylogenetic researchHowever revision of assamiid systematics is inherently difficultfor two reasons (1) the family is peppered with questionablehierarchies and monotypic genera (~12 subfamilies and 250genera for less than 500 described species) and (2) occurs insome of the most inaccessible regions of the world namely sub-Saharan Africa

In all analyses the clade (Assamiidae + Pyramidopidae) issister to the clade (Zalmoxoidea + Samooidea) though this resultis only supported in one analysis (PP= 100) The divergence ofthese four lineages is estimated to have occurred 252Mya and isconsistent with diversification in West Tropical Gondwanaoccurring at least 140million years before the fragmentation ofthis terrane (~110Mya)

Zalmoxoidea

As currently defined the largely Neotropical superfamilyZalmoxoidea includes four families FissiphalliidaeGuasiniidae Icaleptidae and Zalmoxidae Guasiniidae hasnever before been included in a molecular phylogeny In thepresent study we sequenced a guasiniid for six genes and ouranalyses strongly support theplacement ofGuasiniidae as sister tothe samooid family Kimulidae (formerly Minuidae) (BS = 86PP = 098 PPBEAST = 099) and this clade in turn sister to anothersamooid family Escadabiidae (BS = 65 PP = 096PPBEAST = 100) The families Fissiphalliidae Icaleptidaeand Zalmoxidae in turn form a separate clade (BS = 100PP = 100 PPBEAST = 100) with strong support for the sisterrelationship of Zalmoxidae and Fissiphalliidae (BS = 99PP = 100 PPBEAST = 100) corroborating relationshipsproposed by morphological studies (Kury and Peacuterez G 2002Pinto-da-Rocha and Kury 2003b)

Previous analyses have suggested that Samooidea (discussedbelow) is a paraphyletic grade with respect to Zalmoxoidea(Giribet et al 2010) In the present analysis the cladeSamooidea + Zalmoxoidea is strongly supported (BS = 85PP = 100 PPBEAST = 100) as previously suggested by PeacuterezGonzaacutelez and Kury (2007) and by excluding Escadabiidae and

Kimulidae Samooidea is rendered a monophyletic entity albeitwith limited support (BS = 53 PP = 062 PPBEAST = 081) Thestrong support from molecular sequence data for the cladeincluding Escadabiidae Kimulidae and the four zalmoxoidfamilies (BS = 89 PP = 100 PPBEAST = 100) suggests thatthese may form a natural group

Re-examination of the morphology of these six families incomparisonwith true samooid lineages (Biantidae Samoidae andStygnommatidae) corroborates the exclusionofEscadabiidae andKimulidae from true Samooidea Escadabiidae and Kimulidae(1) lack the scopula characteristic of Samoidae and stenostygnineBiantidae (2) lack a sexually dimorphic metatarsus IIIcharacteristic of Samoidae Stygnommatidae and stenostygnineBiantidae and (3) lack a penial calyx characteristic of SamoidaeConsistent with placement within Zalmoxoidea EscadabiidaeandKimulidae (1) possess a small oculariumbearing the eyes thatis removed from the margin of the carapace (2) bear a wellmarked dorsal protuberance (bulla) on the proximal segmentof the chelicera that lacks armature and (3) possess sexuallydimorphic leg IV segments particularly the femur and tibiawhich may be variedly arcuate incrassate and spinedAdditionally Escadabiidae Fissiphalliidae and Zalmoxidae allpossess sexually dimorphic tegumental glandopeningson tibia IIwhereas Biantidae Samoidae and Stygnommatidae possessthese structures on metatarsus III (Willemart et al 2010)While data on tegumental gland openings are only availablefor a small handful of species these may constitute significantdiagnostic characters for species wherein sexual dimorphismdoes not manifest itself in the readily observable form ofenlarged and spiny segments

Given the results of our phylogenetic analyses maintainingSamooidea (as currently defined) renders it a paraphyletic gradewith respect to a diphyletic Zalmoxoidea (as currently defined)Consequently based on the aforementioned morphologicalcharacters and robust molecular phylogenetic signal wetransfer Escadabiidae and Kimulidae to Zalmoxoidea

Samooidea

A previous cladistic analysis based upon morphological datasuggested close relationship between six families ndash BiantidaeEscadabiidae Kimulidae Podoctidae Samoidae andStygnommatidae ndash thenceforth known as Samooidea (Kury1993) the only pantropical Laniatores superfamily HoweverPodoctidae does not have any obvious relationship to Samooideaand has subsequently been transferred (Kury 2007) in ouranalyses Podoctidae is sister to Tithaeidae or Sandokanidaeie distantly related to all samooid families Moreover ouranalyses strongly favour the exclusion of Escadabiidae andKimulidae from Samooidea

The remaining three families ndash Biantidae Samoidae andStygnommatidae ndash are distributed in the Neotropics and partsof Africa with a handful of suspect lineages in South-east AsiaRe-examination and reassignment of many Samoidae genera(eg the Indonesian lsquosamoidrsquo Waigeucola palpalis PeacuterezGonzaacutelez 2011) suggest that the range of Samoidae does notinclude South-east Asia Peacuterez Gonzaacutelez and Kury (2007) alsoobserved that the lsquosamoidsrsquo of Africa Madagascar and theSeychelles may not be true Samoidae either Similarlyinclusion of the genus Stygnomimus an Indonesian lineage

Molecular phylogeny of Laniatores Invertebrate Systematics 129

within Stygnommatidae is highly dubious as the twoIndonesian lsquostygnommatidsrsquo are either highly autapomorphic(Stygnomimus conopygus (Roewer 1927)) or described on the

basis of a generic female that is not readily distinguishable fromfemales of other species (Stygnomimus malayensis (Suzuki1970))

Fig 18 Strict consensus of tree topologies obtained by all phylogenetic analyses

130 Invertebrate Systematics P P Sharma and G Giribet

Previous efforts to assess the systematic validity of Samooideaby means of molecular sequence data were limited insofar asonly two Samoidae three Biantidae (all Metabiantes) and twoStygnommatidae were sampled (Giribet et al 2010) Thesampling of Samoidae was especially problematic only asingle Neotropical adult (Pellobunus) and one African juvenilesamoid (lsquoSamoidae gen sprsquo) were included The designation ofthe latter is suspect as juveniles of Samoidae are oftenindistinguishable from the juveniles of other lineages becausemany diagnostic secondary sexual characters in Grassatores(eg spines and incrassate appendages) are not acquired untilafter several postembryonic stages (Townsend et al 2009)

In the present study though the type genus of Samoidae(Samoa from Samoa) was not available we sequenced theclosely related genus Badessa (from Fiji collected byP P S) as well as additional Biantidae and StygnommatidaeOur analyses recovered a monophyletic Samooidea (excludingEscadabiidae and Kimulidae BS = 53 PP = 062) withSamoidae sensu stricto (Pellobunus +Badessa BS = 100PP = 100) nested within a paraphyletic Stygnommatidae aplacement that is supported (BS = 87 PP = 100) Bycontrast the African lsquosamoidrsquo is sister to the AfricanBiantidae a relationship that is also well supported(BS = 100 PP = 100) These relationships suggest a basal

Fig 19 Cladogram of male genitalic evolution in South-east Asian families superimposed upon a schematised molecular phylogeny based on ML and BIanalyses of all molecular data Exemplars (a) Pseudoepedanus doiensis Suzuki 1969 (redrawn from Suzuki 1969) dorsal view (b) Pseudoepedanus doiensisSuzuki 1969 (redrawn from Suzuki 1969) ventral view (c) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) ventral view(d) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) dorsal view (e) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki1976) dorsal view (f) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki 1976) ventral view (g) Petrobunus torosus lateral view (h) ZalmoxidagibberaSuzuki 1969 dorsal view (i)Zalmoxida sp (MCZDNA102677) dorsolateral view (j)Metatithaeus rubidusSuzuki 1969 (redrawn fromSuzuki 1969)ventral view (k)Tithaeus kokutnusSuzuki 1985 (redrawn fromSuzuki 1985) ventral view (l)Tithaeus similisSuzuki 1985 (redrawn fromSuzuki 1985) ventralview (m)DongmoaoshimensisSuzuki 1964 (redrawn fromSuzuki 1964) ventral view (n)Bonea longipalpisSuzuki 1977 (redrawn fromSuzuki 1977) ventralview (o) Santobius annulipes Soslashrensen 1886 (redrawn from Kury and Machado 2009) ventral view (p) Lomanius longipalpus mindanaoensis Suzuki 1977(redrawn from Suzuki 1977) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 131

dichotomy within Samooidea that corresponds to one groupof Neotropical and Pacific lineages and a second group ofAfrican lineages However as we were unable to samplestenostygnine (Neotropical) and Indo-Pacific Biantidae aswell as numerous monotypic genera dubiously placed inSamoidae biogeographical extrapolations for Samooidea aretenuous (discussed below)

The internal relationships of Samooidea suggest that themorphology of Samoidae may have evolved convergently Asthe African samoid is a juvenile (the same specimen previouslysequenced by Giribet et al 2010 now sequenced for additional28S rRNA and other genes) we cannot rule out the possibility ofa monophyletic Samoidae that includes African species (thespecimen in question could be a juvenile biantid) In any casethe paraphyly of Stygnommatidae and putative polyphyly ofSamoidae strongly advocate systematic revision of samooidfamilies as currently defined corroborating hypotheses of non-monophyly based on morphology (Peacuterez Gonzaacutelez 2007 PeacuterezGonzaacutelez and Kury 2007) Our sampling of these families isinsufficient to advocate specific taxonomic action but an ongoing

study of samooidean systematics will shed more light on thevalidity of constituent families (A Peacuterez Gonzaacutelez work inprogress)

Biogeography of Zalmoxoidea and Samooidea

While most superfamilies of Grassatores are restricted to aspecific part of the tropics (eg Neotropics South-east Asia)two are distributed in multiple biogeographical provincesSamooidea occurs in the Neotropics and Afrotropics withquestionable records from South-east Asia Zalmoxoidea isconcentrated in the Neotropics with the exception of oneIndo-Pacific lineage of Zalmoxidae (represented here byZalmoxis sp) The ages and distributions of Samooidea andZalmoxoidea suggest that their biogeography was influencedby the fragmentation of West Tropical Gondwana ndash causingthe former to diverge basally throughout West TropicalGondwanan terranes and the latter to become isolated to theNeotropics (with possible subsequent dispersal)

Fig 20 Ancestral range reconstructions for Samooidea +Zalmoxoidea inferred by Lagrange using stratified models corresponding to two vicariant events(indicated by dotted lines) Coloured squares at terminals indicate ranges occupied by sampled species Coloured squares on nodes indicate ranges reconstructedfor hypothetical ancestors Numbers on nodes indicate relative probability of ranges reconstructed

Fig 21 Best hypothesis of Laniatores relationships based on all available evidence Bracketed nodes indicate non-monophyletic entities Dashed line indicatesambiguity in the placement of Sandokanidae (alternatively placed as shown or as sister to Podoctidae) Exemplars of Laniatores diversity are Synthetonychiaoliveae (Synthetonychiidae) Equitius doriae (Triaenonychidae) Hadziana clavigera (Travuniidae) Erebomaster flavescens flavescens (Cladonychiidae)Scotolemon lespesi (Phalangodidae) Palaeoncopus gunung (Sandokanidae) Santobius sp (Podoctidae) Tithaeus sp (Tithaeidae) Petrobunus spinifer(Petrobunidae) Alloepedanus sp (Epedanidae) Hoplobunus sp (Stygnopsidae) Torreana spinata (Agoristenidae) Stygnoplus clavotibialis (Stygnidae)Metalibitia paraguayensis (Cosmetidae)Acutisoma longipes (Gonyleptidae)Conommaoedipus (Pyramidopsgroup)Mysorea thaiensis (Assamiidae)Lacurbssp (Biantidae) Stygnomma sp (Stygnommatidae) Badessa sp (Samoidae) Guasinia sp (Guasiniidae) Icaleptes sp (Icaleptidae) Fissiphallius chicoi(Fissiphalliidae) Zalmoxis sp (Zalmoxidae) Kimula goodnightiorum (Kimulidae)

132 Invertebrate Systematics P P Sharma and G Giribet

Molecular phylogeny of Laniatores Invertebrate Systematics 133

To test this hypothesis we conducted likelihood analysisof range evolution using the program Lagrange (Ree et al2005 Ree and Smith 2008) for the clade (Zalmoxoidea +Samooidea) The stratified analysis resulted in a globalmaximum likelihood of ndashlnL= 1556 outperforming anunconstrained analysis that did not include any dispersalconstraints (ndashlnL= 1676) Likelihood analysis of rangeoptimisation (Fig 20) indicates that the ancestral range ofSamooidea includes both the Afrotropics and the Neotropics(relative probability pr = 1000) but a subsequent split occursbetween an African lineage (pr = 1000) and a NeotropicalIndo-Pacific lineage with a Neotropical ancestral range (pr = 0986)Samoidea of the Indo-Pacific occur on young oceanic islands(eg Fiji Samoa) indicating recent transoceanic dispersal fromthe Neotropics

Ancestral range reconstructions for Samooidea are allconsistent with estimated divergence times for these clades(diversification of Samooidea predates the rifting of WestAfrica from northern South America) favouring an underlyingvicariant process for the basal topology with subsequent recentdispersal events However these results are contingent upon thepresent sampling which does not include all samooid lineages(eg stenostygnine Biantidae) but basal range reconstructionsare likely unaffected (eg Stenostygninae is exclusivelyNeotropical)

In contrast the ancestor of Zalmoxoidea is reconstructedas singularly Neotropical (pr = 0996) This is consistent withisolation of a zalmoxoid ancestor to Amazonia which thenradiated ~191Mya Subsequent ancestral ranges are alsoreconstructed as Neotropical with high relative probabilityHowever the ancestral range of the clade (Icaleptidae +Fissiphalliidae + Zalmoxidae) is ambiguously reconstructedas either Neotropical (pr = 0935) or Neotropical + Indo-Pacific(pr = 0064) as is the split between Fissiphalliidae andZalmoxidae (Neotropical pr = 0856 Neotropical + Indo-Pacific pr = 0141)

These results suggest that the Indo-Pacific lineage ofZalmoxidae which split from Neotropical Zalmoxidae ~83Myais likely the result of long-distance dispersal from the NeotropicsHowever due to the persistence of transantarctic connectionsbetween the Australian plate and temperate South America untilthe Tertiary a competing vicariant scenario cannot be ruled outwithout densely sampling zalmoxid diversity The biogeographyof Zalmoxidae is presently being explored in greater detail in aseparate study (P P Sharma unpubl data)

Finally the ancestral range of (Samooidea + Zalmoxoidea)includes both Africa and the Neotropics (pr = 0957) consistentwith a tropical West Gondwanan ancestor This resultlends circumstantial evidence to a sister relationship of theAfrotropical families (Assamiidae + Pyramidopidae) and theclade (Samooidea + Zalmoxoidea) recovered in all analyses

The diversification of Grassatores

While numerous interfamilial relationships are supported inthis study particularly among gonyleptoid and zalmoxoidfamilies some relationships between superfamilies ofGrassatores are not supported and are contingent upon

analytical treatments namely the deployment of substitutionmodels and data partitioning (Fig 21) The cause of thisinstability could be related to insufficient data particularly inthe EF-1a partition (the length of an intron which can exceed400 bp in some taxa makes this gene particularly difficult toamplify) However examination of clade divergence timessuggests that rapid diversification of Grassatores lineagescould in part augment phylogenetic uncertainty in basal partsof the topology

The split between Phalangodidae and the remainingGrassatores is estimated to have occurred ~302Mya but aseries of divergences resulted in the origin of all superfamiliallineages between 232 and 271Mya Relative to the estimatedage of Laniatores (348Mya) this 39-million-year period isremarkably narrow and inherently problematic as the amountof phylogenetic signal for a given stem subtending a node isdirectly proportional to the amount of time that the stem inquestion spans (Lanyon 1988 Rokas and Carroll 2006) Thesmall internal edge lengths of the stems corresponding to basaldivergences of non-phalangodid Grassatores (Figs 15 16)combined with the ancient age of lineages derived from thesedivergences result in relationships that are difficult to estimatewithout a large amount of sequence data andor the inclusion ofdata that are less afflicted by homoplasy (because longer edgelengths imply more indel and substitution events on edges)(Whitfield and Lockhart 2007)

We additionally observe that the origins of most Grassatoressuperfamilies occur in the wake of the end-Permian massextinction (~254Mya) Rapid radiation in the wake of a massextinction has occurred in multiple metazoan lineagesthe putative result of relaxed selection and opening ofpreviously occupied ecological niche space (Labandeira andSepkoski 1993 Sahney and Benton 2008) The rapiddiversification of early Grassatores lineages could be anexample of this phenomenon but this hypothesis is difficult totest in the absence of Mesozoic Grassatores fossils (reviewed byDunlop 2007)

Finally we observe that contrary to traditional hierarchiesproposed for Laniatores many of the clades recovered in ouranalyses correspond to geographical regions particularly in thecase of Grassatores For example the southern hemispheretriaenonychids are restricted to temperate Gondwananlandmasses Gonyleptoidea and their sister group Stygnopsidaeform a Neotropical (AmazonianMesoamericanAntillean) cladethat excludes Assamiidae which has been hypothesised to be amember of a broader Gonyleptoidea (Kury and Cokendolpher2000 Mendes and Kury 2007) In our analyses Assamiidae isin fact a member of a largely Afrotropical clade together withthe Pyramidopidae South-east Asian families usually form oneclade (at most two) albeit with limited support Samooideafamilies are divided into two clusters African and NeotropicalWith one exception (described above) Zalmoxoidea is restrictedto the Neotropics The ages that we estimate for Laniatoresradiations are consistent with ancient diversification beforethe fragmentation of Pangaea An ancient diversification inconjunction with the climatic stability of the tropics may in partexplain the comparatively greater diversity of the armouredharvestmen with respect to the other Opiliones suborders

134 Invertebrate Systematics P P Sharma and G Giribet

Acknowledgements

Weare indebted toPeter J Schwendingerwho collected andprovidedmost ofthe material for study from South-east Asia Some Thai and most of theNeotropical Laniatores were obtained from the TIGER (Thailand InventoryGroup for Entomological Research) and LLAMA (Leaf Litter Arthropods ofMeso-America) projects toC Lienhard and J Longino respectivelyMaterialfrom Madagascar was generously contributed by Charles Griswold and theCalifornia Academy of Sciences Jesse Czekanski-Moir in conjunction withthe Belau NationalMuseum contributed elusive specimens from Palau AbelPeacuterezGonzaacutelez identifiedmanyNeotropical species included in the study andcontributed specimens fromCubaRicardoPinto-da-Rocha identified someofthe live photographed animals from the Neotropics Discussions with RonaldMClouseAbelPeacuterezGonzaacutelezAdrianoBKury andCarlosEPrieto refinedmanyof the ideas presentedhereTwoanonymous reviewers and the associateeditor provided comments that helped to improve an earlier version ofthis manuscript Laura Leibensperger sorted and accessioned TIGER andLLAMA material as well as MCZ type material Adam Graham and theCenter forNanoscaleStudies atHarvardUniversityprovided support forSEMwork Collecting efforts in New Caledonia were greatly facilitated by theguidance of Herveacute Jourdan (Institut de rechercheacute pour de developpementNoumea) and his teammembers Collecting efforts in Fiji weremade possibleby Marika Tuiwawa (University of the South Pacific Suva) and his teammembers Hilda Waqa and Tokasaya lsquoToxrsquo Cakacaka we are especiallygrateful to Tox for his good company during fieldwork and to his familyfor graciously enabling a visit toOvalau SuzieYee Shawprovided invaluablelogistical support in Fiji and her sons Colin and Joshua Yee Shaw assistedwith sorting Fijian material Fieldwork in Indonesia and West Africa wassupported by two MCZ Putnam Expedition Grants awarded to RonaldM Clouse and G G (2006) and to G G (2009) respectively Fieldworkin New Caledonia was supported by the Goelet award the Kalathia FamilyTrust and the Explorers Club awarded to P P S in 2006 Fieldwork in Fijiand in Palauwas supported by twoMCZPutnamExpeditionGrants awardedto P P S (2008) and to Ronald M Clouse and P P S (2010) respectivelyP P S was supported by a Faculty of Arts and Sciences Graduate Fellowshipfrom Harvard University

References

Castresana J (2000) Selectionof conservedblocks frommultiple alignmentsfor their use in phylogenetic analysis Molecular Biology and Evolution17 540ndash552

Colgan D J McLauchlan A Wislon G D F Livingston S MacaranasJ Edgecombe G D Cassis G and Gray M R (1998) Molecularphylogenetics of the Arthropoda relationships based on histone H3and U2 snRNA DNA sequences Australian Journal of Zoology 46419ndash437 doi101071ZO98048

DaSilva M B and Gnaspini P (2009) A systematic revision ofGoniosomatinae (Arachnida Opiliones Gonyleptidae) with a cladisticanalysis and biogeographical notes Invertebrate Systematics 23530ndash624 doi101071IS09022

DaSilva M B and Pinto-da-Rocha R (2010) Systematic review andcladistic analysis of the Hernandariinae (Opiliones Gonyleptidae)Zoologia 27 577ndash642

Derkarabetian S Steinmann D B and Hedin M (2010) Repeatedand time-correlated morphological convergence in cave-dwellingharvestmen (Opiliones Laniatores) from montane western NorthAmerica PLoS ONE 5 e10388 doi101371journalpone0010388

Drummond A J and Rambaut A (2007) BEAST Bayesian evolutionaryanalysis by sampling trees BMC Evolutionary Biology 7 214doi1011861471-2148-7-214

Drummond A J Ho S Y W Phillips M J and Rambaut A (2006)Relaxed phylogenetics and dating with confidence PLoS Biology 4 e88doi101371journalpbio0040088

Dunlop J A (2007) Paleontology In lsquoHarvestmen The Biology ofOpilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 247ndash265 (Harvard University Press Cambridge MA USA)

Dunlop J A and Anderson L I (2005) A fossil harvestman (ArachnidaOpiliones) from theMississippian of East Kirkton Scotland The Journalof Arachnology 33 482ndash489 doi10163604-791

Dunlop JAAndersonL IKerpH andHassH (2003)Preservedorgansof Devonian harvestmen Nature 425 916 doi101038425916a

Dunlop J A Anderson L I Kerp H and Hass H (2004) A harvestman(Arachnida Opiliones) from the Early Devonian Rhynie chertsAberdeenshire Scotland Transactions of the Royal Society ofEdinburgh Earth Sciences 94 341ndash354

Edgar R C (2004) MUSCLE multiple sequence alignment with highaccuracy and high throughput Nucleic Acids Research 32 1792ndash1797doi101093nargkh340

Edgecombe G D and Giribet G (2006) A century laterndash a total evidencere-evaluation of scutigeromorph centipedes (Myriapoda Chilopoda)Invertebrate Systematics 20 503ndash525 doi101071IS05044

Edgecombe G D Giribet G and Wheeler W C (2002) Phylogeny ofHenicopidae (Chilopoda Lithobiomorpha) a combined analysis ofmorphology and five molecular loci Systematic Entomology 2731ndash64 doi101046j0307-6970200100163x

FolmerOBlackMHoehWLutzR andVrijenhoekRC (1994)DNAprimers for amplification ofmitochondrial cytochrome c oxidase subunit Ifrom diverse metazoan invertebrates Molecular Marine Biology andBiotechnology 3 294ndash299

Forster R R (1954) The New Zealand harvestmen (sub-order Laniatores)Canterbury Museum Bulletin 2 1ndash329

Giribet G and Kury A B (2007) Phylogeny and biogeography InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 62ndash87 (Harvard University PressCambridge MA USA)

Giribet G Carranza S Baguntildeagrave J Riutort M and Ribera C (1996) Firstmolecular evidence for the existence of a Tardigrada +Arthropoda cladeMolecular Biology and Evolution 13 76ndash84

Giribet G Rambla M Carranza S Baguntildeagrave J Riutort M and Ribera C(1999) Phylogeny of the arachnid order Opiliones (Arthropoda)inferred from a combined approach of complete 18S and partial 28Sribosomal DNA sequences and morphology Molecular Phylogeneticsand Evolution 11 296ndash307 doi101006mpev19980583

Giribet G Edgecombe G D Wheeler W C and Babbitt C (2002)Phylogeny and systematic position of Opiliones a combined analysis ofchelicerate relationships using morphological and molecular dataCladistics 18 5ndash70

Giribet G Vogt L PeacuterezGonzaacutelez A Sharma P andKury A B (2010)A multilocus approach to harvestman (Arachnida Opiliones) phylogenywith emphasis on biogeography and the systematics of LaniatoresCladistics 26 408ndash437

Hara M R Gnaspini P and Machado G (2003) Male egg guardingbehavior in the Neotropical harvestman Ampheres leucopheus (Mello-Leitatildeo 1922) (Opiliones Gonyleptidae) The Journal of Arachnology 31441ndash444 doi101636S02-32

Hedin M Derkarabetian S McCormack M and Richart C (2010) Thephylogenetic utility of the nuclear protein-encoding gene EF-1a forresolving recent divergences in Opiliones emphasizing intronevolution The Journal of Arachnology 38 9ndash20 doi101636HA09-491

Huelsenbeck J P and Ronquist F (2005) Bayesian analyses of molecularevolution using MrBayes In lsquoStatistical Methods in MolecularEvolutionrsquo (Ed R Nielsen) (Springer New York)

HunterRK ProundDNBurns JA Tibbetts JA andTownsendVR(2007) Parental care in the Neotropical harvestman Phareicranauscalcariferus (Opiliones Cranaidae) The Journal of Arachnology 35199ndash201 doi101636ST06-181

Molecular phylogeny of Laniatores Invertebrate Systematics 135

Kocher T D Thoma W K Meyer A Edwards S V Paumlaumlbo SVillablanca F X and Wilson A C (1989) Dynamics ofmitochondrial DNA evolution in animals amplification andsequencing with conserved primers Proceedings of the NationalAcademy of Sciences of the United States of America 86 6196ndash6200doi101073pnas86166196

Kury A B (1993) Anaacutelise filogeneacutetica de Gonyleptoidea (ArachnidaOpiliones Laniatores) PhD Thesis Universidade de Satildeo Paulo SatildeoPaulo Brazil

Kury A B (2003) Annotated catalogue of the Laniatores of the NewWorld (Arachnida Opiliones) Revista Ibeacuterica de AracnologiacuteaVolumen Especial Monograacutefico 1 1ndash337

Kury A B (2006) Checklist of valid genera of Opiliones of theWorld Museu NacionalUFRJ Available from httpwwwmuseunacionalufrjbrmndiAracnologiachecklaniatorhtm [Accessed1 February 2011]

Kury A B (2007) Podoctidae Roewer 1912 In lsquoHarvestmen The Biologyof Opilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 221ndash224 (Harvard University Press Cambridge MA USA)

Kury A B and Cokendolpher J C (2000) Opiliones In lsquoBiodiversidadTaxonomiacutea y Biogeografiacutea de Artoacutepodos de Meacutexico Hacia una Sintesisde su Conocimientorsquo vol 2 (Eds J E Llorente E Gonzaacutelez andN Papavero) pp 137ndash157 (Universidad Nacional Autoacutenoma deMexico Meacutexico DF Mexico)

Kury A B and Machado G (2009) Notes on Santobius from Vanuatu andFiji and the status of the eastern Melanesian Ibalonius (ArachnidaOpiliones Podoctidae) Zoological Studies 48 524ndash538

Kury A B and Peacuterez G A (2002) A new family of Laniatores fromnorthwestern South America (Arachnida Opiliones) Revista Ibeacuterica deAracnologiacutea 6 3ndash11

Labandeira C C and Sepkoski J J (1993) Insect diversity in the fossilrecord Science 261 310ndash315 doi101126science11536548

Lanyon S M (1988) The stochastic mode of molecular evolutionwhat consequences for systematic investigations The Auk 105565ndash573

Lian W-G Zhu M-S and Kury A B (2008) A new species of the genusTithaeus from China (Arachnida Laniatores Epedanidae) Zootaxa1841 53ndash60

Machado G Requena G S Buzatto B A Osses F and Rossetto L M(2004) Five new cases of paternal care in harvestmen (ArachnidaOpiliones) implications for the evolution of male guarding in theNeotropical family Gonyleptidae Sociobiology 44 577ndash598

Martens J (1976) Genitalmorphologie System und Phylogenie derWeberknechte (Arachnida Opiliones) Entomologica GermanicaZeitschrift fuumlr das Gesamtgebiet der Wissenschaftlichen Entomologie3 51ndash68

Martens J (1980) Versuch eines phylogenetischen Systems der OpilionesIn lsquoProceedings 8th International Congress of Arachnology ViennaVerhandlungenrsquo (Ed J Gruber) pp 355ndash360 (Vienna Austria)

Martens J (1986) Die Grossgliederung der Opiliones und die Evolutionder Ordnung (Arachnida) Actas del X Congreso Internacional deAracnologiacutea Jaca 1 289ndash310

Martens J (1993) Further cases of paternal care in Opiliones (Arachnida)Tropical Zoology 6 97ndash107

Martens J and Schwendinger P S (1998) A taxonomic revision ofthe family Oncopodidae I New genera and new species of GnomulusThorell (Opiliones Laniatores) Revue Suisse de Zoologie 105 499ndash555

Martens J Hoheisel U and Goumltze M (1981) Vergleichende Anatomieder Legeroumlhren der Opiliones als Beitrag zur Phylogenie der Ordnung(Arachnida) Zoologische Jahrbucher Abteilung fur Anatomie undOntogenie der Tiere 105 13ndash76

Mello-Leitatildeo C F (1949) Famiacutelias subfamiacutelia espeacutecies e gecircneros novos deopiliotildees e notas de sinoniacutemia Boletim do Museu Nacional Nova SeacuterieZoologia Rio de Janeiro 94 1ndash33

Mendes A C and Kury A B (2007) Stygnopsidae Soslashrensen 1932 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 232ndash234 (Harvard University PressCambridge MA USA)

Mendes A C and Kury A B (2008) Intercontinental Triaenonychidae ndashthe case of Ceratomontia (Opiliones Insidiatores) The Journal ofArachnology 36 273ndash279 doi101636CH07-931

Murphree C S (1988) Morphology of the dorsal integument of tenopilionid species (Arachnida Opiliones) The Journal of Arachnology16 237ndash252

Park J K andOacuteFoighilD (2000) Sphaeriid and corbiculid clams representseparate heterodont bivalve radiations into freshwater environmentsMolecular Phylogenetics and Evolution 14 75ndash88 doi101006mpev19990691

Peacuterez Gonzaacutelez A (2006) lsquoRevisatildeo Sistemaacutetica e Anaacutelise Filogeneacutetica deStygnommatidae (Arachnida Opiliones Laniatores)rsquo (Museu NacionalUniversidade Federal de Rio de Janeiro Rio de Janeiro Brazil)

Peacuterez Gonzaacutelez A (2007) Stygnommatidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 229ndash232 (Harvard University PressCambridge MA USA)

Peacuterez Gonzaacutelez A (2011) New familial assignment for two harvestmanspecies of the infraorder Grassatores (Arachnida Opiliones Laniatores)Zootaxa 2757 24ndash28

Peacuterez Gonzaacutelez A and Kury A B (2007) Samoidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 224ndash226 (Harvard University PressCambridge MA USA)

Pineau P Henry M Suspegravene R Marchio A Dettai A Debruyne RPetit T Leacutecu A Moisson P Dejean A Wain-Hobson S andVartanian J-P (2005) A universal primer set for PCR amplificationof nuclear histone H4 genes from all animal species Molecular Biologyand Evolution 22 582ndash588 doi101093molbevmsi053

Pinto-da-Rocha R (1997) Systematic review of the Neotropical familyStygnidae (Opiliones Laniatores Gonyleptoidea) Arquivos deZoologia 33 163ndash342

Pinto-da-Rocha R and Kury A B (2003a) Phylogenetic analysis ofSantinezia with description of five new species (Opiliones LaniatoresCranaidae) The Journal of Arachnology 31 173ndash208 doi1016360161-8202(2003)031[0173PAOSWD]20CO2

Pinto-da-Rocha R and Kury A B (2003b) Third species of Guasiniidae(Opiliones Laniatores) with comments on familial relationships TheJournal of Arachnology 31 394ndash399 doi101636H02-59

Pinto-da-Rocha R and Kury A B (2007) Agoristenidae Silhavy 1973 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 171ndash173 (Harvard University PressCambridge MA USA)

Posada D (2005) Modeltest 37 Program and documentation available athttpdarwinuvigoes [Accessed 28 May 2011]

Posada D and Buckley T (2004) Model selection and model averaging inphylogenetics advantages of Akaike information criterion and Bayesianapproaches over likelihood ratio tests Systematic Biology 53 793ndash808doi10108010635150490522304

Posada D and Crandall K A (1998) Modeltest testing the model ofDNA substitution Bioinformatics (Oxford England) 14 817ndash818doi101093bioinformatics149817

Prendini L Weygoldt P and Wheeler W C (2005) Systematics of theDamon variegates group of African whip spiders (ChelicerataAmblypygi) evidence from behaviour morphology and DNAOrganisms Diversity amp Evolution 5 203ndash236 doi101016jode200412004

Rambaut A E (1996) Se-Al sequence alignment editor University ofOxford UK Program and documentation available at httptreebioedacuksoftwarefigtree [Accessed 21 December 2009]

136 Invertebrate Systematics P P Sharma and G Giribet

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 13: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

Distribution

Known only from type locality and additional localities reportedhere

Etymology

The specific epithet an invariable noun in apposition refers to theenlarged belts of tubercles on the free tergites and opisthosomalsternites of this species Derived from Latin lsquospinarsquo meaninglsquospearrsquo or lsquodartrsquo and lsquoferrersquo meaning lsquoto carry or bearrsquo

Petrobunus torosus sp nov

(Figs 11ndash14 Tables 7 8)

Material examined

Holotype Male (MHNG) Philippines Palawan Puerto Princesa RegionSabang Underground National Park Daylight Hole and Lions Caveprimary forest 100ndash200 alt (100900600N1185301000E) legA Schulz6ndash8xii2009 (ex MHNG PAL-0907)

Paratypes 6 lt 13 (MHNG) same collecting data as holotype(ex MHNG PAL-0907) 3 lt (1 dissected for genitalia and mountedon three SEM stubs [MCZ 100894ndash100896] 2 in ethanol [MCZ100890ndash100891]) 3 (1 dissected for genitalia [MCZ 100902] andmounted on one SEM stub [MCZ 100897] 2 in ethanol [MCZ100892ndash100893]) same collecting data as holotype (ex MHNGPAL-0907) 1 lt (mounted on one SEM stub [MCZ100899]) and 3 (dissected for genitalia [MCZ 100901] and mounted on one SEM stub[MCZ 100898]) Philippines Palawan Puerto Princesa Region SabangUnderground National Park jungle trail (101105500N 1185405900E)leg A Schulz 4xii2009 (ex MHNG PAL-0906)

Additional material studied 6 juveniles same collecting data as holotype(MHNG PAL-0907) 12 lt 3 2 juveniles Philippines PalawanPuerto Princesa Region Sabang Underground National Park jungletrail (101105500N 1185405900E) leg A Schulz 4xii2009 (MHNGPAL-0906)

Diagnosis

Distinct from congeners in the well developed ocularium armedwith median tubercle Mesotergum free of pigmentation as inP spinifer but opisthosomal sternites without large spines(sternites 7ndash9 armed only with small low tubercles) Proximalregion of femora of all legs with single blunt peg Penis widenedin the base of the pars distalis stocky in the shapeof a spear bladewith three pairs of ventral setae

Description

Total length ofmale holotype (female paratype [MCZ 100892] inparentheses) 152 (150) greatest width of prosoma 070 (068)greatest width of opisthosoma 104 (108) length-to-width ratio

a

b

c d

050 mm

050 mm

20 microm

100 microm

Fig 10 Petrobunus spinifer sp nov (a) Female paratype dorsal view(b) female paratype ventral view (c) pars distalis of penis lateral view and(d) ovipositor dorsal view

Table 5 Leg measurements of Petrobunus spinifer holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011009 032008 022011 024008 034005 036005 159Leg II 011011 046008 018012 036009 040005 068005 219Leg III 014015 044012 024014 032013 043005 041004 198Leg IV 032038 050014 025017 050014 062008 028004 247

118 Invertebrate Systematics P P Sharma and G Giribet

146 (139) (Figs 11 14) Body campaniform yellow to darkorange (in alcohol depending on incidence of light) almostentirely with a dense microgranulate surface microstructureEyes present on low well developed ocularium with medianocularial tubercle Ocularium 011 (011) long 020 (021) wideremoved from anterior margin of carapace Anterior margin ofcarapace with two pairs of blunt pegs above coxae of leg I withouter pair of sub-rectangular andor bifid shape Scutal grooves ofmesotergum indistinct free of transverse bands of pigmentationFree tergites without large tubercles or spines (Fig 12)

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged with setosetubercles on anterior margin Genital operculum sub-triangularSpiracles not concealed anterior to row of tuberclesOpisthosomal sternites with irregular belts of roundedtubercles Anal plate unarmed (Fig 12)

Chelicerae (Fig 13) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassatefree of ornamentation with dorsal margin bearing several setaeDistal article with delicate dentition free of ornamentation

Palpi (Fig 13) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setae Palpalfemur with two proximal ventral spines in a row and two paireddistal spines (one ventral one mesoventral) Palpal patella with asingle spine directed inward Palpal tibiawith twopairs of spinesand a small basal setose tubercle Palpal tarsus with two pairs ofspines Palpal claw as long as palpal tarsus

Legs IndashIV (Fig 13) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge ventral tubercle and three smaller mesodorsal tuberclesFemora IndashIV with one basal peg on ventral surface with peg freeof granulation Femur III arcuate in males and females free oftubercles Femur IVandpatella IVofmalewith two irregular rowsof mesalmesoventral tubercles Tibia IV of male with multipleirregular rows of tubercles with ventral row enlarged and conicaldistally distal-most ventral tubercle composed of two fusedtubercles Metatarsi IndashIV divided distally with distal portionlacking ornamentation metatarsus IV of male with two rows ofmesalmesoventral tubercles Female trochanter IV not enlargedleg IV free of tubercles Tarsal claws IndashIV smooth unmodifiedTarsal segmentation 3 5 5 6

Penis (Fig 14) narrow in the shape of a spear blade widenednear base Lateral margins gradually coalescing dorsallyresulting in spoon shape in dorsal aspect Ventral surface with

Table 6 Leg measurements of Petrobunus spinifer female paratype (ex MHNG PAL-0905) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 033007 021010 024007 025005 029005 143Leg II 013011 037006 023010 034007 026005 051005 184Leg III 014014 029009 022013 029010 027005 035004 156Leg IV 017015 049008 025014 034010 045006 043004 213

a

b

c

050 mm

050 mm

050 mm

Fig 11 Petrobunus torosus sp nov male holotype (a) Dorsal view(b) lateral view and (c) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 119

threepairs of setae lateralmarginswith four setae eachGlans freein apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 14) composed of two apical lobes eachbearing two dorsal setae one ventral seta and two apicalsetae Distal surfaces of apical lobes smooth Bases of dorsalsetae in contact Bases of ventral setae set apart by a distanceapproximately equal to one-third the width of the ovipositor

Distribution

Known only from type locality and additional locality reportedhere

Etymology

The specific epithet refers to the stocky and robust appearanceof the fourth leg in the males of this species Derived from Latinlsquotorosusrsquo meaning lsquomuscularrsquo or lsquobulgingrsquo

Family TITHAEIDAE fam nov

Type genusTithaeusThorell 1891 by present designation andmonotypy

Type species Tithaeus laevigatus Thorell 1891 by original designation

Genera included Tithaeus Thorell 1891 new familial assignmentMetatithaeus Suzuki 1969 new familial assignment

Diagnosis

Medium-sized Grassatores with a low ocularium removed fromthe anterior margin of carapace that differ from Epedanidae inlacking a median spine In some species slight to large hump

situated anterior of ocularium Scutal region divided into fiveareas areas I and II not fused as opposed to EpedanidaeChelicerae typical basal segment not enlarged (as opposed toEpedanidae)Distinct fromPodoctidae in the lack of spines on legI and in the lack of a sexually dimorphic ocularium Tarsalformula 5 8+ 5 6 not reduced (as opposed to Sandokanidaeand Podoctidae) Distitarsi of legs I and II typically with twotarsalia distinguished from Petrobunidae in the trochanter of legIV not enlarged inmales Tarsi III and IVwith unmodified doubleclaws scopulae absent (as opposed to most Samooidea) Distalmargin of ventral plate of penis usually with deep cleft (mostTithaeus) or widening distally into setiferous and conicalstructure (Metatithaeus) glans with simple membranous lobecovering the stylus terminus of stylus either a bifurcate orslightly inflatable lobe absence of prominent parastylar lobes(distinguishing it from Petrobunidae) absence of a ring of setaesurrounding a capsula interna (found in Epedanidae) Ovipositorlobes typically with a pair of ventral and dorsal setae

Remarks

One of dozens of genera placed in the subfamily Phalangodinae(Phalangodidae) by Roewer (1912 1923 1949) Tithaeus wassubsequently extricated and transferred to Epedanidae by Kury(1993 2003 2006) on the basis of the male genitalia althoughthe placement was ambiguous given the absence of typicalepedanid morphology such as elongate and armed pedipalpian erect ocularial spine (absent in Dibuninae) the fusion of scutalareas I and II side-branches in the posterior claws and stoutdentition of the cheliceral fingers (Lian et al 2008) However

a

b

100 microm

100 microm

100 microm

100 microm

c

d

Fig 12 Petrobunus torosus sp novmale paratype (a)Dorsolateral view (b) dorsolateral viewof anteriormargin of carapace(c) ventrolateral view and (d) ventrolateral view of prosomal complex

120 Invertebrate Systematics P P Sharma and G Giribet

comparisons of the male genitalia of a phalangodid (Texella) anepedanid (Kilungius Saracinicinae) and Tithaeus suggested acloser relationship between Epedanidae and Tithaeus in spite ofmarked differences in the stylar lobe and the extent of the basalsac (Lian et al 2008)

Our phylogenetic analyses corroborate a closer relationshipbetween Epedanidae and Tithaeuswith respect to Phalangodidae(which is sister to the remaining Grassatores and thereforedistantly related to both lineages) but the clade Tithaeus+Metatithaeus neither nests within nor is sister to Epedanidae

a

b

c

d

e

h

i

g

f

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

Fig 13 Petrobunus torosus sp nov (a) Left chelicer of male paratype (b) left palp of male paratype (c) left leg I of maleparatype (d) right leg II of male paratype (e) left leg III of male paratype (f) left leg IV of male paratype (g) left leg IV offemale paratype (h) trochanter of left leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 121

in any of the topologies we examinedMoreover the cleft ventralplate forming two prongs in the male genitalia of many Tithaeusspecies in addition to the absence of a ring of setae surroundingthe capsula interna (typical of Epedanidae) suggest that Tithaeus

and related genera (eg Istithaeus Metatithaeus Tithaeommaetc) are not true epedanids but may be more closely related toeither (1) Podoctidae a hypothesis that is supported in someanalyses (bootstrap frequency in ML [BS] = 59 posteriorclade probability given by MrBayes [PP] = 097) or (2) theclade (Podoctidae + Sandokanidae) recovered by the BEASTtopology (posterior clade probability given by BEAST[PPBEAST] = 100)

The inclusion of Tithaeus-like Grassatores in Epedanidaerenders the latter para- or diphyletic and obscures a cleardiagnosis of epedanids as the morphology of Tithaeus (andMetatithaeus) does not accord with many epedanidsynapomorphies Moreover inclusion of Tithaeus andorMetatithaeus within a broader Podoctidae is also unjustifiedbecause this violates many of the synapomorphies ofPodoctidae such as (1) tuberclesspines in dorsal and ventralrows on leg I (2) tubercular bridges (3) a sexually dimorphicbasichelicerite and (4) a sexually dimorphic ocularium

Consequently we erect the family name Tithaeidaeseparating Tithaeus and Metatithaeus from EpedanidaeTithaeidae likely includes the monotypic Roewerian generaIstithaeus Kondosus Sterrhosoma and Tithaeomma but thestatus of these genera requires further investigation and will beaddressed in a forthcoming study

Distribution

Distributed throughout Sundaland the Thai-Malay PeninsulaSumatra Java and Borneo Also reported from northern Vietnamand southern China One doubtful record from West Timor(see Lian et al 2008)

Results

Phylogenetic analysis

Less sequence data are presently available for Briggsusflavescens (partial 28S and COI Derkarabetian et al 2010)with respect to the rest of the data matrix Consequently twoML analyses were conducted including and excluding Briggsusflavescens The ML analysis with all taxa resulted in a treetopology with lnL= ndash8372597 Repeating the analysis withoutBriggsus resulted in a tree topology with lnL= ndash8336108 Thetwo topologies are identical save for the internal relationships ofTravunioidea which includes Briggsidae (Fig 15) Inclusion ofBriggsidae recovers a diphyletic Cladonychiidae with Briggsussister to Holoscotolemon but these relationships are notsupported Exclusion of Briggsidae results in higher nodalsupport frequencies within Travunioidea and recovers a sisterrelationship of Sclerobunidae and the remaining Travunioidea(BS = 75) and a monophyletic Cladonychiidae + Travuniidae(BS = 77) sister to Trojanella Including Briggsus in theanalysis does not affect topology or nodal support in otherparts of the phylogeny Monophyly of Travunioidea isstrongly supported (BS = 100) in either case

Runs of MrBayes ver 312 reached stationarity in 2 000 000generations 2 500 000 generations (25) were hence discardedas burn-in The BI analysis with all taxa resulted in a topologylargely similar to theMLtree (Fig 16)Notable differences are therelative placements of the clade (Gonyleptoidea + Stygnopsidae)

a

b

c d

050 mm

050 mm

20 microm

20 microm

Fig 14 Petrobunus torosus sp nov (a) female paratype dorsal view(b) female paratype ventral view (c) pars distalis of penis lateral view and(d) ovipositor dorsal view

122 Invertebrate Systematics P P Sharma and G Giribet

and the South-east Asian group of families Some differencesexist with respect to supported nodes within superfamilies

Estimation of divergence times

The run of BEAST reached stationarity after 6 000 000generations 10 000 000 generations (20) were discarded asburn-in The tree topology recovered by BEAST (Fig 17) differsfromML andBI topologies in (1) the placement of Sandokanidaeand (2) the relationships between superfamilies Diversificationof Laniatores is dated at ~348Mya Diversification of majorlineages is estimated as follows (Travunioidea+Triaenonychidae)299Mya Grassatores 302Mya Assamiidae +Pyramidopsgroup 232Mya Gonyleptoidea + Stygnopsidae 246MyaGonyleptoidea 230Mya Samooidea + Zalmoxoidea 206Myaand a South-east Asian clade (including Sandokanidae)249Mya These results largely corroborate previous estimatesof divergence times (Giribet et al 2010) but confidence intervalsfor estimated ages are more precise A tree file of estimated agesand 95highest posterior density (HPD) intervals for all nodes isprovided as an Accessory Publication on the InvertebrateSystematics website

Whereas the basal topology of Grassatores is unstable andunsupported most familial and superfamilial relationshipsare consistently recovered across analyses A consensus oftopologies across all analyses is shown in Fig 18

Discussion

A molecular phylogeny of the armoured harvestmen has longproven elusive Laniatores comprises entire genera and familiesthat are endemic to particular provinces of the world In somecases higher taxonomic ranks do not even occur beyond specificislands (eg the New Zealand family SynthetonychiidaeForster 1954) Moreover Laniatores includes the majority ofall described Opiliones species (and over half of all describedfamilies) and new lineages continue to be discoveredConsequently previous efforts to assess Laniatores phylogenyhave been prone to undersampling numerous lineages such asAssamiidae Epedanidae and the superfamilies Samooidea and

Zalmoxoidea (eg Giribet et al 1999 2002 Shultz and Regier2001)

The present study with the inclusion of all families ofarmoured harvestmen described heretofore enables detailedinvestigation of internal relationships of Laniatores Ofprincipal interest are the phylogenetic placement of the twonew families of Laniatores erected herein and the systematicvalidity of defined superfamilies Many of the relationshipsrecovered in our analyses are consistent with traditionalhypotheses based on morphological studies but there are someunexpected results We discuss these in turn

Insidiatores

Within a monophyletic Laniatores recovered in all analyses(BS = 100 PP = 093) the constituent lineages of Insidiatoresform a paraphyletic grade with respect to Grassatores WhileTriaenonychoidea and Travunioidea do form a clade (albeit withlow nodal support) the New Zealand endemic familySynthetonychiidae is recovered as sister to all remainingLaniatores (BS = 78 PP = 100) consistent with the resultsof a recent study (Giribet et al 2010) However the inclusionof more data in fact lowers the nodal support for this sisterrelationship relative to the previous studyrsquos ML analysislikely due to the influence of missing data (in particular only~300 bp out of a targeted 3400 bp of 28S rRNA are presentlyavailable for Synthetonychia) Consequently we do not treat theplacement of Synthetonychiidae as definitive

In all analyses the southern hemisphere Triaenonychidaeform a strongly supported clade that diversified ~200Mya(BS = 100 PP = 100) Their distribution and the age of thiscladersquos diversification are similar to that of the temperateGondwanan cyphophthalmid family Pettalidae (estimated tohave diversified ~183ndash221Mya Giribet et al 2010)suggesting a parallel biogeographical process in these lineagesThe North American triaenonychid Fumontana deprehendorShear 1977 is sister to the southern hemisphere Triaenonychidaein all analyses consistent with previous classification (Giribetand Kury 2007 Thomas and Hedin 2008) but support fora monophyletic Triaenonychoidea is limited and sensitiveto analytical parameters (BS = 57 PP lt 050 PPBEAST = 066)

Table 7 Leg measurements of Petrobunus torosus holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011011 039005 026012 028008 036006 040007 180Leg II 014013 061008 029010 043007 042006 072005 261Leg III 015015 051010 019015 037011 045006 046005 213Leg IV 034035 059012 034017 054015 067007 052006 300

Table 8 Leg measurements of Petrobunus torosus female paratype (ex MHNG PAL-0907) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 041008 022011 028010 037005 035006 174Leg II 010009 052007 023008 033007 037006 069005 224Leg III 014016 046010 025024 036012 042007 041005 204Leg IV 018017 054011 029016 049012 058007 048006 256

Molecular phylogeny of Laniatores Invertebrate Systematics 123

Fig 15 Phylogenetic relationships of Laniatores inferred from maximum likelihood analysis of all molecular data (ln L= ndash8372597) Inset topology ofTravunioidea excluding Briggsidae (ln L= ndash8336108) Numbers on nodes indicate bootstrap resampling frequencies

124 Invertebrate Systematics P P Sharma and G Giribet

We recovered a monophyletic Travunioidea which includesBriggsidae in all analyses (BS = 100PP = 100) corroboratingthe superfamilial placement of briggsids Briggsidae isrecovered sister to either Trojanella (ML) or Holoscotolemon(BI) or part of a grade with both of these taxa (BEAST) butthese placements are not supported (BS lt 50 PPBEAST = 085and PP = 051 respectively) Missing data for Briggsidaedepresses nodal support in ML analyses within Travunioideaobscuring interfamilial relationships In the absence ofBriggsidae we recover a sister relationship betweenSclerobunidae (Zuma acuta Goodnight amp Goodnight 1942)and the remaining Travunioidea (BS = 75) and themonophyly of Travuniidae +Cladonychiidae (BS = 77)

A recent molecular dating of Travunioidea obtained muchyounger dates than estimated herein in spite of similar taxaand molecular loci In that study Derkarabetian et al (2010)investigated the evolution of troglobitism in Sclerobunidae(also referred to as the lsquoNorth American triaenonychidsrsquo)and used the cladonychiid fossil Protoholoscotolemon(38ndash54Mya Ubick and Dunlop 2005) to constrain theminimum age of Travunioidea in addition to calibration pointsderived from geological ages of strata These practicesaccord with the scope of the troglobitism study (thedivergences of interest were comparatively recent ndash Plioceneor younger) but we did not utilise Protoholoscotolemon in ourdating for two reasons (1) we do not obtain an unambiguouslymonophyletic Cladonychiidae in our analyses and (2) theDevonian and Carboniferous fossils we utilised as calibrationpoints are sufficiently old to obtain a result consistent with anEocene cladonychiid fossil The different calibration pointsimplemented in the respective studies therefore account forthe discrepancy in the dating In addition the morphologicalconservatism of Opiliones makes it doubtful that the age ofProtoholoscotolemon is the maximum age of the superfamily

Our sampling of Insidiatores lineages remains limited andbarring the inclusion of Briggsidae additions to taxonomicsampling largely concern Grassatores Consequently continuedsampling and systematic studies of Insidiatores (eg Mendesand Kury 2008 Thomas and Hedin 2008 Derkarabetian et al2010) are instrumental and imperative to addressing outstandingquestions of phylogenetic relationships and morphologicalevolution A phylogeny of Triaenonychidae is particularlywanting

Early diverging Grassatores Phalangodidaeand Sandokanidae

The recovery of a monophyletic Grassatores (supported inall analyses BS = 99 PP = 100) is consistent with severalmorphological synapomorphies uniting this diverse groupsuch as the presence of two tarsal claws on walking legs IIIand IV However the basal topology of Grassatores has longbeen contentious Previously two superfamilies of Grassatoreswere recognised Oncopodoidea (with the single familySandokanidae (formerly Oncopodidae)) and lsquoGonyleptoidearsquo(with the remaining families) (Martens 1976 1986 Martenset al 1981) This dichotomy was largely based upon theunique morphology of Sandokanidae ndash characters such as thescutum completum (fused opisthosomal tergites) reduced tarsal

articles and genitalic structures which are not found in theremaining Grassatores (Martens 1980 Giribet et al 2002Sharma and Giribet 2009) It was alternatively contended thatthese characters constituted autapomorphies of Sandokanidaewhich was nested within lsquoGonyleptoidearsquo itself (Kury 2003)

In all analyses we obtained an initial divergence betweenPhalangodidae and the remaining Grassatores (BS = 100PP = 096) refuting the traditional dichotomy betweenSandokanidae and lsquoGonyleptoidearsquo Therefore we hereindefine Gonyleptoidea as the taxon consisting of AgoristenidaeCosmetidae Cranaidae Gonyleptidae Manaosbiidae andStygnidae The split between Phalangodidae and the remainingGrassatores has been postulated to correspond to the rifting ofthe ancient supercontinents Laurasia and Gondwana as thedistribution of Phalangodidae was believed to be strictlyHolarctic (Giribet et al 2010) However the inclusion of theMadagascar genus Remyus previously placed in Zalmoxidae(Starega 1989) within a monophyletic Phalangodidae indicatesbroader distribution of phalangodids ndash complementing theTriaenonychidae-Fumontana case discussed above Moreoverthe origin of Phalangodidae is estimated to have occurred around302Mya (95 HPD 264ndash335Mya) greatly predating thebreakup of the supercontinents These results indicate thatPhalangodidae may be narrowly defined and we consequentlytransfer Remyus to Phalangodidae (new familial assignment)

The unusual family Sandokanidae has been postulated to besister toPodoctidae (SharmaandGiribet 2009Giribet et al 2010)or to form agradewith Phalangodidae (Kuryrsquos lsquoPhalangodoidearsquopartly) In the present study ML and BI topologies reconstructSandokanidae as sister to the remaining non-phalangodidGrassatores albeit with insignificant nodal support (BS = 21PP = 078) Curiously the topology obtained byBEAST recoversthe clade (Sandokanidae + Podoctidae) nested within a singleclade of South-east Asian families (PPBEAST = 085) Theseresults do not unambiguously favour one hypothesis overanother and the phylogenetic placement of Sandokanidae inthe Grassatores tree therefore remains debatable

Regardless of the inclusion of Sandokanidae within theSouth-east Asian group of families that the sister family to theremaining Grassatores is Phalangodidae not Sandokanidaeindicates that the peculiar morphology of sandokanids is theresult of multiple apomorphic reversals not the retention ofplesiomorphic characters (Martens and Schwendinger 1998)The large scutum and low tarsomere number found inSandokanidae also occur in Trogulidae and Dicranolasmatidae(suborder Dyspnoi) and all Cyphophthalmi and appear to haveevolved convergently This morphology may reflect adaptationsto a shared ecological niche all these groups inhabit leaf litterinclude no arboricolous species and are limited in vagility ndash

although these life history traits are also found in other groupsHowever this hypothesis has yet to be rigorously tested

Sandokanidae is presently one of few families of Grassatoresfor which a molecular phylogeny assessing intergenericrelationships is available (Sharma and Giribet 2009) andconsistent with earlier results the monophyly of Sandokanidaeis strongly supported (BS = 100 PP = 100) as is the initial splitbetweenMartensiellus and the remaining genera (an undescribedspecies was referred to as lsquogen sprsquo by Sharma and Giribet 2009but subsequent morphological investigation revealed this to be

Molecular phylogeny of Laniatores Invertebrate Systematics 125

Fig 16 Phylogenetic relationships of Laniatores inferred fromBayesian inference analysis of allmolecular data Numbers on nodes indicateposterior probabilities

126 Invertebrate Systematics P P Sharma and G Giribet

a miniature species of Martensiellus P J Schwendinger perscomm) (BS = 92 PP = 100) Intergeneric relationshipsof sandokanid genera are contingent upon analytical treatmentof molecular partitions (with additional sandokanid exemplarsdata not shown) reflecting conflict among datasets documentedby Sharma and Giribet (2009)

The other South-east Asian families

Epedanidae was postulated to be sister to Gonyleptoidea in acladistic analysis based on morphological characters (Kury1993) Subsequently Kury (2003) proposed that Epedanidaewas sister to the clade (Assamiidae (Stygnopsidae +Gonyleptoidea)) The single epedanid previously included in amolecular phylogeny was similarly unstable in placement eithernestingwithin Assamiidae or sister to the African lsquophalangodidsrsquo(Conomma and Maiorerus) in neither case with appreciablenodal support (Giribet et al 2010) Furthermore previousinclusion of several lineages (eg Tithaeus) within Epedanidaethat do not bear characters typical of true epedanids ndash sexuallydimorphic chelicera with heavy dentition elongate andspined pedipalpi male genitalia with setae surroundingthe capsula interna ndash has also made this family difficult todefine Consequently we included only Epedaninae (egPseudoepedanus Alloepedanus and Euepedanus) as exemplarsof true epedanids the systematic validity of the remaining threesubfamilies (and particularly the inclusion of Dibuninae) isbeyond the scope of this study and remains to be investigated

The monophyly of each of four South-east Asian families ndashEpedanidae (represented by epedanines) TithaeidaePetrobunidae and Podoctidae ndash is recovered with high nodalsupport (all BS = 100 PP = 100) These lineages are somehowrelated to each other and while they form a clade in bothML andBI analyses this result receives insignificant nodal support(PP = 077) In the topology recovered by BEAST the South-east Asian families form a clade that includes Sandokanidaea result consistent with the distribution of sandokanids albeitwithout support (PPBEAST = 085) Tithaeidae is probably closelyrelated to Podoctidae given the occurrence of a deeply cleftventral plate resulting in two flanking prongs in themale genitaliaof both families (Suzuki 1977 Lian et al 2008 Fig 19) Inaddition the clade (Podoctidae +Tithaeidae) is recovered withmoderate support in ML and BI analyses (BS = 59 PP = 097)In none of the analyses is Tithaeidae nested within or sister toEpedanidae sensu stricto

The morphology of Petrobunidae suggests some relationshipto previously described South-east Asian families oralternatively Phalangodidae but not inclusion within any ofthese (Fig 19) Molecular sequence data do not support anyspecificplacement ofPetrobunidae although it clusterswithotherSouth-east Asian families in all analyses and is recovered sisterto Epedanidae in two topologies (BI and BEAST)

Gonyleptoidea and Stygnopsidae

With over 2500 described species the superfamilyGonyleptoidea constitutes the most diverse and (arguably) themost charismatic lineage of Opiliones with most of this diversityconcentrated in Amazonia (some cosmetids occur as far north asthe mid-Atlantic states of the US) In a previous analysis

relationships of gonyleptoid families were unsupported andordid not accordwithmorphological studies (Giribet et al 2010) Inparticular the placement of the agoristenid exemplar Avimaalbiornata (Goodnight amp Goodnight 1947) ndash the putativesister family to the remaining Gonyleptoidea ndash within aparaphyletic Cranaidae was particularly suspect given thelimited availability of sequence data for Avima (complete 18SrRNA a300-bp fragmentof 28S rRNA andCOI) In addition thesister group of Gonyleptoidea was ambiguous and contingentupon analytical parameters

Redoubling sequencing efforts and addition of taxaparticularly in the case of Agoristenidae (currently sequencedfor 12S rRNA complete 18S rRNA a 2000-bp fragment of 28SrRNA COI H3 and EF-1a) improved the assessment ofgonyleptoid relationships A monophyletic Gonyleptoidea(BS = 58 PP = 066) is recovered sister to the familyStygnopsidae (BS = 57 PP = 100) Within Gonyleptoidea asplit between Agoristenidae and the remaining gonyleptoids isstrongly supported (BS = 100 PP = 100) followed by thedivergence of Stygnidae (BS = 71 PP = 099) Thisplacement of Agoristenidae is supported by morphologicalstudies (Pinto-da-Rocha and Kury 2007) although in aminority of tree topologies sampled in BI analysesAgoristenidae is sister to Stygnopsidae (hence lower nodalsupport for the monophyly of Gonyleptoidea in BI) Theplacement of Manaosbiidae is uncertain it is recoveredsister to either (Gonyleptidae +Cranaidae) (PP = 089) or toCosmetidae (PPBEAST = 092) but these results are notsupported Cranaidae is recovered as monophyletic (BS = 99PP = 100) and nested within a paraphyletic Gonyleptidae

The present sampling of Cosmetidae and Gonyleptidae doesnot do justice to the diversity of these lineages (~700 and 800described species respectively) A phylogenetic assessment ofall 16 subfamilies of Gonyleptidae alone constitutes the subjectof an arduous and exacting study Fortunately cladistic analysesof morphological characters continue to advance phylogeneticinvestigation of subfamilial lineages (eg BourguyiinaeYamaguti and Pinto-da-Rocha 2009 Goniosomatinae DaSilvaandGnaspini 2009HernandariinaeDaSilva andPinto-da-Rocha2010) Elucidating the phylogeny of Gonyleptoidea is one of themost exciting research topics in the study of Opiliones

The Afrotropical families

The third most diverse family of Laniatores Assamiidaeconstitutes the dominant opiliofauna of the African continent(excluding Madagascar) with some lineages occurring in SouthAsia the Indo-Malay Archipelago and Australia (Trionyxellinaeand Dampetrinae) Proposed to be related to EpedanidaeStygnopsidae andor Gonyleptoidea (Kury 2007) on the basisof genitalic structures assamiids were not recovered asmonophyletic in a previous study (paraphyly was induced byeither Epedanidae orAfricanBiantidae) and the placement of thesubfamily Trionyxellinae was particularly suspect (Giribet et al2010) Trionyxellinae was considered a separate family byMello-Leitatildeo (1949) though others considered it nested withinAssamiidae (eg Starega 1992) In our analyses the monophylyof Assamiidae is supported (BS = 79 PP = 100)lsquoTrionyxellinaersquo (Trionyxella and Mysorea both with a

Molecular phylogeny of Laniatores Invertebrate Systematics 127

Fig 17 Evolutionary time tree of Laniatores inferred fromBEASTanalysis of allmolecular data Coloured bars indicate 95highestposterior density (HPD) intervals for nodes of interest Numbers on nodes indicate posterior probabilities asterisks indicate posteriorprobability of 100

128 Invertebrate Systematics P P Sharma and G Giribet

pseudonychium on the third and fourth tarsi) is a diphyletic entitynested within the other Assamiidae (for the node renderingdiphyly BS = 100 PP = 100) disfavouring family status fortrionyxellines

The African lsquophalangodidsrsquo (sometimes called thelsquoPyramidops grouprsquo) were recognised as a new family byStarega (1992) but not formalised and included 13 genera(Conomma Pyramidops and related lineages) Consistentwith this hypothesis we recovered strong support for thePyramidops group (represented by Conomma and cfPyramidops) as a lineage separate from the true Phalangodidae(egBishopella and Scotolemon) recapitulating a previous result(Giribet et al 2010) The African lsquophalangodidsrsquowere recoveredas the sister lineage of Assamiidae although this relationshipis variably supported in our analyses (BS = 40 PP = 095PPBEAST = 100) A review and formal description of thePyramidops group as a new family lsquoPyramidopidaersquo ndash a namewidely available on the internet including GBIF but notformalised ndash is undertaken elsewhere (Sharma et al 2011)

While we have endeavoured to improve the sampling ofAssamiidae from South-east Asia the internal systematics ofthis family remain a high value target for phylogenetic researchHowever revision of assamiid systematics is inherently difficultfor two reasons (1) the family is peppered with questionablehierarchies and monotypic genera (~12 subfamilies and 250genera for less than 500 described species) and (2) occurs insome of the most inaccessible regions of the world namely sub-Saharan Africa

In all analyses the clade (Assamiidae + Pyramidopidae) issister to the clade (Zalmoxoidea + Samooidea) though this resultis only supported in one analysis (PP= 100) The divergence ofthese four lineages is estimated to have occurred 252Mya and isconsistent with diversification in West Tropical Gondwanaoccurring at least 140million years before the fragmentation ofthis terrane (~110Mya)

Zalmoxoidea

As currently defined the largely Neotropical superfamilyZalmoxoidea includes four families FissiphalliidaeGuasiniidae Icaleptidae and Zalmoxidae Guasiniidae hasnever before been included in a molecular phylogeny In thepresent study we sequenced a guasiniid for six genes and ouranalyses strongly support theplacement ofGuasiniidae as sister tothe samooid family Kimulidae (formerly Minuidae) (BS = 86PP = 098 PPBEAST = 099) and this clade in turn sister to anothersamooid family Escadabiidae (BS = 65 PP = 096PPBEAST = 100) The families Fissiphalliidae Icaleptidaeand Zalmoxidae in turn form a separate clade (BS = 100PP = 100 PPBEAST = 100) with strong support for the sisterrelationship of Zalmoxidae and Fissiphalliidae (BS = 99PP = 100 PPBEAST = 100) corroborating relationshipsproposed by morphological studies (Kury and Peacuterez G 2002Pinto-da-Rocha and Kury 2003b)

Previous analyses have suggested that Samooidea (discussedbelow) is a paraphyletic grade with respect to Zalmoxoidea(Giribet et al 2010) In the present analysis the cladeSamooidea + Zalmoxoidea is strongly supported (BS = 85PP = 100 PPBEAST = 100) as previously suggested by PeacuterezGonzaacutelez and Kury (2007) and by excluding Escadabiidae and

Kimulidae Samooidea is rendered a monophyletic entity albeitwith limited support (BS = 53 PP = 062 PPBEAST = 081) Thestrong support from molecular sequence data for the cladeincluding Escadabiidae Kimulidae and the four zalmoxoidfamilies (BS = 89 PP = 100 PPBEAST = 100) suggests thatthese may form a natural group

Re-examination of the morphology of these six families incomparisonwith true samooid lineages (Biantidae Samoidae andStygnommatidae) corroborates the exclusionofEscadabiidae andKimulidae from true Samooidea Escadabiidae and Kimulidae(1) lack the scopula characteristic of Samoidae and stenostygnineBiantidae (2) lack a sexually dimorphic metatarsus IIIcharacteristic of Samoidae Stygnommatidae and stenostygnineBiantidae and (3) lack a penial calyx characteristic of SamoidaeConsistent with placement within Zalmoxoidea EscadabiidaeandKimulidae (1) possess a small oculariumbearing the eyes thatis removed from the margin of the carapace (2) bear a wellmarked dorsal protuberance (bulla) on the proximal segmentof the chelicera that lacks armature and (3) possess sexuallydimorphic leg IV segments particularly the femur and tibiawhich may be variedly arcuate incrassate and spinedAdditionally Escadabiidae Fissiphalliidae and Zalmoxidae allpossess sexually dimorphic tegumental glandopeningson tibia IIwhereas Biantidae Samoidae and Stygnommatidae possessthese structures on metatarsus III (Willemart et al 2010)While data on tegumental gland openings are only availablefor a small handful of species these may constitute significantdiagnostic characters for species wherein sexual dimorphismdoes not manifest itself in the readily observable form ofenlarged and spiny segments

Given the results of our phylogenetic analyses maintainingSamooidea (as currently defined) renders it a paraphyletic gradewith respect to a diphyletic Zalmoxoidea (as currently defined)Consequently based on the aforementioned morphologicalcharacters and robust molecular phylogenetic signal wetransfer Escadabiidae and Kimulidae to Zalmoxoidea

Samooidea

A previous cladistic analysis based upon morphological datasuggested close relationship between six families ndash BiantidaeEscadabiidae Kimulidae Podoctidae Samoidae andStygnommatidae ndash thenceforth known as Samooidea (Kury1993) the only pantropical Laniatores superfamily HoweverPodoctidae does not have any obvious relationship to Samooideaand has subsequently been transferred (Kury 2007) in ouranalyses Podoctidae is sister to Tithaeidae or Sandokanidaeie distantly related to all samooid families Moreover ouranalyses strongly favour the exclusion of Escadabiidae andKimulidae from Samooidea

The remaining three families ndash Biantidae Samoidae andStygnommatidae ndash are distributed in the Neotropics and partsof Africa with a handful of suspect lineages in South-east AsiaRe-examination and reassignment of many Samoidae genera(eg the Indonesian lsquosamoidrsquo Waigeucola palpalis PeacuterezGonzaacutelez 2011) suggest that the range of Samoidae does notinclude South-east Asia Peacuterez Gonzaacutelez and Kury (2007) alsoobserved that the lsquosamoidsrsquo of Africa Madagascar and theSeychelles may not be true Samoidae either Similarlyinclusion of the genus Stygnomimus an Indonesian lineage

Molecular phylogeny of Laniatores Invertebrate Systematics 129

within Stygnommatidae is highly dubious as the twoIndonesian lsquostygnommatidsrsquo are either highly autapomorphic(Stygnomimus conopygus (Roewer 1927)) or described on the

basis of a generic female that is not readily distinguishable fromfemales of other species (Stygnomimus malayensis (Suzuki1970))

Fig 18 Strict consensus of tree topologies obtained by all phylogenetic analyses

130 Invertebrate Systematics P P Sharma and G Giribet

Previous efforts to assess the systematic validity of Samooideaby means of molecular sequence data were limited insofar asonly two Samoidae three Biantidae (all Metabiantes) and twoStygnommatidae were sampled (Giribet et al 2010) Thesampling of Samoidae was especially problematic only asingle Neotropical adult (Pellobunus) and one African juvenilesamoid (lsquoSamoidae gen sprsquo) were included The designation ofthe latter is suspect as juveniles of Samoidae are oftenindistinguishable from the juveniles of other lineages becausemany diagnostic secondary sexual characters in Grassatores(eg spines and incrassate appendages) are not acquired untilafter several postembryonic stages (Townsend et al 2009)

In the present study though the type genus of Samoidae(Samoa from Samoa) was not available we sequenced theclosely related genus Badessa (from Fiji collected byP P S) as well as additional Biantidae and StygnommatidaeOur analyses recovered a monophyletic Samooidea (excludingEscadabiidae and Kimulidae BS = 53 PP = 062) withSamoidae sensu stricto (Pellobunus +Badessa BS = 100PP = 100) nested within a paraphyletic Stygnommatidae aplacement that is supported (BS = 87 PP = 100) Bycontrast the African lsquosamoidrsquo is sister to the AfricanBiantidae a relationship that is also well supported(BS = 100 PP = 100) These relationships suggest a basal

Fig 19 Cladogram of male genitalic evolution in South-east Asian families superimposed upon a schematised molecular phylogeny based on ML and BIanalyses of all molecular data Exemplars (a) Pseudoepedanus doiensis Suzuki 1969 (redrawn from Suzuki 1969) dorsal view (b) Pseudoepedanus doiensisSuzuki 1969 (redrawn from Suzuki 1969) ventral view (c) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) ventral view(d) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) dorsal view (e) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki1976) dorsal view (f) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki 1976) ventral view (g) Petrobunus torosus lateral view (h) ZalmoxidagibberaSuzuki 1969 dorsal view (i)Zalmoxida sp (MCZDNA102677) dorsolateral view (j)Metatithaeus rubidusSuzuki 1969 (redrawn fromSuzuki 1969)ventral view (k)Tithaeus kokutnusSuzuki 1985 (redrawn fromSuzuki 1985) ventral view (l)Tithaeus similisSuzuki 1985 (redrawn fromSuzuki 1985) ventralview (m)DongmoaoshimensisSuzuki 1964 (redrawn fromSuzuki 1964) ventral view (n)Bonea longipalpisSuzuki 1977 (redrawn fromSuzuki 1977) ventralview (o) Santobius annulipes Soslashrensen 1886 (redrawn from Kury and Machado 2009) ventral view (p) Lomanius longipalpus mindanaoensis Suzuki 1977(redrawn from Suzuki 1977) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 131

dichotomy within Samooidea that corresponds to one groupof Neotropical and Pacific lineages and a second group ofAfrican lineages However as we were unable to samplestenostygnine (Neotropical) and Indo-Pacific Biantidae aswell as numerous monotypic genera dubiously placed inSamoidae biogeographical extrapolations for Samooidea aretenuous (discussed below)

The internal relationships of Samooidea suggest that themorphology of Samoidae may have evolved convergently Asthe African samoid is a juvenile (the same specimen previouslysequenced by Giribet et al 2010 now sequenced for additional28S rRNA and other genes) we cannot rule out the possibility ofa monophyletic Samoidae that includes African species (thespecimen in question could be a juvenile biantid) In any casethe paraphyly of Stygnommatidae and putative polyphyly ofSamoidae strongly advocate systematic revision of samooidfamilies as currently defined corroborating hypotheses of non-monophyly based on morphology (Peacuterez Gonzaacutelez 2007 PeacuterezGonzaacutelez and Kury 2007) Our sampling of these families isinsufficient to advocate specific taxonomic action but an ongoing

study of samooidean systematics will shed more light on thevalidity of constituent families (A Peacuterez Gonzaacutelez work inprogress)

Biogeography of Zalmoxoidea and Samooidea

While most superfamilies of Grassatores are restricted to aspecific part of the tropics (eg Neotropics South-east Asia)two are distributed in multiple biogeographical provincesSamooidea occurs in the Neotropics and Afrotropics withquestionable records from South-east Asia Zalmoxoidea isconcentrated in the Neotropics with the exception of oneIndo-Pacific lineage of Zalmoxidae (represented here byZalmoxis sp) The ages and distributions of Samooidea andZalmoxoidea suggest that their biogeography was influencedby the fragmentation of West Tropical Gondwana ndash causingthe former to diverge basally throughout West TropicalGondwanan terranes and the latter to become isolated to theNeotropics (with possible subsequent dispersal)

Fig 20 Ancestral range reconstructions for Samooidea +Zalmoxoidea inferred by Lagrange using stratified models corresponding to two vicariant events(indicated by dotted lines) Coloured squares at terminals indicate ranges occupied by sampled species Coloured squares on nodes indicate ranges reconstructedfor hypothetical ancestors Numbers on nodes indicate relative probability of ranges reconstructed

Fig 21 Best hypothesis of Laniatores relationships based on all available evidence Bracketed nodes indicate non-monophyletic entities Dashed line indicatesambiguity in the placement of Sandokanidae (alternatively placed as shown or as sister to Podoctidae) Exemplars of Laniatores diversity are Synthetonychiaoliveae (Synthetonychiidae) Equitius doriae (Triaenonychidae) Hadziana clavigera (Travuniidae) Erebomaster flavescens flavescens (Cladonychiidae)Scotolemon lespesi (Phalangodidae) Palaeoncopus gunung (Sandokanidae) Santobius sp (Podoctidae) Tithaeus sp (Tithaeidae) Petrobunus spinifer(Petrobunidae) Alloepedanus sp (Epedanidae) Hoplobunus sp (Stygnopsidae) Torreana spinata (Agoristenidae) Stygnoplus clavotibialis (Stygnidae)Metalibitia paraguayensis (Cosmetidae)Acutisoma longipes (Gonyleptidae)Conommaoedipus (Pyramidopsgroup)Mysorea thaiensis (Assamiidae)Lacurbssp (Biantidae) Stygnomma sp (Stygnommatidae) Badessa sp (Samoidae) Guasinia sp (Guasiniidae) Icaleptes sp (Icaleptidae) Fissiphallius chicoi(Fissiphalliidae) Zalmoxis sp (Zalmoxidae) Kimula goodnightiorum (Kimulidae)

132 Invertebrate Systematics P P Sharma and G Giribet

Molecular phylogeny of Laniatores Invertebrate Systematics 133

To test this hypothesis we conducted likelihood analysisof range evolution using the program Lagrange (Ree et al2005 Ree and Smith 2008) for the clade (Zalmoxoidea +Samooidea) The stratified analysis resulted in a globalmaximum likelihood of ndashlnL= 1556 outperforming anunconstrained analysis that did not include any dispersalconstraints (ndashlnL= 1676) Likelihood analysis of rangeoptimisation (Fig 20) indicates that the ancestral range ofSamooidea includes both the Afrotropics and the Neotropics(relative probability pr = 1000) but a subsequent split occursbetween an African lineage (pr = 1000) and a NeotropicalIndo-Pacific lineage with a Neotropical ancestral range (pr = 0986)Samoidea of the Indo-Pacific occur on young oceanic islands(eg Fiji Samoa) indicating recent transoceanic dispersal fromthe Neotropics

Ancestral range reconstructions for Samooidea are allconsistent with estimated divergence times for these clades(diversification of Samooidea predates the rifting of WestAfrica from northern South America) favouring an underlyingvicariant process for the basal topology with subsequent recentdispersal events However these results are contingent upon thepresent sampling which does not include all samooid lineages(eg stenostygnine Biantidae) but basal range reconstructionsare likely unaffected (eg Stenostygninae is exclusivelyNeotropical)

In contrast the ancestor of Zalmoxoidea is reconstructedas singularly Neotropical (pr = 0996) This is consistent withisolation of a zalmoxoid ancestor to Amazonia which thenradiated ~191Mya Subsequent ancestral ranges are alsoreconstructed as Neotropical with high relative probabilityHowever the ancestral range of the clade (Icaleptidae +Fissiphalliidae + Zalmoxidae) is ambiguously reconstructedas either Neotropical (pr = 0935) or Neotropical + Indo-Pacific(pr = 0064) as is the split between Fissiphalliidae andZalmoxidae (Neotropical pr = 0856 Neotropical + Indo-Pacific pr = 0141)

These results suggest that the Indo-Pacific lineage ofZalmoxidae which split from Neotropical Zalmoxidae ~83Myais likely the result of long-distance dispersal from the NeotropicsHowever due to the persistence of transantarctic connectionsbetween the Australian plate and temperate South America untilthe Tertiary a competing vicariant scenario cannot be ruled outwithout densely sampling zalmoxid diversity The biogeographyof Zalmoxidae is presently being explored in greater detail in aseparate study (P P Sharma unpubl data)

Finally the ancestral range of (Samooidea + Zalmoxoidea)includes both Africa and the Neotropics (pr = 0957) consistentwith a tropical West Gondwanan ancestor This resultlends circumstantial evidence to a sister relationship of theAfrotropical families (Assamiidae + Pyramidopidae) and theclade (Samooidea + Zalmoxoidea) recovered in all analyses

The diversification of Grassatores

While numerous interfamilial relationships are supported inthis study particularly among gonyleptoid and zalmoxoidfamilies some relationships between superfamilies ofGrassatores are not supported and are contingent upon

analytical treatments namely the deployment of substitutionmodels and data partitioning (Fig 21) The cause of thisinstability could be related to insufficient data particularly inthe EF-1a partition (the length of an intron which can exceed400 bp in some taxa makes this gene particularly difficult toamplify) However examination of clade divergence timessuggests that rapid diversification of Grassatores lineagescould in part augment phylogenetic uncertainty in basal partsof the topology

The split between Phalangodidae and the remainingGrassatores is estimated to have occurred ~302Mya but aseries of divergences resulted in the origin of all superfamiliallineages between 232 and 271Mya Relative to the estimatedage of Laniatores (348Mya) this 39-million-year period isremarkably narrow and inherently problematic as the amountof phylogenetic signal for a given stem subtending a node isdirectly proportional to the amount of time that the stem inquestion spans (Lanyon 1988 Rokas and Carroll 2006) Thesmall internal edge lengths of the stems corresponding to basaldivergences of non-phalangodid Grassatores (Figs 15 16)combined with the ancient age of lineages derived from thesedivergences result in relationships that are difficult to estimatewithout a large amount of sequence data andor the inclusion ofdata that are less afflicted by homoplasy (because longer edgelengths imply more indel and substitution events on edges)(Whitfield and Lockhart 2007)

We additionally observe that the origins of most Grassatoressuperfamilies occur in the wake of the end-Permian massextinction (~254Mya) Rapid radiation in the wake of a massextinction has occurred in multiple metazoan lineagesthe putative result of relaxed selection and opening ofpreviously occupied ecological niche space (Labandeira andSepkoski 1993 Sahney and Benton 2008) The rapiddiversification of early Grassatores lineages could be anexample of this phenomenon but this hypothesis is difficult totest in the absence of Mesozoic Grassatores fossils (reviewed byDunlop 2007)

Finally we observe that contrary to traditional hierarchiesproposed for Laniatores many of the clades recovered in ouranalyses correspond to geographical regions particularly in thecase of Grassatores For example the southern hemispheretriaenonychids are restricted to temperate Gondwananlandmasses Gonyleptoidea and their sister group Stygnopsidaeform a Neotropical (AmazonianMesoamericanAntillean) cladethat excludes Assamiidae which has been hypothesised to be amember of a broader Gonyleptoidea (Kury and Cokendolpher2000 Mendes and Kury 2007) In our analyses Assamiidae isin fact a member of a largely Afrotropical clade together withthe Pyramidopidae South-east Asian families usually form oneclade (at most two) albeit with limited support Samooideafamilies are divided into two clusters African and NeotropicalWith one exception (described above) Zalmoxoidea is restrictedto the Neotropics The ages that we estimate for Laniatoresradiations are consistent with ancient diversification beforethe fragmentation of Pangaea An ancient diversification inconjunction with the climatic stability of the tropics may in partexplain the comparatively greater diversity of the armouredharvestmen with respect to the other Opiliones suborders

134 Invertebrate Systematics P P Sharma and G Giribet

Acknowledgements

Weare indebted toPeter J Schwendingerwho collected andprovidedmost ofthe material for study from South-east Asia Some Thai and most of theNeotropical Laniatores were obtained from the TIGER (Thailand InventoryGroup for Entomological Research) and LLAMA (Leaf Litter Arthropods ofMeso-America) projects toC Lienhard and J Longino respectivelyMaterialfrom Madagascar was generously contributed by Charles Griswold and theCalifornia Academy of Sciences Jesse Czekanski-Moir in conjunction withthe Belau NationalMuseum contributed elusive specimens from Palau AbelPeacuterezGonzaacutelez identifiedmanyNeotropical species included in the study andcontributed specimens fromCubaRicardoPinto-da-Rocha identified someofthe live photographed animals from the Neotropics Discussions with RonaldMClouseAbelPeacuterezGonzaacutelezAdrianoBKury andCarlosEPrieto refinedmanyof the ideas presentedhereTwoanonymous reviewers and the associateeditor provided comments that helped to improve an earlier version ofthis manuscript Laura Leibensperger sorted and accessioned TIGER andLLAMA material as well as MCZ type material Adam Graham and theCenter forNanoscaleStudies atHarvardUniversityprovided support forSEMwork Collecting efforts in New Caledonia were greatly facilitated by theguidance of Herveacute Jourdan (Institut de rechercheacute pour de developpementNoumea) and his teammembers Collecting efforts in Fiji weremade possibleby Marika Tuiwawa (University of the South Pacific Suva) and his teammembers Hilda Waqa and Tokasaya lsquoToxrsquo Cakacaka we are especiallygrateful to Tox for his good company during fieldwork and to his familyfor graciously enabling a visit toOvalau SuzieYee Shawprovided invaluablelogistical support in Fiji and her sons Colin and Joshua Yee Shaw assistedwith sorting Fijian material Fieldwork in Indonesia and West Africa wassupported by two MCZ Putnam Expedition Grants awarded to RonaldM Clouse and G G (2006) and to G G (2009) respectively Fieldworkin New Caledonia was supported by the Goelet award the Kalathia FamilyTrust and the Explorers Club awarded to P P S in 2006 Fieldwork in Fijiand in Palauwas supported by twoMCZPutnamExpeditionGrants awardedto P P S (2008) and to Ronald M Clouse and P P S (2010) respectivelyP P S was supported by a Faculty of Arts and Sciences Graduate Fellowshipfrom Harvard University

References

Castresana J (2000) Selectionof conservedblocks frommultiple alignmentsfor their use in phylogenetic analysis Molecular Biology and Evolution17 540ndash552

Colgan D J McLauchlan A Wislon G D F Livingston S MacaranasJ Edgecombe G D Cassis G and Gray M R (1998) Molecularphylogenetics of the Arthropoda relationships based on histone H3and U2 snRNA DNA sequences Australian Journal of Zoology 46419ndash437 doi101071ZO98048

DaSilva M B and Gnaspini P (2009) A systematic revision ofGoniosomatinae (Arachnida Opiliones Gonyleptidae) with a cladisticanalysis and biogeographical notes Invertebrate Systematics 23530ndash624 doi101071IS09022

DaSilva M B and Pinto-da-Rocha R (2010) Systematic review andcladistic analysis of the Hernandariinae (Opiliones Gonyleptidae)Zoologia 27 577ndash642

Derkarabetian S Steinmann D B and Hedin M (2010) Repeatedand time-correlated morphological convergence in cave-dwellingharvestmen (Opiliones Laniatores) from montane western NorthAmerica PLoS ONE 5 e10388 doi101371journalpone0010388

Drummond A J and Rambaut A (2007) BEAST Bayesian evolutionaryanalysis by sampling trees BMC Evolutionary Biology 7 214doi1011861471-2148-7-214

Drummond A J Ho S Y W Phillips M J and Rambaut A (2006)Relaxed phylogenetics and dating with confidence PLoS Biology 4 e88doi101371journalpbio0040088

Dunlop J A (2007) Paleontology In lsquoHarvestmen The Biology ofOpilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 247ndash265 (Harvard University Press Cambridge MA USA)

Dunlop J A and Anderson L I (2005) A fossil harvestman (ArachnidaOpiliones) from theMississippian of East Kirkton Scotland The Journalof Arachnology 33 482ndash489 doi10163604-791

Dunlop JAAndersonL IKerpH andHassH (2003)Preservedorgansof Devonian harvestmen Nature 425 916 doi101038425916a

Dunlop J A Anderson L I Kerp H and Hass H (2004) A harvestman(Arachnida Opiliones) from the Early Devonian Rhynie chertsAberdeenshire Scotland Transactions of the Royal Society ofEdinburgh Earth Sciences 94 341ndash354

Edgar R C (2004) MUSCLE multiple sequence alignment with highaccuracy and high throughput Nucleic Acids Research 32 1792ndash1797doi101093nargkh340

Edgecombe G D and Giribet G (2006) A century laterndash a total evidencere-evaluation of scutigeromorph centipedes (Myriapoda Chilopoda)Invertebrate Systematics 20 503ndash525 doi101071IS05044

Edgecombe G D Giribet G and Wheeler W C (2002) Phylogeny ofHenicopidae (Chilopoda Lithobiomorpha) a combined analysis ofmorphology and five molecular loci Systematic Entomology 2731ndash64 doi101046j0307-6970200100163x

FolmerOBlackMHoehWLutzR andVrijenhoekRC (1994)DNAprimers for amplification ofmitochondrial cytochrome c oxidase subunit Ifrom diverse metazoan invertebrates Molecular Marine Biology andBiotechnology 3 294ndash299

Forster R R (1954) The New Zealand harvestmen (sub-order Laniatores)Canterbury Museum Bulletin 2 1ndash329

Giribet G and Kury A B (2007) Phylogeny and biogeography InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 62ndash87 (Harvard University PressCambridge MA USA)

Giribet G Carranza S Baguntildeagrave J Riutort M and Ribera C (1996) Firstmolecular evidence for the existence of a Tardigrada +Arthropoda cladeMolecular Biology and Evolution 13 76ndash84

Giribet G Rambla M Carranza S Baguntildeagrave J Riutort M and Ribera C(1999) Phylogeny of the arachnid order Opiliones (Arthropoda)inferred from a combined approach of complete 18S and partial 28Sribosomal DNA sequences and morphology Molecular Phylogeneticsand Evolution 11 296ndash307 doi101006mpev19980583

Giribet G Edgecombe G D Wheeler W C and Babbitt C (2002)Phylogeny and systematic position of Opiliones a combined analysis ofchelicerate relationships using morphological and molecular dataCladistics 18 5ndash70

Giribet G Vogt L PeacuterezGonzaacutelez A Sharma P andKury A B (2010)A multilocus approach to harvestman (Arachnida Opiliones) phylogenywith emphasis on biogeography and the systematics of LaniatoresCladistics 26 408ndash437

Hara M R Gnaspini P and Machado G (2003) Male egg guardingbehavior in the Neotropical harvestman Ampheres leucopheus (Mello-Leitatildeo 1922) (Opiliones Gonyleptidae) The Journal of Arachnology 31441ndash444 doi101636S02-32

Hedin M Derkarabetian S McCormack M and Richart C (2010) Thephylogenetic utility of the nuclear protein-encoding gene EF-1a forresolving recent divergences in Opiliones emphasizing intronevolution The Journal of Arachnology 38 9ndash20 doi101636HA09-491

Huelsenbeck J P and Ronquist F (2005) Bayesian analyses of molecularevolution using MrBayes In lsquoStatistical Methods in MolecularEvolutionrsquo (Ed R Nielsen) (Springer New York)

HunterRK ProundDNBurns JA Tibbetts JA andTownsendVR(2007) Parental care in the Neotropical harvestman Phareicranauscalcariferus (Opiliones Cranaidae) The Journal of Arachnology 35199ndash201 doi101636ST06-181

Molecular phylogeny of Laniatores Invertebrate Systematics 135

Kocher T D Thoma W K Meyer A Edwards S V Paumlaumlbo SVillablanca F X and Wilson A C (1989) Dynamics ofmitochondrial DNA evolution in animals amplification andsequencing with conserved primers Proceedings of the NationalAcademy of Sciences of the United States of America 86 6196ndash6200doi101073pnas86166196

Kury A B (1993) Anaacutelise filogeneacutetica de Gonyleptoidea (ArachnidaOpiliones Laniatores) PhD Thesis Universidade de Satildeo Paulo SatildeoPaulo Brazil

Kury A B (2003) Annotated catalogue of the Laniatores of the NewWorld (Arachnida Opiliones) Revista Ibeacuterica de AracnologiacuteaVolumen Especial Monograacutefico 1 1ndash337

Kury A B (2006) Checklist of valid genera of Opiliones of theWorld Museu NacionalUFRJ Available from httpwwwmuseunacionalufrjbrmndiAracnologiachecklaniatorhtm [Accessed1 February 2011]

Kury A B (2007) Podoctidae Roewer 1912 In lsquoHarvestmen The Biologyof Opilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 221ndash224 (Harvard University Press Cambridge MA USA)

Kury A B and Cokendolpher J C (2000) Opiliones In lsquoBiodiversidadTaxonomiacutea y Biogeografiacutea de Artoacutepodos de Meacutexico Hacia una Sintesisde su Conocimientorsquo vol 2 (Eds J E Llorente E Gonzaacutelez andN Papavero) pp 137ndash157 (Universidad Nacional Autoacutenoma deMexico Meacutexico DF Mexico)

Kury A B and Machado G (2009) Notes on Santobius from Vanuatu andFiji and the status of the eastern Melanesian Ibalonius (ArachnidaOpiliones Podoctidae) Zoological Studies 48 524ndash538

Kury A B and Peacuterez G A (2002) A new family of Laniatores fromnorthwestern South America (Arachnida Opiliones) Revista Ibeacuterica deAracnologiacutea 6 3ndash11

Labandeira C C and Sepkoski J J (1993) Insect diversity in the fossilrecord Science 261 310ndash315 doi101126science11536548

Lanyon S M (1988) The stochastic mode of molecular evolutionwhat consequences for systematic investigations The Auk 105565ndash573

Lian W-G Zhu M-S and Kury A B (2008) A new species of the genusTithaeus from China (Arachnida Laniatores Epedanidae) Zootaxa1841 53ndash60

Machado G Requena G S Buzatto B A Osses F and Rossetto L M(2004) Five new cases of paternal care in harvestmen (ArachnidaOpiliones) implications for the evolution of male guarding in theNeotropical family Gonyleptidae Sociobiology 44 577ndash598

Martens J (1976) Genitalmorphologie System und Phylogenie derWeberknechte (Arachnida Opiliones) Entomologica GermanicaZeitschrift fuumlr das Gesamtgebiet der Wissenschaftlichen Entomologie3 51ndash68

Martens J (1980) Versuch eines phylogenetischen Systems der OpilionesIn lsquoProceedings 8th International Congress of Arachnology ViennaVerhandlungenrsquo (Ed J Gruber) pp 355ndash360 (Vienna Austria)

Martens J (1986) Die Grossgliederung der Opiliones und die Evolutionder Ordnung (Arachnida) Actas del X Congreso Internacional deAracnologiacutea Jaca 1 289ndash310

Martens J (1993) Further cases of paternal care in Opiliones (Arachnida)Tropical Zoology 6 97ndash107

Martens J and Schwendinger P S (1998) A taxonomic revision ofthe family Oncopodidae I New genera and new species of GnomulusThorell (Opiliones Laniatores) Revue Suisse de Zoologie 105 499ndash555

Martens J Hoheisel U and Goumltze M (1981) Vergleichende Anatomieder Legeroumlhren der Opiliones als Beitrag zur Phylogenie der Ordnung(Arachnida) Zoologische Jahrbucher Abteilung fur Anatomie undOntogenie der Tiere 105 13ndash76

Mello-Leitatildeo C F (1949) Famiacutelias subfamiacutelia espeacutecies e gecircneros novos deopiliotildees e notas de sinoniacutemia Boletim do Museu Nacional Nova SeacuterieZoologia Rio de Janeiro 94 1ndash33

Mendes A C and Kury A B (2007) Stygnopsidae Soslashrensen 1932 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 232ndash234 (Harvard University PressCambridge MA USA)

Mendes A C and Kury A B (2008) Intercontinental Triaenonychidae ndashthe case of Ceratomontia (Opiliones Insidiatores) The Journal ofArachnology 36 273ndash279 doi101636CH07-931

Murphree C S (1988) Morphology of the dorsal integument of tenopilionid species (Arachnida Opiliones) The Journal of Arachnology16 237ndash252

Park J K andOacuteFoighilD (2000) Sphaeriid and corbiculid clams representseparate heterodont bivalve radiations into freshwater environmentsMolecular Phylogenetics and Evolution 14 75ndash88 doi101006mpev19990691

Peacuterez Gonzaacutelez A (2006) lsquoRevisatildeo Sistemaacutetica e Anaacutelise Filogeneacutetica deStygnommatidae (Arachnida Opiliones Laniatores)rsquo (Museu NacionalUniversidade Federal de Rio de Janeiro Rio de Janeiro Brazil)

Peacuterez Gonzaacutelez A (2007) Stygnommatidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 229ndash232 (Harvard University PressCambridge MA USA)

Peacuterez Gonzaacutelez A (2011) New familial assignment for two harvestmanspecies of the infraorder Grassatores (Arachnida Opiliones Laniatores)Zootaxa 2757 24ndash28

Peacuterez Gonzaacutelez A and Kury A B (2007) Samoidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 224ndash226 (Harvard University PressCambridge MA USA)

Pineau P Henry M Suspegravene R Marchio A Dettai A Debruyne RPetit T Leacutecu A Moisson P Dejean A Wain-Hobson S andVartanian J-P (2005) A universal primer set for PCR amplificationof nuclear histone H4 genes from all animal species Molecular Biologyand Evolution 22 582ndash588 doi101093molbevmsi053

Pinto-da-Rocha R (1997) Systematic review of the Neotropical familyStygnidae (Opiliones Laniatores Gonyleptoidea) Arquivos deZoologia 33 163ndash342

Pinto-da-Rocha R and Kury A B (2003a) Phylogenetic analysis ofSantinezia with description of five new species (Opiliones LaniatoresCranaidae) The Journal of Arachnology 31 173ndash208 doi1016360161-8202(2003)031[0173PAOSWD]20CO2

Pinto-da-Rocha R and Kury A B (2003b) Third species of Guasiniidae(Opiliones Laniatores) with comments on familial relationships TheJournal of Arachnology 31 394ndash399 doi101636H02-59

Pinto-da-Rocha R and Kury A B (2007) Agoristenidae Silhavy 1973 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 171ndash173 (Harvard University PressCambridge MA USA)

Posada D (2005) Modeltest 37 Program and documentation available athttpdarwinuvigoes [Accessed 28 May 2011]

Posada D and Buckley T (2004) Model selection and model averaging inphylogenetics advantages of Akaike information criterion and Bayesianapproaches over likelihood ratio tests Systematic Biology 53 793ndash808doi10108010635150490522304

Posada D and Crandall K A (1998) Modeltest testing the model ofDNA substitution Bioinformatics (Oxford England) 14 817ndash818doi101093bioinformatics149817

Prendini L Weygoldt P and Wheeler W C (2005) Systematics of theDamon variegates group of African whip spiders (ChelicerataAmblypygi) evidence from behaviour morphology and DNAOrganisms Diversity amp Evolution 5 203ndash236 doi101016jode200412004

Rambaut A E (1996) Se-Al sequence alignment editor University ofOxford UK Program and documentation available at httptreebioedacuksoftwarefigtree [Accessed 21 December 2009]

136 Invertebrate Systematics P P Sharma and G Giribet

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 14: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

146 (139) (Figs 11 14) Body campaniform yellow to darkorange (in alcohol depending on incidence of light) almostentirely with a dense microgranulate surface microstructureEyes present on low well developed ocularium with medianocularial tubercle Ocularium 011 (011) long 020 (021) wideremoved from anterior margin of carapace Anterior margin ofcarapace with two pairs of blunt pegs above coxae of leg I withouter pair of sub-rectangular andor bifid shape Scutal grooves ofmesotergum indistinct free of transverse bands of pigmentationFree tergites without large tubercles or spines (Fig 12)

Ventral prosomal complex of male with coxae II and IIImeeting in midline coxae I and IV not so Anterior andposterior margins of coxae III with tubercular bridges toadjacent coxae Coxae IV of male greatly enlarged with setosetubercles on anterior margin Genital operculum sub-triangularSpiracles not concealed anterior to row of tuberclesOpisthosomal sternites with irregular belts of roundedtubercles Anal plate unarmed (Fig 12)

Chelicerae (Fig 13) sexually monomorphic with prominentbulla on proximal article Proximal article with denticulategranulation basally and ventrally Second article not incrassatefree of ornamentation with dorsal margin bearing several setaeDistal article with delicate dentition free of ornamentation

Palpi (Fig 13) robust and spined ventrally or ventrolaterallyPalpal trochanter with one ventral spine two small setae Palpalfemur with two proximal ventral spines in a row and two paireddistal spines (one ventral one mesoventral) Palpal patella with asingle spine directed inward Palpal tibiawith twopairs of spinesand a small basal setose tubercle Palpal tarsus with two pairs ofspines Palpal claw as long as palpal tarsus

Legs IndashIV (Fig 13) finely granulated Male trochanter IVgreatly enlarged sub-rectangular in lateral aspect with onelarge ventral tubercle and three smaller mesodorsal tuberclesFemora IndashIV with one basal peg on ventral surface with peg freeof granulation Femur III arcuate in males and females free oftubercles Femur IVandpatella IVofmalewith two irregular rowsof mesalmesoventral tubercles Tibia IV of male with multipleirregular rows of tubercles with ventral row enlarged and conicaldistally distal-most ventral tubercle composed of two fusedtubercles Metatarsi IndashIV divided distally with distal portionlacking ornamentation metatarsus IV of male with two rows ofmesalmesoventral tubercles Female trochanter IV not enlargedleg IV free of tubercles Tarsal claws IndashIV smooth unmodifiedTarsal segmentation 3 5 5 6

Penis (Fig 14) narrow in the shape of a spear blade widenednear base Lateral margins gradually coalescing dorsallyresulting in spoon shape in dorsal aspect Ventral surface with

Table 6 Leg measurements of Petrobunus spinifer female paratype (ex MHNG PAL-0905) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 033007 021010 024007 025005 029005 143Leg II 013011 037006 023010 034007 026005 051005 184Leg III 014014 029009 022013 029010 027005 035004 156Leg IV 017015 049008 025014 034010 045006 043004 213

a

b

c

050 mm

050 mm

050 mm

Fig 11 Petrobunus torosus sp nov male holotype (a) Dorsal view(b) lateral view and (c) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 119

threepairs of setae lateralmarginswith four setae eachGlans freein apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 14) composed of two apical lobes eachbearing two dorsal setae one ventral seta and two apicalsetae Distal surfaces of apical lobes smooth Bases of dorsalsetae in contact Bases of ventral setae set apart by a distanceapproximately equal to one-third the width of the ovipositor

Distribution

Known only from type locality and additional locality reportedhere

Etymology

The specific epithet refers to the stocky and robust appearanceof the fourth leg in the males of this species Derived from Latinlsquotorosusrsquo meaning lsquomuscularrsquo or lsquobulgingrsquo

Family TITHAEIDAE fam nov

Type genusTithaeusThorell 1891 by present designation andmonotypy

Type species Tithaeus laevigatus Thorell 1891 by original designation

Genera included Tithaeus Thorell 1891 new familial assignmentMetatithaeus Suzuki 1969 new familial assignment

Diagnosis

Medium-sized Grassatores with a low ocularium removed fromthe anterior margin of carapace that differ from Epedanidae inlacking a median spine In some species slight to large hump

situated anterior of ocularium Scutal region divided into fiveareas areas I and II not fused as opposed to EpedanidaeChelicerae typical basal segment not enlarged (as opposed toEpedanidae)Distinct fromPodoctidae in the lack of spines on legI and in the lack of a sexually dimorphic ocularium Tarsalformula 5 8+ 5 6 not reduced (as opposed to Sandokanidaeand Podoctidae) Distitarsi of legs I and II typically with twotarsalia distinguished from Petrobunidae in the trochanter of legIV not enlarged inmales Tarsi III and IVwith unmodified doubleclaws scopulae absent (as opposed to most Samooidea) Distalmargin of ventral plate of penis usually with deep cleft (mostTithaeus) or widening distally into setiferous and conicalstructure (Metatithaeus) glans with simple membranous lobecovering the stylus terminus of stylus either a bifurcate orslightly inflatable lobe absence of prominent parastylar lobes(distinguishing it from Petrobunidae) absence of a ring of setaesurrounding a capsula interna (found in Epedanidae) Ovipositorlobes typically with a pair of ventral and dorsal setae

Remarks

One of dozens of genera placed in the subfamily Phalangodinae(Phalangodidae) by Roewer (1912 1923 1949) Tithaeus wassubsequently extricated and transferred to Epedanidae by Kury(1993 2003 2006) on the basis of the male genitalia althoughthe placement was ambiguous given the absence of typicalepedanid morphology such as elongate and armed pedipalpian erect ocularial spine (absent in Dibuninae) the fusion of scutalareas I and II side-branches in the posterior claws and stoutdentition of the cheliceral fingers (Lian et al 2008) However

a

b

100 microm

100 microm

100 microm

100 microm

c

d

Fig 12 Petrobunus torosus sp novmale paratype (a)Dorsolateral view (b) dorsolateral viewof anteriormargin of carapace(c) ventrolateral view and (d) ventrolateral view of prosomal complex

120 Invertebrate Systematics P P Sharma and G Giribet

comparisons of the male genitalia of a phalangodid (Texella) anepedanid (Kilungius Saracinicinae) and Tithaeus suggested acloser relationship between Epedanidae and Tithaeus in spite ofmarked differences in the stylar lobe and the extent of the basalsac (Lian et al 2008)

Our phylogenetic analyses corroborate a closer relationshipbetween Epedanidae and Tithaeuswith respect to Phalangodidae(which is sister to the remaining Grassatores and thereforedistantly related to both lineages) but the clade Tithaeus+Metatithaeus neither nests within nor is sister to Epedanidae

a

b

c

d

e

h

i

g

f

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

Fig 13 Petrobunus torosus sp nov (a) Left chelicer of male paratype (b) left palp of male paratype (c) left leg I of maleparatype (d) right leg II of male paratype (e) left leg III of male paratype (f) left leg IV of male paratype (g) left leg IV offemale paratype (h) trochanter of left leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 121

in any of the topologies we examinedMoreover the cleft ventralplate forming two prongs in the male genitalia of many Tithaeusspecies in addition to the absence of a ring of setae surroundingthe capsula interna (typical of Epedanidae) suggest that Tithaeus

and related genera (eg Istithaeus Metatithaeus Tithaeommaetc) are not true epedanids but may be more closely related toeither (1) Podoctidae a hypothesis that is supported in someanalyses (bootstrap frequency in ML [BS] = 59 posteriorclade probability given by MrBayes [PP] = 097) or (2) theclade (Podoctidae + Sandokanidae) recovered by the BEASTtopology (posterior clade probability given by BEAST[PPBEAST] = 100)

The inclusion of Tithaeus-like Grassatores in Epedanidaerenders the latter para- or diphyletic and obscures a cleardiagnosis of epedanids as the morphology of Tithaeus (andMetatithaeus) does not accord with many epedanidsynapomorphies Moreover inclusion of Tithaeus andorMetatithaeus within a broader Podoctidae is also unjustifiedbecause this violates many of the synapomorphies ofPodoctidae such as (1) tuberclesspines in dorsal and ventralrows on leg I (2) tubercular bridges (3) a sexually dimorphicbasichelicerite and (4) a sexually dimorphic ocularium

Consequently we erect the family name Tithaeidaeseparating Tithaeus and Metatithaeus from EpedanidaeTithaeidae likely includes the monotypic Roewerian generaIstithaeus Kondosus Sterrhosoma and Tithaeomma but thestatus of these genera requires further investigation and will beaddressed in a forthcoming study

Distribution

Distributed throughout Sundaland the Thai-Malay PeninsulaSumatra Java and Borneo Also reported from northern Vietnamand southern China One doubtful record from West Timor(see Lian et al 2008)

Results

Phylogenetic analysis

Less sequence data are presently available for Briggsusflavescens (partial 28S and COI Derkarabetian et al 2010)with respect to the rest of the data matrix Consequently twoML analyses were conducted including and excluding Briggsusflavescens The ML analysis with all taxa resulted in a treetopology with lnL= ndash8372597 Repeating the analysis withoutBriggsus resulted in a tree topology with lnL= ndash8336108 Thetwo topologies are identical save for the internal relationships ofTravunioidea which includes Briggsidae (Fig 15) Inclusion ofBriggsidae recovers a diphyletic Cladonychiidae with Briggsussister to Holoscotolemon but these relationships are notsupported Exclusion of Briggsidae results in higher nodalsupport frequencies within Travunioidea and recovers a sisterrelationship of Sclerobunidae and the remaining Travunioidea(BS = 75) and a monophyletic Cladonychiidae + Travuniidae(BS = 77) sister to Trojanella Including Briggsus in theanalysis does not affect topology or nodal support in otherparts of the phylogeny Monophyly of Travunioidea isstrongly supported (BS = 100) in either case

Runs of MrBayes ver 312 reached stationarity in 2 000 000generations 2 500 000 generations (25) were hence discardedas burn-in The BI analysis with all taxa resulted in a topologylargely similar to theMLtree (Fig 16)Notable differences are therelative placements of the clade (Gonyleptoidea + Stygnopsidae)

a

b

c d

050 mm

050 mm

20 microm

20 microm

Fig 14 Petrobunus torosus sp nov (a) female paratype dorsal view(b) female paratype ventral view (c) pars distalis of penis lateral view and(d) ovipositor dorsal view

122 Invertebrate Systematics P P Sharma and G Giribet

and the South-east Asian group of families Some differencesexist with respect to supported nodes within superfamilies

Estimation of divergence times

The run of BEAST reached stationarity after 6 000 000generations 10 000 000 generations (20) were discarded asburn-in The tree topology recovered by BEAST (Fig 17) differsfromML andBI topologies in (1) the placement of Sandokanidaeand (2) the relationships between superfamilies Diversificationof Laniatores is dated at ~348Mya Diversification of majorlineages is estimated as follows (Travunioidea+Triaenonychidae)299Mya Grassatores 302Mya Assamiidae +Pyramidopsgroup 232Mya Gonyleptoidea + Stygnopsidae 246MyaGonyleptoidea 230Mya Samooidea + Zalmoxoidea 206Myaand a South-east Asian clade (including Sandokanidae)249Mya These results largely corroborate previous estimatesof divergence times (Giribet et al 2010) but confidence intervalsfor estimated ages are more precise A tree file of estimated agesand 95highest posterior density (HPD) intervals for all nodes isprovided as an Accessory Publication on the InvertebrateSystematics website

Whereas the basal topology of Grassatores is unstable andunsupported most familial and superfamilial relationshipsare consistently recovered across analyses A consensus oftopologies across all analyses is shown in Fig 18

Discussion

A molecular phylogeny of the armoured harvestmen has longproven elusive Laniatores comprises entire genera and familiesthat are endemic to particular provinces of the world In somecases higher taxonomic ranks do not even occur beyond specificislands (eg the New Zealand family SynthetonychiidaeForster 1954) Moreover Laniatores includes the majority ofall described Opiliones species (and over half of all describedfamilies) and new lineages continue to be discoveredConsequently previous efforts to assess Laniatores phylogenyhave been prone to undersampling numerous lineages such asAssamiidae Epedanidae and the superfamilies Samooidea and

Zalmoxoidea (eg Giribet et al 1999 2002 Shultz and Regier2001)

The present study with the inclusion of all families ofarmoured harvestmen described heretofore enables detailedinvestigation of internal relationships of Laniatores Ofprincipal interest are the phylogenetic placement of the twonew families of Laniatores erected herein and the systematicvalidity of defined superfamilies Many of the relationshipsrecovered in our analyses are consistent with traditionalhypotheses based on morphological studies but there are someunexpected results We discuss these in turn

Insidiatores

Within a monophyletic Laniatores recovered in all analyses(BS = 100 PP = 093) the constituent lineages of Insidiatoresform a paraphyletic grade with respect to Grassatores WhileTriaenonychoidea and Travunioidea do form a clade (albeit withlow nodal support) the New Zealand endemic familySynthetonychiidae is recovered as sister to all remainingLaniatores (BS = 78 PP = 100) consistent with the resultsof a recent study (Giribet et al 2010) However the inclusionof more data in fact lowers the nodal support for this sisterrelationship relative to the previous studyrsquos ML analysislikely due to the influence of missing data (in particular only~300 bp out of a targeted 3400 bp of 28S rRNA are presentlyavailable for Synthetonychia) Consequently we do not treat theplacement of Synthetonychiidae as definitive

In all analyses the southern hemisphere Triaenonychidaeform a strongly supported clade that diversified ~200Mya(BS = 100 PP = 100) Their distribution and the age of thiscladersquos diversification are similar to that of the temperateGondwanan cyphophthalmid family Pettalidae (estimated tohave diversified ~183ndash221Mya Giribet et al 2010)suggesting a parallel biogeographical process in these lineagesThe North American triaenonychid Fumontana deprehendorShear 1977 is sister to the southern hemisphere Triaenonychidaein all analyses consistent with previous classification (Giribetand Kury 2007 Thomas and Hedin 2008) but support fora monophyletic Triaenonychoidea is limited and sensitiveto analytical parameters (BS = 57 PP lt 050 PPBEAST = 066)

Table 7 Leg measurements of Petrobunus torosus holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011011 039005 026012 028008 036006 040007 180Leg II 014013 061008 029010 043007 042006 072005 261Leg III 015015 051010 019015 037011 045006 046005 213Leg IV 034035 059012 034017 054015 067007 052006 300

Table 8 Leg measurements of Petrobunus torosus female paratype (ex MHNG PAL-0907) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 041008 022011 028010 037005 035006 174Leg II 010009 052007 023008 033007 037006 069005 224Leg III 014016 046010 025024 036012 042007 041005 204Leg IV 018017 054011 029016 049012 058007 048006 256

Molecular phylogeny of Laniatores Invertebrate Systematics 123

Fig 15 Phylogenetic relationships of Laniatores inferred from maximum likelihood analysis of all molecular data (ln L= ndash8372597) Inset topology ofTravunioidea excluding Briggsidae (ln L= ndash8336108) Numbers on nodes indicate bootstrap resampling frequencies

124 Invertebrate Systematics P P Sharma and G Giribet

We recovered a monophyletic Travunioidea which includesBriggsidae in all analyses (BS = 100PP = 100) corroboratingthe superfamilial placement of briggsids Briggsidae isrecovered sister to either Trojanella (ML) or Holoscotolemon(BI) or part of a grade with both of these taxa (BEAST) butthese placements are not supported (BS lt 50 PPBEAST = 085and PP = 051 respectively) Missing data for Briggsidaedepresses nodal support in ML analyses within Travunioideaobscuring interfamilial relationships In the absence ofBriggsidae we recover a sister relationship betweenSclerobunidae (Zuma acuta Goodnight amp Goodnight 1942)and the remaining Travunioidea (BS = 75) and themonophyly of Travuniidae +Cladonychiidae (BS = 77)

A recent molecular dating of Travunioidea obtained muchyounger dates than estimated herein in spite of similar taxaand molecular loci In that study Derkarabetian et al (2010)investigated the evolution of troglobitism in Sclerobunidae(also referred to as the lsquoNorth American triaenonychidsrsquo)and used the cladonychiid fossil Protoholoscotolemon(38ndash54Mya Ubick and Dunlop 2005) to constrain theminimum age of Travunioidea in addition to calibration pointsderived from geological ages of strata These practicesaccord with the scope of the troglobitism study (thedivergences of interest were comparatively recent ndash Plioceneor younger) but we did not utilise Protoholoscotolemon in ourdating for two reasons (1) we do not obtain an unambiguouslymonophyletic Cladonychiidae in our analyses and (2) theDevonian and Carboniferous fossils we utilised as calibrationpoints are sufficiently old to obtain a result consistent with anEocene cladonychiid fossil The different calibration pointsimplemented in the respective studies therefore account forthe discrepancy in the dating In addition the morphologicalconservatism of Opiliones makes it doubtful that the age ofProtoholoscotolemon is the maximum age of the superfamily

Our sampling of Insidiatores lineages remains limited andbarring the inclusion of Briggsidae additions to taxonomicsampling largely concern Grassatores Consequently continuedsampling and systematic studies of Insidiatores (eg Mendesand Kury 2008 Thomas and Hedin 2008 Derkarabetian et al2010) are instrumental and imperative to addressing outstandingquestions of phylogenetic relationships and morphologicalevolution A phylogeny of Triaenonychidae is particularlywanting

Early diverging Grassatores Phalangodidaeand Sandokanidae

The recovery of a monophyletic Grassatores (supported inall analyses BS = 99 PP = 100) is consistent with severalmorphological synapomorphies uniting this diverse groupsuch as the presence of two tarsal claws on walking legs IIIand IV However the basal topology of Grassatores has longbeen contentious Previously two superfamilies of Grassatoreswere recognised Oncopodoidea (with the single familySandokanidae (formerly Oncopodidae)) and lsquoGonyleptoidearsquo(with the remaining families) (Martens 1976 1986 Martenset al 1981) This dichotomy was largely based upon theunique morphology of Sandokanidae ndash characters such as thescutum completum (fused opisthosomal tergites) reduced tarsal

articles and genitalic structures which are not found in theremaining Grassatores (Martens 1980 Giribet et al 2002Sharma and Giribet 2009) It was alternatively contended thatthese characters constituted autapomorphies of Sandokanidaewhich was nested within lsquoGonyleptoidearsquo itself (Kury 2003)

In all analyses we obtained an initial divergence betweenPhalangodidae and the remaining Grassatores (BS = 100PP = 096) refuting the traditional dichotomy betweenSandokanidae and lsquoGonyleptoidearsquo Therefore we hereindefine Gonyleptoidea as the taxon consisting of AgoristenidaeCosmetidae Cranaidae Gonyleptidae Manaosbiidae andStygnidae The split between Phalangodidae and the remainingGrassatores has been postulated to correspond to the rifting ofthe ancient supercontinents Laurasia and Gondwana as thedistribution of Phalangodidae was believed to be strictlyHolarctic (Giribet et al 2010) However the inclusion of theMadagascar genus Remyus previously placed in Zalmoxidae(Starega 1989) within a monophyletic Phalangodidae indicatesbroader distribution of phalangodids ndash complementing theTriaenonychidae-Fumontana case discussed above Moreoverthe origin of Phalangodidae is estimated to have occurred around302Mya (95 HPD 264ndash335Mya) greatly predating thebreakup of the supercontinents These results indicate thatPhalangodidae may be narrowly defined and we consequentlytransfer Remyus to Phalangodidae (new familial assignment)

The unusual family Sandokanidae has been postulated to besister toPodoctidae (SharmaandGiribet 2009Giribet et al 2010)or to form agradewith Phalangodidae (Kuryrsquos lsquoPhalangodoidearsquopartly) In the present study ML and BI topologies reconstructSandokanidae as sister to the remaining non-phalangodidGrassatores albeit with insignificant nodal support (BS = 21PP = 078) Curiously the topology obtained byBEAST recoversthe clade (Sandokanidae + Podoctidae) nested within a singleclade of South-east Asian families (PPBEAST = 085) Theseresults do not unambiguously favour one hypothesis overanother and the phylogenetic placement of Sandokanidae inthe Grassatores tree therefore remains debatable

Regardless of the inclusion of Sandokanidae within theSouth-east Asian group of families that the sister family to theremaining Grassatores is Phalangodidae not Sandokanidaeindicates that the peculiar morphology of sandokanids is theresult of multiple apomorphic reversals not the retention ofplesiomorphic characters (Martens and Schwendinger 1998)The large scutum and low tarsomere number found inSandokanidae also occur in Trogulidae and Dicranolasmatidae(suborder Dyspnoi) and all Cyphophthalmi and appear to haveevolved convergently This morphology may reflect adaptationsto a shared ecological niche all these groups inhabit leaf litterinclude no arboricolous species and are limited in vagility ndash

although these life history traits are also found in other groupsHowever this hypothesis has yet to be rigorously tested

Sandokanidae is presently one of few families of Grassatoresfor which a molecular phylogeny assessing intergenericrelationships is available (Sharma and Giribet 2009) andconsistent with earlier results the monophyly of Sandokanidaeis strongly supported (BS = 100 PP = 100) as is the initial splitbetweenMartensiellus and the remaining genera (an undescribedspecies was referred to as lsquogen sprsquo by Sharma and Giribet 2009but subsequent morphological investigation revealed this to be

Molecular phylogeny of Laniatores Invertebrate Systematics 125

Fig 16 Phylogenetic relationships of Laniatores inferred fromBayesian inference analysis of allmolecular data Numbers on nodes indicateposterior probabilities

126 Invertebrate Systematics P P Sharma and G Giribet

a miniature species of Martensiellus P J Schwendinger perscomm) (BS = 92 PP = 100) Intergeneric relationshipsof sandokanid genera are contingent upon analytical treatmentof molecular partitions (with additional sandokanid exemplarsdata not shown) reflecting conflict among datasets documentedby Sharma and Giribet (2009)

The other South-east Asian families

Epedanidae was postulated to be sister to Gonyleptoidea in acladistic analysis based on morphological characters (Kury1993) Subsequently Kury (2003) proposed that Epedanidaewas sister to the clade (Assamiidae (Stygnopsidae +Gonyleptoidea)) The single epedanid previously included in amolecular phylogeny was similarly unstable in placement eithernestingwithin Assamiidae or sister to the African lsquophalangodidsrsquo(Conomma and Maiorerus) in neither case with appreciablenodal support (Giribet et al 2010) Furthermore previousinclusion of several lineages (eg Tithaeus) within Epedanidaethat do not bear characters typical of true epedanids ndash sexuallydimorphic chelicera with heavy dentition elongate andspined pedipalpi male genitalia with setae surroundingthe capsula interna ndash has also made this family difficult todefine Consequently we included only Epedaninae (egPseudoepedanus Alloepedanus and Euepedanus) as exemplarsof true epedanids the systematic validity of the remaining threesubfamilies (and particularly the inclusion of Dibuninae) isbeyond the scope of this study and remains to be investigated

The monophyly of each of four South-east Asian families ndashEpedanidae (represented by epedanines) TithaeidaePetrobunidae and Podoctidae ndash is recovered with high nodalsupport (all BS = 100 PP = 100) These lineages are somehowrelated to each other and while they form a clade in bothML andBI analyses this result receives insignificant nodal support(PP = 077) In the topology recovered by BEAST the South-east Asian families form a clade that includes Sandokanidaea result consistent with the distribution of sandokanids albeitwithout support (PPBEAST = 085) Tithaeidae is probably closelyrelated to Podoctidae given the occurrence of a deeply cleftventral plate resulting in two flanking prongs in themale genitaliaof both families (Suzuki 1977 Lian et al 2008 Fig 19) Inaddition the clade (Podoctidae +Tithaeidae) is recovered withmoderate support in ML and BI analyses (BS = 59 PP = 097)In none of the analyses is Tithaeidae nested within or sister toEpedanidae sensu stricto

The morphology of Petrobunidae suggests some relationshipto previously described South-east Asian families oralternatively Phalangodidae but not inclusion within any ofthese (Fig 19) Molecular sequence data do not support anyspecificplacement ofPetrobunidae although it clusterswithotherSouth-east Asian families in all analyses and is recovered sisterto Epedanidae in two topologies (BI and BEAST)

Gonyleptoidea and Stygnopsidae

With over 2500 described species the superfamilyGonyleptoidea constitutes the most diverse and (arguably) themost charismatic lineage of Opiliones with most of this diversityconcentrated in Amazonia (some cosmetids occur as far north asthe mid-Atlantic states of the US) In a previous analysis

relationships of gonyleptoid families were unsupported andordid not accordwithmorphological studies (Giribet et al 2010) Inparticular the placement of the agoristenid exemplar Avimaalbiornata (Goodnight amp Goodnight 1947) ndash the putativesister family to the remaining Gonyleptoidea ndash within aparaphyletic Cranaidae was particularly suspect given thelimited availability of sequence data for Avima (complete 18SrRNA a300-bp fragmentof 28S rRNA andCOI) In addition thesister group of Gonyleptoidea was ambiguous and contingentupon analytical parameters

Redoubling sequencing efforts and addition of taxaparticularly in the case of Agoristenidae (currently sequencedfor 12S rRNA complete 18S rRNA a 2000-bp fragment of 28SrRNA COI H3 and EF-1a) improved the assessment ofgonyleptoid relationships A monophyletic Gonyleptoidea(BS = 58 PP = 066) is recovered sister to the familyStygnopsidae (BS = 57 PP = 100) Within Gonyleptoidea asplit between Agoristenidae and the remaining gonyleptoids isstrongly supported (BS = 100 PP = 100) followed by thedivergence of Stygnidae (BS = 71 PP = 099) Thisplacement of Agoristenidae is supported by morphologicalstudies (Pinto-da-Rocha and Kury 2007) although in aminority of tree topologies sampled in BI analysesAgoristenidae is sister to Stygnopsidae (hence lower nodalsupport for the monophyly of Gonyleptoidea in BI) Theplacement of Manaosbiidae is uncertain it is recoveredsister to either (Gonyleptidae +Cranaidae) (PP = 089) or toCosmetidae (PPBEAST = 092) but these results are notsupported Cranaidae is recovered as monophyletic (BS = 99PP = 100) and nested within a paraphyletic Gonyleptidae

The present sampling of Cosmetidae and Gonyleptidae doesnot do justice to the diversity of these lineages (~700 and 800described species respectively) A phylogenetic assessment ofall 16 subfamilies of Gonyleptidae alone constitutes the subjectof an arduous and exacting study Fortunately cladistic analysesof morphological characters continue to advance phylogeneticinvestigation of subfamilial lineages (eg BourguyiinaeYamaguti and Pinto-da-Rocha 2009 Goniosomatinae DaSilvaandGnaspini 2009HernandariinaeDaSilva andPinto-da-Rocha2010) Elucidating the phylogeny of Gonyleptoidea is one of themost exciting research topics in the study of Opiliones

The Afrotropical families

The third most diverse family of Laniatores Assamiidaeconstitutes the dominant opiliofauna of the African continent(excluding Madagascar) with some lineages occurring in SouthAsia the Indo-Malay Archipelago and Australia (Trionyxellinaeand Dampetrinae) Proposed to be related to EpedanidaeStygnopsidae andor Gonyleptoidea (Kury 2007) on the basisof genitalic structures assamiids were not recovered asmonophyletic in a previous study (paraphyly was induced byeither Epedanidae orAfricanBiantidae) and the placement of thesubfamily Trionyxellinae was particularly suspect (Giribet et al2010) Trionyxellinae was considered a separate family byMello-Leitatildeo (1949) though others considered it nested withinAssamiidae (eg Starega 1992) In our analyses the monophylyof Assamiidae is supported (BS = 79 PP = 100)lsquoTrionyxellinaersquo (Trionyxella and Mysorea both with a

Molecular phylogeny of Laniatores Invertebrate Systematics 127

Fig 17 Evolutionary time tree of Laniatores inferred fromBEASTanalysis of allmolecular data Coloured bars indicate 95highestposterior density (HPD) intervals for nodes of interest Numbers on nodes indicate posterior probabilities asterisks indicate posteriorprobability of 100

128 Invertebrate Systematics P P Sharma and G Giribet

pseudonychium on the third and fourth tarsi) is a diphyletic entitynested within the other Assamiidae (for the node renderingdiphyly BS = 100 PP = 100) disfavouring family status fortrionyxellines

The African lsquophalangodidsrsquo (sometimes called thelsquoPyramidops grouprsquo) were recognised as a new family byStarega (1992) but not formalised and included 13 genera(Conomma Pyramidops and related lineages) Consistentwith this hypothesis we recovered strong support for thePyramidops group (represented by Conomma and cfPyramidops) as a lineage separate from the true Phalangodidae(egBishopella and Scotolemon) recapitulating a previous result(Giribet et al 2010) The African lsquophalangodidsrsquowere recoveredas the sister lineage of Assamiidae although this relationshipis variably supported in our analyses (BS = 40 PP = 095PPBEAST = 100) A review and formal description of thePyramidops group as a new family lsquoPyramidopidaersquo ndash a namewidely available on the internet including GBIF but notformalised ndash is undertaken elsewhere (Sharma et al 2011)

While we have endeavoured to improve the sampling ofAssamiidae from South-east Asia the internal systematics ofthis family remain a high value target for phylogenetic researchHowever revision of assamiid systematics is inherently difficultfor two reasons (1) the family is peppered with questionablehierarchies and monotypic genera (~12 subfamilies and 250genera for less than 500 described species) and (2) occurs insome of the most inaccessible regions of the world namely sub-Saharan Africa

In all analyses the clade (Assamiidae + Pyramidopidae) issister to the clade (Zalmoxoidea + Samooidea) though this resultis only supported in one analysis (PP= 100) The divergence ofthese four lineages is estimated to have occurred 252Mya and isconsistent with diversification in West Tropical Gondwanaoccurring at least 140million years before the fragmentation ofthis terrane (~110Mya)

Zalmoxoidea

As currently defined the largely Neotropical superfamilyZalmoxoidea includes four families FissiphalliidaeGuasiniidae Icaleptidae and Zalmoxidae Guasiniidae hasnever before been included in a molecular phylogeny In thepresent study we sequenced a guasiniid for six genes and ouranalyses strongly support theplacement ofGuasiniidae as sister tothe samooid family Kimulidae (formerly Minuidae) (BS = 86PP = 098 PPBEAST = 099) and this clade in turn sister to anothersamooid family Escadabiidae (BS = 65 PP = 096PPBEAST = 100) The families Fissiphalliidae Icaleptidaeand Zalmoxidae in turn form a separate clade (BS = 100PP = 100 PPBEAST = 100) with strong support for the sisterrelationship of Zalmoxidae and Fissiphalliidae (BS = 99PP = 100 PPBEAST = 100) corroborating relationshipsproposed by morphological studies (Kury and Peacuterez G 2002Pinto-da-Rocha and Kury 2003b)

Previous analyses have suggested that Samooidea (discussedbelow) is a paraphyletic grade with respect to Zalmoxoidea(Giribet et al 2010) In the present analysis the cladeSamooidea + Zalmoxoidea is strongly supported (BS = 85PP = 100 PPBEAST = 100) as previously suggested by PeacuterezGonzaacutelez and Kury (2007) and by excluding Escadabiidae and

Kimulidae Samooidea is rendered a monophyletic entity albeitwith limited support (BS = 53 PP = 062 PPBEAST = 081) Thestrong support from molecular sequence data for the cladeincluding Escadabiidae Kimulidae and the four zalmoxoidfamilies (BS = 89 PP = 100 PPBEAST = 100) suggests thatthese may form a natural group

Re-examination of the morphology of these six families incomparisonwith true samooid lineages (Biantidae Samoidae andStygnommatidae) corroborates the exclusionofEscadabiidae andKimulidae from true Samooidea Escadabiidae and Kimulidae(1) lack the scopula characteristic of Samoidae and stenostygnineBiantidae (2) lack a sexually dimorphic metatarsus IIIcharacteristic of Samoidae Stygnommatidae and stenostygnineBiantidae and (3) lack a penial calyx characteristic of SamoidaeConsistent with placement within Zalmoxoidea EscadabiidaeandKimulidae (1) possess a small oculariumbearing the eyes thatis removed from the margin of the carapace (2) bear a wellmarked dorsal protuberance (bulla) on the proximal segmentof the chelicera that lacks armature and (3) possess sexuallydimorphic leg IV segments particularly the femur and tibiawhich may be variedly arcuate incrassate and spinedAdditionally Escadabiidae Fissiphalliidae and Zalmoxidae allpossess sexually dimorphic tegumental glandopeningson tibia IIwhereas Biantidae Samoidae and Stygnommatidae possessthese structures on metatarsus III (Willemart et al 2010)While data on tegumental gland openings are only availablefor a small handful of species these may constitute significantdiagnostic characters for species wherein sexual dimorphismdoes not manifest itself in the readily observable form ofenlarged and spiny segments

Given the results of our phylogenetic analyses maintainingSamooidea (as currently defined) renders it a paraphyletic gradewith respect to a diphyletic Zalmoxoidea (as currently defined)Consequently based on the aforementioned morphologicalcharacters and robust molecular phylogenetic signal wetransfer Escadabiidae and Kimulidae to Zalmoxoidea

Samooidea

A previous cladistic analysis based upon morphological datasuggested close relationship between six families ndash BiantidaeEscadabiidae Kimulidae Podoctidae Samoidae andStygnommatidae ndash thenceforth known as Samooidea (Kury1993) the only pantropical Laniatores superfamily HoweverPodoctidae does not have any obvious relationship to Samooideaand has subsequently been transferred (Kury 2007) in ouranalyses Podoctidae is sister to Tithaeidae or Sandokanidaeie distantly related to all samooid families Moreover ouranalyses strongly favour the exclusion of Escadabiidae andKimulidae from Samooidea

The remaining three families ndash Biantidae Samoidae andStygnommatidae ndash are distributed in the Neotropics and partsof Africa with a handful of suspect lineages in South-east AsiaRe-examination and reassignment of many Samoidae genera(eg the Indonesian lsquosamoidrsquo Waigeucola palpalis PeacuterezGonzaacutelez 2011) suggest that the range of Samoidae does notinclude South-east Asia Peacuterez Gonzaacutelez and Kury (2007) alsoobserved that the lsquosamoidsrsquo of Africa Madagascar and theSeychelles may not be true Samoidae either Similarlyinclusion of the genus Stygnomimus an Indonesian lineage

Molecular phylogeny of Laniatores Invertebrate Systematics 129

within Stygnommatidae is highly dubious as the twoIndonesian lsquostygnommatidsrsquo are either highly autapomorphic(Stygnomimus conopygus (Roewer 1927)) or described on the

basis of a generic female that is not readily distinguishable fromfemales of other species (Stygnomimus malayensis (Suzuki1970))

Fig 18 Strict consensus of tree topologies obtained by all phylogenetic analyses

130 Invertebrate Systematics P P Sharma and G Giribet

Previous efforts to assess the systematic validity of Samooideaby means of molecular sequence data were limited insofar asonly two Samoidae three Biantidae (all Metabiantes) and twoStygnommatidae were sampled (Giribet et al 2010) Thesampling of Samoidae was especially problematic only asingle Neotropical adult (Pellobunus) and one African juvenilesamoid (lsquoSamoidae gen sprsquo) were included The designation ofthe latter is suspect as juveniles of Samoidae are oftenindistinguishable from the juveniles of other lineages becausemany diagnostic secondary sexual characters in Grassatores(eg spines and incrassate appendages) are not acquired untilafter several postembryonic stages (Townsend et al 2009)

In the present study though the type genus of Samoidae(Samoa from Samoa) was not available we sequenced theclosely related genus Badessa (from Fiji collected byP P S) as well as additional Biantidae and StygnommatidaeOur analyses recovered a monophyletic Samooidea (excludingEscadabiidae and Kimulidae BS = 53 PP = 062) withSamoidae sensu stricto (Pellobunus +Badessa BS = 100PP = 100) nested within a paraphyletic Stygnommatidae aplacement that is supported (BS = 87 PP = 100) Bycontrast the African lsquosamoidrsquo is sister to the AfricanBiantidae a relationship that is also well supported(BS = 100 PP = 100) These relationships suggest a basal

Fig 19 Cladogram of male genitalic evolution in South-east Asian families superimposed upon a schematised molecular phylogeny based on ML and BIanalyses of all molecular data Exemplars (a) Pseudoepedanus doiensis Suzuki 1969 (redrawn from Suzuki 1969) dorsal view (b) Pseudoepedanus doiensisSuzuki 1969 (redrawn from Suzuki 1969) ventral view (c) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) ventral view(d) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) dorsal view (e) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki1976) dorsal view (f) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki 1976) ventral view (g) Petrobunus torosus lateral view (h) ZalmoxidagibberaSuzuki 1969 dorsal view (i)Zalmoxida sp (MCZDNA102677) dorsolateral view (j)Metatithaeus rubidusSuzuki 1969 (redrawn fromSuzuki 1969)ventral view (k)Tithaeus kokutnusSuzuki 1985 (redrawn fromSuzuki 1985) ventral view (l)Tithaeus similisSuzuki 1985 (redrawn fromSuzuki 1985) ventralview (m)DongmoaoshimensisSuzuki 1964 (redrawn fromSuzuki 1964) ventral view (n)Bonea longipalpisSuzuki 1977 (redrawn fromSuzuki 1977) ventralview (o) Santobius annulipes Soslashrensen 1886 (redrawn from Kury and Machado 2009) ventral view (p) Lomanius longipalpus mindanaoensis Suzuki 1977(redrawn from Suzuki 1977) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 131

dichotomy within Samooidea that corresponds to one groupof Neotropical and Pacific lineages and a second group ofAfrican lineages However as we were unable to samplestenostygnine (Neotropical) and Indo-Pacific Biantidae aswell as numerous monotypic genera dubiously placed inSamoidae biogeographical extrapolations for Samooidea aretenuous (discussed below)

The internal relationships of Samooidea suggest that themorphology of Samoidae may have evolved convergently Asthe African samoid is a juvenile (the same specimen previouslysequenced by Giribet et al 2010 now sequenced for additional28S rRNA and other genes) we cannot rule out the possibility ofa monophyletic Samoidae that includes African species (thespecimen in question could be a juvenile biantid) In any casethe paraphyly of Stygnommatidae and putative polyphyly ofSamoidae strongly advocate systematic revision of samooidfamilies as currently defined corroborating hypotheses of non-monophyly based on morphology (Peacuterez Gonzaacutelez 2007 PeacuterezGonzaacutelez and Kury 2007) Our sampling of these families isinsufficient to advocate specific taxonomic action but an ongoing

study of samooidean systematics will shed more light on thevalidity of constituent families (A Peacuterez Gonzaacutelez work inprogress)

Biogeography of Zalmoxoidea and Samooidea

While most superfamilies of Grassatores are restricted to aspecific part of the tropics (eg Neotropics South-east Asia)two are distributed in multiple biogeographical provincesSamooidea occurs in the Neotropics and Afrotropics withquestionable records from South-east Asia Zalmoxoidea isconcentrated in the Neotropics with the exception of oneIndo-Pacific lineage of Zalmoxidae (represented here byZalmoxis sp) The ages and distributions of Samooidea andZalmoxoidea suggest that their biogeography was influencedby the fragmentation of West Tropical Gondwana ndash causingthe former to diverge basally throughout West TropicalGondwanan terranes and the latter to become isolated to theNeotropics (with possible subsequent dispersal)

Fig 20 Ancestral range reconstructions for Samooidea +Zalmoxoidea inferred by Lagrange using stratified models corresponding to two vicariant events(indicated by dotted lines) Coloured squares at terminals indicate ranges occupied by sampled species Coloured squares on nodes indicate ranges reconstructedfor hypothetical ancestors Numbers on nodes indicate relative probability of ranges reconstructed

Fig 21 Best hypothesis of Laniatores relationships based on all available evidence Bracketed nodes indicate non-monophyletic entities Dashed line indicatesambiguity in the placement of Sandokanidae (alternatively placed as shown or as sister to Podoctidae) Exemplars of Laniatores diversity are Synthetonychiaoliveae (Synthetonychiidae) Equitius doriae (Triaenonychidae) Hadziana clavigera (Travuniidae) Erebomaster flavescens flavescens (Cladonychiidae)Scotolemon lespesi (Phalangodidae) Palaeoncopus gunung (Sandokanidae) Santobius sp (Podoctidae) Tithaeus sp (Tithaeidae) Petrobunus spinifer(Petrobunidae) Alloepedanus sp (Epedanidae) Hoplobunus sp (Stygnopsidae) Torreana spinata (Agoristenidae) Stygnoplus clavotibialis (Stygnidae)Metalibitia paraguayensis (Cosmetidae)Acutisoma longipes (Gonyleptidae)Conommaoedipus (Pyramidopsgroup)Mysorea thaiensis (Assamiidae)Lacurbssp (Biantidae) Stygnomma sp (Stygnommatidae) Badessa sp (Samoidae) Guasinia sp (Guasiniidae) Icaleptes sp (Icaleptidae) Fissiphallius chicoi(Fissiphalliidae) Zalmoxis sp (Zalmoxidae) Kimula goodnightiorum (Kimulidae)

132 Invertebrate Systematics P P Sharma and G Giribet

Molecular phylogeny of Laniatores Invertebrate Systematics 133

To test this hypothesis we conducted likelihood analysisof range evolution using the program Lagrange (Ree et al2005 Ree and Smith 2008) for the clade (Zalmoxoidea +Samooidea) The stratified analysis resulted in a globalmaximum likelihood of ndashlnL= 1556 outperforming anunconstrained analysis that did not include any dispersalconstraints (ndashlnL= 1676) Likelihood analysis of rangeoptimisation (Fig 20) indicates that the ancestral range ofSamooidea includes both the Afrotropics and the Neotropics(relative probability pr = 1000) but a subsequent split occursbetween an African lineage (pr = 1000) and a NeotropicalIndo-Pacific lineage with a Neotropical ancestral range (pr = 0986)Samoidea of the Indo-Pacific occur on young oceanic islands(eg Fiji Samoa) indicating recent transoceanic dispersal fromthe Neotropics

Ancestral range reconstructions for Samooidea are allconsistent with estimated divergence times for these clades(diversification of Samooidea predates the rifting of WestAfrica from northern South America) favouring an underlyingvicariant process for the basal topology with subsequent recentdispersal events However these results are contingent upon thepresent sampling which does not include all samooid lineages(eg stenostygnine Biantidae) but basal range reconstructionsare likely unaffected (eg Stenostygninae is exclusivelyNeotropical)

In contrast the ancestor of Zalmoxoidea is reconstructedas singularly Neotropical (pr = 0996) This is consistent withisolation of a zalmoxoid ancestor to Amazonia which thenradiated ~191Mya Subsequent ancestral ranges are alsoreconstructed as Neotropical with high relative probabilityHowever the ancestral range of the clade (Icaleptidae +Fissiphalliidae + Zalmoxidae) is ambiguously reconstructedas either Neotropical (pr = 0935) or Neotropical + Indo-Pacific(pr = 0064) as is the split between Fissiphalliidae andZalmoxidae (Neotropical pr = 0856 Neotropical + Indo-Pacific pr = 0141)

These results suggest that the Indo-Pacific lineage ofZalmoxidae which split from Neotropical Zalmoxidae ~83Myais likely the result of long-distance dispersal from the NeotropicsHowever due to the persistence of transantarctic connectionsbetween the Australian plate and temperate South America untilthe Tertiary a competing vicariant scenario cannot be ruled outwithout densely sampling zalmoxid diversity The biogeographyof Zalmoxidae is presently being explored in greater detail in aseparate study (P P Sharma unpubl data)

Finally the ancestral range of (Samooidea + Zalmoxoidea)includes both Africa and the Neotropics (pr = 0957) consistentwith a tropical West Gondwanan ancestor This resultlends circumstantial evidence to a sister relationship of theAfrotropical families (Assamiidae + Pyramidopidae) and theclade (Samooidea + Zalmoxoidea) recovered in all analyses

The diversification of Grassatores

While numerous interfamilial relationships are supported inthis study particularly among gonyleptoid and zalmoxoidfamilies some relationships between superfamilies ofGrassatores are not supported and are contingent upon

analytical treatments namely the deployment of substitutionmodels and data partitioning (Fig 21) The cause of thisinstability could be related to insufficient data particularly inthe EF-1a partition (the length of an intron which can exceed400 bp in some taxa makes this gene particularly difficult toamplify) However examination of clade divergence timessuggests that rapid diversification of Grassatores lineagescould in part augment phylogenetic uncertainty in basal partsof the topology

The split between Phalangodidae and the remainingGrassatores is estimated to have occurred ~302Mya but aseries of divergences resulted in the origin of all superfamiliallineages between 232 and 271Mya Relative to the estimatedage of Laniatores (348Mya) this 39-million-year period isremarkably narrow and inherently problematic as the amountof phylogenetic signal for a given stem subtending a node isdirectly proportional to the amount of time that the stem inquestion spans (Lanyon 1988 Rokas and Carroll 2006) Thesmall internal edge lengths of the stems corresponding to basaldivergences of non-phalangodid Grassatores (Figs 15 16)combined with the ancient age of lineages derived from thesedivergences result in relationships that are difficult to estimatewithout a large amount of sequence data andor the inclusion ofdata that are less afflicted by homoplasy (because longer edgelengths imply more indel and substitution events on edges)(Whitfield and Lockhart 2007)

We additionally observe that the origins of most Grassatoressuperfamilies occur in the wake of the end-Permian massextinction (~254Mya) Rapid radiation in the wake of a massextinction has occurred in multiple metazoan lineagesthe putative result of relaxed selection and opening ofpreviously occupied ecological niche space (Labandeira andSepkoski 1993 Sahney and Benton 2008) The rapiddiversification of early Grassatores lineages could be anexample of this phenomenon but this hypothesis is difficult totest in the absence of Mesozoic Grassatores fossils (reviewed byDunlop 2007)

Finally we observe that contrary to traditional hierarchiesproposed for Laniatores many of the clades recovered in ouranalyses correspond to geographical regions particularly in thecase of Grassatores For example the southern hemispheretriaenonychids are restricted to temperate Gondwananlandmasses Gonyleptoidea and their sister group Stygnopsidaeform a Neotropical (AmazonianMesoamericanAntillean) cladethat excludes Assamiidae which has been hypothesised to be amember of a broader Gonyleptoidea (Kury and Cokendolpher2000 Mendes and Kury 2007) In our analyses Assamiidae isin fact a member of a largely Afrotropical clade together withthe Pyramidopidae South-east Asian families usually form oneclade (at most two) albeit with limited support Samooideafamilies are divided into two clusters African and NeotropicalWith one exception (described above) Zalmoxoidea is restrictedto the Neotropics The ages that we estimate for Laniatoresradiations are consistent with ancient diversification beforethe fragmentation of Pangaea An ancient diversification inconjunction with the climatic stability of the tropics may in partexplain the comparatively greater diversity of the armouredharvestmen with respect to the other Opiliones suborders

134 Invertebrate Systematics P P Sharma and G Giribet

Acknowledgements

Weare indebted toPeter J Schwendingerwho collected andprovidedmost ofthe material for study from South-east Asia Some Thai and most of theNeotropical Laniatores were obtained from the TIGER (Thailand InventoryGroup for Entomological Research) and LLAMA (Leaf Litter Arthropods ofMeso-America) projects toC Lienhard and J Longino respectivelyMaterialfrom Madagascar was generously contributed by Charles Griswold and theCalifornia Academy of Sciences Jesse Czekanski-Moir in conjunction withthe Belau NationalMuseum contributed elusive specimens from Palau AbelPeacuterezGonzaacutelez identifiedmanyNeotropical species included in the study andcontributed specimens fromCubaRicardoPinto-da-Rocha identified someofthe live photographed animals from the Neotropics Discussions with RonaldMClouseAbelPeacuterezGonzaacutelezAdrianoBKury andCarlosEPrieto refinedmanyof the ideas presentedhereTwoanonymous reviewers and the associateeditor provided comments that helped to improve an earlier version ofthis manuscript Laura Leibensperger sorted and accessioned TIGER andLLAMA material as well as MCZ type material Adam Graham and theCenter forNanoscaleStudies atHarvardUniversityprovided support forSEMwork Collecting efforts in New Caledonia were greatly facilitated by theguidance of Herveacute Jourdan (Institut de rechercheacute pour de developpementNoumea) and his teammembers Collecting efforts in Fiji weremade possibleby Marika Tuiwawa (University of the South Pacific Suva) and his teammembers Hilda Waqa and Tokasaya lsquoToxrsquo Cakacaka we are especiallygrateful to Tox for his good company during fieldwork and to his familyfor graciously enabling a visit toOvalau SuzieYee Shawprovided invaluablelogistical support in Fiji and her sons Colin and Joshua Yee Shaw assistedwith sorting Fijian material Fieldwork in Indonesia and West Africa wassupported by two MCZ Putnam Expedition Grants awarded to RonaldM Clouse and G G (2006) and to G G (2009) respectively Fieldworkin New Caledonia was supported by the Goelet award the Kalathia FamilyTrust and the Explorers Club awarded to P P S in 2006 Fieldwork in Fijiand in Palauwas supported by twoMCZPutnamExpeditionGrants awardedto P P S (2008) and to Ronald M Clouse and P P S (2010) respectivelyP P S was supported by a Faculty of Arts and Sciences Graduate Fellowshipfrom Harvard University

References

Castresana J (2000) Selectionof conservedblocks frommultiple alignmentsfor their use in phylogenetic analysis Molecular Biology and Evolution17 540ndash552

Colgan D J McLauchlan A Wislon G D F Livingston S MacaranasJ Edgecombe G D Cassis G and Gray M R (1998) Molecularphylogenetics of the Arthropoda relationships based on histone H3and U2 snRNA DNA sequences Australian Journal of Zoology 46419ndash437 doi101071ZO98048

DaSilva M B and Gnaspini P (2009) A systematic revision ofGoniosomatinae (Arachnida Opiliones Gonyleptidae) with a cladisticanalysis and biogeographical notes Invertebrate Systematics 23530ndash624 doi101071IS09022

DaSilva M B and Pinto-da-Rocha R (2010) Systematic review andcladistic analysis of the Hernandariinae (Opiliones Gonyleptidae)Zoologia 27 577ndash642

Derkarabetian S Steinmann D B and Hedin M (2010) Repeatedand time-correlated morphological convergence in cave-dwellingharvestmen (Opiliones Laniatores) from montane western NorthAmerica PLoS ONE 5 e10388 doi101371journalpone0010388

Drummond A J and Rambaut A (2007) BEAST Bayesian evolutionaryanalysis by sampling trees BMC Evolutionary Biology 7 214doi1011861471-2148-7-214

Drummond A J Ho S Y W Phillips M J and Rambaut A (2006)Relaxed phylogenetics and dating with confidence PLoS Biology 4 e88doi101371journalpbio0040088

Dunlop J A (2007) Paleontology In lsquoHarvestmen The Biology ofOpilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 247ndash265 (Harvard University Press Cambridge MA USA)

Dunlop J A and Anderson L I (2005) A fossil harvestman (ArachnidaOpiliones) from theMississippian of East Kirkton Scotland The Journalof Arachnology 33 482ndash489 doi10163604-791

Dunlop JAAndersonL IKerpH andHassH (2003)Preservedorgansof Devonian harvestmen Nature 425 916 doi101038425916a

Dunlop J A Anderson L I Kerp H and Hass H (2004) A harvestman(Arachnida Opiliones) from the Early Devonian Rhynie chertsAberdeenshire Scotland Transactions of the Royal Society ofEdinburgh Earth Sciences 94 341ndash354

Edgar R C (2004) MUSCLE multiple sequence alignment with highaccuracy and high throughput Nucleic Acids Research 32 1792ndash1797doi101093nargkh340

Edgecombe G D and Giribet G (2006) A century laterndash a total evidencere-evaluation of scutigeromorph centipedes (Myriapoda Chilopoda)Invertebrate Systematics 20 503ndash525 doi101071IS05044

Edgecombe G D Giribet G and Wheeler W C (2002) Phylogeny ofHenicopidae (Chilopoda Lithobiomorpha) a combined analysis ofmorphology and five molecular loci Systematic Entomology 2731ndash64 doi101046j0307-6970200100163x

FolmerOBlackMHoehWLutzR andVrijenhoekRC (1994)DNAprimers for amplification ofmitochondrial cytochrome c oxidase subunit Ifrom diverse metazoan invertebrates Molecular Marine Biology andBiotechnology 3 294ndash299

Forster R R (1954) The New Zealand harvestmen (sub-order Laniatores)Canterbury Museum Bulletin 2 1ndash329

Giribet G and Kury A B (2007) Phylogeny and biogeography InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 62ndash87 (Harvard University PressCambridge MA USA)

Giribet G Carranza S Baguntildeagrave J Riutort M and Ribera C (1996) Firstmolecular evidence for the existence of a Tardigrada +Arthropoda cladeMolecular Biology and Evolution 13 76ndash84

Giribet G Rambla M Carranza S Baguntildeagrave J Riutort M and Ribera C(1999) Phylogeny of the arachnid order Opiliones (Arthropoda)inferred from a combined approach of complete 18S and partial 28Sribosomal DNA sequences and morphology Molecular Phylogeneticsand Evolution 11 296ndash307 doi101006mpev19980583

Giribet G Edgecombe G D Wheeler W C and Babbitt C (2002)Phylogeny and systematic position of Opiliones a combined analysis ofchelicerate relationships using morphological and molecular dataCladistics 18 5ndash70

Giribet G Vogt L PeacuterezGonzaacutelez A Sharma P andKury A B (2010)A multilocus approach to harvestman (Arachnida Opiliones) phylogenywith emphasis on biogeography and the systematics of LaniatoresCladistics 26 408ndash437

Hara M R Gnaspini P and Machado G (2003) Male egg guardingbehavior in the Neotropical harvestman Ampheres leucopheus (Mello-Leitatildeo 1922) (Opiliones Gonyleptidae) The Journal of Arachnology 31441ndash444 doi101636S02-32

Hedin M Derkarabetian S McCormack M and Richart C (2010) Thephylogenetic utility of the nuclear protein-encoding gene EF-1a forresolving recent divergences in Opiliones emphasizing intronevolution The Journal of Arachnology 38 9ndash20 doi101636HA09-491

Huelsenbeck J P and Ronquist F (2005) Bayesian analyses of molecularevolution using MrBayes In lsquoStatistical Methods in MolecularEvolutionrsquo (Ed R Nielsen) (Springer New York)

HunterRK ProundDNBurns JA Tibbetts JA andTownsendVR(2007) Parental care in the Neotropical harvestman Phareicranauscalcariferus (Opiliones Cranaidae) The Journal of Arachnology 35199ndash201 doi101636ST06-181

Molecular phylogeny of Laniatores Invertebrate Systematics 135

Kocher T D Thoma W K Meyer A Edwards S V Paumlaumlbo SVillablanca F X and Wilson A C (1989) Dynamics ofmitochondrial DNA evolution in animals amplification andsequencing with conserved primers Proceedings of the NationalAcademy of Sciences of the United States of America 86 6196ndash6200doi101073pnas86166196

Kury A B (1993) Anaacutelise filogeneacutetica de Gonyleptoidea (ArachnidaOpiliones Laniatores) PhD Thesis Universidade de Satildeo Paulo SatildeoPaulo Brazil

Kury A B (2003) Annotated catalogue of the Laniatores of the NewWorld (Arachnida Opiliones) Revista Ibeacuterica de AracnologiacuteaVolumen Especial Monograacutefico 1 1ndash337

Kury A B (2006) Checklist of valid genera of Opiliones of theWorld Museu NacionalUFRJ Available from httpwwwmuseunacionalufrjbrmndiAracnologiachecklaniatorhtm [Accessed1 February 2011]

Kury A B (2007) Podoctidae Roewer 1912 In lsquoHarvestmen The Biologyof Opilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 221ndash224 (Harvard University Press Cambridge MA USA)

Kury A B and Cokendolpher J C (2000) Opiliones In lsquoBiodiversidadTaxonomiacutea y Biogeografiacutea de Artoacutepodos de Meacutexico Hacia una Sintesisde su Conocimientorsquo vol 2 (Eds J E Llorente E Gonzaacutelez andN Papavero) pp 137ndash157 (Universidad Nacional Autoacutenoma deMexico Meacutexico DF Mexico)

Kury A B and Machado G (2009) Notes on Santobius from Vanuatu andFiji and the status of the eastern Melanesian Ibalonius (ArachnidaOpiliones Podoctidae) Zoological Studies 48 524ndash538

Kury A B and Peacuterez G A (2002) A new family of Laniatores fromnorthwestern South America (Arachnida Opiliones) Revista Ibeacuterica deAracnologiacutea 6 3ndash11

Labandeira C C and Sepkoski J J (1993) Insect diversity in the fossilrecord Science 261 310ndash315 doi101126science11536548

Lanyon S M (1988) The stochastic mode of molecular evolutionwhat consequences for systematic investigations The Auk 105565ndash573

Lian W-G Zhu M-S and Kury A B (2008) A new species of the genusTithaeus from China (Arachnida Laniatores Epedanidae) Zootaxa1841 53ndash60

Machado G Requena G S Buzatto B A Osses F and Rossetto L M(2004) Five new cases of paternal care in harvestmen (ArachnidaOpiliones) implications for the evolution of male guarding in theNeotropical family Gonyleptidae Sociobiology 44 577ndash598

Martens J (1976) Genitalmorphologie System und Phylogenie derWeberknechte (Arachnida Opiliones) Entomologica GermanicaZeitschrift fuumlr das Gesamtgebiet der Wissenschaftlichen Entomologie3 51ndash68

Martens J (1980) Versuch eines phylogenetischen Systems der OpilionesIn lsquoProceedings 8th International Congress of Arachnology ViennaVerhandlungenrsquo (Ed J Gruber) pp 355ndash360 (Vienna Austria)

Martens J (1986) Die Grossgliederung der Opiliones und die Evolutionder Ordnung (Arachnida) Actas del X Congreso Internacional deAracnologiacutea Jaca 1 289ndash310

Martens J (1993) Further cases of paternal care in Opiliones (Arachnida)Tropical Zoology 6 97ndash107

Martens J and Schwendinger P S (1998) A taxonomic revision ofthe family Oncopodidae I New genera and new species of GnomulusThorell (Opiliones Laniatores) Revue Suisse de Zoologie 105 499ndash555

Martens J Hoheisel U and Goumltze M (1981) Vergleichende Anatomieder Legeroumlhren der Opiliones als Beitrag zur Phylogenie der Ordnung(Arachnida) Zoologische Jahrbucher Abteilung fur Anatomie undOntogenie der Tiere 105 13ndash76

Mello-Leitatildeo C F (1949) Famiacutelias subfamiacutelia espeacutecies e gecircneros novos deopiliotildees e notas de sinoniacutemia Boletim do Museu Nacional Nova SeacuterieZoologia Rio de Janeiro 94 1ndash33

Mendes A C and Kury A B (2007) Stygnopsidae Soslashrensen 1932 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 232ndash234 (Harvard University PressCambridge MA USA)

Mendes A C and Kury A B (2008) Intercontinental Triaenonychidae ndashthe case of Ceratomontia (Opiliones Insidiatores) The Journal ofArachnology 36 273ndash279 doi101636CH07-931

Murphree C S (1988) Morphology of the dorsal integument of tenopilionid species (Arachnida Opiliones) The Journal of Arachnology16 237ndash252

Park J K andOacuteFoighilD (2000) Sphaeriid and corbiculid clams representseparate heterodont bivalve radiations into freshwater environmentsMolecular Phylogenetics and Evolution 14 75ndash88 doi101006mpev19990691

Peacuterez Gonzaacutelez A (2006) lsquoRevisatildeo Sistemaacutetica e Anaacutelise Filogeneacutetica deStygnommatidae (Arachnida Opiliones Laniatores)rsquo (Museu NacionalUniversidade Federal de Rio de Janeiro Rio de Janeiro Brazil)

Peacuterez Gonzaacutelez A (2007) Stygnommatidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 229ndash232 (Harvard University PressCambridge MA USA)

Peacuterez Gonzaacutelez A (2011) New familial assignment for two harvestmanspecies of the infraorder Grassatores (Arachnida Opiliones Laniatores)Zootaxa 2757 24ndash28

Peacuterez Gonzaacutelez A and Kury A B (2007) Samoidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 224ndash226 (Harvard University PressCambridge MA USA)

Pineau P Henry M Suspegravene R Marchio A Dettai A Debruyne RPetit T Leacutecu A Moisson P Dejean A Wain-Hobson S andVartanian J-P (2005) A universal primer set for PCR amplificationof nuclear histone H4 genes from all animal species Molecular Biologyand Evolution 22 582ndash588 doi101093molbevmsi053

Pinto-da-Rocha R (1997) Systematic review of the Neotropical familyStygnidae (Opiliones Laniatores Gonyleptoidea) Arquivos deZoologia 33 163ndash342

Pinto-da-Rocha R and Kury A B (2003a) Phylogenetic analysis ofSantinezia with description of five new species (Opiliones LaniatoresCranaidae) The Journal of Arachnology 31 173ndash208 doi1016360161-8202(2003)031[0173PAOSWD]20CO2

Pinto-da-Rocha R and Kury A B (2003b) Third species of Guasiniidae(Opiliones Laniatores) with comments on familial relationships TheJournal of Arachnology 31 394ndash399 doi101636H02-59

Pinto-da-Rocha R and Kury A B (2007) Agoristenidae Silhavy 1973 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 171ndash173 (Harvard University PressCambridge MA USA)

Posada D (2005) Modeltest 37 Program and documentation available athttpdarwinuvigoes [Accessed 28 May 2011]

Posada D and Buckley T (2004) Model selection and model averaging inphylogenetics advantages of Akaike information criterion and Bayesianapproaches over likelihood ratio tests Systematic Biology 53 793ndash808doi10108010635150490522304

Posada D and Crandall K A (1998) Modeltest testing the model ofDNA substitution Bioinformatics (Oxford England) 14 817ndash818doi101093bioinformatics149817

Prendini L Weygoldt P and Wheeler W C (2005) Systematics of theDamon variegates group of African whip spiders (ChelicerataAmblypygi) evidence from behaviour morphology and DNAOrganisms Diversity amp Evolution 5 203ndash236 doi101016jode200412004

Rambaut A E (1996) Se-Al sequence alignment editor University ofOxford UK Program and documentation available at httptreebioedacuksoftwarefigtree [Accessed 21 December 2009]

136 Invertebrate Systematics P P Sharma and G Giribet

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 15: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

threepairs of setae lateralmarginswith four setae eachGlans freein apical part and simple with parastylar lobe extendingproximally

Ovipositor (Fig 14) composed of two apical lobes eachbearing two dorsal setae one ventral seta and two apicalsetae Distal surfaces of apical lobes smooth Bases of dorsalsetae in contact Bases of ventral setae set apart by a distanceapproximately equal to one-third the width of the ovipositor

Distribution

Known only from type locality and additional locality reportedhere

Etymology

The specific epithet refers to the stocky and robust appearanceof the fourth leg in the males of this species Derived from Latinlsquotorosusrsquo meaning lsquomuscularrsquo or lsquobulgingrsquo

Family TITHAEIDAE fam nov

Type genusTithaeusThorell 1891 by present designation andmonotypy

Type species Tithaeus laevigatus Thorell 1891 by original designation

Genera included Tithaeus Thorell 1891 new familial assignmentMetatithaeus Suzuki 1969 new familial assignment

Diagnosis

Medium-sized Grassatores with a low ocularium removed fromthe anterior margin of carapace that differ from Epedanidae inlacking a median spine In some species slight to large hump

situated anterior of ocularium Scutal region divided into fiveareas areas I and II not fused as opposed to EpedanidaeChelicerae typical basal segment not enlarged (as opposed toEpedanidae)Distinct fromPodoctidae in the lack of spines on legI and in the lack of a sexually dimorphic ocularium Tarsalformula 5 8+ 5 6 not reduced (as opposed to Sandokanidaeand Podoctidae) Distitarsi of legs I and II typically with twotarsalia distinguished from Petrobunidae in the trochanter of legIV not enlarged inmales Tarsi III and IVwith unmodified doubleclaws scopulae absent (as opposed to most Samooidea) Distalmargin of ventral plate of penis usually with deep cleft (mostTithaeus) or widening distally into setiferous and conicalstructure (Metatithaeus) glans with simple membranous lobecovering the stylus terminus of stylus either a bifurcate orslightly inflatable lobe absence of prominent parastylar lobes(distinguishing it from Petrobunidae) absence of a ring of setaesurrounding a capsula interna (found in Epedanidae) Ovipositorlobes typically with a pair of ventral and dorsal setae

Remarks

One of dozens of genera placed in the subfamily Phalangodinae(Phalangodidae) by Roewer (1912 1923 1949) Tithaeus wassubsequently extricated and transferred to Epedanidae by Kury(1993 2003 2006) on the basis of the male genitalia althoughthe placement was ambiguous given the absence of typicalepedanid morphology such as elongate and armed pedipalpian erect ocularial spine (absent in Dibuninae) the fusion of scutalareas I and II side-branches in the posterior claws and stoutdentition of the cheliceral fingers (Lian et al 2008) However

a

b

100 microm

100 microm

100 microm

100 microm

c

d

Fig 12 Petrobunus torosus sp novmale paratype (a)Dorsolateral view (b) dorsolateral viewof anteriormargin of carapace(c) ventrolateral view and (d) ventrolateral view of prosomal complex

120 Invertebrate Systematics P P Sharma and G Giribet

comparisons of the male genitalia of a phalangodid (Texella) anepedanid (Kilungius Saracinicinae) and Tithaeus suggested acloser relationship between Epedanidae and Tithaeus in spite ofmarked differences in the stylar lobe and the extent of the basalsac (Lian et al 2008)

Our phylogenetic analyses corroborate a closer relationshipbetween Epedanidae and Tithaeuswith respect to Phalangodidae(which is sister to the remaining Grassatores and thereforedistantly related to both lineages) but the clade Tithaeus+Metatithaeus neither nests within nor is sister to Epedanidae

a

b

c

d

e

h

i

g

f

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

Fig 13 Petrobunus torosus sp nov (a) Left chelicer of male paratype (b) left palp of male paratype (c) left leg I of maleparatype (d) right leg II of male paratype (e) left leg III of male paratype (f) left leg IV of male paratype (g) left leg IV offemale paratype (h) trochanter of left leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 121

in any of the topologies we examinedMoreover the cleft ventralplate forming two prongs in the male genitalia of many Tithaeusspecies in addition to the absence of a ring of setae surroundingthe capsula interna (typical of Epedanidae) suggest that Tithaeus

and related genera (eg Istithaeus Metatithaeus Tithaeommaetc) are not true epedanids but may be more closely related toeither (1) Podoctidae a hypothesis that is supported in someanalyses (bootstrap frequency in ML [BS] = 59 posteriorclade probability given by MrBayes [PP] = 097) or (2) theclade (Podoctidae + Sandokanidae) recovered by the BEASTtopology (posterior clade probability given by BEAST[PPBEAST] = 100)

The inclusion of Tithaeus-like Grassatores in Epedanidaerenders the latter para- or diphyletic and obscures a cleardiagnosis of epedanids as the morphology of Tithaeus (andMetatithaeus) does not accord with many epedanidsynapomorphies Moreover inclusion of Tithaeus andorMetatithaeus within a broader Podoctidae is also unjustifiedbecause this violates many of the synapomorphies ofPodoctidae such as (1) tuberclesspines in dorsal and ventralrows on leg I (2) tubercular bridges (3) a sexually dimorphicbasichelicerite and (4) a sexually dimorphic ocularium

Consequently we erect the family name Tithaeidaeseparating Tithaeus and Metatithaeus from EpedanidaeTithaeidae likely includes the monotypic Roewerian generaIstithaeus Kondosus Sterrhosoma and Tithaeomma but thestatus of these genera requires further investigation and will beaddressed in a forthcoming study

Distribution

Distributed throughout Sundaland the Thai-Malay PeninsulaSumatra Java and Borneo Also reported from northern Vietnamand southern China One doubtful record from West Timor(see Lian et al 2008)

Results

Phylogenetic analysis

Less sequence data are presently available for Briggsusflavescens (partial 28S and COI Derkarabetian et al 2010)with respect to the rest of the data matrix Consequently twoML analyses were conducted including and excluding Briggsusflavescens The ML analysis with all taxa resulted in a treetopology with lnL= ndash8372597 Repeating the analysis withoutBriggsus resulted in a tree topology with lnL= ndash8336108 Thetwo topologies are identical save for the internal relationships ofTravunioidea which includes Briggsidae (Fig 15) Inclusion ofBriggsidae recovers a diphyletic Cladonychiidae with Briggsussister to Holoscotolemon but these relationships are notsupported Exclusion of Briggsidae results in higher nodalsupport frequencies within Travunioidea and recovers a sisterrelationship of Sclerobunidae and the remaining Travunioidea(BS = 75) and a monophyletic Cladonychiidae + Travuniidae(BS = 77) sister to Trojanella Including Briggsus in theanalysis does not affect topology or nodal support in otherparts of the phylogeny Monophyly of Travunioidea isstrongly supported (BS = 100) in either case

Runs of MrBayes ver 312 reached stationarity in 2 000 000generations 2 500 000 generations (25) were hence discardedas burn-in The BI analysis with all taxa resulted in a topologylargely similar to theMLtree (Fig 16)Notable differences are therelative placements of the clade (Gonyleptoidea + Stygnopsidae)

a

b

c d

050 mm

050 mm

20 microm

20 microm

Fig 14 Petrobunus torosus sp nov (a) female paratype dorsal view(b) female paratype ventral view (c) pars distalis of penis lateral view and(d) ovipositor dorsal view

122 Invertebrate Systematics P P Sharma and G Giribet

and the South-east Asian group of families Some differencesexist with respect to supported nodes within superfamilies

Estimation of divergence times

The run of BEAST reached stationarity after 6 000 000generations 10 000 000 generations (20) were discarded asburn-in The tree topology recovered by BEAST (Fig 17) differsfromML andBI topologies in (1) the placement of Sandokanidaeand (2) the relationships between superfamilies Diversificationof Laniatores is dated at ~348Mya Diversification of majorlineages is estimated as follows (Travunioidea+Triaenonychidae)299Mya Grassatores 302Mya Assamiidae +Pyramidopsgroup 232Mya Gonyleptoidea + Stygnopsidae 246MyaGonyleptoidea 230Mya Samooidea + Zalmoxoidea 206Myaand a South-east Asian clade (including Sandokanidae)249Mya These results largely corroborate previous estimatesof divergence times (Giribet et al 2010) but confidence intervalsfor estimated ages are more precise A tree file of estimated agesand 95highest posterior density (HPD) intervals for all nodes isprovided as an Accessory Publication on the InvertebrateSystematics website

Whereas the basal topology of Grassatores is unstable andunsupported most familial and superfamilial relationshipsare consistently recovered across analyses A consensus oftopologies across all analyses is shown in Fig 18

Discussion

A molecular phylogeny of the armoured harvestmen has longproven elusive Laniatores comprises entire genera and familiesthat are endemic to particular provinces of the world In somecases higher taxonomic ranks do not even occur beyond specificislands (eg the New Zealand family SynthetonychiidaeForster 1954) Moreover Laniatores includes the majority ofall described Opiliones species (and over half of all describedfamilies) and new lineages continue to be discoveredConsequently previous efforts to assess Laniatores phylogenyhave been prone to undersampling numerous lineages such asAssamiidae Epedanidae and the superfamilies Samooidea and

Zalmoxoidea (eg Giribet et al 1999 2002 Shultz and Regier2001)

The present study with the inclusion of all families ofarmoured harvestmen described heretofore enables detailedinvestigation of internal relationships of Laniatores Ofprincipal interest are the phylogenetic placement of the twonew families of Laniatores erected herein and the systematicvalidity of defined superfamilies Many of the relationshipsrecovered in our analyses are consistent with traditionalhypotheses based on morphological studies but there are someunexpected results We discuss these in turn

Insidiatores

Within a monophyletic Laniatores recovered in all analyses(BS = 100 PP = 093) the constituent lineages of Insidiatoresform a paraphyletic grade with respect to Grassatores WhileTriaenonychoidea and Travunioidea do form a clade (albeit withlow nodal support) the New Zealand endemic familySynthetonychiidae is recovered as sister to all remainingLaniatores (BS = 78 PP = 100) consistent with the resultsof a recent study (Giribet et al 2010) However the inclusionof more data in fact lowers the nodal support for this sisterrelationship relative to the previous studyrsquos ML analysislikely due to the influence of missing data (in particular only~300 bp out of a targeted 3400 bp of 28S rRNA are presentlyavailable for Synthetonychia) Consequently we do not treat theplacement of Synthetonychiidae as definitive

In all analyses the southern hemisphere Triaenonychidaeform a strongly supported clade that diversified ~200Mya(BS = 100 PP = 100) Their distribution and the age of thiscladersquos diversification are similar to that of the temperateGondwanan cyphophthalmid family Pettalidae (estimated tohave diversified ~183ndash221Mya Giribet et al 2010)suggesting a parallel biogeographical process in these lineagesThe North American triaenonychid Fumontana deprehendorShear 1977 is sister to the southern hemisphere Triaenonychidaein all analyses consistent with previous classification (Giribetand Kury 2007 Thomas and Hedin 2008) but support fora monophyletic Triaenonychoidea is limited and sensitiveto analytical parameters (BS = 57 PP lt 050 PPBEAST = 066)

Table 7 Leg measurements of Petrobunus torosus holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011011 039005 026012 028008 036006 040007 180Leg II 014013 061008 029010 043007 042006 072005 261Leg III 015015 051010 019015 037011 045006 046005 213Leg IV 034035 059012 034017 054015 067007 052006 300

Table 8 Leg measurements of Petrobunus torosus female paratype (ex MHNG PAL-0907) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 041008 022011 028010 037005 035006 174Leg II 010009 052007 023008 033007 037006 069005 224Leg III 014016 046010 025024 036012 042007 041005 204Leg IV 018017 054011 029016 049012 058007 048006 256

Molecular phylogeny of Laniatores Invertebrate Systematics 123

Fig 15 Phylogenetic relationships of Laniatores inferred from maximum likelihood analysis of all molecular data (ln L= ndash8372597) Inset topology ofTravunioidea excluding Briggsidae (ln L= ndash8336108) Numbers on nodes indicate bootstrap resampling frequencies

124 Invertebrate Systematics P P Sharma and G Giribet

We recovered a monophyletic Travunioidea which includesBriggsidae in all analyses (BS = 100PP = 100) corroboratingthe superfamilial placement of briggsids Briggsidae isrecovered sister to either Trojanella (ML) or Holoscotolemon(BI) or part of a grade with both of these taxa (BEAST) butthese placements are not supported (BS lt 50 PPBEAST = 085and PP = 051 respectively) Missing data for Briggsidaedepresses nodal support in ML analyses within Travunioideaobscuring interfamilial relationships In the absence ofBriggsidae we recover a sister relationship betweenSclerobunidae (Zuma acuta Goodnight amp Goodnight 1942)and the remaining Travunioidea (BS = 75) and themonophyly of Travuniidae +Cladonychiidae (BS = 77)

A recent molecular dating of Travunioidea obtained muchyounger dates than estimated herein in spite of similar taxaand molecular loci In that study Derkarabetian et al (2010)investigated the evolution of troglobitism in Sclerobunidae(also referred to as the lsquoNorth American triaenonychidsrsquo)and used the cladonychiid fossil Protoholoscotolemon(38ndash54Mya Ubick and Dunlop 2005) to constrain theminimum age of Travunioidea in addition to calibration pointsderived from geological ages of strata These practicesaccord with the scope of the troglobitism study (thedivergences of interest were comparatively recent ndash Plioceneor younger) but we did not utilise Protoholoscotolemon in ourdating for two reasons (1) we do not obtain an unambiguouslymonophyletic Cladonychiidae in our analyses and (2) theDevonian and Carboniferous fossils we utilised as calibrationpoints are sufficiently old to obtain a result consistent with anEocene cladonychiid fossil The different calibration pointsimplemented in the respective studies therefore account forthe discrepancy in the dating In addition the morphologicalconservatism of Opiliones makes it doubtful that the age ofProtoholoscotolemon is the maximum age of the superfamily

Our sampling of Insidiatores lineages remains limited andbarring the inclusion of Briggsidae additions to taxonomicsampling largely concern Grassatores Consequently continuedsampling and systematic studies of Insidiatores (eg Mendesand Kury 2008 Thomas and Hedin 2008 Derkarabetian et al2010) are instrumental and imperative to addressing outstandingquestions of phylogenetic relationships and morphologicalevolution A phylogeny of Triaenonychidae is particularlywanting

Early diverging Grassatores Phalangodidaeand Sandokanidae

The recovery of a monophyletic Grassatores (supported inall analyses BS = 99 PP = 100) is consistent with severalmorphological synapomorphies uniting this diverse groupsuch as the presence of two tarsal claws on walking legs IIIand IV However the basal topology of Grassatores has longbeen contentious Previously two superfamilies of Grassatoreswere recognised Oncopodoidea (with the single familySandokanidae (formerly Oncopodidae)) and lsquoGonyleptoidearsquo(with the remaining families) (Martens 1976 1986 Martenset al 1981) This dichotomy was largely based upon theunique morphology of Sandokanidae ndash characters such as thescutum completum (fused opisthosomal tergites) reduced tarsal

articles and genitalic structures which are not found in theremaining Grassatores (Martens 1980 Giribet et al 2002Sharma and Giribet 2009) It was alternatively contended thatthese characters constituted autapomorphies of Sandokanidaewhich was nested within lsquoGonyleptoidearsquo itself (Kury 2003)

In all analyses we obtained an initial divergence betweenPhalangodidae and the remaining Grassatores (BS = 100PP = 096) refuting the traditional dichotomy betweenSandokanidae and lsquoGonyleptoidearsquo Therefore we hereindefine Gonyleptoidea as the taxon consisting of AgoristenidaeCosmetidae Cranaidae Gonyleptidae Manaosbiidae andStygnidae The split between Phalangodidae and the remainingGrassatores has been postulated to correspond to the rifting ofthe ancient supercontinents Laurasia and Gondwana as thedistribution of Phalangodidae was believed to be strictlyHolarctic (Giribet et al 2010) However the inclusion of theMadagascar genus Remyus previously placed in Zalmoxidae(Starega 1989) within a monophyletic Phalangodidae indicatesbroader distribution of phalangodids ndash complementing theTriaenonychidae-Fumontana case discussed above Moreoverthe origin of Phalangodidae is estimated to have occurred around302Mya (95 HPD 264ndash335Mya) greatly predating thebreakup of the supercontinents These results indicate thatPhalangodidae may be narrowly defined and we consequentlytransfer Remyus to Phalangodidae (new familial assignment)

The unusual family Sandokanidae has been postulated to besister toPodoctidae (SharmaandGiribet 2009Giribet et al 2010)or to form agradewith Phalangodidae (Kuryrsquos lsquoPhalangodoidearsquopartly) In the present study ML and BI topologies reconstructSandokanidae as sister to the remaining non-phalangodidGrassatores albeit with insignificant nodal support (BS = 21PP = 078) Curiously the topology obtained byBEAST recoversthe clade (Sandokanidae + Podoctidae) nested within a singleclade of South-east Asian families (PPBEAST = 085) Theseresults do not unambiguously favour one hypothesis overanother and the phylogenetic placement of Sandokanidae inthe Grassatores tree therefore remains debatable

Regardless of the inclusion of Sandokanidae within theSouth-east Asian group of families that the sister family to theremaining Grassatores is Phalangodidae not Sandokanidaeindicates that the peculiar morphology of sandokanids is theresult of multiple apomorphic reversals not the retention ofplesiomorphic characters (Martens and Schwendinger 1998)The large scutum and low tarsomere number found inSandokanidae also occur in Trogulidae and Dicranolasmatidae(suborder Dyspnoi) and all Cyphophthalmi and appear to haveevolved convergently This morphology may reflect adaptationsto a shared ecological niche all these groups inhabit leaf litterinclude no arboricolous species and are limited in vagility ndash

although these life history traits are also found in other groupsHowever this hypothesis has yet to be rigorously tested

Sandokanidae is presently one of few families of Grassatoresfor which a molecular phylogeny assessing intergenericrelationships is available (Sharma and Giribet 2009) andconsistent with earlier results the monophyly of Sandokanidaeis strongly supported (BS = 100 PP = 100) as is the initial splitbetweenMartensiellus and the remaining genera (an undescribedspecies was referred to as lsquogen sprsquo by Sharma and Giribet 2009but subsequent morphological investigation revealed this to be

Molecular phylogeny of Laniatores Invertebrate Systematics 125

Fig 16 Phylogenetic relationships of Laniatores inferred fromBayesian inference analysis of allmolecular data Numbers on nodes indicateposterior probabilities

126 Invertebrate Systematics P P Sharma and G Giribet

a miniature species of Martensiellus P J Schwendinger perscomm) (BS = 92 PP = 100) Intergeneric relationshipsof sandokanid genera are contingent upon analytical treatmentof molecular partitions (with additional sandokanid exemplarsdata not shown) reflecting conflict among datasets documentedby Sharma and Giribet (2009)

The other South-east Asian families

Epedanidae was postulated to be sister to Gonyleptoidea in acladistic analysis based on morphological characters (Kury1993) Subsequently Kury (2003) proposed that Epedanidaewas sister to the clade (Assamiidae (Stygnopsidae +Gonyleptoidea)) The single epedanid previously included in amolecular phylogeny was similarly unstable in placement eithernestingwithin Assamiidae or sister to the African lsquophalangodidsrsquo(Conomma and Maiorerus) in neither case with appreciablenodal support (Giribet et al 2010) Furthermore previousinclusion of several lineages (eg Tithaeus) within Epedanidaethat do not bear characters typical of true epedanids ndash sexuallydimorphic chelicera with heavy dentition elongate andspined pedipalpi male genitalia with setae surroundingthe capsula interna ndash has also made this family difficult todefine Consequently we included only Epedaninae (egPseudoepedanus Alloepedanus and Euepedanus) as exemplarsof true epedanids the systematic validity of the remaining threesubfamilies (and particularly the inclusion of Dibuninae) isbeyond the scope of this study and remains to be investigated

The monophyly of each of four South-east Asian families ndashEpedanidae (represented by epedanines) TithaeidaePetrobunidae and Podoctidae ndash is recovered with high nodalsupport (all BS = 100 PP = 100) These lineages are somehowrelated to each other and while they form a clade in bothML andBI analyses this result receives insignificant nodal support(PP = 077) In the topology recovered by BEAST the South-east Asian families form a clade that includes Sandokanidaea result consistent with the distribution of sandokanids albeitwithout support (PPBEAST = 085) Tithaeidae is probably closelyrelated to Podoctidae given the occurrence of a deeply cleftventral plate resulting in two flanking prongs in themale genitaliaof both families (Suzuki 1977 Lian et al 2008 Fig 19) Inaddition the clade (Podoctidae +Tithaeidae) is recovered withmoderate support in ML and BI analyses (BS = 59 PP = 097)In none of the analyses is Tithaeidae nested within or sister toEpedanidae sensu stricto

The morphology of Petrobunidae suggests some relationshipto previously described South-east Asian families oralternatively Phalangodidae but not inclusion within any ofthese (Fig 19) Molecular sequence data do not support anyspecificplacement ofPetrobunidae although it clusterswithotherSouth-east Asian families in all analyses and is recovered sisterto Epedanidae in two topologies (BI and BEAST)

Gonyleptoidea and Stygnopsidae

With over 2500 described species the superfamilyGonyleptoidea constitutes the most diverse and (arguably) themost charismatic lineage of Opiliones with most of this diversityconcentrated in Amazonia (some cosmetids occur as far north asthe mid-Atlantic states of the US) In a previous analysis

relationships of gonyleptoid families were unsupported andordid not accordwithmorphological studies (Giribet et al 2010) Inparticular the placement of the agoristenid exemplar Avimaalbiornata (Goodnight amp Goodnight 1947) ndash the putativesister family to the remaining Gonyleptoidea ndash within aparaphyletic Cranaidae was particularly suspect given thelimited availability of sequence data for Avima (complete 18SrRNA a300-bp fragmentof 28S rRNA andCOI) In addition thesister group of Gonyleptoidea was ambiguous and contingentupon analytical parameters

Redoubling sequencing efforts and addition of taxaparticularly in the case of Agoristenidae (currently sequencedfor 12S rRNA complete 18S rRNA a 2000-bp fragment of 28SrRNA COI H3 and EF-1a) improved the assessment ofgonyleptoid relationships A monophyletic Gonyleptoidea(BS = 58 PP = 066) is recovered sister to the familyStygnopsidae (BS = 57 PP = 100) Within Gonyleptoidea asplit between Agoristenidae and the remaining gonyleptoids isstrongly supported (BS = 100 PP = 100) followed by thedivergence of Stygnidae (BS = 71 PP = 099) Thisplacement of Agoristenidae is supported by morphologicalstudies (Pinto-da-Rocha and Kury 2007) although in aminority of tree topologies sampled in BI analysesAgoristenidae is sister to Stygnopsidae (hence lower nodalsupport for the monophyly of Gonyleptoidea in BI) Theplacement of Manaosbiidae is uncertain it is recoveredsister to either (Gonyleptidae +Cranaidae) (PP = 089) or toCosmetidae (PPBEAST = 092) but these results are notsupported Cranaidae is recovered as monophyletic (BS = 99PP = 100) and nested within a paraphyletic Gonyleptidae

The present sampling of Cosmetidae and Gonyleptidae doesnot do justice to the diversity of these lineages (~700 and 800described species respectively) A phylogenetic assessment ofall 16 subfamilies of Gonyleptidae alone constitutes the subjectof an arduous and exacting study Fortunately cladistic analysesof morphological characters continue to advance phylogeneticinvestigation of subfamilial lineages (eg BourguyiinaeYamaguti and Pinto-da-Rocha 2009 Goniosomatinae DaSilvaandGnaspini 2009HernandariinaeDaSilva andPinto-da-Rocha2010) Elucidating the phylogeny of Gonyleptoidea is one of themost exciting research topics in the study of Opiliones

The Afrotropical families

The third most diverse family of Laniatores Assamiidaeconstitutes the dominant opiliofauna of the African continent(excluding Madagascar) with some lineages occurring in SouthAsia the Indo-Malay Archipelago and Australia (Trionyxellinaeand Dampetrinae) Proposed to be related to EpedanidaeStygnopsidae andor Gonyleptoidea (Kury 2007) on the basisof genitalic structures assamiids were not recovered asmonophyletic in a previous study (paraphyly was induced byeither Epedanidae orAfricanBiantidae) and the placement of thesubfamily Trionyxellinae was particularly suspect (Giribet et al2010) Trionyxellinae was considered a separate family byMello-Leitatildeo (1949) though others considered it nested withinAssamiidae (eg Starega 1992) In our analyses the monophylyof Assamiidae is supported (BS = 79 PP = 100)lsquoTrionyxellinaersquo (Trionyxella and Mysorea both with a

Molecular phylogeny of Laniatores Invertebrate Systematics 127

Fig 17 Evolutionary time tree of Laniatores inferred fromBEASTanalysis of allmolecular data Coloured bars indicate 95highestposterior density (HPD) intervals for nodes of interest Numbers on nodes indicate posterior probabilities asterisks indicate posteriorprobability of 100

128 Invertebrate Systematics P P Sharma and G Giribet

pseudonychium on the third and fourth tarsi) is a diphyletic entitynested within the other Assamiidae (for the node renderingdiphyly BS = 100 PP = 100) disfavouring family status fortrionyxellines

The African lsquophalangodidsrsquo (sometimes called thelsquoPyramidops grouprsquo) were recognised as a new family byStarega (1992) but not formalised and included 13 genera(Conomma Pyramidops and related lineages) Consistentwith this hypothesis we recovered strong support for thePyramidops group (represented by Conomma and cfPyramidops) as a lineage separate from the true Phalangodidae(egBishopella and Scotolemon) recapitulating a previous result(Giribet et al 2010) The African lsquophalangodidsrsquowere recoveredas the sister lineage of Assamiidae although this relationshipis variably supported in our analyses (BS = 40 PP = 095PPBEAST = 100) A review and formal description of thePyramidops group as a new family lsquoPyramidopidaersquo ndash a namewidely available on the internet including GBIF but notformalised ndash is undertaken elsewhere (Sharma et al 2011)

While we have endeavoured to improve the sampling ofAssamiidae from South-east Asia the internal systematics ofthis family remain a high value target for phylogenetic researchHowever revision of assamiid systematics is inherently difficultfor two reasons (1) the family is peppered with questionablehierarchies and monotypic genera (~12 subfamilies and 250genera for less than 500 described species) and (2) occurs insome of the most inaccessible regions of the world namely sub-Saharan Africa

In all analyses the clade (Assamiidae + Pyramidopidae) issister to the clade (Zalmoxoidea + Samooidea) though this resultis only supported in one analysis (PP= 100) The divergence ofthese four lineages is estimated to have occurred 252Mya and isconsistent with diversification in West Tropical Gondwanaoccurring at least 140million years before the fragmentation ofthis terrane (~110Mya)

Zalmoxoidea

As currently defined the largely Neotropical superfamilyZalmoxoidea includes four families FissiphalliidaeGuasiniidae Icaleptidae and Zalmoxidae Guasiniidae hasnever before been included in a molecular phylogeny In thepresent study we sequenced a guasiniid for six genes and ouranalyses strongly support theplacement ofGuasiniidae as sister tothe samooid family Kimulidae (formerly Minuidae) (BS = 86PP = 098 PPBEAST = 099) and this clade in turn sister to anothersamooid family Escadabiidae (BS = 65 PP = 096PPBEAST = 100) The families Fissiphalliidae Icaleptidaeand Zalmoxidae in turn form a separate clade (BS = 100PP = 100 PPBEAST = 100) with strong support for the sisterrelationship of Zalmoxidae and Fissiphalliidae (BS = 99PP = 100 PPBEAST = 100) corroborating relationshipsproposed by morphological studies (Kury and Peacuterez G 2002Pinto-da-Rocha and Kury 2003b)

Previous analyses have suggested that Samooidea (discussedbelow) is a paraphyletic grade with respect to Zalmoxoidea(Giribet et al 2010) In the present analysis the cladeSamooidea + Zalmoxoidea is strongly supported (BS = 85PP = 100 PPBEAST = 100) as previously suggested by PeacuterezGonzaacutelez and Kury (2007) and by excluding Escadabiidae and

Kimulidae Samooidea is rendered a monophyletic entity albeitwith limited support (BS = 53 PP = 062 PPBEAST = 081) Thestrong support from molecular sequence data for the cladeincluding Escadabiidae Kimulidae and the four zalmoxoidfamilies (BS = 89 PP = 100 PPBEAST = 100) suggests thatthese may form a natural group

Re-examination of the morphology of these six families incomparisonwith true samooid lineages (Biantidae Samoidae andStygnommatidae) corroborates the exclusionofEscadabiidae andKimulidae from true Samooidea Escadabiidae and Kimulidae(1) lack the scopula characteristic of Samoidae and stenostygnineBiantidae (2) lack a sexually dimorphic metatarsus IIIcharacteristic of Samoidae Stygnommatidae and stenostygnineBiantidae and (3) lack a penial calyx characteristic of SamoidaeConsistent with placement within Zalmoxoidea EscadabiidaeandKimulidae (1) possess a small oculariumbearing the eyes thatis removed from the margin of the carapace (2) bear a wellmarked dorsal protuberance (bulla) on the proximal segmentof the chelicera that lacks armature and (3) possess sexuallydimorphic leg IV segments particularly the femur and tibiawhich may be variedly arcuate incrassate and spinedAdditionally Escadabiidae Fissiphalliidae and Zalmoxidae allpossess sexually dimorphic tegumental glandopeningson tibia IIwhereas Biantidae Samoidae and Stygnommatidae possessthese structures on metatarsus III (Willemart et al 2010)While data on tegumental gland openings are only availablefor a small handful of species these may constitute significantdiagnostic characters for species wherein sexual dimorphismdoes not manifest itself in the readily observable form ofenlarged and spiny segments

Given the results of our phylogenetic analyses maintainingSamooidea (as currently defined) renders it a paraphyletic gradewith respect to a diphyletic Zalmoxoidea (as currently defined)Consequently based on the aforementioned morphologicalcharacters and robust molecular phylogenetic signal wetransfer Escadabiidae and Kimulidae to Zalmoxoidea

Samooidea

A previous cladistic analysis based upon morphological datasuggested close relationship between six families ndash BiantidaeEscadabiidae Kimulidae Podoctidae Samoidae andStygnommatidae ndash thenceforth known as Samooidea (Kury1993) the only pantropical Laniatores superfamily HoweverPodoctidae does not have any obvious relationship to Samooideaand has subsequently been transferred (Kury 2007) in ouranalyses Podoctidae is sister to Tithaeidae or Sandokanidaeie distantly related to all samooid families Moreover ouranalyses strongly favour the exclusion of Escadabiidae andKimulidae from Samooidea

The remaining three families ndash Biantidae Samoidae andStygnommatidae ndash are distributed in the Neotropics and partsof Africa with a handful of suspect lineages in South-east AsiaRe-examination and reassignment of many Samoidae genera(eg the Indonesian lsquosamoidrsquo Waigeucola palpalis PeacuterezGonzaacutelez 2011) suggest that the range of Samoidae does notinclude South-east Asia Peacuterez Gonzaacutelez and Kury (2007) alsoobserved that the lsquosamoidsrsquo of Africa Madagascar and theSeychelles may not be true Samoidae either Similarlyinclusion of the genus Stygnomimus an Indonesian lineage

Molecular phylogeny of Laniatores Invertebrate Systematics 129

within Stygnommatidae is highly dubious as the twoIndonesian lsquostygnommatidsrsquo are either highly autapomorphic(Stygnomimus conopygus (Roewer 1927)) or described on the

basis of a generic female that is not readily distinguishable fromfemales of other species (Stygnomimus malayensis (Suzuki1970))

Fig 18 Strict consensus of tree topologies obtained by all phylogenetic analyses

130 Invertebrate Systematics P P Sharma and G Giribet

Previous efforts to assess the systematic validity of Samooideaby means of molecular sequence data were limited insofar asonly two Samoidae three Biantidae (all Metabiantes) and twoStygnommatidae were sampled (Giribet et al 2010) Thesampling of Samoidae was especially problematic only asingle Neotropical adult (Pellobunus) and one African juvenilesamoid (lsquoSamoidae gen sprsquo) were included The designation ofthe latter is suspect as juveniles of Samoidae are oftenindistinguishable from the juveniles of other lineages becausemany diagnostic secondary sexual characters in Grassatores(eg spines and incrassate appendages) are not acquired untilafter several postembryonic stages (Townsend et al 2009)

In the present study though the type genus of Samoidae(Samoa from Samoa) was not available we sequenced theclosely related genus Badessa (from Fiji collected byP P S) as well as additional Biantidae and StygnommatidaeOur analyses recovered a monophyletic Samooidea (excludingEscadabiidae and Kimulidae BS = 53 PP = 062) withSamoidae sensu stricto (Pellobunus +Badessa BS = 100PP = 100) nested within a paraphyletic Stygnommatidae aplacement that is supported (BS = 87 PP = 100) Bycontrast the African lsquosamoidrsquo is sister to the AfricanBiantidae a relationship that is also well supported(BS = 100 PP = 100) These relationships suggest a basal

Fig 19 Cladogram of male genitalic evolution in South-east Asian families superimposed upon a schematised molecular phylogeny based on ML and BIanalyses of all molecular data Exemplars (a) Pseudoepedanus doiensis Suzuki 1969 (redrawn from Suzuki 1969) dorsal view (b) Pseudoepedanus doiensisSuzuki 1969 (redrawn from Suzuki 1969) ventral view (c) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) ventral view(d) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) dorsal view (e) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki1976) dorsal view (f) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki 1976) ventral view (g) Petrobunus torosus lateral view (h) ZalmoxidagibberaSuzuki 1969 dorsal view (i)Zalmoxida sp (MCZDNA102677) dorsolateral view (j)Metatithaeus rubidusSuzuki 1969 (redrawn fromSuzuki 1969)ventral view (k)Tithaeus kokutnusSuzuki 1985 (redrawn fromSuzuki 1985) ventral view (l)Tithaeus similisSuzuki 1985 (redrawn fromSuzuki 1985) ventralview (m)DongmoaoshimensisSuzuki 1964 (redrawn fromSuzuki 1964) ventral view (n)Bonea longipalpisSuzuki 1977 (redrawn fromSuzuki 1977) ventralview (o) Santobius annulipes Soslashrensen 1886 (redrawn from Kury and Machado 2009) ventral view (p) Lomanius longipalpus mindanaoensis Suzuki 1977(redrawn from Suzuki 1977) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 131

dichotomy within Samooidea that corresponds to one groupof Neotropical and Pacific lineages and a second group ofAfrican lineages However as we were unable to samplestenostygnine (Neotropical) and Indo-Pacific Biantidae aswell as numerous monotypic genera dubiously placed inSamoidae biogeographical extrapolations for Samooidea aretenuous (discussed below)

The internal relationships of Samooidea suggest that themorphology of Samoidae may have evolved convergently Asthe African samoid is a juvenile (the same specimen previouslysequenced by Giribet et al 2010 now sequenced for additional28S rRNA and other genes) we cannot rule out the possibility ofa monophyletic Samoidae that includes African species (thespecimen in question could be a juvenile biantid) In any casethe paraphyly of Stygnommatidae and putative polyphyly ofSamoidae strongly advocate systematic revision of samooidfamilies as currently defined corroborating hypotheses of non-monophyly based on morphology (Peacuterez Gonzaacutelez 2007 PeacuterezGonzaacutelez and Kury 2007) Our sampling of these families isinsufficient to advocate specific taxonomic action but an ongoing

study of samooidean systematics will shed more light on thevalidity of constituent families (A Peacuterez Gonzaacutelez work inprogress)

Biogeography of Zalmoxoidea and Samooidea

While most superfamilies of Grassatores are restricted to aspecific part of the tropics (eg Neotropics South-east Asia)two are distributed in multiple biogeographical provincesSamooidea occurs in the Neotropics and Afrotropics withquestionable records from South-east Asia Zalmoxoidea isconcentrated in the Neotropics with the exception of oneIndo-Pacific lineage of Zalmoxidae (represented here byZalmoxis sp) The ages and distributions of Samooidea andZalmoxoidea suggest that their biogeography was influencedby the fragmentation of West Tropical Gondwana ndash causingthe former to diverge basally throughout West TropicalGondwanan terranes and the latter to become isolated to theNeotropics (with possible subsequent dispersal)

Fig 20 Ancestral range reconstructions for Samooidea +Zalmoxoidea inferred by Lagrange using stratified models corresponding to two vicariant events(indicated by dotted lines) Coloured squares at terminals indicate ranges occupied by sampled species Coloured squares on nodes indicate ranges reconstructedfor hypothetical ancestors Numbers on nodes indicate relative probability of ranges reconstructed

Fig 21 Best hypothesis of Laniatores relationships based on all available evidence Bracketed nodes indicate non-monophyletic entities Dashed line indicatesambiguity in the placement of Sandokanidae (alternatively placed as shown or as sister to Podoctidae) Exemplars of Laniatores diversity are Synthetonychiaoliveae (Synthetonychiidae) Equitius doriae (Triaenonychidae) Hadziana clavigera (Travuniidae) Erebomaster flavescens flavescens (Cladonychiidae)Scotolemon lespesi (Phalangodidae) Palaeoncopus gunung (Sandokanidae) Santobius sp (Podoctidae) Tithaeus sp (Tithaeidae) Petrobunus spinifer(Petrobunidae) Alloepedanus sp (Epedanidae) Hoplobunus sp (Stygnopsidae) Torreana spinata (Agoristenidae) Stygnoplus clavotibialis (Stygnidae)Metalibitia paraguayensis (Cosmetidae)Acutisoma longipes (Gonyleptidae)Conommaoedipus (Pyramidopsgroup)Mysorea thaiensis (Assamiidae)Lacurbssp (Biantidae) Stygnomma sp (Stygnommatidae) Badessa sp (Samoidae) Guasinia sp (Guasiniidae) Icaleptes sp (Icaleptidae) Fissiphallius chicoi(Fissiphalliidae) Zalmoxis sp (Zalmoxidae) Kimula goodnightiorum (Kimulidae)

132 Invertebrate Systematics P P Sharma and G Giribet

Molecular phylogeny of Laniatores Invertebrate Systematics 133

To test this hypothesis we conducted likelihood analysisof range evolution using the program Lagrange (Ree et al2005 Ree and Smith 2008) for the clade (Zalmoxoidea +Samooidea) The stratified analysis resulted in a globalmaximum likelihood of ndashlnL= 1556 outperforming anunconstrained analysis that did not include any dispersalconstraints (ndashlnL= 1676) Likelihood analysis of rangeoptimisation (Fig 20) indicates that the ancestral range ofSamooidea includes both the Afrotropics and the Neotropics(relative probability pr = 1000) but a subsequent split occursbetween an African lineage (pr = 1000) and a NeotropicalIndo-Pacific lineage with a Neotropical ancestral range (pr = 0986)Samoidea of the Indo-Pacific occur on young oceanic islands(eg Fiji Samoa) indicating recent transoceanic dispersal fromthe Neotropics

Ancestral range reconstructions for Samooidea are allconsistent with estimated divergence times for these clades(diversification of Samooidea predates the rifting of WestAfrica from northern South America) favouring an underlyingvicariant process for the basal topology with subsequent recentdispersal events However these results are contingent upon thepresent sampling which does not include all samooid lineages(eg stenostygnine Biantidae) but basal range reconstructionsare likely unaffected (eg Stenostygninae is exclusivelyNeotropical)

In contrast the ancestor of Zalmoxoidea is reconstructedas singularly Neotropical (pr = 0996) This is consistent withisolation of a zalmoxoid ancestor to Amazonia which thenradiated ~191Mya Subsequent ancestral ranges are alsoreconstructed as Neotropical with high relative probabilityHowever the ancestral range of the clade (Icaleptidae +Fissiphalliidae + Zalmoxidae) is ambiguously reconstructedas either Neotropical (pr = 0935) or Neotropical + Indo-Pacific(pr = 0064) as is the split between Fissiphalliidae andZalmoxidae (Neotropical pr = 0856 Neotropical + Indo-Pacific pr = 0141)

These results suggest that the Indo-Pacific lineage ofZalmoxidae which split from Neotropical Zalmoxidae ~83Myais likely the result of long-distance dispersal from the NeotropicsHowever due to the persistence of transantarctic connectionsbetween the Australian plate and temperate South America untilthe Tertiary a competing vicariant scenario cannot be ruled outwithout densely sampling zalmoxid diversity The biogeographyof Zalmoxidae is presently being explored in greater detail in aseparate study (P P Sharma unpubl data)

Finally the ancestral range of (Samooidea + Zalmoxoidea)includes both Africa and the Neotropics (pr = 0957) consistentwith a tropical West Gondwanan ancestor This resultlends circumstantial evidence to a sister relationship of theAfrotropical families (Assamiidae + Pyramidopidae) and theclade (Samooidea + Zalmoxoidea) recovered in all analyses

The diversification of Grassatores

While numerous interfamilial relationships are supported inthis study particularly among gonyleptoid and zalmoxoidfamilies some relationships between superfamilies ofGrassatores are not supported and are contingent upon

analytical treatments namely the deployment of substitutionmodels and data partitioning (Fig 21) The cause of thisinstability could be related to insufficient data particularly inthe EF-1a partition (the length of an intron which can exceed400 bp in some taxa makes this gene particularly difficult toamplify) However examination of clade divergence timessuggests that rapid diversification of Grassatores lineagescould in part augment phylogenetic uncertainty in basal partsof the topology

The split between Phalangodidae and the remainingGrassatores is estimated to have occurred ~302Mya but aseries of divergences resulted in the origin of all superfamiliallineages between 232 and 271Mya Relative to the estimatedage of Laniatores (348Mya) this 39-million-year period isremarkably narrow and inherently problematic as the amountof phylogenetic signal for a given stem subtending a node isdirectly proportional to the amount of time that the stem inquestion spans (Lanyon 1988 Rokas and Carroll 2006) Thesmall internal edge lengths of the stems corresponding to basaldivergences of non-phalangodid Grassatores (Figs 15 16)combined with the ancient age of lineages derived from thesedivergences result in relationships that are difficult to estimatewithout a large amount of sequence data andor the inclusion ofdata that are less afflicted by homoplasy (because longer edgelengths imply more indel and substitution events on edges)(Whitfield and Lockhart 2007)

We additionally observe that the origins of most Grassatoressuperfamilies occur in the wake of the end-Permian massextinction (~254Mya) Rapid radiation in the wake of a massextinction has occurred in multiple metazoan lineagesthe putative result of relaxed selection and opening ofpreviously occupied ecological niche space (Labandeira andSepkoski 1993 Sahney and Benton 2008) The rapiddiversification of early Grassatores lineages could be anexample of this phenomenon but this hypothesis is difficult totest in the absence of Mesozoic Grassatores fossils (reviewed byDunlop 2007)

Finally we observe that contrary to traditional hierarchiesproposed for Laniatores many of the clades recovered in ouranalyses correspond to geographical regions particularly in thecase of Grassatores For example the southern hemispheretriaenonychids are restricted to temperate Gondwananlandmasses Gonyleptoidea and their sister group Stygnopsidaeform a Neotropical (AmazonianMesoamericanAntillean) cladethat excludes Assamiidae which has been hypothesised to be amember of a broader Gonyleptoidea (Kury and Cokendolpher2000 Mendes and Kury 2007) In our analyses Assamiidae isin fact a member of a largely Afrotropical clade together withthe Pyramidopidae South-east Asian families usually form oneclade (at most two) albeit with limited support Samooideafamilies are divided into two clusters African and NeotropicalWith one exception (described above) Zalmoxoidea is restrictedto the Neotropics The ages that we estimate for Laniatoresradiations are consistent with ancient diversification beforethe fragmentation of Pangaea An ancient diversification inconjunction with the climatic stability of the tropics may in partexplain the comparatively greater diversity of the armouredharvestmen with respect to the other Opiliones suborders

134 Invertebrate Systematics P P Sharma and G Giribet

Acknowledgements

Weare indebted toPeter J Schwendingerwho collected andprovidedmost ofthe material for study from South-east Asia Some Thai and most of theNeotropical Laniatores were obtained from the TIGER (Thailand InventoryGroup for Entomological Research) and LLAMA (Leaf Litter Arthropods ofMeso-America) projects toC Lienhard and J Longino respectivelyMaterialfrom Madagascar was generously contributed by Charles Griswold and theCalifornia Academy of Sciences Jesse Czekanski-Moir in conjunction withthe Belau NationalMuseum contributed elusive specimens from Palau AbelPeacuterezGonzaacutelez identifiedmanyNeotropical species included in the study andcontributed specimens fromCubaRicardoPinto-da-Rocha identified someofthe live photographed animals from the Neotropics Discussions with RonaldMClouseAbelPeacuterezGonzaacutelezAdrianoBKury andCarlosEPrieto refinedmanyof the ideas presentedhereTwoanonymous reviewers and the associateeditor provided comments that helped to improve an earlier version ofthis manuscript Laura Leibensperger sorted and accessioned TIGER andLLAMA material as well as MCZ type material Adam Graham and theCenter forNanoscaleStudies atHarvardUniversityprovided support forSEMwork Collecting efforts in New Caledonia were greatly facilitated by theguidance of Herveacute Jourdan (Institut de rechercheacute pour de developpementNoumea) and his teammembers Collecting efforts in Fiji weremade possibleby Marika Tuiwawa (University of the South Pacific Suva) and his teammembers Hilda Waqa and Tokasaya lsquoToxrsquo Cakacaka we are especiallygrateful to Tox for his good company during fieldwork and to his familyfor graciously enabling a visit toOvalau SuzieYee Shawprovided invaluablelogistical support in Fiji and her sons Colin and Joshua Yee Shaw assistedwith sorting Fijian material Fieldwork in Indonesia and West Africa wassupported by two MCZ Putnam Expedition Grants awarded to RonaldM Clouse and G G (2006) and to G G (2009) respectively Fieldworkin New Caledonia was supported by the Goelet award the Kalathia FamilyTrust and the Explorers Club awarded to P P S in 2006 Fieldwork in Fijiand in Palauwas supported by twoMCZPutnamExpeditionGrants awardedto P P S (2008) and to Ronald M Clouse and P P S (2010) respectivelyP P S was supported by a Faculty of Arts and Sciences Graduate Fellowshipfrom Harvard University

References

Castresana J (2000) Selectionof conservedblocks frommultiple alignmentsfor their use in phylogenetic analysis Molecular Biology and Evolution17 540ndash552

Colgan D J McLauchlan A Wislon G D F Livingston S MacaranasJ Edgecombe G D Cassis G and Gray M R (1998) Molecularphylogenetics of the Arthropoda relationships based on histone H3and U2 snRNA DNA sequences Australian Journal of Zoology 46419ndash437 doi101071ZO98048

DaSilva M B and Gnaspini P (2009) A systematic revision ofGoniosomatinae (Arachnida Opiliones Gonyleptidae) with a cladisticanalysis and biogeographical notes Invertebrate Systematics 23530ndash624 doi101071IS09022

DaSilva M B and Pinto-da-Rocha R (2010) Systematic review andcladistic analysis of the Hernandariinae (Opiliones Gonyleptidae)Zoologia 27 577ndash642

Derkarabetian S Steinmann D B and Hedin M (2010) Repeatedand time-correlated morphological convergence in cave-dwellingharvestmen (Opiliones Laniatores) from montane western NorthAmerica PLoS ONE 5 e10388 doi101371journalpone0010388

Drummond A J and Rambaut A (2007) BEAST Bayesian evolutionaryanalysis by sampling trees BMC Evolutionary Biology 7 214doi1011861471-2148-7-214

Drummond A J Ho S Y W Phillips M J and Rambaut A (2006)Relaxed phylogenetics and dating with confidence PLoS Biology 4 e88doi101371journalpbio0040088

Dunlop J A (2007) Paleontology In lsquoHarvestmen The Biology ofOpilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 247ndash265 (Harvard University Press Cambridge MA USA)

Dunlop J A and Anderson L I (2005) A fossil harvestman (ArachnidaOpiliones) from theMississippian of East Kirkton Scotland The Journalof Arachnology 33 482ndash489 doi10163604-791

Dunlop JAAndersonL IKerpH andHassH (2003)Preservedorgansof Devonian harvestmen Nature 425 916 doi101038425916a

Dunlop J A Anderson L I Kerp H and Hass H (2004) A harvestman(Arachnida Opiliones) from the Early Devonian Rhynie chertsAberdeenshire Scotland Transactions of the Royal Society ofEdinburgh Earth Sciences 94 341ndash354

Edgar R C (2004) MUSCLE multiple sequence alignment with highaccuracy and high throughput Nucleic Acids Research 32 1792ndash1797doi101093nargkh340

Edgecombe G D and Giribet G (2006) A century laterndash a total evidencere-evaluation of scutigeromorph centipedes (Myriapoda Chilopoda)Invertebrate Systematics 20 503ndash525 doi101071IS05044

Edgecombe G D Giribet G and Wheeler W C (2002) Phylogeny ofHenicopidae (Chilopoda Lithobiomorpha) a combined analysis ofmorphology and five molecular loci Systematic Entomology 2731ndash64 doi101046j0307-6970200100163x

FolmerOBlackMHoehWLutzR andVrijenhoekRC (1994)DNAprimers for amplification ofmitochondrial cytochrome c oxidase subunit Ifrom diverse metazoan invertebrates Molecular Marine Biology andBiotechnology 3 294ndash299

Forster R R (1954) The New Zealand harvestmen (sub-order Laniatores)Canterbury Museum Bulletin 2 1ndash329

Giribet G and Kury A B (2007) Phylogeny and biogeography InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 62ndash87 (Harvard University PressCambridge MA USA)

Giribet G Carranza S Baguntildeagrave J Riutort M and Ribera C (1996) Firstmolecular evidence for the existence of a Tardigrada +Arthropoda cladeMolecular Biology and Evolution 13 76ndash84

Giribet G Rambla M Carranza S Baguntildeagrave J Riutort M and Ribera C(1999) Phylogeny of the arachnid order Opiliones (Arthropoda)inferred from a combined approach of complete 18S and partial 28Sribosomal DNA sequences and morphology Molecular Phylogeneticsand Evolution 11 296ndash307 doi101006mpev19980583

Giribet G Edgecombe G D Wheeler W C and Babbitt C (2002)Phylogeny and systematic position of Opiliones a combined analysis ofchelicerate relationships using morphological and molecular dataCladistics 18 5ndash70

Giribet G Vogt L PeacuterezGonzaacutelez A Sharma P andKury A B (2010)A multilocus approach to harvestman (Arachnida Opiliones) phylogenywith emphasis on biogeography and the systematics of LaniatoresCladistics 26 408ndash437

Hara M R Gnaspini P and Machado G (2003) Male egg guardingbehavior in the Neotropical harvestman Ampheres leucopheus (Mello-Leitatildeo 1922) (Opiliones Gonyleptidae) The Journal of Arachnology 31441ndash444 doi101636S02-32

Hedin M Derkarabetian S McCormack M and Richart C (2010) Thephylogenetic utility of the nuclear protein-encoding gene EF-1a forresolving recent divergences in Opiliones emphasizing intronevolution The Journal of Arachnology 38 9ndash20 doi101636HA09-491

Huelsenbeck J P and Ronquist F (2005) Bayesian analyses of molecularevolution using MrBayes In lsquoStatistical Methods in MolecularEvolutionrsquo (Ed R Nielsen) (Springer New York)

HunterRK ProundDNBurns JA Tibbetts JA andTownsendVR(2007) Parental care in the Neotropical harvestman Phareicranauscalcariferus (Opiliones Cranaidae) The Journal of Arachnology 35199ndash201 doi101636ST06-181

Molecular phylogeny of Laniatores Invertebrate Systematics 135

Kocher T D Thoma W K Meyer A Edwards S V Paumlaumlbo SVillablanca F X and Wilson A C (1989) Dynamics ofmitochondrial DNA evolution in animals amplification andsequencing with conserved primers Proceedings of the NationalAcademy of Sciences of the United States of America 86 6196ndash6200doi101073pnas86166196

Kury A B (1993) Anaacutelise filogeneacutetica de Gonyleptoidea (ArachnidaOpiliones Laniatores) PhD Thesis Universidade de Satildeo Paulo SatildeoPaulo Brazil

Kury A B (2003) Annotated catalogue of the Laniatores of the NewWorld (Arachnida Opiliones) Revista Ibeacuterica de AracnologiacuteaVolumen Especial Monograacutefico 1 1ndash337

Kury A B (2006) Checklist of valid genera of Opiliones of theWorld Museu NacionalUFRJ Available from httpwwwmuseunacionalufrjbrmndiAracnologiachecklaniatorhtm [Accessed1 February 2011]

Kury A B (2007) Podoctidae Roewer 1912 In lsquoHarvestmen The Biologyof Opilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 221ndash224 (Harvard University Press Cambridge MA USA)

Kury A B and Cokendolpher J C (2000) Opiliones In lsquoBiodiversidadTaxonomiacutea y Biogeografiacutea de Artoacutepodos de Meacutexico Hacia una Sintesisde su Conocimientorsquo vol 2 (Eds J E Llorente E Gonzaacutelez andN Papavero) pp 137ndash157 (Universidad Nacional Autoacutenoma deMexico Meacutexico DF Mexico)

Kury A B and Machado G (2009) Notes on Santobius from Vanuatu andFiji and the status of the eastern Melanesian Ibalonius (ArachnidaOpiliones Podoctidae) Zoological Studies 48 524ndash538

Kury A B and Peacuterez G A (2002) A new family of Laniatores fromnorthwestern South America (Arachnida Opiliones) Revista Ibeacuterica deAracnologiacutea 6 3ndash11

Labandeira C C and Sepkoski J J (1993) Insect diversity in the fossilrecord Science 261 310ndash315 doi101126science11536548

Lanyon S M (1988) The stochastic mode of molecular evolutionwhat consequences for systematic investigations The Auk 105565ndash573

Lian W-G Zhu M-S and Kury A B (2008) A new species of the genusTithaeus from China (Arachnida Laniatores Epedanidae) Zootaxa1841 53ndash60

Machado G Requena G S Buzatto B A Osses F and Rossetto L M(2004) Five new cases of paternal care in harvestmen (ArachnidaOpiliones) implications for the evolution of male guarding in theNeotropical family Gonyleptidae Sociobiology 44 577ndash598

Martens J (1976) Genitalmorphologie System und Phylogenie derWeberknechte (Arachnida Opiliones) Entomologica GermanicaZeitschrift fuumlr das Gesamtgebiet der Wissenschaftlichen Entomologie3 51ndash68

Martens J (1980) Versuch eines phylogenetischen Systems der OpilionesIn lsquoProceedings 8th International Congress of Arachnology ViennaVerhandlungenrsquo (Ed J Gruber) pp 355ndash360 (Vienna Austria)

Martens J (1986) Die Grossgliederung der Opiliones und die Evolutionder Ordnung (Arachnida) Actas del X Congreso Internacional deAracnologiacutea Jaca 1 289ndash310

Martens J (1993) Further cases of paternal care in Opiliones (Arachnida)Tropical Zoology 6 97ndash107

Martens J and Schwendinger P S (1998) A taxonomic revision ofthe family Oncopodidae I New genera and new species of GnomulusThorell (Opiliones Laniatores) Revue Suisse de Zoologie 105 499ndash555

Martens J Hoheisel U and Goumltze M (1981) Vergleichende Anatomieder Legeroumlhren der Opiliones als Beitrag zur Phylogenie der Ordnung(Arachnida) Zoologische Jahrbucher Abteilung fur Anatomie undOntogenie der Tiere 105 13ndash76

Mello-Leitatildeo C F (1949) Famiacutelias subfamiacutelia espeacutecies e gecircneros novos deopiliotildees e notas de sinoniacutemia Boletim do Museu Nacional Nova SeacuterieZoologia Rio de Janeiro 94 1ndash33

Mendes A C and Kury A B (2007) Stygnopsidae Soslashrensen 1932 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 232ndash234 (Harvard University PressCambridge MA USA)

Mendes A C and Kury A B (2008) Intercontinental Triaenonychidae ndashthe case of Ceratomontia (Opiliones Insidiatores) The Journal ofArachnology 36 273ndash279 doi101636CH07-931

Murphree C S (1988) Morphology of the dorsal integument of tenopilionid species (Arachnida Opiliones) The Journal of Arachnology16 237ndash252

Park J K andOacuteFoighilD (2000) Sphaeriid and corbiculid clams representseparate heterodont bivalve radiations into freshwater environmentsMolecular Phylogenetics and Evolution 14 75ndash88 doi101006mpev19990691

Peacuterez Gonzaacutelez A (2006) lsquoRevisatildeo Sistemaacutetica e Anaacutelise Filogeneacutetica deStygnommatidae (Arachnida Opiliones Laniatores)rsquo (Museu NacionalUniversidade Federal de Rio de Janeiro Rio de Janeiro Brazil)

Peacuterez Gonzaacutelez A (2007) Stygnommatidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 229ndash232 (Harvard University PressCambridge MA USA)

Peacuterez Gonzaacutelez A (2011) New familial assignment for two harvestmanspecies of the infraorder Grassatores (Arachnida Opiliones Laniatores)Zootaxa 2757 24ndash28

Peacuterez Gonzaacutelez A and Kury A B (2007) Samoidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 224ndash226 (Harvard University PressCambridge MA USA)

Pineau P Henry M Suspegravene R Marchio A Dettai A Debruyne RPetit T Leacutecu A Moisson P Dejean A Wain-Hobson S andVartanian J-P (2005) A universal primer set for PCR amplificationof nuclear histone H4 genes from all animal species Molecular Biologyand Evolution 22 582ndash588 doi101093molbevmsi053

Pinto-da-Rocha R (1997) Systematic review of the Neotropical familyStygnidae (Opiliones Laniatores Gonyleptoidea) Arquivos deZoologia 33 163ndash342

Pinto-da-Rocha R and Kury A B (2003a) Phylogenetic analysis ofSantinezia with description of five new species (Opiliones LaniatoresCranaidae) The Journal of Arachnology 31 173ndash208 doi1016360161-8202(2003)031[0173PAOSWD]20CO2

Pinto-da-Rocha R and Kury A B (2003b) Third species of Guasiniidae(Opiliones Laniatores) with comments on familial relationships TheJournal of Arachnology 31 394ndash399 doi101636H02-59

Pinto-da-Rocha R and Kury A B (2007) Agoristenidae Silhavy 1973 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 171ndash173 (Harvard University PressCambridge MA USA)

Posada D (2005) Modeltest 37 Program and documentation available athttpdarwinuvigoes [Accessed 28 May 2011]

Posada D and Buckley T (2004) Model selection and model averaging inphylogenetics advantages of Akaike information criterion and Bayesianapproaches over likelihood ratio tests Systematic Biology 53 793ndash808doi10108010635150490522304

Posada D and Crandall K A (1998) Modeltest testing the model ofDNA substitution Bioinformatics (Oxford England) 14 817ndash818doi101093bioinformatics149817

Prendini L Weygoldt P and Wheeler W C (2005) Systematics of theDamon variegates group of African whip spiders (ChelicerataAmblypygi) evidence from behaviour morphology and DNAOrganisms Diversity amp Evolution 5 203ndash236 doi101016jode200412004

Rambaut A E (1996) Se-Al sequence alignment editor University ofOxford UK Program and documentation available at httptreebioedacuksoftwarefigtree [Accessed 21 December 2009]

136 Invertebrate Systematics P P Sharma and G Giribet

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 16: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

comparisons of the male genitalia of a phalangodid (Texella) anepedanid (Kilungius Saracinicinae) and Tithaeus suggested acloser relationship between Epedanidae and Tithaeus in spite ofmarked differences in the stylar lobe and the extent of the basalsac (Lian et al 2008)

Our phylogenetic analyses corroborate a closer relationshipbetween Epedanidae and Tithaeuswith respect to Phalangodidae(which is sister to the remaining Grassatores and thereforedistantly related to both lineages) but the clade Tithaeus+Metatithaeus neither nests within nor is sister to Epedanidae

a

b

c

d

e

h

i

g

f

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

100 microm

Fig 13 Petrobunus torosus sp nov (a) Left chelicer of male paratype (b) left palp of male paratype (c) left leg I of maleparatype (d) right leg II of male paratype (e) left leg III of male paratype (f) left leg IV of male paratype (g) left leg IV offemale paratype (h) trochanter of left leg IV of male paratype and (i) trochanter of left leg IV of female paratype

Molecular phylogeny of Laniatores Invertebrate Systematics 121

in any of the topologies we examinedMoreover the cleft ventralplate forming two prongs in the male genitalia of many Tithaeusspecies in addition to the absence of a ring of setae surroundingthe capsula interna (typical of Epedanidae) suggest that Tithaeus

and related genera (eg Istithaeus Metatithaeus Tithaeommaetc) are not true epedanids but may be more closely related toeither (1) Podoctidae a hypothesis that is supported in someanalyses (bootstrap frequency in ML [BS] = 59 posteriorclade probability given by MrBayes [PP] = 097) or (2) theclade (Podoctidae + Sandokanidae) recovered by the BEASTtopology (posterior clade probability given by BEAST[PPBEAST] = 100)

The inclusion of Tithaeus-like Grassatores in Epedanidaerenders the latter para- or diphyletic and obscures a cleardiagnosis of epedanids as the morphology of Tithaeus (andMetatithaeus) does not accord with many epedanidsynapomorphies Moreover inclusion of Tithaeus andorMetatithaeus within a broader Podoctidae is also unjustifiedbecause this violates many of the synapomorphies ofPodoctidae such as (1) tuberclesspines in dorsal and ventralrows on leg I (2) tubercular bridges (3) a sexually dimorphicbasichelicerite and (4) a sexually dimorphic ocularium

Consequently we erect the family name Tithaeidaeseparating Tithaeus and Metatithaeus from EpedanidaeTithaeidae likely includes the monotypic Roewerian generaIstithaeus Kondosus Sterrhosoma and Tithaeomma but thestatus of these genera requires further investigation and will beaddressed in a forthcoming study

Distribution

Distributed throughout Sundaland the Thai-Malay PeninsulaSumatra Java and Borneo Also reported from northern Vietnamand southern China One doubtful record from West Timor(see Lian et al 2008)

Results

Phylogenetic analysis

Less sequence data are presently available for Briggsusflavescens (partial 28S and COI Derkarabetian et al 2010)with respect to the rest of the data matrix Consequently twoML analyses were conducted including and excluding Briggsusflavescens The ML analysis with all taxa resulted in a treetopology with lnL= ndash8372597 Repeating the analysis withoutBriggsus resulted in a tree topology with lnL= ndash8336108 Thetwo topologies are identical save for the internal relationships ofTravunioidea which includes Briggsidae (Fig 15) Inclusion ofBriggsidae recovers a diphyletic Cladonychiidae with Briggsussister to Holoscotolemon but these relationships are notsupported Exclusion of Briggsidae results in higher nodalsupport frequencies within Travunioidea and recovers a sisterrelationship of Sclerobunidae and the remaining Travunioidea(BS = 75) and a monophyletic Cladonychiidae + Travuniidae(BS = 77) sister to Trojanella Including Briggsus in theanalysis does not affect topology or nodal support in otherparts of the phylogeny Monophyly of Travunioidea isstrongly supported (BS = 100) in either case

Runs of MrBayes ver 312 reached stationarity in 2 000 000generations 2 500 000 generations (25) were hence discardedas burn-in The BI analysis with all taxa resulted in a topologylargely similar to theMLtree (Fig 16)Notable differences are therelative placements of the clade (Gonyleptoidea + Stygnopsidae)

a

b

c d

050 mm

050 mm

20 microm

20 microm

Fig 14 Petrobunus torosus sp nov (a) female paratype dorsal view(b) female paratype ventral view (c) pars distalis of penis lateral view and(d) ovipositor dorsal view

122 Invertebrate Systematics P P Sharma and G Giribet

and the South-east Asian group of families Some differencesexist with respect to supported nodes within superfamilies

Estimation of divergence times

The run of BEAST reached stationarity after 6 000 000generations 10 000 000 generations (20) were discarded asburn-in The tree topology recovered by BEAST (Fig 17) differsfromML andBI topologies in (1) the placement of Sandokanidaeand (2) the relationships between superfamilies Diversificationof Laniatores is dated at ~348Mya Diversification of majorlineages is estimated as follows (Travunioidea+Triaenonychidae)299Mya Grassatores 302Mya Assamiidae +Pyramidopsgroup 232Mya Gonyleptoidea + Stygnopsidae 246MyaGonyleptoidea 230Mya Samooidea + Zalmoxoidea 206Myaand a South-east Asian clade (including Sandokanidae)249Mya These results largely corroborate previous estimatesof divergence times (Giribet et al 2010) but confidence intervalsfor estimated ages are more precise A tree file of estimated agesand 95highest posterior density (HPD) intervals for all nodes isprovided as an Accessory Publication on the InvertebrateSystematics website

Whereas the basal topology of Grassatores is unstable andunsupported most familial and superfamilial relationshipsare consistently recovered across analyses A consensus oftopologies across all analyses is shown in Fig 18

Discussion

A molecular phylogeny of the armoured harvestmen has longproven elusive Laniatores comprises entire genera and familiesthat are endemic to particular provinces of the world In somecases higher taxonomic ranks do not even occur beyond specificislands (eg the New Zealand family SynthetonychiidaeForster 1954) Moreover Laniatores includes the majority ofall described Opiliones species (and over half of all describedfamilies) and new lineages continue to be discoveredConsequently previous efforts to assess Laniatores phylogenyhave been prone to undersampling numerous lineages such asAssamiidae Epedanidae and the superfamilies Samooidea and

Zalmoxoidea (eg Giribet et al 1999 2002 Shultz and Regier2001)

The present study with the inclusion of all families ofarmoured harvestmen described heretofore enables detailedinvestigation of internal relationships of Laniatores Ofprincipal interest are the phylogenetic placement of the twonew families of Laniatores erected herein and the systematicvalidity of defined superfamilies Many of the relationshipsrecovered in our analyses are consistent with traditionalhypotheses based on morphological studies but there are someunexpected results We discuss these in turn

Insidiatores

Within a monophyletic Laniatores recovered in all analyses(BS = 100 PP = 093) the constituent lineages of Insidiatoresform a paraphyletic grade with respect to Grassatores WhileTriaenonychoidea and Travunioidea do form a clade (albeit withlow nodal support) the New Zealand endemic familySynthetonychiidae is recovered as sister to all remainingLaniatores (BS = 78 PP = 100) consistent with the resultsof a recent study (Giribet et al 2010) However the inclusionof more data in fact lowers the nodal support for this sisterrelationship relative to the previous studyrsquos ML analysislikely due to the influence of missing data (in particular only~300 bp out of a targeted 3400 bp of 28S rRNA are presentlyavailable for Synthetonychia) Consequently we do not treat theplacement of Synthetonychiidae as definitive

In all analyses the southern hemisphere Triaenonychidaeform a strongly supported clade that diversified ~200Mya(BS = 100 PP = 100) Their distribution and the age of thiscladersquos diversification are similar to that of the temperateGondwanan cyphophthalmid family Pettalidae (estimated tohave diversified ~183ndash221Mya Giribet et al 2010)suggesting a parallel biogeographical process in these lineagesThe North American triaenonychid Fumontana deprehendorShear 1977 is sister to the southern hemisphere Triaenonychidaein all analyses consistent with previous classification (Giribetand Kury 2007 Thomas and Hedin 2008) but support fora monophyletic Triaenonychoidea is limited and sensitiveto analytical parameters (BS = 57 PP lt 050 PPBEAST = 066)

Table 7 Leg measurements of Petrobunus torosus holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011011 039005 026012 028008 036006 040007 180Leg II 014013 061008 029010 043007 042006 072005 261Leg III 015015 051010 019015 037011 045006 046005 213Leg IV 034035 059012 034017 054015 067007 052006 300

Table 8 Leg measurements of Petrobunus torosus female paratype (ex MHNG PAL-0907) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 041008 022011 028010 037005 035006 174Leg II 010009 052007 023008 033007 037006 069005 224Leg III 014016 046010 025024 036012 042007 041005 204Leg IV 018017 054011 029016 049012 058007 048006 256

Molecular phylogeny of Laniatores Invertebrate Systematics 123

Fig 15 Phylogenetic relationships of Laniatores inferred from maximum likelihood analysis of all molecular data (ln L= ndash8372597) Inset topology ofTravunioidea excluding Briggsidae (ln L= ndash8336108) Numbers on nodes indicate bootstrap resampling frequencies

124 Invertebrate Systematics P P Sharma and G Giribet

We recovered a monophyletic Travunioidea which includesBriggsidae in all analyses (BS = 100PP = 100) corroboratingthe superfamilial placement of briggsids Briggsidae isrecovered sister to either Trojanella (ML) or Holoscotolemon(BI) or part of a grade with both of these taxa (BEAST) butthese placements are not supported (BS lt 50 PPBEAST = 085and PP = 051 respectively) Missing data for Briggsidaedepresses nodal support in ML analyses within Travunioideaobscuring interfamilial relationships In the absence ofBriggsidae we recover a sister relationship betweenSclerobunidae (Zuma acuta Goodnight amp Goodnight 1942)and the remaining Travunioidea (BS = 75) and themonophyly of Travuniidae +Cladonychiidae (BS = 77)

A recent molecular dating of Travunioidea obtained muchyounger dates than estimated herein in spite of similar taxaand molecular loci In that study Derkarabetian et al (2010)investigated the evolution of troglobitism in Sclerobunidae(also referred to as the lsquoNorth American triaenonychidsrsquo)and used the cladonychiid fossil Protoholoscotolemon(38ndash54Mya Ubick and Dunlop 2005) to constrain theminimum age of Travunioidea in addition to calibration pointsderived from geological ages of strata These practicesaccord with the scope of the troglobitism study (thedivergences of interest were comparatively recent ndash Plioceneor younger) but we did not utilise Protoholoscotolemon in ourdating for two reasons (1) we do not obtain an unambiguouslymonophyletic Cladonychiidae in our analyses and (2) theDevonian and Carboniferous fossils we utilised as calibrationpoints are sufficiently old to obtain a result consistent with anEocene cladonychiid fossil The different calibration pointsimplemented in the respective studies therefore account forthe discrepancy in the dating In addition the morphologicalconservatism of Opiliones makes it doubtful that the age ofProtoholoscotolemon is the maximum age of the superfamily

Our sampling of Insidiatores lineages remains limited andbarring the inclusion of Briggsidae additions to taxonomicsampling largely concern Grassatores Consequently continuedsampling and systematic studies of Insidiatores (eg Mendesand Kury 2008 Thomas and Hedin 2008 Derkarabetian et al2010) are instrumental and imperative to addressing outstandingquestions of phylogenetic relationships and morphologicalevolution A phylogeny of Triaenonychidae is particularlywanting

Early diverging Grassatores Phalangodidaeand Sandokanidae

The recovery of a monophyletic Grassatores (supported inall analyses BS = 99 PP = 100) is consistent with severalmorphological synapomorphies uniting this diverse groupsuch as the presence of two tarsal claws on walking legs IIIand IV However the basal topology of Grassatores has longbeen contentious Previously two superfamilies of Grassatoreswere recognised Oncopodoidea (with the single familySandokanidae (formerly Oncopodidae)) and lsquoGonyleptoidearsquo(with the remaining families) (Martens 1976 1986 Martenset al 1981) This dichotomy was largely based upon theunique morphology of Sandokanidae ndash characters such as thescutum completum (fused opisthosomal tergites) reduced tarsal

articles and genitalic structures which are not found in theremaining Grassatores (Martens 1980 Giribet et al 2002Sharma and Giribet 2009) It was alternatively contended thatthese characters constituted autapomorphies of Sandokanidaewhich was nested within lsquoGonyleptoidearsquo itself (Kury 2003)

In all analyses we obtained an initial divergence betweenPhalangodidae and the remaining Grassatores (BS = 100PP = 096) refuting the traditional dichotomy betweenSandokanidae and lsquoGonyleptoidearsquo Therefore we hereindefine Gonyleptoidea as the taxon consisting of AgoristenidaeCosmetidae Cranaidae Gonyleptidae Manaosbiidae andStygnidae The split between Phalangodidae and the remainingGrassatores has been postulated to correspond to the rifting ofthe ancient supercontinents Laurasia and Gondwana as thedistribution of Phalangodidae was believed to be strictlyHolarctic (Giribet et al 2010) However the inclusion of theMadagascar genus Remyus previously placed in Zalmoxidae(Starega 1989) within a monophyletic Phalangodidae indicatesbroader distribution of phalangodids ndash complementing theTriaenonychidae-Fumontana case discussed above Moreoverthe origin of Phalangodidae is estimated to have occurred around302Mya (95 HPD 264ndash335Mya) greatly predating thebreakup of the supercontinents These results indicate thatPhalangodidae may be narrowly defined and we consequentlytransfer Remyus to Phalangodidae (new familial assignment)

The unusual family Sandokanidae has been postulated to besister toPodoctidae (SharmaandGiribet 2009Giribet et al 2010)or to form agradewith Phalangodidae (Kuryrsquos lsquoPhalangodoidearsquopartly) In the present study ML and BI topologies reconstructSandokanidae as sister to the remaining non-phalangodidGrassatores albeit with insignificant nodal support (BS = 21PP = 078) Curiously the topology obtained byBEAST recoversthe clade (Sandokanidae + Podoctidae) nested within a singleclade of South-east Asian families (PPBEAST = 085) Theseresults do not unambiguously favour one hypothesis overanother and the phylogenetic placement of Sandokanidae inthe Grassatores tree therefore remains debatable

Regardless of the inclusion of Sandokanidae within theSouth-east Asian group of families that the sister family to theremaining Grassatores is Phalangodidae not Sandokanidaeindicates that the peculiar morphology of sandokanids is theresult of multiple apomorphic reversals not the retention ofplesiomorphic characters (Martens and Schwendinger 1998)The large scutum and low tarsomere number found inSandokanidae also occur in Trogulidae and Dicranolasmatidae(suborder Dyspnoi) and all Cyphophthalmi and appear to haveevolved convergently This morphology may reflect adaptationsto a shared ecological niche all these groups inhabit leaf litterinclude no arboricolous species and are limited in vagility ndash

although these life history traits are also found in other groupsHowever this hypothesis has yet to be rigorously tested

Sandokanidae is presently one of few families of Grassatoresfor which a molecular phylogeny assessing intergenericrelationships is available (Sharma and Giribet 2009) andconsistent with earlier results the monophyly of Sandokanidaeis strongly supported (BS = 100 PP = 100) as is the initial splitbetweenMartensiellus and the remaining genera (an undescribedspecies was referred to as lsquogen sprsquo by Sharma and Giribet 2009but subsequent morphological investigation revealed this to be

Molecular phylogeny of Laniatores Invertebrate Systematics 125

Fig 16 Phylogenetic relationships of Laniatores inferred fromBayesian inference analysis of allmolecular data Numbers on nodes indicateposterior probabilities

126 Invertebrate Systematics P P Sharma and G Giribet

a miniature species of Martensiellus P J Schwendinger perscomm) (BS = 92 PP = 100) Intergeneric relationshipsof sandokanid genera are contingent upon analytical treatmentof molecular partitions (with additional sandokanid exemplarsdata not shown) reflecting conflict among datasets documentedby Sharma and Giribet (2009)

The other South-east Asian families

Epedanidae was postulated to be sister to Gonyleptoidea in acladistic analysis based on morphological characters (Kury1993) Subsequently Kury (2003) proposed that Epedanidaewas sister to the clade (Assamiidae (Stygnopsidae +Gonyleptoidea)) The single epedanid previously included in amolecular phylogeny was similarly unstable in placement eithernestingwithin Assamiidae or sister to the African lsquophalangodidsrsquo(Conomma and Maiorerus) in neither case with appreciablenodal support (Giribet et al 2010) Furthermore previousinclusion of several lineages (eg Tithaeus) within Epedanidaethat do not bear characters typical of true epedanids ndash sexuallydimorphic chelicera with heavy dentition elongate andspined pedipalpi male genitalia with setae surroundingthe capsula interna ndash has also made this family difficult todefine Consequently we included only Epedaninae (egPseudoepedanus Alloepedanus and Euepedanus) as exemplarsof true epedanids the systematic validity of the remaining threesubfamilies (and particularly the inclusion of Dibuninae) isbeyond the scope of this study and remains to be investigated

The monophyly of each of four South-east Asian families ndashEpedanidae (represented by epedanines) TithaeidaePetrobunidae and Podoctidae ndash is recovered with high nodalsupport (all BS = 100 PP = 100) These lineages are somehowrelated to each other and while they form a clade in bothML andBI analyses this result receives insignificant nodal support(PP = 077) In the topology recovered by BEAST the South-east Asian families form a clade that includes Sandokanidaea result consistent with the distribution of sandokanids albeitwithout support (PPBEAST = 085) Tithaeidae is probably closelyrelated to Podoctidae given the occurrence of a deeply cleftventral plate resulting in two flanking prongs in themale genitaliaof both families (Suzuki 1977 Lian et al 2008 Fig 19) Inaddition the clade (Podoctidae +Tithaeidae) is recovered withmoderate support in ML and BI analyses (BS = 59 PP = 097)In none of the analyses is Tithaeidae nested within or sister toEpedanidae sensu stricto

The morphology of Petrobunidae suggests some relationshipto previously described South-east Asian families oralternatively Phalangodidae but not inclusion within any ofthese (Fig 19) Molecular sequence data do not support anyspecificplacement ofPetrobunidae although it clusterswithotherSouth-east Asian families in all analyses and is recovered sisterto Epedanidae in two topologies (BI and BEAST)

Gonyleptoidea and Stygnopsidae

With over 2500 described species the superfamilyGonyleptoidea constitutes the most diverse and (arguably) themost charismatic lineage of Opiliones with most of this diversityconcentrated in Amazonia (some cosmetids occur as far north asthe mid-Atlantic states of the US) In a previous analysis

relationships of gonyleptoid families were unsupported andordid not accordwithmorphological studies (Giribet et al 2010) Inparticular the placement of the agoristenid exemplar Avimaalbiornata (Goodnight amp Goodnight 1947) ndash the putativesister family to the remaining Gonyleptoidea ndash within aparaphyletic Cranaidae was particularly suspect given thelimited availability of sequence data for Avima (complete 18SrRNA a300-bp fragmentof 28S rRNA andCOI) In addition thesister group of Gonyleptoidea was ambiguous and contingentupon analytical parameters

Redoubling sequencing efforts and addition of taxaparticularly in the case of Agoristenidae (currently sequencedfor 12S rRNA complete 18S rRNA a 2000-bp fragment of 28SrRNA COI H3 and EF-1a) improved the assessment ofgonyleptoid relationships A monophyletic Gonyleptoidea(BS = 58 PP = 066) is recovered sister to the familyStygnopsidae (BS = 57 PP = 100) Within Gonyleptoidea asplit between Agoristenidae and the remaining gonyleptoids isstrongly supported (BS = 100 PP = 100) followed by thedivergence of Stygnidae (BS = 71 PP = 099) Thisplacement of Agoristenidae is supported by morphologicalstudies (Pinto-da-Rocha and Kury 2007) although in aminority of tree topologies sampled in BI analysesAgoristenidae is sister to Stygnopsidae (hence lower nodalsupport for the monophyly of Gonyleptoidea in BI) Theplacement of Manaosbiidae is uncertain it is recoveredsister to either (Gonyleptidae +Cranaidae) (PP = 089) or toCosmetidae (PPBEAST = 092) but these results are notsupported Cranaidae is recovered as monophyletic (BS = 99PP = 100) and nested within a paraphyletic Gonyleptidae

The present sampling of Cosmetidae and Gonyleptidae doesnot do justice to the diversity of these lineages (~700 and 800described species respectively) A phylogenetic assessment ofall 16 subfamilies of Gonyleptidae alone constitutes the subjectof an arduous and exacting study Fortunately cladistic analysesof morphological characters continue to advance phylogeneticinvestigation of subfamilial lineages (eg BourguyiinaeYamaguti and Pinto-da-Rocha 2009 Goniosomatinae DaSilvaandGnaspini 2009HernandariinaeDaSilva andPinto-da-Rocha2010) Elucidating the phylogeny of Gonyleptoidea is one of themost exciting research topics in the study of Opiliones

The Afrotropical families

The third most diverse family of Laniatores Assamiidaeconstitutes the dominant opiliofauna of the African continent(excluding Madagascar) with some lineages occurring in SouthAsia the Indo-Malay Archipelago and Australia (Trionyxellinaeand Dampetrinae) Proposed to be related to EpedanidaeStygnopsidae andor Gonyleptoidea (Kury 2007) on the basisof genitalic structures assamiids were not recovered asmonophyletic in a previous study (paraphyly was induced byeither Epedanidae orAfricanBiantidae) and the placement of thesubfamily Trionyxellinae was particularly suspect (Giribet et al2010) Trionyxellinae was considered a separate family byMello-Leitatildeo (1949) though others considered it nested withinAssamiidae (eg Starega 1992) In our analyses the monophylyof Assamiidae is supported (BS = 79 PP = 100)lsquoTrionyxellinaersquo (Trionyxella and Mysorea both with a

Molecular phylogeny of Laniatores Invertebrate Systematics 127

Fig 17 Evolutionary time tree of Laniatores inferred fromBEASTanalysis of allmolecular data Coloured bars indicate 95highestposterior density (HPD) intervals for nodes of interest Numbers on nodes indicate posterior probabilities asterisks indicate posteriorprobability of 100

128 Invertebrate Systematics P P Sharma and G Giribet

pseudonychium on the third and fourth tarsi) is a diphyletic entitynested within the other Assamiidae (for the node renderingdiphyly BS = 100 PP = 100) disfavouring family status fortrionyxellines

The African lsquophalangodidsrsquo (sometimes called thelsquoPyramidops grouprsquo) were recognised as a new family byStarega (1992) but not formalised and included 13 genera(Conomma Pyramidops and related lineages) Consistentwith this hypothesis we recovered strong support for thePyramidops group (represented by Conomma and cfPyramidops) as a lineage separate from the true Phalangodidae(egBishopella and Scotolemon) recapitulating a previous result(Giribet et al 2010) The African lsquophalangodidsrsquowere recoveredas the sister lineage of Assamiidae although this relationshipis variably supported in our analyses (BS = 40 PP = 095PPBEAST = 100) A review and formal description of thePyramidops group as a new family lsquoPyramidopidaersquo ndash a namewidely available on the internet including GBIF but notformalised ndash is undertaken elsewhere (Sharma et al 2011)

While we have endeavoured to improve the sampling ofAssamiidae from South-east Asia the internal systematics ofthis family remain a high value target for phylogenetic researchHowever revision of assamiid systematics is inherently difficultfor two reasons (1) the family is peppered with questionablehierarchies and monotypic genera (~12 subfamilies and 250genera for less than 500 described species) and (2) occurs insome of the most inaccessible regions of the world namely sub-Saharan Africa

In all analyses the clade (Assamiidae + Pyramidopidae) issister to the clade (Zalmoxoidea + Samooidea) though this resultis only supported in one analysis (PP= 100) The divergence ofthese four lineages is estimated to have occurred 252Mya and isconsistent with diversification in West Tropical Gondwanaoccurring at least 140million years before the fragmentation ofthis terrane (~110Mya)

Zalmoxoidea

As currently defined the largely Neotropical superfamilyZalmoxoidea includes four families FissiphalliidaeGuasiniidae Icaleptidae and Zalmoxidae Guasiniidae hasnever before been included in a molecular phylogeny In thepresent study we sequenced a guasiniid for six genes and ouranalyses strongly support theplacement ofGuasiniidae as sister tothe samooid family Kimulidae (formerly Minuidae) (BS = 86PP = 098 PPBEAST = 099) and this clade in turn sister to anothersamooid family Escadabiidae (BS = 65 PP = 096PPBEAST = 100) The families Fissiphalliidae Icaleptidaeand Zalmoxidae in turn form a separate clade (BS = 100PP = 100 PPBEAST = 100) with strong support for the sisterrelationship of Zalmoxidae and Fissiphalliidae (BS = 99PP = 100 PPBEAST = 100) corroborating relationshipsproposed by morphological studies (Kury and Peacuterez G 2002Pinto-da-Rocha and Kury 2003b)

Previous analyses have suggested that Samooidea (discussedbelow) is a paraphyletic grade with respect to Zalmoxoidea(Giribet et al 2010) In the present analysis the cladeSamooidea + Zalmoxoidea is strongly supported (BS = 85PP = 100 PPBEAST = 100) as previously suggested by PeacuterezGonzaacutelez and Kury (2007) and by excluding Escadabiidae and

Kimulidae Samooidea is rendered a monophyletic entity albeitwith limited support (BS = 53 PP = 062 PPBEAST = 081) Thestrong support from molecular sequence data for the cladeincluding Escadabiidae Kimulidae and the four zalmoxoidfamilies (BS = 89 PP = 100 PPBEAST = 100) suggests thatthese may form a natural group

Re-examination of the morphology of these six families incomparisonwith true samooid lineages (Biantidae Samoidae andStygnommatidae) corroborates the exclusionofEscadabiidae andKimulidae from true Samooidea Escadabiidae and Kimulidae(1) lack the scopula characteristic of Samoidae and stenostygnineBiantidae (2) lack a sexually dimorphic metatarsus IIIcharacteristic of Samoidae Stygnommatidae and stenostygnineBiantidae and (3) lack a penial calyx characteristic of SamoidaeConsistent with placement within Zalmoxoidea EscadabiidaeandKimulidae (1) possess a small oculariumbearing the eyes thatis removed from the margin of the carapace (2) bear a wellmarked dorsal protuberance (bulla) on the proximal segmentof the chelicera that lacks armature and (3) possess sexuallydimorphic leg IV segments particularly the femur and tibiawhich may be variedly arcuate incrassate and spinedAdditionally Escadabiidae Fissiphalliidae and Zalmoxidae allpossess sexually dimorphic tegumental glandopeningson tibia IIwhereas Biantidae Samoidae and Stygnommatidae possessthese structures on metatarsus III (Willemart et al 2010)While data on tegumental gland openings are only availablefor a small handful of species these may constitute significantdiagnostic characters for species wherein sexual dimorphismdoes not manifest itself in the readily observable form ofenlarged and spiny segments

Given the results of our phylogenetic analyses maintainingSamooidea (as currently defined) renders it a paraphyletic gradewith respect to a diphyletic Zalmoxoidea (as currently defined)Consequently based on the aforementioned morphologicalcharacters and robust molecular phylogenetic signal wetransfer Escadabiidae and Kimulidae to Zalmoxoidea

Samooidea

A previous cladistic analysis based upon morphological datasuggested close relationship between six families ndash BiantidaeEscadabiidae Kimulidae Podoctidae Samoidae andStygnommatidae ndash thenceforth known as Samooidea (Kury1993) the only pantropical Laniatores superfamily HoweverPodoctidae does not have any obvious relationship to Samooideaand has subsequently been transferred (Kury 2007) in ouranalyses Podoctidae is sister to Tithaeidae or Sandokanidaeie distantly related to all samooid families Moreover ouranalyses strongly favour the exclusion of Escadabiidae andKimulidae from Samooidea

The remaining three families ndash Biantidae Samoidae andStygnommatidae ndash are distributed in the Neotropics and partsof Africa with a handful of suspect lineages in South-east AsiaRe-examination and reassignment of many Samoidae genera(eg the Indonesian lsquosamoidrsquo Waigeucola palpalis PeacuterezGonzaacutelez 2011) suggest that the range of Samoidae does notinclude South-east Asia Peacuterez Gonzaacutelez and Kury (2007) alsoobserved that the lsquosamoidsrsquo of Africa Madagascar and theSeychelles may not be true Samoidae either Similarlyinclusion of the genus Stygnomimus an Indonesian lineage

Molecular phylogeny of Laniatores Invertebrate Systematics 129

within Stygnommatidae is highly dubious as the twoIndonesian lsquostygnommatidsrsquo are either highly autapomorphic(Stygnomimus conopygus (Roewer 1927)) or described on the

basis of a generic female that is not readily distinguishable fromfemales of other species (Stygnomimus malayensis (Suzuki1970))

Fig 18 Strict consensus of tree topologies obtained by all phylogenetic analyses

130 Invertebrate Systematics P P Sharma and G Giribet

Previous efforts to assess the systematic validity of Samooideaby means of molecular sequence data were limited insofar asonly two Samoidae three Biantidae (all Metabiantes) and twoStygnommatidae were sampled (Giribet et al 2010) Thesampling of Samoidae was especially problematic only asingle Neotropical adult (Pellobunus) and one African juvenilesamoid (lsquoSamoidae gen sprsquo) were included The designation ofthe latter is suspect as juveniles of Samoidae are oftenindistinguishable from the juveniles of other lineages becausemany diagnostic secondary sexual characters in Grassatores(eg spines and incrassate appendages) are not acquired untilafter several postembryonic stages (Townsend et al 2009)

In the present study though the type genus of Samoidae(Samoa from Samoa) was not available we sequenced theclosely related genus Badessa (from Fiji collected byP P S) as well as additional Biantidae and StygnommatidaeOur analyses recovered a monophyletic Samooidea (excludingEscadabiidae and Kimulidae BS = 53 PP = 062) withSamoidae sensu stricto (Pellobunus +Badessa BS = 100PP = 100) nested within a paraphyletic Stygnommatidae aplacement that is supported (BS = 87 PP = 100) Bycontrast the African lsquosamoidrsquo is sister to the AfricanBiantidae a relationship that is also well supported(BS = 100 PP = 100) These relationships suggest a basal

Fig 19 Cladogram of male genitalic evolution in South-east Asian families superimposed upon a schematised molecular phylogeny based on ML and BIanalyses of all molecular data Exemplars (a) Pseudoepedanus doiensis Suzuki 1969 (redrawn from Suzuki 1969) dorsal view (b) Pseudoepedanus doiensisSuzuki 1969 (redrawn from Suzuki 1969) ventral view (c) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) ventral view(d) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) dorsal view (e) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki1976) dorsal view (f) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki 1976) ventral view (g) Petrobunus torosus lateral view (h) ZalmoxidagibberaSuzuki 1969 dorsal view (i)Zalmoxida sp (MCZDNA102677) dorsolateral view (j)Metatithaeus rubidusSuzuki 1969 (redrawn fromSuzuki 1969)ventral view (k)Tithaeus kokutnusSuzuki 1985 (redrawn fromSuzuki 1985) ventral view (l)Tithaeus similisSuzuki 1985 (redrawn fromSuzuki 1985) ventralview (m)DongmoaoshimensisSuzuki 1964 (redrawn fromSuzuki 1964) ventral view (n)Bonea longipalpisSuzuki 1977 (redrawn fromSuzuki 1977) ventralview (o) Santobius annulipes Soslashrensen 1886 (redrawn from Kury and Machado 2009) ventral view (p) Lomanius longipalpus mindanaoensis Suzuki 1977(redrawn from Suzuki 1977) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 131

dichotomy within Samooidea that corresponds to one groupof Neotropical and Pacific lineages and a second group ofAfrican lineages However as we were unable to samplestenostygnine (Neotropical) and Indo-Pacific Biantidae aswell as numerous monotypic genera dubiously placed inSamoidae biogeographical extrapolations for Samooidea aretenuous (discussed below)

The internal relationships of Samooidea suggest that themorphology of Samoidae may have evolved convergently Asthe African samoid is a juvenile (the same specimen previouslysequenced by Giribet et al 2010 now sequenced for additional28S rRNA and other genes) we cannot rule out the possibility ofa monophyletic Samoidae that includes African species (thespecimen in question could be a juvenile biantid) In any casethe paraphyly of Stygnommatidae and putative polyphyly ofSamoidae strongly advocate systematic revision of samooidfamilies as currently defined corroborating hypotheses of non-monophyly based on morphology (Peacuterez Gonzaacutelez 2007 PeacuterezGonzaacutelez and Kury 2007) Our sampling of these families isinsufficient to advocate specific taxonomic action but an ongoing

study of samooidean systematics will shed more light on thevalidity of constituent families (A Peacuterez Gonzaacutelez work inprogress)

Biogeography of Zalmoxoidea and Samooidea

While most superfamilies of Grassatores are restricted to aspecific part of the tropics (eg Neotropics South-east Asia)two are distributed in multiple biogeographical provincesSamooidea occurs in the Neotropics and Afrotropics withquestionable records from South-east Asia Zalmoxoidea isconcentrated in the Neotropics with the exception of oneIndo-Pacific lineage of Zalmoxidae (represented here byZalmoxis sp) The ages and distributions of Samooidea andZalmoxoidea suggest that their biogeography was influencedby the fragmentation of West Tropical Gondwana ndash causingthe former to diverge basally throughout West TropicalGondwanan terranes and the latter to become isolated to theNeotropics (with possible subsequent dispersal)

Fig 20 Ancestral range reconstructions for Samooidea +Zalmoxoidea inferred by Lagrange using stratified models corresponding to two vicariant events(indicated by dotted lines) Coloured squares at terminals indicate ranges occupied by sampled species Coloured squares on nodes indicate ranges reconstructedfor hypothetical ancestors Numbers on nodes indicate relative probability of ranges reconstructed

Fig 21 Best hypothesis of Laniatores relationships based on all available evidence Bracketed nodes indicate non-monophyletic entities Dashed line indicatesambiguity in the placement of Sandokanidae (alternatively placed as shown or as sister to Podoctidae) Exemplars of Laniatores diversity are Synthetonychiaoliveae (Synthetonychiidae) Equitius doriae (Triaenonychidae) Hadziana clavigera (Travuniidae) Erebomaster flavescens flavescens (Cladonychiidae)Scotolemon lespesi (Phalangodidae) Palaeoncopus gunung (Sandokanidae) Santobius sp (Podoctidae) Tithaeus sp (Tithaeidae) Petrobunus spinifer(Petrobunidae) Alloepedanus sp (Epedanidae) Hoplobunus sp (Stygnopsidae) Torreana spinata (Agoristenidae) Stygnoplus clavotibialis (Stygnidae)Metalibitia paraguayensis (Cosmetidae)Acutisoma longipes (Gonyleptidae)Conommaoedipus (Pyramidopsgroup)Mysorea thaiensis (Assamiidae)Lacurbssp (Biantidae) Stygnomma sp (Stygnommatidae) Badessa sp (Samoidae) Guasinia sp (Guasiniidae) Icaleptes sp (Icaleptidae) Fissiphallius chicoi(Fissiphalliidae) Zalmoxis sp (Zalmoxidae) Kimula goodnightiorum (Kimulidae)

132 Invertebrate Systematics P P Sharma and G Giribet

Molecular phylogeny of Laniatores Invertebrate Systematics 133

To test this hypothesis we conducted likelihood analysisof range evolution using the program Lagrange (Ree et al2005 Ree and Smith 2008) for the clade (Zalmoxoidea +Samooidea) The stratified analysis resulted in a globalmaximum likelihood of ndashlnL= 1556 outperforming anunconstrained analysis that did not include any dispersalconstraints (ndashlnL= 1676) Likelihood analysis of rangeoptimisation (Fig 20) indicates that the ancestral range ofSamooidea includes both the Afrotropics and the Neotropics(relative probability pr = 1000) but a subsequent split occursbetween an African lineage (pr = 1000) and a NeotropicalIndo-Pacific lineage with a Neotropical ancestral range (pr = 0986)Samoidea of the Indo-Pacific occur on young oceanic islands(eg Fiji Samoa) indicating recent transoceanic dispersal fromthe Neotropics

Ancestral range reconstructions for Samooidea are allconsistent with estimated divergence times for these clades(diversification of Samooidea predates the rifting of WestAfrica from northern South America) favouring an underlyingvicariant process for the basal topology with subsequent recentdispersal events However these results are contingent upon thepresent sampling which does not include all samooid lineages(eg stenostygnine Biantidae) but basal range reconstructionsare likely unaffected (eg Stenostygninae is exclusivelyNeotropical)

In contrast the ancestor of Zalmoxoidea is reconstructedas singularly Neotropical (pr = 0996) This is consistent withisolation of a zalmoxoid ancestor to Amazonia which thenradiated ~191Mya Subsequent ancestral ranges are alsoreconstructed as Neotropical with high relative probabilityHowever the ancestral range of the clade (Icaleptidae +Fissiphalliidae + Zalmoxidae) is ambiguously reconstructedas either Neotropical (pr = 0935) or Neotropical + Indo-Pacific(pr = 0064) as is the split between Fissiphalliidae andZalmoxidae (Neotropical pr = 0856 Neotropical + Indo-Pacific pr = 0141)

These results suggest that the Indo-Pacific lineage ofZalmoxidae which split from Neotropical Zalmoxidae ~83Myais likely the result of long-distance dispersal from the NeotropicsHowever due to the persistence of transantarctic connectionsbetween the Australian plate and temperate South America untilthe Tertiary a competing vicariant scenario cannot be ruled outwithout densely sampling zalmoxid diversity The biogeographyof Zalmoxidae is presently being explored in greater detail in aseparate study (P P Sharma unpubl data)

Finally the ancestral range of (Samooidea + Zalmoxoidea)includes both Africa and the Neotropics (pr = 0957) consistentwith a tropical West Gondwanan ancestor This resultlends circumstantial evidence to a sister relationship of theAfrotropical families (Assamiidae + Pyramidopidae) and theclade (Samooidea + Zalmoxoidea) recovered in all analyses

The diversification of Grassatores

While numerous interfamilial relationships are supported inthis study particularly among gonyleptoid and zalmoxoidfamilies some relationships between superfamilies ofGrassatores are not supported and are contingent upon

analytical treatments namely the deployment of substitutionmodels and data partitioning (Fig 21) The cause of thisinstability could be related to insufficient data particularly inthe EF-1a partition (the length of an intron which can exceed400 bp in some taxa makes this gene particularly difficult toamplify) However examination of clade divergence timessuggests that rapid diversification of Grassatores lineagescould in part augment phylogenetic uncertainty in basal partsof the topology

The split between Phalangodidae and the remainingGrassatores is estimated to have occurred ~302Mya but aseries of divergences resulted in the origin of all superfamiliallineages between 232 and 271Mya Relative to the estimatedage of Laniatores (348Mya) this 39-million-year period isremarkably narrow and inherently problematic as the amountof phylogenetic signal for a given stem subtending a node isdirectly proportional to the amount of time that the stem inquestion spans (Lanyon 1988 Rokas and Carroll 2006) Thesmall internal edge lengths of the stems corresponding to basaldivergences of non-phalangodid Grassatores (Figs 15 16)combined with the ancient age of lineages derived from thesedivergences result in relationships that are difficult to estimatewithout a large amount of sequence data andor the inclusion ofdata that are less afflicted by homoplasy (because longer edgelengths imply more indel and substitution events on edges)(Whitfield and Lockhart 2007)

We additionally observe that the origins of most Grassatoressuperfamilies occur in the wake of the end-Permian massextinction (~254Mya) Rapid radiation in the wake of a massextinction has occurred in multiple metazoan lineagesthe putative result of relaxed selection and opening ofpreviously occupied ecological niche space (Labandeira andSepkoski 1993 Sahney and Benton 2008) The rapiddiversification of early Grassatores lineages could be anexample of this phenomenon but this hypothesis is difficult totest in the absence of Mesozoic Grassatores fossils (reviewed byDunlop 2007)

Finally we observe that contrary to traditional hierarchiesproposed for Laniatores many of the clades recovered in ouranalyses correspond to geographical regions particularly in thecase of Grassatores For example the southern hemispheretriaenonychids are restricted to temperate Gondwananlandmasses Gonyleptoidea and their sister group Stygnopsidaeform a Neotropical (AmazonianMesoamericanAntillean) cladethat excludes Assamiidae which has been hypothesised to be amember of a broader Gonyleptoidea (Kury and Cokendolpher2000 Mendes and Kury 2007) In our analyses Assamiidae isin fact a member of a largely Afrotropical clade together withthe Pyramidopidae South-east Asian families usually form oneclade (at most two) albeit with limited support Samooideafamilies are divided into two clusters African and NeotropicalWith one exception (described above) Zalmoxoidea is restrictedto the Neotropics The ages that we estimate for Laniatoresradiations are consistent with ancient diversification beforethe fragmentation of Pangaea An ancient diversification inconjunction with the climatic stability of the tropics may in partexplain the comparatively greater diversity of the armouredharvestmen with respect to the other Opiliones suborders

134 Invertebrate Systematics P P Sharma and G Giribet

Acknowledgements

Weare indebted toPeter J Schwendingerwho collected andprovidedmost ofthe material for study from South-east Asia Some Thai and most of theNeotropical Laniatores were obtained from the TIGER (Thailand InventoryGroup for Entomological Research) and LLAMA (Leaf Litter Arthropods ofMeso-America) projects toC Lienhard and J Longino respectivelyMaterialfrom Madagascar was generously contributed by Charles Griswold and theCalifornia Academy of Sciences Jesse Czekanski-Moir in conjunction withthe Belau NationalMuseum contributed elusive specimens from Palau AbelPeacuterezGonzaacutelez identifiedmanyNeotropical species included in the study andcontributed specimens fromCubaRicardoPinto-da-Rocha identified someofthe live photographed animals from the Neotropics Discussions with RonaldMClouseAbelPeacuterezGonzaacutelezAdrianoBKury andCarlosEPrieto refinedmanyof the ideas presentedhereTwoanonymous reviewers and the associateeditor provided comments that helped to improve an earlier version ofthis manuscript Laura Leibensperger sorted and accessioned TIGER andLLAMA material as well as MCZ type material Adam Graham and theCenter forNanoscaleStudies atHarvardUniversityprovided support forSEMwork Collecting efforts in New Caledonia were greatly facilitated by theguidance of Herveacute Jourdan (Institut de rechercheacute pour de developpementNoumea) and his teammembers Collecting efforts in Fiji weremade possibleby Marika Tuiwawa (University of the South Pacific Suva) and his teammembers Hilda Waqa and Tokasaya lsquoToxrsquo Cakacaka we are especiallygrateful to Tox for his good company during fieldwork and to his familyfor graciously enabling a visit toOvalau SuzieYee Shawprovided invaluablelogistical support in Fiji and her sons Colin and Joshua Yee Shaw assistedwith sorting Fijian material Fieldwork in Indonesia and West Africa wassupported by two MCZ Putnam Expedition Grants awarded to RonaldM Clouse and G G (2006) and to G G (2009) respectively Fieldworkin New Caledonia was supported by the Goelet award the Kalathia FamilyTrust and the Explorers Club awarded to P P S in 2006 Fieldwork in Fijiand in Palauwas supported by twoMCZPutnamExpeditionGrants awardedto P P S (2008) and to Ronald M Clouse and P P S (2010) respectivelyP P S was supported by a Faculty of Arts and Sciences Graduate Fellowshipfrom Harvard University

References

Castresana J (2000) Selectionof conservedblocks frommultiple alignmentsfor their use in phylogenetic analysis Molecular Biology and Evolution17 540ndash552

Colgan D J McLauchlan A Wislon G D F Livingston S MacaranasJ Edgecombe G D Cassis G and Gray M R (1998) Molecularphylogenetics of the Arthropoda relationships based on histone H3and U2 snRNA DNA sequences Australian Journal of Zoology 46419ndash437 doi101071ZO98048

DaSilva M B and Gnaspini P (2009) A systematic revision ofGoniosomatinae (Arachnida Opiliones Gonyleptidae) with a cladisticanalysis and biogeographical notes Invertebrate Systematics 23530ndash624 doi101071IS09022

DaSilva M B and Pinto-da-Rocha R (2010) Systematic review andcladistic analysis of the Hernandariinae (Opiliones Gonyleptidae)Zoologia 27 577ndash642

Derkarabetian S Steinmann D B and Hedin M (2010) Repeatedand time-correlated morphological convergence in cave-dwellingharvestmen (Opiliones Laniatores) from montane western NorthAmerica PLoS ONE 5 e10388 doi101371journalpone0010388

Drummond A J and Rambaut A (2007) BEAST Bayesian evolutionaryanalysis by sampling trees BMC Evolutionary Biology 7 214doi1011861471-2148-7-214

Drummond A J Ho S Y W Phillips M J and Rambaut A (2006)Relaxed phylogenetics and dating with confidence PLoS Biology 4 e88doi101371journalpbio0040088

Dunlop J A (2007) Paleontology In lsquoHarvestmen The Biology ofOpilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 247ndash265 (Harvard University Press Cambridge MA USA)

Dunlop J A and Anderson L I (2005) A fossil harvestman (ArachnidaOpiliones) from theMississippian of East Kirkton Scotland The Journalof Arachnology 33 482ndash489 doi10163604-791

Dunlop JAAndersonL IKerpH andHassH (2003)Preservedorgansof Devonian harvestmen Nature 425 916 doi101038425916a

Dunlop J A Anderson L I Kerp H and Hass H (2004) A harvestman(Arachnida Opiliones) from the Early Devonian Rhynie chertsAberdeenshire Scotland Transactions of the Royal Society ofEdinburgh Earth Sciences 94 341ndash354

Edgar R C (2004) MUSCLE multiple sequence alignment with highaccuracy and high throughput Nucleic Acids Research 32 1792ndash1797doi101093nargkh340

Edgecombe G D and Giribet G (2006) A century laterndash a total evidencere-evaluation of scutigeromorph centipedes (Myriapoda Chilopoda)Invertebrate Systematics 20 503ndash525 doi101071IS05044

Edgecombe G D Giribet G and Wheeler W C (2002) Phylogeny ofHenicopidae (Chilopoda Lithobiomorpha) a combined analysis ofmorphology and five molecular loci Systematic Entomology 2731ndash64 doi101046j0307-6970200100163x

FolmerOBlackMHoehWLutzR andVrijenhoekRC (1994)DNAprimers for amplification ofmitochondrial cytochrome c oxidase subunit Ifrom diverse metazoan invertebrates Molecular Marine Biology andBiotechnology 3 294ndash299

Forster R R (1954) The New Zealand harvestmen (sub-order Laniatores)Canterbury Museum Bulletin 2 1ndash329

Giribet G and Kury A B (2007) Phylogeny and biogeography InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 62ndash87 (Harvard University PressCambridge MA USA)

Giribet G Carranza S Baguntildeagrave J Riutort M and Ribera C (1996) Firstmolecular evidence for the existence of a Tardigrada +Arthropoda cladeMolecular Biology and Evolution 13 76ndash84

Giribet G Rambla M Carranza S Baguntildeagrave J Riutort M and Ribera C(1999) Phylogeny of the arachnid order Opiliones (Arthropoda)inferred from a combined approach of complete 18S and partial 28Sribosomal DNA sequences and morphology Molecular Phylogeneticsand Evolution 11 296ndash307 doi101006mpev19980583

Giribet G Edgecombe G D Wheeler W C and Babbitt C (2002)Phylogeny and systematic position of Opiliones a combined analysis ofchelicerate relationships using morphological and molecular dataCladistics 18 5ndash70

Giribet G Vogt L PeacuterezGonzaacutelez A Sharma P andKury A B (2010)A multilocus approach to harvestman (Arachnida Opiliones) phylogenywith emphasis on biogeography and the systematics of LaniatoresCladistics 26 408ndash437

Hara M R Gnaspini P and Machado G (2003) Male egg guardingbehavior in the Neotropical harvestman Ampheres leucopheus (Mello-Leitatildeo 1922) (Opiliones Gonyleptidae) The Journal of Arachnology 31441ndash444 doi101636S02-32

Hedin M Derkarabetian S McCormack M and Richart C (2010) Thephylogenetic utility of the nuclear protein-encoding gene EF-1a forresolving recent divergences in Opiliones emphasizing intronevolution The Journal of Arachnology 38 9ndash20 doi101636HA09-491

Huelsenbeck J P and Ronquist F (2005) Bayesian analyses of molecularevolution using MrBayes In lsquoStatistical Methods in MolecularEvolutionrsquo (Ed R Nielsen) (Springer New York)

HunterRK ProundDNBurns JA Tibbetts JA andTownsendVR(2007) Parental care in the Neotropical harvestman Phareicranauscalcariferus (Opiliones Cranaidae) The Journal of Arachnology 35199ndash201 doi101636ST06-181

Molecular phylogeny of Laniatores Invertebrate Systematics 135

Kocher T D Thoma W K Meyer A Edwards S V Paumlaumlbo SVillablanca F X and Wilson A C (1989) Dynamics ofmitochondrial DNA evolution in animals amplification andsequencing with conserved primers Proceedings of the NationalAcademy of Sciences of the United States of America 86 6196ndash6200doi101073pnas86166196

Kury A B (1993) Anaacutelise filogeneacutetica de Gonyleptoidea (ArachnidaOpiliones Laniatores) PhD Thesis Universidade de Satildeo Paulo SatildeoPaulo Brazil

Kury A B (2003) Annotated catalogue of the Laniatores of the NewWorld (Arachnida Opiliones) Revista Ibeacuterica de AracnologiacuteaVolumen Especial Monograacutefico 1 1ndash337

Kury A B (2006) Checklist of valid genera of Opiliones of theWorld Museu NacionalUFRJ Available from httpwwwmuseunacionalufrjbrmndiAracnologiachecklaniatorhtm [Accessed1 February 2011]

Kury A B (2007) Podoctidae Roewer 1912 In lsquoHarvestmen The Biologyof Opilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 221ndash224 (Harvard University Press Cambridge MA USA)

Kury A B and Cokendolpher J C (2000) Opiliones In lsquoBiodiversidadTaxonomiacutea y Biogeografiacutea de Artoacutepodos de Meacutexico Hacia una Sintesisde su Conocimientorsquo vol 2 (Eds J E Llorente E Gonzaacutelez andN Papavero) pp 137ndash157 (Universidad Nacional Autoacutenoma deMexico Meacutexico DF Mexico)

Kury A B and Machado G (2009) Notes on Santobius from Vanuatu andFiji and the status of the eastern Melanesian Ibalonius (ArachnidaOpiliones Podoctidae) Zoological Studies 48 524ndash538

Kury A B and Peacuterez G A (2002) A new family of Laniatores fromnorthwestern South America (Arachnida Opiliones) Revista Ibeacuterica deAracnologiacutea 6 3ndash11

Labandeira C C and Sepkoski J J (1993) Insect diversity in the fossilrecord Science 261 310ndash315 doi101126science11536548

Lanyon S M (1988) The stochastic mode of molecular evolutionwhat consequences for systematic investigations The Auk 105565ndash573

Lian W-G Zhu M-S and Kury A B (2008) A new species of the genusTithaeus from China (Arachnida Laniatores Epedanidae) Zootaxa1841 53ndash60

Machado G Requena G S Buzatto B A Osses F and Rossetto L M(2004) Five new cases of paternal care in harvestmen (ArachnidaOpiliones) implications for the evolution of male guarding in theNeotropical family Gonyleptidae Sociobiology 44 577ndash598

Martens J (1976) Genitalmorphologie System und Phylogenie derWeberknechte (Arachnida Opiliones) Entomologica GermanicaZeitschrift fuumlr das Gesamtgebiet der Wissenschaftlichen Entomologie3 51ndash68

Martens J (1980) Versuch eines phylogenetischen Systems der OpilionesIn lsquoProceedings 8th International Congress of Arachnology ViennaVerhandlungenrsquo (Ed J Gruber) pp 355ndash360 (Vienna Austria)

Martens J (1986) Die Grossgliederung der Opiliones und die Evolutionder Ordnung (Arachnida) Actas del X Congreso Internacional deAracnologiacutea Jaca 1 289ndash310

Martens J (1993) Further cases of paternal care in Opiliones (Arachnida)Tropical Zoology 6 97ndash107

Martens J and Schwendinger P S (1998) A taxonomic revision ofthe family Oncopodidae I New genera and new species of GnomulusThorell (Opiliones Laniatores) Revue Suisse de Zoologie 105 499ndash555

Martens J Hoheisel U and Goumltze M (1981) Vergleichende Anatomieder Legeroumlhren der Opiliones als Beitrag zur Phylogenie der Ordnung(Arachnida) Zoologische Jahrbucher Abteilung fur Anatomie undOntogenie der Tiere 105 13ndash76

Mello-Leitatildeo C F (1949) Famiacutelias subfamiacutelia espeacutecies e gecircneros novos deopiliotildees e notas de sinoniacutemia Boletim do Museu Nacional Nova SeacuterieZoologia Rio de Janeiro 94 1ndash33

Mendes A C and Kury A B (2007) Stygnopsidae Soslashrensen 1932 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 232ndash234 (Harvard University PressCambridge MA USA)

Mendes A C and Kury A B (2008) Intercontinental Triaenonychidae ndashthe case of Ceratomontia (Opiliones Insidiatores) The Journal ofArachnology 36 273ndash279 doi101636CH07-931

Murphree C S (1988) Morphology of the dorsal integument of tenopilionid species (Arachnida Opiliones) The Journal of Arachnology16 237ndash252

Park J K andOacuteFoighilD (2000) Sphaeriid and corbiculid clams representseparate heterodont bivalve radiations into freshwater environmentsMolecular Phylogenetics and Evolution 14 75ndash88 doi101006mpev19990691

Peacuterez Gonzaacutelez A (2006) lsquoRevisatildeo Sistemaacutetica e Anaacutelise Filogeneacutetica deStygnommatidae (Arachnida Opiliones Laniatores)rsquo (Museu NacionalUniversidade Federal de Rio de Janeiro Rio de Janeiro Brazil)

Peacuterez Gonzaacutelez A (2007) Stygnommatidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 229ndash232 (Harvard University PressCambridge MA USA)

Peacuterez Gonzaacutelez A (2011) New familial assignment for two harvestmanspecies of the infraorder Grassatores (Arachnida Opiliones Laniatores)Zootaxa 2757 24ndash28

Peacuterez Gonzaacutelez A and Kury A B (2007) Samoidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 224ndash226 (Harvard University PressCambridge MA USA)

Pineau P Henry M Suspegravene R Marchio A Dettai A Debruyne RPetit T Leacutecu A Moisson P Dejean A Wain-Hobson S andVartanian J-P (2005) A universal primer set for PCR amplificationof nuclear histone H4 genes from all animal species Molecular Biologyand Evolution 22 582ndash588 doi101093molbevmsi053

Pinto-da-Rocha R (1997) Systematic review of the Neotropical familyStygnidae (Opiliones Laniatores Gonyleptoidea) Arquivos deZoologia 33 163ndash342

Pinto-da-Rocha R and Kury A B (2003a) Phylogenetic analysis ofSantinezia with description of five new species (Opiliones LaniatoresCranaidae) The Journal of Arachnology 31 173ndash208 doi1016360161-8202(2003)031[0173PAOSWD]20CO2

Pinto-da-Rocha R and Kury A B (2003b) Third species of Guasiniidae(Opiliones Laniatores) with comments on familial relationships TheJournal of Arachnology 31 394ndash399 doi101636H02-59

Pinto-da-Rocha R and Kury A B (2007) Agoristenidae Silhavy 1973 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 171ndash173 (Harvard University PressCambridge MA USA)

Posada D (2005) Modeltest 37 Program and documentation available athttpdarwinuvigoes [Accessed 28 May 2011]

Posada D and Buckley T (2004) Model selection and model averaging inphylogenetics advantages of Akaike information criterion and Bayesianapproaches over likelihood ratio tests Systematic Biology 53 793ndash808doi10108010635150490522304

Posada D and Crandall K A (1998) Modeltest testing the model ofDNA substitution Bioinformatics (Oxford England) 14 817ndash818doi101093bioinformatics149817

Prendini L Weygoldt P and Wheeler W C (2005) Systematics of theDamon variegates group of African whip spiders (ChelicerataAmblypygi) evidence from behaviour morphology and DNAOrganisms Diversity amp Evolution 5 203ndash236 doi101016jode200412004

Rambaut A E (1996) Se-Al sequence alignment editor University ofOxford UK Program and documentation available at httptreebioedacuksoftwarefigtree [Accessed 21 December 2009]

136 Invertebrate Systematics P P Sharma and G Giribet

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 17: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

in any of the topologies we examinedMoreover the cleft ventralplate forming two prongs in the male genitalia of many Tithaeusspecies in addition to the absence of a ring of setae surroundingthe capsula interna (typical of Epedanidae) suggest that Tithaeus

and related genera (eg Istithaeus Metatithaeus Tithaeommaetc) are not true epedanids but may be more closely related toeither (1) Podoctidae a hypothesis that is supported in someanalyses (bootstrap frequency in ML [BS] = 59 posteriorclade probability given by MrBayes [PP] = 097) or (2) theclade (Podoctidae + Sandokanidae) recovered by the BEASTtopology (posterior clade probability given by BEAST[PPBEAST] = 100)

The inclusion of Tithaeus-like Grassatores in Epedanidaerenders the latter para- or diphyletic and obscures a cleardiagnosis of epedanids as the morphology of Tithaeus (andMetatithaeus) does not accord with many epedanidsynapomorphies Moreover inclusion of Tithaeus andorMetatithaeus within a broader Podoctidae is also unjustifiedbecause this violates many of the synapomorphies ofPodoctidae such as (1) tuberclesspines in dorsal and ventralrows on leg I (2) tubercular bridges (3) a sexually dimorphicbasichelicerite and (4) a sexually dimorphic ocularium

Consequently we erect the family name Tithaeidaeseparating Tithaeus and Metatithaeus from EpedanidaeTithaeidae likely includes the monotypic Roewerian generaIstithaeus Kondosus Sterrhosoma and Tithaeomma but thestatus of these genera requires further investigation and will beaddressed in a forthcoming study

Distribution

Distributed throughout Sundaland the Thai-Malay PeninsulaSumatra Java and Borneo Also reported from northern Vietnamand southern China One doubtful record from West Timor(see Lian et al 2008)

Results

Phylogenetic analysis

Less sequence data are presently available for Briggsusflavescens (partial 28S and COI Derkarabetian et al 2010)with respect to the rest of the data matrix Consequently twoML analyses were conducted including and excluding Briggsusflavescens The ML analysis with all taxa resulted in a treetopology with lnL= ndash8372597 Repeating the analysis withoutBriggsus resulted in a tree topology with lnL= ndash8336108 Thetwo topologies are identical save for the internal relationships ofTravunioidea which includes Briggsidae (Fig 15) Inclusion ofBriggsidae recovers a diphyletic Cladonychiidae with Briggsussister to Holoscotolemon but these relationships are notsupported Exclusion of Briggsidae results in higher nodalsupport frequencies within Travunioidea and recovers a sisterrelationship of Sclerobunidae and the remaining Travunioidea(BS = 75) and a monophyletic Cladonychiidae + Travuniidae(BS = 77) sister to Trojanella Including Briggsus in theanalysis does not affect topology or nodal support in otherparts of the phylogeny Monophyly of Travunioidea isstrongly supported (BS = 100) in either case

Runs of MrBayes ver 312 reached stationarity in 2 000 000generations 2 500 000 generations (25) were hence discardedas burn-in The BI analysis with all taxa resulted in a topologylargely similar to theMLtree (Fig 16)Notable differences are therelative placements of the clade (Gonyleptoidea + Stygnopsidae)

a

b

c d

050 mm

050 mm

20 microm

20 microm

Fig 14 Petrobunus torosus sp nov (a) female paratype dorsal view(b) female paratype ventral view (c) pars distalis of penis lateral view and(d) ovipositor dorsal view

122 Invertebrate Systematics P P Sharma and G Giribet

and the South-east Asian group of families Some differencesexist with respect to supported nodes within superfamilies

Estimation of divergence times

The run of BEAST reached stationarity after 6 000 000generations 10 000 000 generations (20) were discarded asburn-in The tree topology recovered by BEAST (Fig 17) differsfromML andBI topologies in (1) the placement of Sandokanidaeand (2) the relationships between superfamilies Diversificationof Laniatores is dated at ~348Mya Diversification of majorlineages is estimated as follows (Travunioidea+Triaenonychidae)299Mya Grassatores 302Mya Assamiidae +Pyramidopsgroup 232Mya Gonyleptoidea + Stygnopsidae 246MyaGonyleptoidea 230Mya Samooidea + Zalmoxoidea 206Myaand a South-east Asian clade (including Sandokanidae)249Mya These results largely corroborate previous estimatesof divergence times (Giribet et al 2010) but confidence intervalsfor estimated ages are more precise A tree file of estimated agesand 95highest posterior density (HPD) intervals for all nodes isprovided as an Accessory Publication on the InvertebrateSystematics website

Whereas the basal topology of Grassatores is unstable andunsupported most familial and superfamilial relationshipsare consistently recovered across analyses A consensus oftopologies across all analyses is shown in Fig 18

Discussion

A molecular phylogeny of the armoured harvestmen has longproven elusive Laniatores comprises entire genera and familiesthat are endemic to particular provinces of the world In somecases higher taxonomic ranks do not even occur beyond specificislands (eg the New Zealand family SynthetonychiidaeForster 1954) Moreover Laniatores includes the majority ofall described Opiliones species (and over half of all describedfamilies) and new lineages continue to be discoveredConsequently previous efforts to assess Laniatores phylogenyhave been prone to undersampling numerous lineages such asAssamiidae Epedanidae and the superfamilies Samooidea and

Zalmoxoidea (eg Giribet et al 1999 2002 Shultz and Regier2001)

The present study with the inclusion of all families ofarmoured harvestmen described heretofore enables detailedinvestigation of internal relationships of Laniatores Ofprincipal interest are the phylogenetic placement of the twonew families of Laniatores erected herein and the systematicvalidity of defined superfamilies Many of the relationshipsrecovered in our analyses are consistent with traditionalhypotheses based on morphological studies but there are someunexpected results We discuss these in turn

Insidiatores

Within a monophyletic Laniatores recovered in all analyses(BS = 100 PP = 093) the constituent lineages of Insidiatoresform a paraphyletic grade with respect to Grassatores WhileTriaenonychoidea and Travunioidea do form a clade (albeit withlow nodal support) the New Zealand endemic familySynthetonychiidae is recovered as sister to all remainingLaniatores (BS = 78 PP = 100) consistent with the resultsof a recent study (Giribet et al 2010) However the inclusionof more data in fact lowers the nodal support for this sisterrelationship relative to the previous studyrsquos ML analysislikely due to the influence of missing data (in particular only~300 bp out of a targeted 3400 bp of 28S rRNA are presentlyavailable for Synthetonychia) Consequently we do not treat theplacement of Synthetonychiidae as definitive

In all analyses the southern hemisphere Triaenonychidaeform a strongly supported clade that diversified ~200Mya(BS = 100 PP = 100) Their distribution and the age of thiscladersquos diversification are similar to that of the temperateGondwanan cyphophthalmid family Pettalidae (estimated tohave diversified ~183ndash221Mya Giribet et al 2010)suggesting a parallel biogeographical process in these lineagesThe North American triaenonychid Fumontana deprehendorShear 1977 is sister to the southern hemisphere Triaenonychidaein all analyses consistent with previous classification (Giribetand Kury 2007 Thomas and Hedin 2008) but support fora monophyletic Triaenonychoidea is limited and sensitiveto analytical parameters (BS = 57 PP lt 050 PPBEAST = 066)

Table 7 Leg measurements of Petrobunus torosus holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011011 039005 026012 028008 036006 040007 180Leg II 014013 061008 029010 043007 042006 072005 261Leg III 015015 051010 019015 037011 045006 046005 213Leg IV 034035 059012 034017 054015 067007 052006 300

Table 8 Leg measurements of Petrobunus torosus female paratype (ex MHNG PAL-0907) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 041008 022011 028010 037005 035006 174Leg II 010009 052007 023008 033007 037006 069005 224Leg III 014016 046010 025024 036012 042007 041005 204Leg IV 018017 054011 029016 049012 058007 048006 256

Molecular phylogeny of Laniatores Invertebrate Systematics 123

Fig 15 Phylogenetic relationships of Laniatores inferred from maximum likelihood analysis of all molecular data (ln L= ndash8372597) Inset topology ofTravunioidea excluding Briggsidae (ln L= ndash8336108) Numbers on nodes indicate bootstrap resampling frequencies

124 Invertebrate Systematics P P Sharma and G Giribet

We recovered a monophyletic Travunioidea which includesBriggsidae in all analyses (BS = 100PP = 100) corroboratingthe superfamilial placement of briggsids Briggsidae isrecovered sister to either Trojanella (ML) or Holoscotolemon(BI) or part of a grade with both of these taxa (BEAST) butthese placements are not supported (BS lt 50 PPBEAST = 085and PP = 051 respectively) Missing data for Briggsidaedepresses nodal support in ML analyses within Travunioideaobscuring interfamilial relationships In the absence ofBriggsidae we recover a sister relationship betweenSclerobunidae (Zuma acuta Goodnight amp Goodnight 1942)and the remaining Travunioidea (BS = 75) and themonophyly of Travuniidae +Cladonychiidae (BS = 77)

A recent molecular dating of Travunioidea obtained muchyounger dates than estimated herein in spite of similar taxaand molecular loci In that study Derkarabetian et al (2010)investigated the evolution of troglobitism in Sclerobunidae(also referred to as the lsquoNorth American triaenonychidsrsquo)and used the cladonychiid fossil Protoholoscotolemon(38ndash54Mya Ubick and Dunlop 2005) to constrain theminimum age of Travunioidea in addition to calibration pointsderived from geological ages of strata These practicesaccord with the scope of the troglobitism study (thedivergences of interest were comparatively recent ndash Plioceneor younger) but we did not utilise Protoholoscotolemon in ourdating for two reasons (1) we do not obtain an unambiguouslymonophyletic Cladonychiidae in our analyses and (2) theDevonian and Carboniferous fossils we utilised as calibrationpoints are sufficiently old to obtain a result consistent with anEocene cladonychiid fossil The different calibration pointsimplemented in the respective studies therefore account forthe discrepancy in the dating In addition the morphologicalconservatism of Opiliones makes it doubtful that the age ofProtoholoscotolemon is the maximum age of the superfamily

Our sampling of Insidiatores lineages remains limited andbarring the inclusion of Briggsidae additions to taxonomicsampling largely concern Grassatores Consequently continuedsampling and systematic studies of Insidiatores (eg Mendesand Kury 2008 Thomas and Hedin 2008 Derkarabetian et al2010) are instrumental and imperative to addressing outstandingquestions of phylogenetic relationships and morphologicalevolution A phylogeny of Triaenonychidae is particularlywanting

Early diverging Grassatores Phalangodidaeand Sandokanidae

The recovery of a monophyletic Grassatores (supported inall analyses BS = 99 PP = 100) is consistent with severalmorphological synapomorphies uniting this diverse groupsuch as the presence of two tarsal claws on walking legs IIIand IV However the basal topology of Grassatores has longbeen contentious Previously two superfamilies of Grassatoreswere recognised Oncopodoidea (with the single familySandokanidae (formerly Oncopodidae)) and lsquoGonyleptoidearsquo(with the remaining families) (Martens 1976 1986 Martenset al 1981) This dichotomy was largely based upon theunique morphology of Sandokanidae ndash characters such as thescutum completum (fused opisthosomal tergites) reduced tarsal

articles and genitalic structures which are not found in theremaining Grassatores (Martens 1980 Giribet et al 2002Sharma and Giribet 2009) It was alternatively contended thatthese characters constituted autapomorphies of Sandokanidaewhich was nested within lsquoGonyleptoidearsquo itself (Kury 2003)

In all analyses we obtained an initial divergence betweenPhalangodidae and the remaining Grassatores (BS = 100PP = 096) refuting the traditional dichotomy betweenSandokanidae and lsquoGonyleptoidearsquo Therefore we hereindefine Gonyleptoidea as the taxon consisting of AgoristenidaeCosmetidae Cranaidae Gonyleptidae Manaosbiidae andStygnidae The split between Phalangodidae and the remainingGrassatores has been postulated to correspond to the rifting ofthe ancient supercontinents Laurasia and Gondwana as thedistribution of Phalangodidae was believed to be strictlyHolarctic (Giribet et al 2010) However the inclusion of theMadagascar genus Remyus previously placed in Zalmoxidae(Starega 1989) within a monophyletic Phalangodidae indicatesbroader distribution of phalangodids ndash complementing theTriaenonychidae-Fumontana case discussed above Moreoverthe origin of Phalangodidae is estimated to have occurred around302Mya (95 HPD 264ndash335Mya) greatly predating thebreakup of the supercontinents These results indicate thatPhalangodidae may be narrowly defined and we consequentlytransfer Remyus to Phalangodidae (new familial assignment)

The unusual family Sandokanidae has been postulated to besister toPodoctidae (SharmaandGiribet 2009Giribet et al 2010)or to form agradewith Phalangodidae (Kuryrsquos lsquoPhalangodoidearsquopartly) In the present study ML and BI topologies reconstructSandokanidae as sister to the remaining non-phalangodidGrassatores albeit with insignificant nodal support (BS = 21PP = 078) Curiously the topology obtained byBEAST recoversthe clade (Sandokanidae + Podoctidae) nested within a singleclade of South-east Asian families (PPBEAST = 085) Theseresults do not unambiguously favour one hypothesis overanother and the phylogenetic placement of Sandokanidae inthe Grassatores tree therefore remains debatable

Regardless of the inclusion of Sandokanidae within theSouth-east Asian group of families that the sister family to theremaining Grassatores is Phalangodidae not Sandokanidaeindicates that the peculiar morphology of sandokanids is theresult of multiple apomorphic reversals not the retention ofplesiomorphic characters (Martens and Schwendinger 1998)The large scutum and low tarsomere number found inSandokanidae also occur in Trogulidae and Dicranolasmatidae(suborder Dyspnoi) and all Cyphophthalmi and appear to haveevolved convergently This morphology may reflect adaptationsto a shared ecological niche all these groups inhabit leaf litterinclude no arboricolous species and are limited in vagility ndash

although these life history traits are also found in other groupsHowever this hypothesis has yet to be rigorously tested

Sandokanidae is presently one of few families of Grassatoresfor which a molecular phylogeny assessing intergenericrelationships is available (Sharma and Giribet 2009) andconsistent with earlier results the monophyly of Sandokanidaeis strongly supported (BS = 100 PP = 100) as is the initial splitbetweenMartensiellus and the remaining genera (an undescribedspecies was referred to as lsquogen sprsquo by Sharma and Giribet 2009but subsequent morphological investigation revealed this to be

Molecular phylogeny of Laniatores Invertebrate Systematics 125

Fig 16 Phylogenetic relationships of Laniatores inferred fromBayesian inference analysis of allmolecular data Numbers on nodes indicateposterior probabilities

126 Invertebrate Systematics P P Sharma and G Giribet

a miniature species of Martensiellus P J Schwendinger perscomm) (BS = 92 PP = 100) Intergeneric relationshipsof sandokanid genera are contingent upon analytical treatmentof molecular partitions (with additional sandokanid exemplarsdata not shown) reflecting conflict among datasets documentedby Sharma and Giribet (2009)

The other South-east Asian families

Epedanidae was postulated to be sister to Gonyleptoidea in acladistic analysis based on morphological characters (Kury1993) Subsequently Kury (2003) proposed that Epedanidaewas sister to the clade (Assamiidae (Stygnopsidae +Gonyleptoidea)) The single epedanid previously included in amolecular phylogeny was similarly unstable in placement eithernestingwithin Assamiidae or sister to the African lsquophalangodidsrsquo(Conomma and Maiorerus) in neither case with appreciablenodal support (Giribet et al 2010) Furthermore previousinclusion of several lineages (eg Tithaeus) within Epedanidaethat do not bear characters typical of true epedanids ndash sexuallydimorphic chelicera with heavy dentition elongate andspined pedipalpi male genitalia with setae surroundingthe capsula interna ndash has also made this family difficult todefine Consequently we included only Epedaninae (egPseudoepedanus Alloepedanus and Euepedanus) as exemplarsof true epedanids the systematic validity of the remaining threesubfamilies (and particularly the inclusion of Dibuninae) isbeyond the scope of this study and remains to be investigated

The monophyly of each of four South-east Asian families ndashEpedanidae (represented by epedanines) TithaeidaePetrobunidae and Podoctidae ndash is recovered with high nodalsupport (all BS = 100 PP = 100) These lineages are somehowrelated to each other and while they form a clade in bothML andBI analyses this result receives insignificant nodal support(PP = 077) In the topology recovered by BEAST the South-east Asian families form a clade that includes Sandokanidaea result consistent with the distribution of sandokanids albeitwithout support (PPBEAST = 085) Tithaeidae is probably closelyrelated to Podoctidae given the occurrence of a deeply cleftventral plate resulting in two flanking prongs in themale genitaliaof both families (Suzuki 1977 Lian et al 2008 Fig 19) Inaddition the clade (Podoctidae +Tithaeidae) is recovered withmoderate support in ML and BI analyses (BS = 59 PP = 097)In none of the analyses is Tithaeidae nested within or sister toEpedanidae sensu stricto

The morphology of Petrobunidae suggests some relationshipto previously described South-east Asian families oralternatively Phalangodidae but not inclusion within any ofthese (Fig 19) Molecular sequence data do not support anyspecificplacement ofPetrobunidae although it clusterswithotherSouth-east Asian families in all analyses and is recovered sisterto Epedanidae in two topologies (BI and BEAST)

Gonyleptoidea and Stygnopsidae

With over 2500 described species the superfamilyGonyleptoidea constitutes the most diverse and (arguably) themost charismatic lineage of Opiliones with most of this diversityconcentrated in Amazonia (some cosmetids occur as far north asthe mid-Atlantic states of the US) In a previous analysis

relationships of gonyleptoid families were unsupported andordid not accordwithmorphological studies (Giribet et al 2010) Inparticular the placement of the agoristenid exemplar Avimaalbiornata (Goodnight amp Goodnight 1947) ndash the putativesister family to the remaining Gonyleptoidea ndash within aparaphyletic Cranaidae was particularly suspect given thelimited availability of sequence data for Avima (complete 18SrRNA a300-bp fragmentof 28S rRNA andCOI) In addition thesister group of Gonyleptoidea was ambiguous and contingentupon analytical parameters

Redoubling sequencing efforts and addition of taxaparticularly in the case of Agoristenidae (currently sequencedfor 12S rRNA complete 18S rRNA a 2000-bp fragment of 28SrRNA COI H3 and EF-1a) improved the assessment ofgonyleptoid relationships A monophyletic Gonyleptoidea(BS = 58 PP = 066) is recovered sister to the familyStygnopsidae (BS = 57 PP = 100) Within Gonyleptoidea asplit between Agoristenidae and the remaining gonyleptoids isstrongly supported (BS = 100 PP = 100) followed by thedivergence of Stygnidae (BS = 71 PP = 099) Thisplacement of Agoristenidae is supported by morphologicalstudies (Pinto-da-Rocha and Kury 2007) although in aminority of tree topologies sampled in BI analysesAgoristenidae is sister to Stygnopsidae (hence lower nodalsupport for the monophyly of Gonyleptoidea in BI) Theplacement of Manaosbiidae is uncertain it is recoveredsister to either (Gonyleptidae +Cranaidae) (PP = 089) or toCosmetidae (PPBEAST = 092) but these results are notsupported Cranaidae is recovered as monophyletic (BS = 99PP = 100) and nested within a paraphyletic Gonyleptidae

The present sampling of Cosmetidae and Gonyleptidae doesnot do justice to the diversity of these lineages (~700 and 800described species respectively) A phylogenetic assessment ofall 16 subfamilies of Gonyleptidae alone constitutes the subjectof an arduous and exacting study Fortunately cladistic analysesof morphological characters continue to advance phylogeneticinvestigation of subfamilial lineages (eg BourguyiinaeYamaguti and Pinto-da-Rocha 2009 Goniosomatinae DaSilvaandGnaspini 2009HernandariinaeDaSilva andPinto-da-Rocha2010) Elucidating the phylogeny of Gonyleptoidea is one of themost exciting research topics in the study of Opiliones

The Afrotropical families

The third most diverse family of Laniatores Assamiidaeconstitutes the dominant opiliofauna of the African continent(excluding Madagascar) with some lineages occurring in SouthAsia the Indo-Malay Archipelago and Australia (Trionyxellinaeand Dampetrinae) Proposed to be related to EpedanidaeStygnopsidae andor Gonyleptoidea (Kury 2007) on the basisof genitalic structures assamiids were not recovered asmonophyletic in a previous study (paraphyly was induced byeither Epedanidae orAfricanBiantidae) and the placement of thesubfamily Trionyxellinae was particularly suspect (Giribet et al2010) Trionyxellinae was considered a separate family byMello-Leitatildeo (1949) though others considered it nested withinAssamiidae (eg Starega 1992) In our analyses the monophylyof Assamiidae is supported (BS = 79 PP = 100)lsquoTrionyxellinaersquo (Trionyxella and Mysorea both with a

Molecular phylogeny of Laniatores Invertebrate Systematics 127

Fig 17 Evolutionary time tree of Laniatores inferred fromBEASTanalysis of allmolecular data Coloured bars indicate 95highestposterior density (HPD) intervals for nodes of interest Numbers on nodes indicate posterior probabilities asterisks indicate posteriorprobability of 100

128 Invertebrate Systematics P P Sharma and G Giribet

pseudonychium on the third and fourth tarsi) is a diphyletic entitynested within the other Assamiidae (for the node renderingdiphyly BS = 100 PP = 100) disfavouring family status fortrionyxellines

The African lsquophalangodidsrsquo (sometimes called thelsquoPyramidops grouprsquo) were recognised as a new family byStarega (1992) but not formalised and included 13 genera(Conomma Pyramidops and related lineages) Consistentwith this hypothesis we recovered strong support for thePyramidops group (represented by Conomma and cfPyramidops) as a lineage separate from the true Phalangodidae(egBishopella and Scotolemon) recapitulating a previous result(Giribet et al 2010) The African lsquophalangodidsrsquowere recoveredas the sister lineage of Assamiidae although this relationshipis variably supported in our analyses (BS = 40 PP = 095PPBEAST = 100) A review and formal description of thePyramidops group as a new family lsquoPyramidopidaersquo ndash a namewidely available on the internet including GBIF but notformalised ndash is undertaken elsewhere (Sharma et al 2011)

While we have endeavoured to improve the sampling ofAssamiidae from South-east Asia the internal systematics ofthis family remain a high value target for phylogenetic researchHowever revision of assamiid systematics is inherently difficultfor two reasons (1) the family is peppered with questionablehierarchies and monotypic genera (~12 subfamilies and 250genera for less than 500 described species) and (2) occurs insome of the most inaccessible regions of the world namely sub-Saharan Africa

In all analyses the clade (Assamiidae + Pyramidopidae) issister to the clade (Zalmoxoidea + Samooidea) though this resultis only supported in one analysis (PP= 100) The divergence ofthese four lineages is estimated to have occurred 252Mya and isconsistent with diversification in West Tropical Gondwanaoccurring at least 140million years before the fragmentation ofthis terrane (~110Mya)

Zalmoxoidea

As currently defined the largely Neotropical superfamilyZalmoxoidea includes four families FissiphalliidaeGuasiniidae Icaleptidae and Zalmoxidae Guasiniidae hasnever before been included in a molecular phylogeny In thepresent study we sequenced a guasiniid for six genes and ouranalyses strongly support theplacement ofGuasiniidae as sister tothe samooid family Kimulidae (formerly Minuidae) (BS = 86PP = 098 PPBEAST = 099) and this clade in turn sister to anothersamooid family Escadabiidae (BS = 65 PP = 096PPBEAST = 100) The families Fissiphalliidae Icaleptidaeand Zalmoxidae in turn form a separate clade (BS = 100PP = 100 PPBEAST = 100) with strong support for the sisterrelationship of Zalmoxidae and Fissiphalliidae (BS = 99PP = 100 PPBEAST = 100) corroborating relationshipsproposed by morphological studies (Kury and Peacuterez G 2002Pinto-da-Rocha and Kury 2003b)

Previous analyses have suggested that Samooidea (discussedbelow) is a paraphyletic grade with respect to Zalmoxoidea(Giribet et al 2010) In the present analysis the cladeSamooidea + Zalmoxoidea is strongly supported (BS = 85PP = 100 PPBEAST = 100) as previously suggested by PeacuterezGonzaacutelez and Kury (2007) and by excluding Escadabiidae and

Kimulidae Samooidea is rendered a monophyletic entity albeitwith limited support (BS = 53 PP = 062 PPBEAST = 081) Thestrong support from molecular sequence data for the cladeincluding Escadabiidae Kimulidae and the four zalmoxoidfamilies (BS = 89 PP = 100 PPBEAST = 100) suggests thatthese may form a natural group

Re-examination of the morphology of these six families incomparisonwith true samooid lineages (Biantidae Samoidae andStygnommatidae) corroborates the exclusionofEscadabiidae andKimulidae from true Samooidea Escadabiidae and Kimulidae(1) lack the scopula characteristic of Samoidae and stenostygnineBiantidae (2) lack a sexually dimorphic metatarsus IIIcharacteristic of Samoidae Stygnommatidae and stenostygnineBiantidae and (3) lack a penial calyx characteristic of SamoidaeConsistent with placement within Zalmoxoidea EscadabiidaeandKimulidae (1) possess a small oculariumbearing the eyes thatis removed from the margin of the carapace (2) bear a wellmarked dorsal protuberance (bulla) on the proximal segmentof the chelicera that lacks armature and (3) possess sexuallydimorphic leg IV segments particularly the femur and tibiawhich may be variedly arcuate incrassate and spinedAdditionally Escadabiidae Fissiphalliidae and Zalmoxidae allpossess sexually dimorphic tegumental glandopeningson tibia IIwhereas Biantidae Samoidae and Stygnommatidae possessthese structures on metatarsus III (Willemart et al 2010)While data on tegumental gland openings are only availablefor a small handful of species these may constitute significantdiagnostic characters for species wherein sexual dimorphismdoes not manifest itself in the readily observable form ofenlarged and spiny segments

Given the results of our phylogenetic analyses maintainingSamooidea (as currently defined) renders it a paraphyletic gradewith respect to a diphyletic Zalmoxoidea (as currently defined)Consequently based on the aforementioned morphologicalcharacters and robust molecular phylogenetic signal wetransfer Escadabiidae and Kimulidae to Zalmoxoidea

Samooidea

A previous cladistic analysis based upon morphological datasuggested close relationship between six families ndash BiantidaeEscadabiidae Kimulidae Podoctidae Samoidae andStygnommatidae ndash thenceforth known as Samooidea (Kury1993) the only pantropical Laniatores superfamily HoweverPodoctidae does not have any obvious relationship to Samooideaand has subsequently been transferred (Kury 2007) in ouranalyses Podoctidae is sister to Tithaeidae or Sandokanidaeie distantly related to all samooid families Moreover ouranalyses strongly favour the exclusion of Escadabiidae andKimulidae from Samooidea

The remaining three families ndash Biantidae Samoidae andStygnommatidae ndash are distributed in the Neotropics and partsof Africa with a handful of suspect lineages in South-east AsiaRe-examination and reassignment of many Samoidae genera(eg the Indonesian lsquosamoidrsquo Waigeucola palpalis PeacuterezGonzaacutelez 2011) suggest that the range of Samoidae does notinclude South-east Asia Peacuterez Gonzaacutelez and Kury (2007) alsoobserved that the lsquosamoidsrsquo of Africa Madagascar and theSeychelles may not be true Samoidae either Similarlyinclusion of the genus Stygnomimus an Indonesian lineage

Molecular phylogeny of Laniatores Invertebrate Systematics 129

within Stygnommatidae is highly dubious as the twoIndonesian lsquostygnommatidsrsquo are either highly autapomorphic(Stygnomimus conopygus (Roewer 1927)) or described on the

basis of a generic female that is not readily distinguishable fromfemales of other species (Stygnomimus malayensis (Suzuki1970))

Fig 18 Strict consensus of tree topologies obtained by all phylogenetic analyses

130 Invertebrate Systematics P P Sharma and G Giribet

Previous efforts to assess the systematic validity of Samooideaby means of molecular sequence data were limited insofar asonly two Samoidae three Biantidae (all Metabiantes) and twoStygnommatidae were sampled (Giribet et al 2010) Thesampling of Samoidae was especially problematic only asingle Neotropical adult (Pellobunus) and one African juvenilesamoid (lsquoSamoidae gen sprsquo) were included The designation ofthe latter is suspect as juveniles of Samoidae are oftenindistinguishable from the juveniles of other lineages becausemany diagnostic secondary sexual characters in Grassatores(eg spines and incrassate appendages) are not acquired untilafter several postembryonic stages (Townsend et al 2009)

In the present study though the type genus of Samoidae(Samoa from Samoa) was not available we sequenced theclosely related genus Badessa (from Fiji collected byP P S) as well as additional Biantidae and StygnommatidaeOur analyses recovered a monophyletic Samooidea (excludingEscadabiidae and Kimulidae BS = 53 PP = 062) withSamoidae sensu stricto (Pellobunus +Badessa BS = 100PP = 100) nested within a paraphyletic Stygnommatidae aplacement that is supported (BS = 87 PP = 100) Bycontrast the African lsquosamoidrsquo is sister to the AfricanBiantidae a relationship that is also well supported(BS = 100 PP = 100) These relationships suggest a basal

Fig 19 Cladogram of male genitalic evolution in South-east Asian families superimposed upon a schematised molecular phylogeny based on ML and BIanalyses of all molecular data Exemplars (a) Pseudoepedanus doiensis Suzuki 1969 (redrawn from Suzuki 1969) dorsal view (b) Pseudoepedanus doiensisSuzuki 1969 (redrawn from Suzuki 1969) ventral view (c) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) ventral view(d) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) dorsal view (e) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki1976) dorsal view (f) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki 1976) ventral view (g) Petrobunus torosus lateral view (h) ZalmoxidagibberaSuzuki 1969 dorsal view (i)Zalmoxida sp (MCZDNA102677) dorsolateral view (j)Metatithaeus rubidusSuzuki 1969 (redrawn fromSuzuki 1969)ventral view (k)Tithaeus kokutnusSuzuki 1985 (redrawn fromSuzuki 1985) ventral view (l)Tithaeus similisSuzuki 1985 (redrawn fromSuzuki 1985) ventralview (m)DongmoaoshimensisSuzuki 1964 (redrawn fromSuzuki 1964) ventral view (n)Bonea longipalpisSuzuki 1977 (redrawn fromSuzuki 1977) ventralview (o) Santobius annulipes Soslashrensen 1886 (redrawn from Kury and Machado 2009) ventral view (p) Lomanius longipalpus mindanaoensis Suzuki 1977(redrawn from Suzuki 1977) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 131

dichotomy within Samooidea that corresponds to one groupof Neotropical and Pacific lineages and a second group ofAfrican lineages However as we were unable to samplestenostygnine (Neotropical) and Indo-Pacific Biantidae aswell as numerous monotypic genera dubiously placed inSamoidae biogeographical extrapolations for Samooidea aretenuous (discussed below)

The internal relationships of Samooidea suggest that themorphology of Samoidae may have evolved convergently Asthe African samoid is a juvenile (the same specimen previouslysequenced by Giribet et al 2010 now sequenced for additional28S rRNA and other genes) we cannot rule out the possibility ofa monophyletic Samoidae that includes African species (thespecimen in question could be a juvenile biantid) In any casethe paraphyly of Stygnommatidae and putative polyphyly ofSamoidae strongly advocate systematic revision of samooidfamilies as currently defined corroborating hypotheses of non-monophyly based on morphology (Peacuterez Gonzaacutelez 2007 PeacuterezGonzaacutelez and Kury 2007) Our sampling of these families isinsufficient to advocate specific taxonomic action but an ongoing

study of samooidean systematics will shed more light on thevalidity of constituent families (A Peacuterez Gonzaacutelez work inprogress)

Biogeography of Zalmoxoidea and Samooidea

While most superfamilies of Grassatores are restricted to aspecific part of the tropics (eg Neotropics South-east Asia)two are distributed in multiple biogeographical provincesSamooidea occurs in the Neotropics and Afrotropics withquestionable records from South-east Asia Zalmoxoidea isconcentrated in the Neotropics with the exception of oneIndo-Pacific lineage of Zalmoxidae (represented here byZalmoxis sp) The ages and distributions of Samooidea andZalmoxoidea suggest that their biogeography was influencedby the fragmentation of West Tropical Gondwana ndash causingthe former to diverge basally throughout West TropicalGondwanan terranes and the latter to become isolated to theNeotropics (with possible subsequent dispersal)

Fig 20 Ancestral range reconstructions for Samooidea +Zalmoxoidea inferred by Lagrange using stratified models corresponding to two vicariant events(indicated by dotted lines) Coloured squares at terminals indicate ranges occupied by sampled species Coloured squares on nodes indicate ranges reconstructedfor hypothetical ancestors Numbers on nodes indicate relative probability of ranges reconstructed

Fig 21 Best hypothesis of Laniatores relationships based on all available evidence Bracketed nodes indicate non-monophyletic entities Dashed line indicatesambiguity in the placement of Sandokanidae (alternatively placed as shown or as sister to Podoctidae) Exemplars of Laniatores diversity are Synthetonychiaoliveae (Synthetonychiidae) Equitius doriae (Triaenonychidae) Hadziana clavigera (Travuniidae) Erebomaster flavescens flavescens (Cladonychiidae)Scotolemon lespesi (Phalangodidae) Palaeoncopus gunung (Sandokanidae) Santobius sp (Podoctidae) Tithaeus sp (Tithaeidae) Petrobunus spinifer(Petrobunidae) Alloepedanus sp (Epedanidae) Hoplobunus sp (Stygnopsidae) Torreana spinata (Agoristenidae) Stygnoplus clavotibialis (Stygnidae)Metalibitia paraguayensis (Cosmetidae)Acutisoma longipes (Gonyleptidae)Conommaoedipus (Pyramidopsgroup)Mysorea thaiensis (Assamiidae)Lacurbssp (Biantidae) Stygnomma sp (Stygnommatidae) Badessa sp (Samoidae) Guasinia sp (Guasiniidae) Icaleptes sp (Icaleptidae) Fissiphallius chicoi(Fissiphalliidae) Zalmoxis sp (Zalmoxidae) Kimula goodnightiorum (Kimulidae)

132 Invertebrate Systematics P P Sharma and G Giribet

Molecular phylogeny of Laniatores Invertebrate Systematics 133

To test this hypothesis we conducted likelihood analysisof range evolution using the program Lagrange (Ree et al2005 Ree and Smith 2008) for the clade (Zalmoxoidea +Samooidea) The stratified analysis resulted in a globalmaximum likelihood of ndashlnL= 1556 outperforming anunconstrained analysis that did not include any dispersalconstraints (ndashlnL= 1676) Likelihood analysis of rangeoptimisation (Fig 20) indicates that the ancestral range ofSamooidea includes both the Afrotropics and the Neotropics(relative probability pr = 1000) but a subsequent split occursbetween an African lineage (pr = 1000) and a NeotropicalIndo-Pacific lineage with a Neotropical ancestral range (pr = 0986)Samoidea of the Indo-Pacific occur on young oceanic islands(eg Fiji Samoa) indicating recent transoceanic dispersal fromthe Neotropics

Ancestral range reconstructions for Samooidea are allconsistent with estimated divergence times for these clades(diversification of Samooidea predates the rifting of WestAfrica from northern South America) favouring an underlyingvicariant process for the basal topology with subsequent recentdispersal events However these results are contingent upon thepresent sampling which does not include all samooid lineages(eg stenostygnine Biantidae) but basal range reconstructionsare likely unaffected (eg Stenostygninae is exclusivelyNeotropical)

In contrast the ancestor of Zalmoxoidea is reconstructedas singularly Neotropical (pr = 0996) This is consistent withisolation of a zalmoxoid ancestor to Amazonia which thenradiated ~191Mya Subsequent ancestral ranges are alsoreconstructed as Neotropical with high relative probabilityHowever the ancestral range of the clade (Icaleptidae +Fissiphalliidae + Zalmoxidae) is ambiguously reconstructedas either Neotropical (pr = 0935) or Neotropical + Indo-Pacific(pr = 0064) as is the split between Fissiphalliidae andZalmoxidae (Neotropical pr = 0856 Neotropical + Indo-Pacific pr = 0141)

These results suggest that the Indo-Pacific lineage ofZalmoxidae which split from Neotropical Zalmoxidae ~83Myais likely the result of long-distance dispersal from the NeotropicsHowever due to the persistence of transantarctic connectionsbetween the Australian plate and temperate South America untilthe Tertiary a competing vicariant scenario cannot be ruled outwithout densely sampling zalmoxid diversity The biogeographyof Zalmoxidae is presently being explored in greater detail in aseparate study (P P Sharma unpubl data)

Finally the ancestral range of (Samooidea + Zalmoxoidea)includes both Africa and the Neotropics (pr = 0957) consistentwith a tropical West Gondwanan ancestor This resultlends circumstantial evidence to a sister relationship of theAfrotropical families (Assamiidae + Pyramidopidae) and theclade (Samooidea + Zalmoxoidea) recovered in all analyses

The diversification of Grassatores

While numerous interfamilial relationships are supported inthis study particularly among gonyleptoid and zalmoxoidfamilies some relationships between superfamilies ofGrassatores are not supported and are contingent upon

analytical treatments namely the deployment of substitutionmodels and data partitioning (Fig 21) The cause of thisinstability could be related to insufficient data particularly inthe EF-1a partition (the length of an intron which can exceed400 bp in some taxa makes this gene particularly difficult toamplify) However examination of clade divergence timessuggests that rapid diversification of Grassatores lineagescould in part augment phylogenetic uncertainty in basal partsof the topology

The split between Phalangodidae and the remainingGrassatores is estimated to have occurred ~302Mya but aseries of divergences resulted in the origin of all superfamiliallineages between 232 and 271Mya Relative to the estimatedage of Laniatores (348Mya) this 39-million-year period isremarkably narrow and inherently problematic as the amountof phylogenetic signal for a given stem subtending a node isdirectly proportional to the amount of time that the stem inquestion spans (Lanyon 1988 Rokas and Carroll 2006) Thesmall internal edge lengths of the stems corresponding to basaldivergences of non-phalangodid Grassatores (Figs 15 16)combined with the ancient age of lineages derived from thesedivergences result in relationships that are difficult to estimatewithout a large amount of sequence data andor the inclusion ofdata that are less afflicted by homoplasy (because longer edgelengths imply more indel and substitution events on edges)(Whitfield and Lockhart 2007)

We additionally observe that the origins of most Grassatoressuperfamilies occur in the wake of the end-Permian massextinction (~254Mya) Rapid radiation in the wake of a massextinction has occurred in multiple metazoan lineagesthe putative result of relaxed selection and opening ofpreviously occupied ecological niche space (Labandeira andSepkoski 1993 Sahney and Benton 2008) The rapiddiversification of early Grassatores lineages could be anexample of this phenomenon but this hypothesis is difficult totest in the absence of Mesozoic Grassatores fossils (reviewed byDunlop 2007)

Finally we observe that contrary to traditional hierarchiesproposed for Laniatores many of the clades recovered in ouranalyses correspond to geographical regions particularly in thecase of Grassatores For example the southern hemispheretriaenonychids are restricted to temperate Gondwananlandmasses Gonyleptoidea and their sister group Stygnopsidaeform a Neotropical (AmazonianMesoamericanAntillean) cladethat excludes Assamiidae which has been hypothesised to be amember of a broader Gonyleptoidea (Kury and Cokendolpher2000 Mendes and Kury 2007) In our analyses Assamiidae isin fact a member of a largely Afrotropical clade together withthe Pyramidopidae South-east Asian families usually form oneclade (at most two) albeit with limited support Samooideafamilies are divided into two clusters African and NeotropicalWith one exception (described above) Zalmoxoidea is restrictedto the Neotropics The ages that we estimate for Laniatoresradiations are consistent with ancient diversification beforethe fragmentation of Pangaea An ancient diversification inconjunction with the climatic stability of the tropics may in partexplain the comparatively greater diversity of the armouredharvestmen with respect to the other Opiliones suborders

134 Invertebrate Systematics P P Sharma and G Giribet

Acknowledgements

Weare indebted toPeter J Schwendingerwho collected andprovidedmost ofthe material for study from South-east Asia Some Thai and most of theNeotropical Laniatores were obtained from the TIGER (Thailand InventoryGroup for Entomological Research) and LLAMA (Leaf Litter Arthropods ofMeso-America) projects toC Lienhard and J Longino respectivelyMaterialfrom Madagascar was generously contributed by Charles Griswold and theCalifornia Academy of Sciences Jesse Czekanski-Moir in conjunction withthe Belau NationalMuseum contributed elusive specimens from Palau AbelPeacuterezGonzaacutelez identifiedmanyNeotropical species included in the study andcontributed specimens fromCubaRicardoPinto-da-Rocha identified someofthe live photographed animals from the Neotropics Discussions with RonaldMClouseAbelPeacuterezGonzaacutelezAdrianoBKury andCarlosEPrieto refinedmanyof the ideas presentedhereTwoanonymous reviewers and the associateeditor provided comments that helped to improve an earlier version ofthis manuscript Laura Leibensperger sorted and accessioned TIGER andLLAMA material as well as MCZ type material Adam Graham and theCenter forNanoscaleStudies atHarvardUniversityprovided support forSEMwork Collecting efforts in New Caledonia were greatly facilitated by theguidance of Herveacute Jourdan (Institut de rechercheacute pour de developpementNoumea) and his teammembers Collecting efforts in Fiji weremade possibleby Marika Tuiwawa (University of the South Pacific Suva) and his teammembers Hilda Waqa and Tokasaya lsquoToxrsquo Cakacaka we are especiallygrateful to Tox for his good company during fieldwork and to his familyfor graciously enabling a visit toOvalau SuzieYee Shawprovided invaluablelogistical support in Fiji and her sons Colin and Joshua Yee Shaw assistedwith sorting Fijian material Fieldwork in Indonesia and West Africa wassupported by two MCZ Putnam Expedition Grants awarded to RonaldM Clouse and G G (2006) and to G G (2009) respectively Fieldworkin New Caledonia was supported by the Goelet award the Kalathia FamilyTrust and the Explorers Club awarded to P P S in 2006 Fieldwork in Fijiand in Palauwas supported by twoMCZPutnamExpeditionGrants awardedto P P S (2008) and to Ronald M Clouse and P P S (2010) respectivelyP P S was supported by a Faculty of Arts and Sciences Graduate Fellowshipfrom Harvard University

References

Castresana J (2000) Selectionof conservedblocks frommultiple alignmentsfor their use in phylogenetic analysis Molecular Biology and Evolution17 540ndash552

Colgan D J McLauchlan A Wislon G D F Livingston S MacaranasJ Edgecombe G D Cassis G and Gray M R (1998) Molecularphylogenetics of the Arthropoda relationships based on histone H3and U2 snRNA DNA sequences Australian Journal of Zoology 46419ndash437 doi101071ZO98048

DaSilva M B and Gnaspini P (2009) A systematic revision ofGoniosomatinae (Arachnida Opiliones Gonyleptidae) with a cladisticanalysis and biogeographical notes Invertebrate Systematics 23530ndash624 doi101071IS09022

DaSilva M B and Pinto-da-Rocha R (2010) Systematic review andcladistic analysis of the Hernandariinae (Opiliones Gonyleptidae)Zoologia 27 577ndash642

Derkarabetian S Steinmann D B and Hedin M (2010) Repeatedand time-correlated morphological convergence in cave-dwellingharvestmen (Opiliones Laniatores) from montane western NorthAmerica PLoS ONE 5 e10388 doi101371journalpone0010388

Drummond A J and Rambaut A (2007) BEAST Bayesian evolutionaryanalysis by sampling trees BMC Evolutionary Biology 7 214doi1011861471-2148-7-214

Drummond A J Ho S Y W Phillips M J and Rambaut A (2006)Relaxed phylogenetics and dating with confidence PLoS Biology 4 e88doi101371journalpbio0040088

Dunlop J A (2007) Paleontology In lsquoHarvestmen The Biology ofOpilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 247ndash265 (Harvard University Press Cambridge MA USA)

Dunlop J A and Anderson L I (2005) A fossil harvestman (ArachnidaOpiliones) from theMississippian of East Kirkton Scotland The Journalof Arachnology 33 482ndash489 doi10163604-791

Dunlop JAAndersonL IKerpH andHassH (2003)Preservedorgansof Devonian harvestmen Nature 425 916 doi101038425916a

Dunlop J A Anderson L I Kerp H and Hass H (2004) A harvestman(Arachnida Opiliones) from the Early Devonian Rhynie chertsAberdeenshire Scotland Transactions of the Royal Society ofEdinburgh Earth Sciences 94 341ndash354

Edgar R C (2004) MUSCLE multiple sequence alignment with highaccuracy and high throughput Nucleic Acids Research 32 1792ndash1797doi101093nargkh340

Edgecombe G D and Giribet G (2006) A century laterndash a total evidencere-evaluation of scutigeromorph centipedes (Myriapoda Chilopoda)Invertebrate Systematics 20 503ndash525 doi101071IS05044

Edgecombe G D Giribet G and Wheeler W C (2002) Phylogeny ofHenicopidae (Chilopoda Lithobiomorpha) a combined analysis ofmorphology and five molecular loci Systematic Entomology 2731ndash64 doi101046j0307-6970200100163x

FolmerOBlackMHoehWLutzR andVrijenhoekRC (1994)DNAprimers for amplification ofmitochondrial cytochrome c oxidase subunit Ifrom diverse metazoan invertebrates Molecular Marine Biology andBiotechnology 3 294ndash299

Forster R R (1954) The New Zealand harvestmen (sub-order Laniatores)Canterbury Museum Bulletin 2 1ndash329

Giribet G and Kury A B (2007) Phylogeny and biogeography InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 62ndash87 (Harvard University PressCambridge MA USA)

Giribet G Carranza S Baguntildeagrave J Riutort M and Ribera C (1996) Firstmolecular evidence for the existence of a Tardigrada +Arthropoda cladeMolecular Biology and Evolution 13 76ndash84

Giribet G Rambla M Carranza S Baguntildeagrave J Riutort M and Ribera C(1999) Phylogeny of the arachnid order Opiliones (Arthropoda)inferred from a combined approach of complete 18S and partial 28Sribosomal DNA sequences and morphology Molecular Phylogeneticsand Evolution 11 296ndash307 doi101006mpev19980583

Giribet G Edgecombe G D Wheeler W C and Babbitt C (2002)Phylogeny and systematic position of Opiliones a combined analysis ofchelicerate relationships using morphological and molecular dataCladistics 18 5ndash70

Giribet G Vogt L PeacuterezGonzaacutelez A Sharma P andKury A B (2010)A multilocus approach to harvestman (Arachnida Opiliones) phylogenywith emphasis on biogeography and the systematics of LaniatoresCladistics 26 408ndash437

Hara M R Gnaspini P and Machado G (2003) Male egg guardingbehavior in the Neotropical harvestman Ampheres leucopheus (Mello-Leitatildeo 1922) (Opiliones Gonyleptidae) The Journal of Arachnology 31441ndash444 doi101636S02-32

Hedin M Derkarabetian S McCormack M and Richart C (2010) Thephylogenetic utility of the nuclear protein-encoding gene EF-1a forresolving recent divergences in Opiliones emphasizing intronevolution The Journal of Arachnology 38 9ndash20 doi101636HA09-491

Huelsenbeck J P and Ronquist F (2005) Bayesian analyses of molecularevolution using MrBayes In lsquoStatistical Methods in MolecularEvolutionrsquo (Ed R Nielsen) (Springer New York)

HunterRK ProundDNBurns JA Tibbetts JA andTownsendVR(2007) Parental care in the Neotropical harvestman Phareicranauscalcariferus (Opiliones Cranaidae) The Journal of Arachnology 35199ndash201 doi101636ST06-181

Molecular phylogeny of Laniatores Invertebrate Systematics 135

Kocher T D Thoma W K Meyer A Edwards S V Paumlaumlbo SVillablanca F X and Wilson A C (1989) Dynamics ofmitochondrial DNA evolution in animals amplification andsequencing with conserved primers Proceedings of the NationalAcademy of Sciences of the United States of America 86 6196ndash6200doi101073pnas86166196

Kury A B (1993) Anaacutelise filogeneacutetica de Gonyleptoidea (ArachnidaOpiliones Laniatores) PhD Thesis Universidade de Satildeo Paulo SatildeoPaulo Brazil

Kury A B (2003) Annotated catalogue of the Laniatores of the NewWorld (Arachnida Opiliones) Revista Ibeacuterica de AracnologiacuteaVolumen Especial Monograacutefico 1 1ndash337

Kury A B (2006) Checklist of valid genera of Opiliones of theWorld Museu NacionalUFRJ Available from httpwwwmuseunacionalufrjbrmndiAracnologiachecklaniatorhtm [Accessed1 February 2011]

Kury A B (2007) Podoctidae Roewer 1912 In lsquoHarvestmen The Biologyof Opilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 221ndash224 (Harvard University Press Cambridge MA USA)

Kury A B and Cokendolpher J C (2000) Opiliones In lsquoBiodiversidadTaxonomiacutea y Biogeografiacutea de Artoacutepodos de Meacutexico Hacia una Sintesisde su Conocimientorsquo vol 2 (Eds J E Llorente E Gonzaacutelez andN Papavero) pp 137ndash157 (Universidad Nacional Autoacutenoma deMexico Meacutexico DF Mexico)

Kury A B and Machado G (2009) Notes on Santobius from Vanuatu andFiji and the status of the eastern Melanesian Ibalonius (ArachnidaOpiliones Podoctidae) Zoological Studies 48 524ndash538

Kury A B and Peacuterez G A (2002) A new family of Laniatores fromnorthwestern South America (Arachnida Opiliones) Revista Ibeacuterica deAracnologiacutea 6 3ndash11

Labandeira C C and Sepkoski J J (1993) Insect diversity in the fossilrecord Science 261 310ndash315 doi101126science11536548

Lanyon S M (1988) The stochastic mode of molecular evolutionwhat consequences for systematic investigations The Auk 105565ndash573

Lian W-G Zhu M-S and Kury A B (2008) A new species of the genusTithaeus from China (Arachnida Laniatores Epedanidae) Zootaxa1841 53ndash60

Machado G Requena G S Buzatto B A Osses F and Rossetto L M(2004) Five new cases of paternal care in harvestmen (ArachnidaOpiliones) implications for the evolution of male guarding in theNeotropical family Gonyleptidae Sociobiology 44 577ndash598

Martens J (1976) Genitalmorphologie System und Phylogenie derWeberknechte (Arachnida Opiliones) Entomologica GermanicaZeitschrift fuumlr das Gesamtgebiet der Wissenschaftlichen Entomologie3 51ndash68

Martens J (1980) Versuch eines phylogenetischen Systems der OpilionesIn lsquoProceedings 8th International Congress of Arachnology ViennaVerhandlungenrsquo (Ed J Gruber) pp 355ndash360 (Vienna Austria)

Martens J (1986) Die Grossgliederung der Opiliones und die Evolutionder Ordnung (Arachnida) Actas del X Congreso Internacional deAracnologiacutea Jaca 1 289ndash310

Martens J (1993) Further cases of paternal care in Opiliones (Arachnida)Tropical Zoology 6 97ndash107

Martens J and Schwendinger P S (1998) A taxonomic revision ofthe family Oncopodidae I New genera and new species of GnomulusThorell (Opiliones Laniatores) Revue Suisse de Zoologie 105 499ndash555

Martens J Hoheisel U and Goumltze M (1981) Vergleichende Anatomieder Legeroumlhren der Opiliones als Beitrag zur Phylogenie der Ordnung(Arachnida) Zoologische Jahrbucher Abteilung fur Anatomie undOntogenie der Tiere 105 13ndash76

Mello-Leitatildeo C F (1949) Famiacutelias subfamiacutelia espeacutecies e gecircneros novos deopiliotildees e notas de sinoniacutemia Boletim do Museu Nacional Nova SeacuterieZoologia Rio de Janeiro 94 1ndash33

Mendes A C and Kury A B (2007) Stygnopsidae Soslashrensen 1932 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 232ndash234 (Harvard University PressCambridge MA USA)

Mendes A C and Kury A B (2008) Intercontinental Triaenonychidae ndashthe case of Ceratomontia (Opiliones Insidiatores) The Journal ofArachnology 36 273ndash279 doi101636CH07-931

Murphree C S (1988) Morphology of the dorsal integument of tenopilionid species (Arachnida Opiliones) The Journal of Arachnology16 237ndash252

Park J K andOacuteFoighilD (2000) Sphaeriid and corbiculid clams representseparate heterodont bivalve radiations into freshwater environmentsMolecular Phylogenetics and Evolution 14 75ndash88 doi101006mpev19990691

Peacuterez Gonzaacutelez A (2006) lsquoRevisatildeo Sistemaacutetica e Anaacutelise Filogeneacutetica deStygnommatidae (Arachnida Opiliones Laniatores)rsquo (Museu NacionalUniversidade Federal de Rio de Janeiro Rio de Janeiro Brazil)

Peacuterez Gonzaacutelez A (2007) Stygnommatidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 229ndash232 (Harvard University PressCambridge MA USA)

Peacuterez Gonzaacutelez A (2011) New familial assignment for two harvestmanspecies of the infraorder Grassatores (Arachnida Opiliones Laniatores)Zootaxa 2757 24ndash28

Peacuterez Gonzaacutelez A and Kury A B (2007) Samoidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 224ndash226 (Harvard University PressCambridge MA USA)

Pineau P Henry M Suspegravene R Marchio A Dettai A Debruyne RPetit T Leacutecu A Moisson P Dejean A Wain-Hobson S andVartanian J-P (2005) A universal primer set for PCR amplificationof nuclear histone H4 genes from all animal species Molecular Biologyand Evolution 22 582ndash588 doi101093molbevmsi053

Pinto-da-Rocha R (1997) Systematic review of the Neotropical familyStygnidae (Opiliones Laniatores Gonyleptoidea) Arquivos deZoologia 33 163ndash342

Pinto-da-Rocha R and Kury A B (2003a) Phylogenetic analysis ofSantinezia with description of five new species (Opiliones LaniatoresCranaidae) The Journal of Arachnology 31 173ndash208 doi1016360161-8202(2003)031[0173PAOSWD]20CO2

Pinto-da-Rocha R and Kury A B (2003b) Third species of Guasiniidae(Opiliones Laniatores) with comments on familial relationships TheJournal of Arachnology 31 394ndash399 doi101636H02-59

Pinto-da-Rocha R and Kury A B (2007) Agoristenidae Silhavy 1973 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 171ndash173 (Harvard University PressCambridge MA USA)

Posada D (2005) Modeltest 37 Program and documentation available athttpdarwinuvigoes [Accessed 28 May 2011]

Posada D and Buckley T (2004) Model selection and model averaging inphylogenetics advantages of Akaike information criterion and Bayesianapproaches over likelihood ratio tests Systematic Biology 53 793ndash808doi10108010635150490522304

Posada D and Crandall K A (1998) Modeltest testing the model ofDNA substitution Bioinformatics (Oxford England) 14 817ndash818doi101093bioinformatics149817

Prendini L Weygoldt P and Wheeler W C (2005) Systematics of theDamon variegates group of African whip spiders (ChelicerataAmblypygi) evidence from behaviour morphology and DNAOrganisms Diversity amp Evolution 5 203ndash236 doi101016jode200412004

Rambaut A E (1996) Se-Al sequence alignment editor University ofOxford UK Program and documentation available at httptreebioedacuksoftwarefigtree [Accessed 21 December 2009]

136 Invertebrate Systematics P P Sharma and G Giribet

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 18: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

and the South-east Asian group of families Some differencesexist with respect to supported nodes within superfamilies

Estimation of divergence times

The run of BEAST reached stationarity after 6 000 000generations 10 000 000 generations (20) were discarded asburn-in The tree topology recovered by BEAST (Fig 17) differsfromML andBI topologies in (1) the placement of Sandokanidaeand (2) the relationships between superfamilies Diversificationof Laniatores is dated at ~348Mya Diversification of majorlineages is estimated as follows (Travunioidea+Triaenonychidae)299Mya Grassatores 302Mya Assamiidae +Pyramidopsgroup 232Mya Gonyleptoidea + Stygnopsidae 246MyaGonyleptoidea 230Mya Samooidea + Zalmoxoidea 206Myaand a South-east Asian clade (including Sandokanidae)249Mya These results largely corroborate previous estimatesof divergence times (Giribet et al 2010) but confidence intervalsfor estimated ages are more precise A tree file of estimated agesand 95highest posterior density (HPD) intervals for all nodes isprovided as an Accessory Publication on the InvertebrateSystematics website

Whereas the basal topology of Grassatores is unstable andunsupported most familial and superfamilial relationshipsare consistently recovered across analyses A consensus oftopologies across all analyses is shown in Fig 18

Discussion

A molecular phylogeny of the armoured harvestmen has longproven elusive Laniatores comprises entire genera and familiesthat are endemic to particular provinces of the world In somecases higher taxonomic ranks do not even occur beyond specificislands (eg the New Zealand family SynthetonychiidaeForster 1954) Moreover Laniatores includes the majority ofall described Opiliones species (and over half of all describedfamilies) and new lineages continue to be discoveredConsequently previous efforts to assess Laniatores phylogenyhave been prone to undersampling numerous lineages such asAssamiidae Epedanidae and the superfamilies Samooidea and

Zalmoxoidea (eg Giribet et al 1999 2002 Shultz and Regier2001)

The present study with the inclusion of all families ofarmoured harvestmen described heretofore enables detailedinvestigation of internal relationships of Laniatores Ofprincipal interest are the phylogenetic placement of the twonew families of Laniatores erected herein and the systematicvalidity of defined superfamilies Many of the relationshipsrecovered in our analyses are consistent with traditionalhypotheses based on morphological studies but there are someunexpected results We discuss these in turn

Insidiatores

Within a monophyletic Laniatores recovered in all analyses(BS = 100 PP = 093) the constituent lineages of Insidiatoresform a paraphyletic grade with respect to Grassatores WhileTriaenonychoidea and Travunioidea do form a clade (albeit withlow nodal support) the New Zealand endemic familySynthetonychiidae is recovered as sister to all remainingLaniatores (BS = 78 PP = 100) consistent with the resultsof a recent study (Giribet et al 2010) However the inclusionof more data in fact lowers the nodal support for this sisterrelationship relative to the previous studyrsquos ML analysislikely due to the influence of missing data (in particular only~300 bp out of a targeted 3400 bp of 28S rRNA are presentlyavailable for Synthetonychia) Consequently we do not treat theplacement of Synthetonychiidae as definitive

In all analyses the southern hemisphere Triaenonychidaeform a strongly supported clade that diversified ~200Mya(BS = 100 PP = 100) Their distribution and the age of thiscladersquos diversification are similar to that of the temperateGondwanan cyphophthalmid family Pettalidae (estimated tohave diversified ~183ndash221Mya Giribet et al 2010)suggesting a parallel biogeographical process in these lineagesThe North American triaenonychid Fumontana deprehendorShear 1977 is sister to the southern hemisphere Triaenonychidaein all analyses consistent with previous classification (Giribetand Kury 2007 Thomas and Hedin 2008) but support fora monophyletic Triaenonychoidea is limited and sensitiveto analytical parameters (BS = 57 PP lt 050 PPBEAST = 066)

Table 7 Leg measurements of Petrobunus torosus holotype (MHNG) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011011 039005 026012 028008 036006 040007 180Leg II 014013 061008 029010 043007 042006 072005 261Leg III 015015 051010 019015 037011 045006 046005 213Leg IV 034035 059012 034017 054015 067007 052006 300

Table 8 Leg measurements of Petrobunus torosus female paratype (ex MHNG PAL-0907) lengthwidth

Tr Fe Pa Ti Mt Ta Total

Leg I 011010 041008 022011 028010 037005 035006 174Leg II 010009 052007 023008 033007 037006 069005 224Leg III 014016 046010 025024 036012 042007 041005 204Leg IV 018017 054011 029016 049012 058007 048006 256

Molecular phylogeny of Laniatores Invertebrate Systematics 123

Fig 15 Phylogenetic relationships of Laniatores inferred from maximum likelihood analysis of all molecular data (ln L= ndash8372597) Inset topology ofTravunioidea excluding Briggsidae (ln L= ndash8336108) Numbers on nodes indicate bootstrap resampling frequencies

124 Invertebrate Systematics P P Sharma and G Giribet

We recovered a monophyletic Travunioidea which includesBriggsidae in all analyses (BS = 100PP = 100) corroboratingthe superfamilial placement of briggsids Briggsidae isrecovered sister to either Trojanella (ML) or Holoscotolemon(BI) or part of a grade with both of these taxa (BEAST) butthese placements are not supported (BS lt 50 PPBEAST = 085and PP = 051 respectively) Missing data for Briggsidaedepresses nodal support in ML analyses within Travunioideaobscuring interfamilial relationships In the absence ofBriggsidae we recover a sister relationship betweenSclerobunidae (Zuma acuta Goodnight amp Goodnight 1942)and the remaining Travunioidea (BS = 75) and themonophyly of Travuniidae +Cladonychiidae (BS = 77)

A recent molecular dating of Travunioidea obtained muchyounger dates than estimated herein in spite of similar taxaand molecular loci In that study Derkarabetian et al (2010)investigated the evolution of troglobitism in Sclerobunidae(also referred to as the lsquoNorth American triaenonychidsrsquo)and used the cladonychiid fossil Protoholoscotolemon(38ndash54Mya Ubick and Dunlop 2005) to constrain theminimum age of Travunioidea in addition to calibration pointsderived from geological ages of strata These practicesaccord with the scope of the troglobitism study (thedivergences of interest were comparatively recent ndash Plioceneor younger) but we did not utilise Protoholoscotolemon in ourdating for two reasons (1) we do not obtain an unambiguouslymonophyletic Cladonychiidae in our analyses and (2) theDevonian and Carboniferous fossils we utilised as calibrationpoints are sufficiently old to obtain a result consistent with anEocene cladonychiid fossil The different calibration pointsimplemented in the respective studies therefore account forthe discrepancy in the dating In addition the morphologicalconservatism of Opiliones makes it doubtful that the age ofProtoholoscotolemon is the maximum age of the superfamily

Our sampling of Insidiatores lineages remains limited andbarring the inclusion of Briggsidae additions to taxonomicsampling largely concern Grassatores Consequently continuedsampling and systematic studies of Insidiatores (eg Mendesand Kury 2008 Thomas and Hedin 2008 Derkarabetian et al2010) are instrumental and imperative to addressing outstandingquestions of phylogenetic relationships and morphologicalevolution A phylogeny of Triaenonychidae is particularlywanting

Early diverging Grassatores Phalangodidaeand Sandokanidae

The recovery of a monophyletic Grassatores (supported inall analyses BS = 99 PP = 100) is consistent with severalmorphological synapomorphies uniting this diverse groupsuch as the presence of two tarsal claws on walking legs IIIand IV However the basal topology of Grassatores has longbeen contentious Previously two superfamilies of Grassatoreswere recognised Oncopodoidea (with the single familySandokanidae (formerly Oncopodidae)) and lsquoGonyleptoidearsquo(with the remaining families) (Martens 1976 1986 Martenset al 1981) This dichotomy was largely based upon theunique morphology of Sandokanidae ndash characters such as thescutum completum (fused opisthosomal tergites) reduced tarsal

articles and genitalic structures which are not found in theremaining Grassatores (Martens 1980 Giribet et al 2002Sharma and Giribet 2009) It was alternatively contended thatthese characters constituted autapomorphies of Sandokanidaewhich was nested within lsquoGonyleptoidearsquo itself (Kury 2003)

In all analyses we obtained an initial divergence betweenPhalangodidae and the remaining Grassatores (BS = 100PP = 096) refuting the traditional dichotomy betweenSandokanidae and lsquoGonyleptoidearsquo Therefore we hereindefine Gonyleptoidea as the taxon consisting of AgoristenidaeCosmetidae Cranaidae Gonyleptidae Manaosbiidae andStygnidae The split between Phalangodidae and the remainingGrassatores has been postulated to correspond to the rifting ofthe ancient supercontinents Laurasia and Gondwana as thedistribution of Phalangodidae was believed to be strictlyHolarctic (Giribet et al 2010) However the inclusion of theMadagascar genus Remyus previously placed in Zalmoxidae(Starega 1989) within a monophyletic Phalangodidae indicatesbroader distribution of phalangodids ndash complementing theTriaenonychidae-Fumontana case discussed above Moreoverthe origin of Phalangodidae is estimated to have occurred around302Mya (95 HPD 264ndash335Mya) greatly predating thebreakup of the supercontinents These results indicate thatPhalangodidae may be narrowly defined and we consequentlytransfer Remyus to Phalangodidae (new familial assignment)

The unusual family Sandokanidae has been postulated to besister toPodoctidae (SharmaandGiribet 2009Giribet et al 2010)or to form agradewith Phalangodidae (Kuryrsquos lsquoPhalangodoidearsquopartly) In the present study ML and BI topologies reconstructSandokanidae as sister to the remaining non-phalangodidGrassatores albeit with insignificant nodal support (BS = 21PP = 078) Curiously the topology obtained byBEAST recoversthe clade (Sandokanidae + Podoctidae) nested within a singleclade of South-east Asian families (PPBEAST = 085) Theseresults do not unambiguously favour one hypothesis overanother and the phylogenetic placement of Sandokanidae inthe Grassatores tree therefore remains debatable

Regardless of the inclusion of Sandokanidae within theSouth-east Asian group of families that the sister family to theremaining Grassatores is Phalangodidae not Sandokanidaeindicates that the peculiar morphology of sandokanids is theresult of multiple apomorphic reversals not the retention ofplesiomorphic characters (Martens and Schwendinger 1998)The large scutum and low tarsomere number found inSandokanidae also occur in Trogulidae and Dicranolasmatidae(suborder Dyspnoi) and all Cyphophthalmi and appear to haveevolved convergently This morphology may reflect adaptationsto a shared ecological niche all these groups inhabit leaf litterinclude no arboricolous species and are limited in vagility ndash

although these life history traits are also found in other groupsHowever this hypothesis has yet to be rigorously tested

Sandokanidae is presently one of few families of Grassatoresfor which a molecular phylogeny assessing intergenericrelationships is available (Sharma and Giribet 2009) andconsistent with earlier results the monophyly of Sandokanidaeis strongly supported (BS = 100 PP = 100) as is the initial splitbetweenMartensiellus and the remaining genera (an undescribedspecies was referred to as lsquogen sprsquo by Sharma and Giribet 2009but subsequent morphological investigation revealed this to be

Molecular phylogeny of Laniatores Invertebrate Systematics 125

Fig 16 Phylogenetic relationships of Laniatores inferred fromBayesian inference analysis of allmolecular data Numbers on nodes indicateposterior probabilities

126 Invertebrate Systematics P P Sharma and G Giribet

a miniature species of Martensiellus P J Schwendinger perscomm) (BS = 92 PP = 100) Intergeneric relationshipsof sandokanid genera are contingent upon analytical treatmentof molecular partitions (with additional sandokanid exemplarsdata not shown) reflecting conflict among datasets documentedby Sharma and Giribet (2009)

The other South-east Asian families

Epedanidae was postulated to be sister to Gonyleptoidea in acladistic analysis based on morphological characters (Kury1993) Subsequently Kury (2003) proposed that Epedanidaewas sister to the clade (Assamiidae (Stygnopsidae +Gonyleptoidea)) The single epedanid previously included in amolecular phylogeny was similarly unstable in placement eithernestingwithin Assamiidae or sister to the African lsquophalangodidsrsquo(Conomma and Maiorerus) in neither case with appreciablenodal support (Giribet et al 2010) Furthermore previousinclusion of several lineages (eg Tithaeus) within Epedanidaethat do not bear characters typical of true epedanids ndash sexuallydimorphic chelicera with heavy dentition elongate andspined pedipalpi male genitalia with setae surroundingthe capsula interna ndash has also made this family difficult todefine Consequently we included only Epedaninae (egPseudoepedanus Alloepedanus and Euepedanus) as exemplarsof true epedanids the systematic validity of the remaining threesubfamilies (and particularly the inclusion of Dibuninae) isbeyond the scope of this study and remains to be investigated

The monophyly of each of four South-east Asian families ndashEpedanidae (represented by epedanines) TithaeidaePetrobunidae and Podoctidae ndash is recovered with high nodalsupport (all BS = 100 PP = 100) These lineages are somehowrelated to each other and while they form a clade in bothML andBI analyses this result receives insignificant nodal support(PP = 077) In the topology recovered by BEAST the South-east Asian families form a clade that includes Sandokanidaea result consistent with the distribution of sandokanids albeitwithout support (PPBEAST = 085) Tithaeidae is probably closelyrelated to Podoctidae given the occurrence of a deeply cleftventral plate resulting in two flanking prongs in themale genitaliaof both families (Suzuki 1977 Lian et al 2008 Fig 19) Inaddition the clade (Podoctidae +Tithaeidae) is recovered withmoderate support in ML and BI analyses (BS = 59 PP = 097)In none of the analyses is Tithaeidae nested within or sister toEpedanidae sensu stricto

The morphology of Petrobunidae suggests some relationshipto previously described South-east Asian families oralternatively Phalangodidae but not inclusion within any ofthese (Fig 19) Molecular sequence data do not support anyspecificplacement ofPetrobunidae although it clusterswithotherSouth-east Asian families in all analyses and is recovered sisterto Epedanidae in two topologies (BI and BEAST)

Gonyleptoidea and Stygnopsidae

With over 2500 described species the superfamilyGonyleptoidea constitutes the most diverse and (arguably) themost charismatic lineage of Opiliones with most of this diversityconcentrated in Amazonia (some cosmetids occur as far north asthe mid-Atlantic states of the US) In a previous analysis

relationships of gonyleptoid families were unsupported andordid not accordwithmorphological studies (Giribet et al 2010) Inparticular the placement of the agoristenid exemplar Avimaalbiornata (Goodnight amp Goodnight 1947) ndash the putativesister family to the remaining Gonyleptoidea ndash within aparaphyletic Cranaidae was particularly suspect given thelimited availability of sequence data for Avima (complete 18SrRNA a300-bp fragmentof 28S rRNA andCOI) In addition thesister group of Gonyleptoidea was ambiguous and contingentupon analytical parameters

Redoubling sequencing efforts and addition of taxaparticularly in the case of Agoristenidae (currently sequencedfor 12S rRNA complete 18S rRNA a 2000-bp fragment of 28SrRNA COI H3 and EF-1a) improved the assessment ofgonyleptoid relationships A monophyletic Gonyleptoidea(BS = 58 PP = 066) is recovered sister to the familyStygnopsidae (BS = 57 PP = 100) Within Gonyleptoidea asplit between Agoristenidae and the remaining gonyleptoids isstrongly supported (BS = 100 PP = 100) followed by thedivergence of Stygnidae (BS = 71 PP = 099) Thisplacement of Agoristenidae is supported by morphologicalstudies (Pinto-da-Rocha and Kury 2007) although in aminority of tree topologies sampled in BI analysesAgoristenidae is sister to Stygnopsidae (hence lower nodalsupport for the monophyly of Gonyleptoidea in BI) Theplacement of Manaosbiidae is uncertain it is recoveredsister to either (Gonyleptidae +Cranaidae) (PP = 089) or toCosmetidae (PPBEAST = 092) but these results are notsupported Cranaidae is recovered as monophyletic (BS = 99PP = 100) and nested within a paraphyletic Gonyleptidae

The present sampling of Cosmetidae and Gonyleptidae doesnot do justice to the diversity of these lineages (~700 and 800described species respectively) A phylogenetic assessment ofall 16 subfamilies of Gonyleptidae alone constitutes the subjectof an arduous and exacting study Fortunately cladistic analysesof morphological characters continue to advance phylogeneticinvestigation of subfamilial lineages (eg BourguyiinaeYamaguti and Pinto-da-Rocha 2009 Goniosomatinae DaSilvaandGnaspini 2009HernandariinaeDaSilva andPinto-da-Rocha2010) Elucidating the phylogeny of Gonyleptoidea is one of themost exciting research topics in the study of Opiliones

The Afrotropical families

The third most diverse family of Laniatores Assamiidaeconstitutes the dominant opiliofauna of the African continent(excluding Madagascar) with some lineages occurring in SouthAsia the Indo-Malay Archipelago and Australia (Trionyxellinaeand Dampetrinae) Proposed to be related to EpedanidaeStygnopsidae andor Gonyleptoidea (Kury 2007) on the basisof genitalic structures assamiids were not recovered asmonophyletic in a previous study (paraphyly was induced byeither Epedanidae orAfricanBiantidae) and the placement of thesubfamily Trionyxellinae was particularly suspect (Giribet et al2010) Trionyxellinae was considered a separate family byMello-Leitatildeo (1949) though others considered it nested withinAssamiidae (eg Starega 1992) In our analyses the monophylyof Assamiidae is supported (BS = 79 PP = 100)lsquoTrionyxellinaersquo (Trionyxella and Mysorea both with a

Molecular phylogeny of Laniatores Invertebrate Systematics 127

Fig 17 Evolutionary time tree of Laniatores inferred fromBEASTanalysis of allmolecular data Coloured bars indicate 95highestposterior density (HPD) intervals for nodes of interest Numbers on nodes indicate posterior probabilities asterisks indicate posteriorprobability of 100

128 Invertebrate Systematics P P Sharma and G Giribet

pseudonychium on the third and fourth tarsi) is a diphyletic entitynested within the other Assamiidae (for the node renderingdiphyly BS = 100 PP = 100) disfavouring family status fortrionyxellines

The African lsquophalangodidsrsquo (sometimes called thelsquoPyramidops grouprsquo) were recognised as a new family byStarega (1992) but not formalised and included 13 genera(Conomma Pyramidops and related lineages) Consistentwith this hypothesis we recovered strong support for thePyramidops group (represented by Conomma and cfPyramidops) as a lineage separate from the true Phalangodidae(egBishopella and Scotolemon) recapitulating a previous result(Giribet et al 2010) The African lsquophalangodidsrsquowere recoveredas the sister lineage of Assamiidae although this relationshipis variably supported in our analyses (BS = 40 PP = 095PPBEAST = 100) A review and formal description of thePyramidops group as a new family lsquoPyramidopidaersquo ndash a namewidely available on the internet including GBIF but notformalised ndash is undertaken elsewhere (Sharma et al 2011)

While we have endeavoured to improve the sampling ofAssamiidae from South-east Asia the internal systematics ofthis family remain a high value target for phylogenetic researchHowever revision of assamiid systematics is inherently difficultfor two reasons (1) the family is peppered with questionablehierarchies and monotypic genera (~12 subfamilies and 250genera for less than 500 described species) and (2) occurs insome of the most inaccessible regions of the world namely sub-Saharan Africa

In all analyses the clade (Assamiidae + Pyramidopidae) issister to the clade (Zalmoxoidea + Samooidea) though this resultis only supported in one analysis (PP= 100) The divergence ofthese four lineages is estimated to have occurred 252Mya and isconsistent with diversification in West Tropical Gondwanaoccurring at least 140million years before the fragmentation ofthis terrane (~110Mya)

Zalmoxoidea

As currently defined the largely Neotropical superfamilyZalmoxoidea includes four families FissiphalliidaeGuasiniidae Icaleptidae and Zalmoxidae Guasiniidae hasnever before been included in a molecular phylogeny In thepresent study we sequenced a guasiniid for six genes and ouranalyses strongly support theplacement ofGuasiniidae as sister tothe samooid family Kimulidae (formerly Minuidae) (BS = 86PP = 098 PPBEAST = 099) and this clade in turn sister to anothersamooid family Escadabiidae (BS = 65 PP = 096PPBEAST = 100) The families Fissiphalliidae Icaleptidaeand Zalmoxidae in turn form a separate clade (BS = 100PP = 100 PPBEAST = 100) with strong support for the sisterrelationship of Zalmoxidae and Fissiphalliidae (BS = 99PP = 100 PPBEAST = 100) corroborating relationshipsproposed by morphological studies (Kury and Peacuterez G 2002Pinto-da-Rocha and Kury 2003b)

Previous analyses have suggested that Samooidea (discussedbelow) is a paraphyletic grade with respect to Zalmoxoidea(Giribet et al 2010) In the present analysis the cladeSamooidea + Zalmoxoidea is strongly supported (BS = 85PP = 100 PPBEAST = 100) as previously suggested by PeacuterezGonzaacutelez and Kury (2007) and by excluding Escadabiidae and

Kimulidae Samooidea is rendered a monophyletic entity albeitwith limited support (BS = 53 PP = 062 PPBEAST = 081) Thestrong support from molecular sequence data for the cladeincluding Escadabiidae Kimulidae and the four zalmoxoidfamilies (BS = 89 PP = 100 PPBEAST = 100) suggests thatthese may form a natural group

Re-examination of the morphology of these six families incomparisonwith true samooid lineages (Biantidae Samoidae andStygnommatidae) corroborates the exclusionofEscadabiidae andKimulidae from true Samooidea Escadabiidae and Kimulidae(1) lack the scopula characteristic of Samoidae and stenostygnineBiantidae (2) lack a sexually dimorphic metatarsus IIIcharacteristic of Samoidae Stygnommatidae and stenostygnineBiantidae and (3) lack a penial calyx characteristic of SamoidaeConsistent with placement within Zalmoxoidea EscadabiidaeandKimulidae (1) possess a small oculariumbearing the eyes thatis removed from the margin of the carapace (2) bear a wellmarked dorsal protuberance (bulla) on the proximal segmentof the chelicera that lacks armature and (3) possess sexuallydimorphic leg IV segments particularly the femur and tibiawhich may be variedly arcuate incrassate and spinedAdditionally Escadabiidae Fissiphalliidae and Zalmoxidae allpossess sexually dimorphic tegumental glandopeningson tibia IIwhereas Biantidae Samoidae and Stygnommatidae possessthese structures on metatarsus III (Willemart et al 2010)While data on tegumental gland openings are only availablefor a small handful of species these may constitute significantdiagnostic characters for species wherein sexual dimorphismdoes not manifest itself in the readily observable form ofenlarged and spiny segments

Given the results of our phylogenetic analyses maintainingSamooidea (as currently defined) renders it a paraphyletic gradewith respect to a diphyletic Zalmoxoidea (as currently defined)Consequently based on the aforementioned morphologicalcharacters and robust molecular phylogenetic signal wetransfer Escadabiidae and Kimulidae to Zalmoxoidea

Samooidea

A previous cladistic analysis based upon morphological datasuggested close relationship between six families ndash BiantidaeEscadabiidae Kimulidae Podoctidae Samoidae andStygnommatidae ndash thenceforth known as Samooidea (Kury1993) the only pantropical Laniatores superfamily HoweverPodoctidae does not have any obvious relationship to Samooideaand has subsequently been transferred (Kury 2007) in ouranalyses Podoctidae is sister to Tithaeidae or Sandokanidaeie distantly related to all samooid families Moreover ouranalyses strongly favour the exclusion of Escadabiidae andKimulidae from Samooidea

The remaining three families ndash Biantidae Samoidae andStygnommatidae ndash are distributed in the Neotropics and partsof Africa with a handful of suspect lineages in South-east AsiaRe-examination and reassignment of many Samoidae genera(eg the Indonesian lsquosamoidrsquo Waigeucola palpalis PeacuterezGonzaacutelez 2011) suggest that the range of Samoidae does notinclude South-east Asia Peacuterez Gonzaacutelez and Kury (2007) alsoobserved that the lsquosamoidsrsquo of Africa Madagascar and theSeychelles may not be true Samoidae either Similarlyinclusion of the genus Stygnomimus an Indonesian lineage

Molecular phylogeny of Laniatores Invertebrate Systematics 129

within Stygnommatidae is highly dubious as the twoIndonesian lsquostygnommatidsrsquo are either highly autapomorphic(Stygnomimus conopygus (Roewer 1927)) or described on the

basis of a generic female that is not readily distinguishable fromfemales of other species (Stygnomimus malayensis (Suzuki1970))

Fig 18 Strict consensus of tree topologies obtained by all phylogenetic analyses

130 Invertebrate Systematics P P Sharma and G Giribet

Previous efforts to assess the systematic validity of Samooideaby means of molecular sequence data were limited insofar asonly two Samoidae three Biantidae (all Metabiantes) and twoStygnommatidae were sampled (Giribet et al 2010) Thesampling of Samoidae was especially problematic only asingle Neotropical adult (Pellobunus) and one African juvenilesamoid (lsquoSamoidae gen sprsquo) were included The designation ofthe latter is suspect as juveniles of Samoidae are oftenindistinguishable from the juveniles of other lineages becausemany diagnostic secondary sexual characters in Grassatores(eg spines and incrassate appendages) are not acquired untilafter several postembryonic stages (Townsend et al 2009)

In the present study though the type genus of Samoidae(Samoa from Samoa) was not available we sequenced theclosely related genus Badessa (from Fiji collected byP P S) as well as additional Biantidae and StygnommatidaeOur analyses recovered a monophyletic Samooidea (excludingEscadabiidae and Kimulidae BS = 53 PP = 062) withSamoidae sensu stricto (Pellobunus +Badessa BS = 100PP = 100) nested within a paraphyletic Stygnommatidae aplacement that is supported (BS = 87 PP = 100) Bycontrast the African lsquosamoidrsquo is sister to the AfricanBiantidae a relationship that is also well supported(BS = 100 PP = 100) These relationships suggest a basal

Fig 19 Cladogram of male genitalic evolution in South-east Asian families superimposed upon a schematised molecular phylogeny based on ML and BIanalyses of all molecular data Exemplars (a) Pseudoepedanus doiensis Suzuki 1969 (redrawn from Suzuki 1969) dorsal view (b) Pseudoepedanus doiensisSuzuki 1969 (redrawn from Suzuki 1969) ventral view (c) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) ventral view(d) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) dorsal view (e) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki1976) dorsal view (f) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki 1976) ventral view (g) Petrobunus torosus lateral view (h) ZalmoxidagibberaSuzuki 1969 dorsal view (i)Zalmoxida sp (MCZDNA102677) dorsolateral view (j)Metatithaeus rubidusSuzuki 1969 (redrawn fromSuzuki 1969)ventral view (k)Tithaeus kokutnusSuzuki 1985 (redrawn fromSuzuki 1985) ventral view (l)Tithaeus similisSuzuki 1985 (redrawn fromSuzuki 1985) ventralview (m)DongmoaoshimensisSuzuki 1964 (redrawn fromSuzuki 1964) ventral view (n)Bonea longipalpisSuzuki 1977 (redrawn fromSuzuki 1977) ventralview (o) Santobius annulipes Soslashrensen 1886 (redrawn from Kury and Machado 2009) ventral view (p) Lomanius longipalpus mindanaoensis Suzuki 1977(redrawn from Suzuki 1977) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 131

dichotomy within Samooidea that corresponds to one groupof Neotropical and Pacific lineages and a second group ofAfrican lineages However as we were unable to samplestenostygnine (Neotropical) and Indo-Pacific Biantidae aswell as numerous monotypic genera dubiously placed inSamoidae biogeographical extrapolations for Samooidea aretenuous (discussed below)

The internal relationships of Samooidea suggest that themorphology of Samoidae may have evolved convergently Asthe African samoid is a juvenile (the same specimen previouslysequenced by Giribet et al 2010 now sequenced for additional28S rRNA and other genes) we cannot rule out the possibility ofa monophyletic Samoidae that includes African species (thespecimen in question could be a juvenile biantid) In any casethe paraphyly of Stygnommatidae and putative polyphyly ofSamoidae strongly advocate systematic revision of samooidfamilies as currently defined corroborating hypotheses of non-monophyly based on morphology (Peacuterez Gonzaacutelez 2007 PeacuterezGonzaacutelez and Kury 2007) Our sampling of these families isinsufficient to advocate specific taxonomic action but an ongoing

study of samooidean systematics will shed more light on thevalidity of constituent families (A Peacuterez Gonzaacutelez work inprogress)

Biogeography of Zalmoxoidea and Samooidea

While most superfamilies of Grassatores are restricted to aspecific part of the tropics (eg Neotropics South-east Asia)two are distributed in multiple biogeographical provincesSamooidea occurs in the Neotropics and Afrotropics withquestionable records from South-east Asia Zalmoxoidea isconcentrated in the Neotropics with the exception of oneIndo-Pacific lineage of Zalmoxidae (represented here byZalmoxis sp) The ages and distributions of Samooidea andZalmoxoidea suggest that their biogeography was influencedby the fragmentation of West Tropical Gondwana ndash causingthe former to diverge basally throughout West TropicalGondwanan terranes and the latter to become isolated to theNeotropics (with possible subsequent dispersal)

Fig 20 Ancestral range reconstructions for Samooidea +Zalmoxoidea inferred by Lagrange using stratified models corresponding to two vicariant events(indicated by dotted lines) Coloured squares at terminals indicate ranges occupied by sampled species Coloured squares on nodes indicate ranges reconstructedfor hypothetical ancestors Numbers on nodes indicate relative probability of ranges reconstructed

Fig 21 Best hypothesis of Laniatores relationships based on all available evidence Bracketed nodes indicate non-monophyletic entities Dashed line indicatesambiguity in the placement of Sandokanidae (alternatively placed as shown or as sister to Podoctidae) Exemplars of Laniatores diversity are Synthetonychiaoliveae (Synthetonychiidae) Equitius doriae (Triaenonychidae) Hadziana clavigera (Travuniidae) Erebomaster flavescens flavescens (Cladonychiidae)Scotolemon lespesi (Phalangodidae) Palaeoncopus gunung (Sandokanidae) Santobius sp (Podoctidae) Tithaeus sp (Tithaeidae) Petrobunus spinifer(Petrobunidae) Alloepedanus sp (Epedanidae) Hoplobunus sp (Stygnopsidae) Torreana spinata (Agoristenidae) Stygnoplus clavotibialis (Stygnidae)Metalibitia paraguayensis (Cosmetidae)Acutisoma longipes (Gonyleptidae)Conommaoedipus (Pyramidopsgroup)Mysorea thaiensis (Assamiidae)Lacurbssp (Biantidae) Stygnomma sp (Stygnommatidae) Badessa sp (Samoidae) Guasinia sp (Guasiniidae) Icaleptes sp (Icaleptidae) Fissiphallius chicoi(Fissiphalliidae) Zalmoxis sp (Zalmoxidae) Kimula goodnightiorum (Kimulidae)

132 Invertebrate Systematics P P Sharma and G Giribet

Molecular phylogeny of Laniatores Invertebrate Systematics 133

To test this hypothesis we conducted likelihood analysisof range evolution using the program Lagrange (Ree et al2005 Ree and Smith 2008) for the clade (Zalmoxoidea +Samooidea) The stratified analysis resulted in a globalmaximum likelihood of ndashlnL= 1556 outperforming anunconstrained analysis that did not include any dispersalconstraints (ndashlnL= 1676) Likelihood analysis of rangeoptimisation (Fig 20) indicates that the ancestral range ofSamooidea includes both the Afrotropics and the Neotropics(relative probability pr = 1000) but a subsequent split occursbetween an African lineage (pr = 1000) and a NeotropicalIndo-Pacific lineage with a Neotropical ancestral range (pr = 0986)Samoidea of the Indo-Pacific occur on young oceanic islands(eg Fiji Samoa) indicating recent transoceanic dispersal fromthe Neotropics

Ancestral range reconstructions for Samooidea are allconsistent with estimated divergence times for these clades(diversification of Samooidea predates the rifting of WestAfrica from northern South America) favouring an underlyingvicariant process for the basal topology with subsequent recentdispersal events However these results are contingent upon thepresent sampling which does not include all samooid lineages(eg stenostygnine Biantidae) but basal range reconstructionsare likely unaffected (eg Stenostygninae is exclusivelyNeotropical)

In contrast the ancestor of Zalmoxoidea is reconstructedas singularly Neotropical (pr = 0996) This is consistent withisolation of a zalmoxoid ancestor to Amazonia which thenradiated ~191Mya Subsequent ancestral ranges are alsoreconstructed as Neotropical with high relative probabilityHowever the ancestral range of the clade (Icaleptidae +Fissiphalliidae + Zalmoxidae) is ambiguously reconstructedas either Neotropical (pr = 0935) or Neotropical + Indo-Pacific(pr = 0064) as is the split between Fissiphalliidae andZalmoxidae (Neotropical pr = 0856 Neotropical + Indo-Pacific pr = 0141)

These results suggest that the Indo-Pacific lineage ofZalmoxidae which split from Neotropical Zalmoxidae ~83Myais likely the result of long-distance dispersal from the NeotropicsHowever due to the persistence of transantarctic connectionsbetween the Australian plate and temperate South America untilthe Tertiary a competing vicariant scenario cannot be ruled outwithout densely sampling zalmoxid diversity The biogeographyof Zalmoxidae is presently being explored in greater detail in aseparate study (P P Sharma unpubl data)

Finally the ancestral range of (Samooidea + Zalmoxoidea)includes both Africa and the Neotropics (pr = 0957) consistentwith a tropical West Gondwanan ancestor This resultlends circumstantial evidence to a sister relationship of theAfrotropical families (Assamiidae + Pyramidopidae) and theclade (Samooidea + Zalmoxoidea) recovered in all analyses

The diversification of Grassatores

While numerous interfamilial relationships are supported inthis study particularly among gonyleptoid and zalmoxoidfamilies some relationships between superfamilies ofGrassatores are not supported and are contingent upon

analytical treatments namely the deployment of substitutionmodels and data partitioning (Fig 21) The cause of thisinstability could be related to insufficient data particularly inthe EF-1a partition (the length of an intron which can exceed400 bp in some taxa makes this gene particularly difficult toamplify) However examination of clade divergence timessuggests that rapid diversification of Grassatores lineagescould in part augment phylogenetic uncertainty in basal partsof the topology

The split between Phalangodidae and the remainingGrassatores is estimated to have occurred ~302Mya but aseries of divergences resulted in the origin of all superfamiliallineages between 232 and 271Mya Relative to the estimatedage of Laniatores (348Mya) this 39-million-year period isremarkably narrow and inherently problematic as the amountof phylogenetic signal for a given stem subtending a node isdirectly proportional to the amount of time that the stem inquestion spans (Lanyon 1988 Rokas and Carroll 2006) Thesmall internal edge lengths of the stems corresponding to basaldivergences of non-phalangodid Grassatores (Figs 15 16)combined with the ancient age of lineages derived from thesedivergences result in relationships that are difficult to estimatewithout a large amount of sequence data andor the inclusion ofdata that are less afflicted by homoplasy (because longer edgelengths imply more indel and substitution events on edges)(Whitfield and Lockhart 2007)

We additionally observe that the origins of most Grassatoressuperfamilies occur in the wake of the end-Permian massextinction (~254Mya) Rapid radiation in the wake of a massextinction has occurred in multiple metazoan lineagesthe putative result of relaxed selection and opening ofpreviously occupied ecological niche space (Labandeira andSepkoski 1993 Sahney and Benton 2008) The rapiddiversification of early Grassatores lineages could be anexample of this phenomenon but this hypothesis is difficult totest in the absence of Mesozoic Grassatores fossils (reviewed byDunlop 2007)

Finally we observe that contrary to traditional hierarchiesproposed for Laniatores many of the clades recovered in ouranalyses correspond to geographical regions particularly in thecase of Grassatores For example the southern hemispheretriaenonychids are restricted to temperate Gondwananlandmasses Gonyleptoidea and their sister group Stygnopsidaeform a Neotropical (AmazonianMesoamericanAntillean) cladethat excludes Assamiidae which has been hypothesised to be amember of a broader Gonyleptoidea (Kury and Cokendolpher2000 Mendes and Kury 2007) In our analyses Assamiidae isin fact a member of a largely Afrotropical clade together withthe Pyramidopidae South-east Asian families usually form oneclade (at most two) albeit with limited support Samooideafamilies are divided into two clusters African and NeotropicalWith one exception (described above) Zalmoxoidea is restrictedto the Neotropics The ages that we estimate for Laniatoresradiations are consistent with ancient diversification beforethe fragmentation of Pangaea An ancient diversification inconjunction with the climatic stability of the tropics may in partexplain the comparatively greater diversity of the armouredharvestmen with respect to the other Opiliones suborders

134 Invertebrate Systematics P P Sharma and G Giribet

Acknowledgements

Weare indebted toPeter J Schwendingerwho collected andprovidedmost ofthe material for study from South-east Asia Some Thai and most of theNeotropical Laniatores were obtained from the TIGER (Thailand InventoryGroup for Entomological Research) and LLAMA (Leaf Litter Arthropods ofMeso-America) projects toC Lienhard and J Longino respectivelyMaterialfrom Madagascar was generously contributed by Charles Griswold and theCalifornia Academy of Sciences Jesse Czekanski-Moir in conjunction withthe Belau NationalMuseum contributed elusive specimens from Palau AbelPeacuterezGonzaacutelez identifiedmanyNeotropical species included in the study andcontributed specimens fromCubaRicardoPinto-da-Rocha identified someofthe live photographed animals from the Neotropics Discussions with RonaldMClouseAbelPeacuterezGonzaacutelezAdrianoBKury andCarlosEPrieto refinedmanyof the ideas presentedhereTwoanonymous reviewers and the associateeditor provided comments that helped to improve an earlier version ofthis manuscript Laura Leibensperger sorted and accessioned TIGER andLLAMA material as well as MCZ type material Adam Graham and theCenter forNanoscaleStudies atHarvardUniversityprovided support forSEMwork Collecting efforts in New Caledonia were greatly facilitated by theguidance of Herveacute Jourdan (Institut de rechercheacute pour de developpementNoumea) and his teammembers Collecting efforts in Fiji weremade possibleby Marika Tuiwawa (University of the South Pacific Suva) and his teammembers Hilda Waqa and Tokasaya lsquoToxrsquo Cakacaka we are especiallygrateful to Tox for his good company during fieldwork and to his familyfor graciously enabling a visit toOvalau SuzieYee Shawprovided invaluablelogistical support in Fiji and her sons Colin and Joshua Yee Shaw assistedwith sorting Fijian material Fieldwork in Indonesia and West Africa wassupported by two MCZ Putnam Expedition Grants awarded to RonaldM Clouse and G G (2006) and to G G (2009) respectively Fieldworkin New Caledonia was supported by the Goelet award the Kalathia FamilyTrust and the Explorers Club awarded to P P S in 2006 Fieldwork in Fijiand in Palauwas supported by twoMCZPutnamExpeditionGrants awardedto P P S (2008) and to Ronald M Clouse and P P S (2010) respectivelyP P S was supported by a Faculty of Arts and Sciences Graduate Fellowshipfrom Harvard University

References

Castresana J (2000) Selectionof conservedblocks frommultiple alignmentsfor their use in phylogenetic analysis Molecular Biology and Evolution17 540ndash552

Colgan D J McLauchlan A Wislon G D F Livingston S MacaranasJ Edgecombe G D Cassis G and Gray M R (1998) Molecularphylogenetics of the Arthropoda relationships based on histone H3and U2 snRNA DNA sequences Australian Journal of Zoology 46419ndash437 doi101071ZO98048

DaSilva M B and Gnaspini P (2009) A systematic revision ofGoniosomatinae (Arachnida Opiliones Gonyleptidae) with a cladisticanalysis and biogeographical notes Invertebrate Systematics 23530ndash624 doi101071IS09022

DaSilva M B and Pinto-da-Rocha R (2010) Systematic review andcladistic analysis of the Hernandariinae (Opiliones Gonyleptidae)Zoologia 27 577ndash642

Derkarabetian S Steinmann D B and Hedin M (2010) Repeatedand time-correlated morphological convergence in cave-dwellingharvestmen (Opiliones Laniatores) from montane western NorthAmerica PLoS ONE 5 e10388 doi101371journalpone0010388

Drummond A J and Rambaut A (2007) BEAST Bayesian evolutionaryanalysis by sampling trees BMC Evolutionary Biology 7 214doi1011861471-2148-7-214

Drummond A J Ho S Y W Phillips M J and Rambaut A (2006)Relaxed phylogenetics and dating with confidence PLoS Biology 4 e88doi101371journalpbio0040088

Dunlop J A (2007) Paleontology In lsquoHarvestmen The Biology ofOpilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 247ndash265 (Harvard University Press Cambridge MA USA)

Dunlop J A and Anderson L I (2005) A fossil harvestman (ArachnidaOpiliones) from theMississippian of East Kirkton Scotland The Journalof Arachnology 33 482ndash489 doi10163604-791

Dunlop JAAndersonL IKerpH andHassH (2003)Preservedorgansof Devonian harvestmen Nature 425 916 doi101038425916a

Dunlop J A Anderson L I Kerp H and Hass H (2004) A harvestman(Arachnida Opiliones) from the Early Devonian Rhynie chertsAberdeenshire Scotland Transactions of the Royal Society ofEdinburgh Earth Sciences 94 341ndash354

Edgar R C (2004) MUSCLE multiple sequence alignment with highaccuracy and high throughput Nucleic Acids Research 32 1792ndash1797doi101093nargkh340

Edgecombe G D and Giribet G (2006) A century laterndash a total evidencere-evaluation of scutigeromorph centipedes (Myriapoda Chilopoda)Invertebrate Systematics 20 503ndash525 doi101071IS05044

Edgecombe G D Giribet G and Wheeler W C (2002) Phylogeny ofHenicopidae (Chilopoda Lithobiomorpha) a combined analysis ofmorphology and five molecular loci Systematic Entomology 2731ndash64 doi101046j0307-6970200100163x

FolmerOBlackMHoehWLutzR andVrijenhoekRC (1994)DNAprimers for amplification ofmitochondrial cytochrome c oxidase subunit Ifrom diverse metazoan invertebrates Molecular Marine Biology andBiotechnology 3 294ndash299

Forster R R (1954) The New Zealand harvestmen (sub-order Laniatores)Canterbury Museum Bulletin 2 1ndash329

Giribet G and Kury A B (2007) Phylogeny and biogeography InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 62ndash87 (Harvard University PressCambridge MA USA)

Giribet G Carranza S Baguntildeagrave J Riutort M and Ribera C (1996) Firstmolecular evidence for the existence of a Tardigrada +Arthropoda cladeMolecular Biology and Evolution 13 76ndash84

Giribet G Rambla M Carranza S Baguntildeagrave J Riutort M and Ribera C(1999) Phylogeny of the arachnid order Opiliones (Arthropoda)inferred from a combined approach of complete 18S and partial 28Sribosomal DNA sequences and morphology Molecular Phylogeneticsand Evolution 11 296ndash307 doi101006mpev19980583

Giribet G Edgecombe G D Wheeler W C and Babbitt C (2002)Phylogeny and systematic position of Opiliones a combined analysis ofchelicerate relationships using morphological and molecular dataCladistics 18 5ndash70

Giribet G Vogt L PeacuterezGonzaacutelez A Sharma P andKury A B (2010)A multilocus approach to harvestman (Arachnida Opiliones) phylogenywith emphasis on biogeography and the systematics of LaniatoresCladistics 26 408ndash437

Hara M R Gnaspini P and Machado G (2003) Male egg guardingbehavior in the Neotropical harvestman Ampheres leucopheus (Mello-Leitatildeo 1922) (Opiliones Gonyleptidae) The Journal of Arachnology 31441ndash444 doi101636S02-32

Hedin M Derkarabetian S McCormack M and Richart C (2010) Thephylogenetic utility of the nuclear protein-encoding gene EF-1a forresolving recent divergences in Opiliones emphasizing intronevolution The Journal of Arachnology 38 9ndash20 doi101636HA09-491

Huelsenbeck J P and Ronquist F (2005) Bayesian analyses of molecularevolution using MrBayes In lsquoStatistical Methods in MolecularEvolutionrsquo (Ed R Nielsen) (Springer New York)

HunterRK ProundDNBurns JA Tibbetts JA andTownsendVR(2007) Parental care in the Neotropical harvestman Phareicranauscalcariferus (Opiliones Cranaidae) The Journal of Arachnology 35199ndash201 doi101636ST06-181

Molecular phylogeny of Laniatores Invertebrate Systematics 135

Kocher T D Thoma W K Meyer A Edwards S V Paumlaumlbo SVillablanca F X and Wilson A C (1989) Dynamics ofmitochondrial DNA evolution in animals amplification andsequencing with conserved primers Proceedings of the NationalAcademy of Sciences of the United States of America 86 6196ndash6200doi101073pnas86166196

Kury A B (1993) Anaacutelise filogeneacutetica de Gonyleptoidea (ArachnidaOpiliones Laniatores) PhD Thesis Universidade de Satildeo Paulo SatildeoPaulo Brazil

Kury A B (2003) Annotated catalogue of the Laniatores of the NewWorld (Arachnida Opiliones) Revista Ibeacuterica de AracnologiacuteaVolumen Especial Monograacutefico 1 1ndash337

Kury A B (2006) Checklist of valid genera of Opiliones of theWorld Museu NacionalUFRJ Available from httpwwwmuseunacionalufrjbrmndiAracnologiachecklaniatorhtm [Accessed1 February 2011]

Kury A B (2007) Podoctidae Roewer 1912 In lsquoHarvestmen The Biologyof Opilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 221ndash224 (Harvard University Press Cambridge MA USA)

Kury A B and Cokendolpher J C (2000) Opiliones In lsquoBiodiversidadTaxonomiacutea y Biogeografiacutea de Artoacutepodos de Meacutexico Hacia una Sintesisde su Conocimientorsquo vol 2 (Eds J E Llorente E Gonzaacutelez andN Papavero) pp 137ndash157 (Universidad Nacional Autoacutenoma deMexico Meacutexico DF Mexico)

Kury A B and Machado G (2009) Notes on Santobius from Vanuatu andFiji and the status of the eastern Melanesian Ibalonius (ArachnidaOpiliones Podoctidae) Zoological Studies 48 524ndash538

Kury A B and Peacuterez G A (2002) A new family of Laniatores fromnorthwestern South America (Arachnida Opiliones) Revista Ibeacuterica deAracnologiacutea 6 3ndash11

Labandeira C C and Sepkoski J J (1993) Insect diversity in the fossilrecord Science 261 310ndash315 doi101126science11536548

Lanyon S M (1988) The stochastic mode of molecular evolutionwhat consequences for systematic investigations The Auk 105565ndash573

Lian W-G Zhu M-S and Kury A B (2008) A new species of the genusTithaeus from China (Arachnida Laniatores Epedanidae) Zootaxa1841 53ndash60

Machado G Requena G S Buzatto B A Osses F and Rossetto L M(2004) Five new cases of paternal care in harvestmen (ArachnidaOpiliones) implications for the evolution of male guarding in theNeotropical family Gonyleptidae Sociobiology 44 577ndash598

Martens J (1976) Genitalmorphologie System und Phylogenie derWeberknechte (Arachnida Opiliones) Entomologica GermanicaZeitschrift fuumlr das Gesamtgebiet der Wissenschaftlichen Entomologie3 51ndash68

Martens J (1980) Versuch eines phylogenetischen Systems der OpilionesIn lsquoProceedings 8th International Congress of Arachnology ViennaVerhandlungenrsquo (Ed J Gruber) pp 355ndash360 (Vienna Austria)

Martens J (1986) Die Grossgliederung der Opiliones und die Evolutionder Ordnung (Arachnida) Actas del X Congreso Internacional deAracnologiacutea Jaca 1 289ndash310

Martens J (1993) Further cases of paternal care in Opiliones (Arachnida)Tropical Zoology 6 97ndash107

Martens J and Schwendinger P S (1998) A taxonomic revision ofthe family Oncopodidae I New genera and new species of GnomulusThorell (Opiliones Laniatores) Revue Suisse de Zoologie 105 499ndash555

Martens J Hoheisel U and Goumltze M (1981) Vergleichende Anatomieder Legeroumlhren der Opiliones als Beitrag zur Phylogenie der Ordnung(Arachnida) Zoologische Jahrbucher Abteilung fur Anatomie undOntogenie der Tiere 105 13ndash76

Mello-Leitatildeo C F (1949) Famiacutelias subfamiacutelia espeacutecies e gecircneros novos deopiliotildees e notas de sinoniacutemia Boletim do Museu Nacional Nova SeacuterieZoologia Rio de Janeiro 94 1ndash33

Mendes A C and Kury A B (2007) Stygnopsidae Soslashrensen 1932 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 232ndash234 (Harvard University PressCambridge MA USA)

Mendes A C and Kury A B (2008) Intercontinental Triaenonychidae ndashthe case of Ceratomontia (Opiliones Insidiatores) The Journal ofArachnology 36 273ndash279 doi101636CH07-931

Murphree C S (1988) Morphology of the dorsal integument of tenopilionid species (Arachnida Opiliones) The Journal of Arachnology16 237ndash252

Park J K andOacuteFoighilD (2000) Sphaeriid and corbiculid clams representseparate heterodont bivalve radiations into freshwater environmentsMolecular Phylogenetics and Evolution 14 75ndash88 doi101006mpev19990691

Peacuterez Gonzaacutelez A (2006) lsquoRevisatildeo Sistemaacutetica e Anaacutelise Filogeneacutetica deStygnommatidae (Arachnida Opiliones Laniatores)rsquo (Museu NacionalUniversidade Federal de Rio de Janeiro Rio de Janeiro Brazil)

Peacuterez Gonzaacutelez A (2007) Stygnommatidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 229ndash232 (Harvard University PressCambridge MA USA)

Peacuterez Gonzaacutelez A (2011) New familial assignment for two harvestmanspecies of the infraorder Grassatores (Arachnida Opiliones Laniatores)Zootaxa 2757 24ndash28

Peacuterez Gonzaacutelez A and Kury A B (2007) Samoidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 224ndash226 (Harvard University PressCambridge MA USA)

Pineau P Henry M Suspegravene R Marchio A Dettai A Debruyne RPetit T Leacutecu A Moisson P Dejean A Wain-Hobson S andVartanian J-P (2005) A universal primer set for PCR amplificationof nuclear histone H4 genes from all animal species Molecular Biologyand Evolution 22 582ndash588 doi101093molbevmsi053

Pinto-da-Rocha R (1997) Systematic review of the Neotropical familyStygnidae (Opiliones Laniatores Gonyleptoidea) Arquivos deZoologia 33 163ndash342

Pinto-da-Rocha R and Kury A B (2003a) Phylogenetic analysis ofSantinezia with description of five new species (Opiliones LaniatoresCranaidae) The Journal of Arachnology 31 173ndash208 doi1016360161-8202(2003)031[0173PAOSWD]20CO2

Pinto-da-Rocha R and Kury A B (2003b) Third species of Guasiniidae(Opiliones Laniatores) with comments on familial relationships TheJournal of Arachnology 31 394ndash399 doi101636H02-59

Pinto-da-Rocha R and Kury A B (2007) Agoristenidae Silhavy 1973 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 171ndash173 (Harvard University PressCambridge MA USA)

Posada D (2005) Modeltest 37 Program and documentation available athttpdarwinuvigoes [Accessed 28 May 2011]

Posada D and Buckley T (2004) Model selection and model averaging inphylogenetics advantages of Akaike information criterion and Bayesianapproaches over likelihood ratio tests Systematic Biology 53 793ndash808doi10108010635150490522304

Posada D and Crandall K A (1998) Modeltest testing the model ofDNA substitution Bioinformatics (Oxford England) 14 817ndash818doi101093bioinformatics149817

Prendini L Weygoldt P and Wheeler W C (2005) Systematics of theDamon variegates group of African whip spiders (ChelicerataAmblypygi) evidence from behaviour morphology and DNAOrganisms Diversity amp Evolution 5 203ndash236 doi101016jode200412004

Rambaut A E (1996) Se-Al sequence alignment editor University ofOxford UK Program and documentation available at httptreebioedacuksoftwarefigtree [Accessed 21 December 2009]

136 Invertebrate Systematics P P Sharma and G Giribet

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 19: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

Fig 15 Phylogenetic relationships of Laniatores inferred from maximum likelihood analysis of all molecular data (ln L= ndash8372597) Inset topology ofTravunioidea excluding Briggsidae (ln L= ndash8336108) Numbers on nodes indicate bootstrap resampling frequencies

124 Invertebrate Systematics P P Sharma and G Giribet

We recovered a monophyletic Travunioidea which includesBriggsidae in all analyses (BS = 100PP = 100) corroboratingthe superfamilial placement of briggsids Briggsidae isrecovered sister to either Trojanella (ML) or Holoscotolemon(BI) or part of a grade with both of these taxa (BEAST) butthese placements are not supported (BS lt 50 PPBEAST = 085and PP = 051 respectively) Missing data for Briggsidaedepresses nodal support in ML analyses within Travunioideaobscuring interfamilial relationships In the absence ofBriggsidae we recover a sister relationship betweenSclerobunidae (Zuma acuta Goodnight amp Goodnight 1942)and the remaining Travunioidea (BS = 75) and themonophyly of Travuniidae +Cladonychiidae (BS = 77)

A recent molecular dating of Travunioidea obtained muchyounger dates than estimated herein in spite of similar taxaand molecular loci In that study Derkarabetian et al (2010)investigated the evolution of troglobitism in Sclerobunidae(also referred to as the lsquoNorth American triaenonychidsrsquo)and used the cladonychiid fossil Protoholoscotolemon(38ndash54Mya Ubick and Dunlop 2005) to constrain theminimum age of Travunioidea in addition to calibration pointsderived from geological ages of strata These practicesaccord with the scope of the troglobitism study (thedivergences of interest were comparatively recent ndash Plioceneor younger) but we did not utilise Protoholoscotolemon in ourdating for two reasons (1) we do not obtain an unambiguouslymonophyletic Cladonychiidae in our analyses and (2) theDevonian and Carboniferous fossils we utilised as calibrationpoints are sufficiently old to obtain a result consistent with anEocene cladonychiid fossil The different calibration pointsimplemented in the respective studies therefore account forthe discrepancy in the dating In addition the morphologicalconservatism of Opiliones makes it doubtful that the age ofProtoholoscotolemon is the maximum age of the superfamily

Our sampling of Insidiatores lineages remains limited andbarring the inclusion of Briggsidae additions to taxonomicsampling largely concern Grassatores Consequently continuedsampling and systematic studies of Insidiatores (eg Mendesand Kury 2008 Thomas and Hedin 2008 Derkarabetian et al2010) are instrumental and imperative to addressing outstandingquestions of phylogenetic relationships and morphologicalevolution A phylogeny of Triaenonychidae is particularlywanting

Early diverging Grassatores Phalangodidaeand Sandokanidae

The recovery of a monophyletic Grassatores (supported inall analyses BS = 99 PP = 100) is consistent with severalmorphological synapomorphies uniting this diverse groupsuch as the presence of two tarsal claws on walking legs IIIand IV However the basal topology of Grassatores has longbeen contentious Previously two superfamilies of Grassatoreswere recognised Oncopodoidea (with the single familySandokanidae (formerly Oncopodidae)) and lsquoGonyleptoidearsquo(with the remaining families) (Martens 1976 1986 Martenset al 1981) This dichotomy was largely based upon theunique morphology of Sandokanidae ndash characters such as thescutum completum (fused opisthosomal tergites) reduced tarsal

articles and genitalic structures which are not found in theremaining Grassatores (Martens 1980 Giribet et al 2002Sharma and Giribet 2009) It was alternatively contended thatthese characters constituted autapomorphies of Sandokanidaewhich was nested within lsquoGonyleptoidearsquo itself (Kury 2003)

In all analyses we obtained an initial divergence betweenPhalangodidae and the remaining Grassatores (BS = 100PP = 096) refuting the traditional dichotomy betweenSandokanidae and lsquoGonyleptoidearsquo Therefore we hereindefine Gonyleptoidea as the taxon consisting of AgoristenidaeCosmetidae Cranaidae Gonyleptidae Manaosbiidae andStygnidae The split between Phalangodidae and the remainingGrassatores has been postulated to correspond to the rifting ofthe ancient supercontinents Laurasia and Gondwana as thedistribution of Phalangodidae was believed to be strictlyHolarctic (Giribet et al 2010) However the inclusion of theMadagascar genus Remyus previously placed in Zalmoxidae(Starega 1989) within a monophyletic Phalangodidae indicatesbroader distribution of phalangodids ndash complementing theTriaenonychidae-Fumontana case discussed above Moreoverthe origin of Phalangodidae is estimated to have occurred around302Mya (95 HPD 264ndash335Mya) greatly predating thebreakup of the supercontinents These results indicate thatPhalangodidae may be narrowly defined and we consequentlytransfer Remyus to Phalangodidae (new familial assignment)

The unusual family Sandokanidae has been postulated to besister toPodoctidae (SharmaandGiribet 2009Giribet et al 2010)or to form agradewith Phalangodidae (Kuryrsquos lsquoPhalangodoidearsquopartly) In the present study ML and BI topologies reconstructSandokanidae as sister to the remaining non-phalangodidGrassatores albeit with insignificant nodal support (BS = 21PP = 078) Curiously the topology obtained byBEAST recoversthe clade (Sandokanidae + Podoctidae) nested within a singleclade of South-east Asian families (PPBEAST = 085) Theseresults do not unambiguously favour one hypothesis overanother and the phylogenetic placement of Sandokanidae inthe Grassatores tree therefore remains debatable

Regardless of the inclusion of Sandokanidae within theSouth-east Asian group of families that the sister family to theremaining Grassatores is Phalangodidae not Sandokanidaeindicates that the peculiar morphology of sandokanids is theresult of multiple apomorphic reversals not the retention ofplesiomorphic characters (Martens and Schwendinger 1998)The large scutum and low tarsomere number found inSandokanidae also occur in Trogulidae and Dicranolasmatidae(suborder Dyspnoi) and all Cyphophthalmi and appear to haveevolved convergently This morphology may reflect adaptationsto a shared ecological niche all these groups inhabit leaf litterinclude no arboricolous species and are limited in vagility ndash

although these life history traits are also found in other groupsHowever this hypothesis has yet to be rigorously tested

Sandokanidae is presently one of few families of Grassatoresfor which a molecular phylogeny assessing intergenericrelationships is available (Sharma and Giribet 2009) andconsistent with earlier results the monophyly of Sandokanidaeis strongly supported (BS = 100 PP = 100) as is the initial splitbetweenMartensiellus and the remaining genera (an undescribedspecies was referred to as lsquogen sprsquo by Sharma and Giribet 2009but subsequent morphological investigation revealed this to be

Molecular phylogeny of Laniatores Invertebrate Systematics 125

Fig 16 Phylogenetic relationships of Laniatores inferred fromBayesian inference analysis of allmolecular data Numbers on nodes indicateposterior probabilities

126 Invertebrate Systematics P P Sharma and G Giribet

a miniature species of Martensiellus P J Schwendinger perscomm) (BS = 92 PP = 100) Intergeneric relationshipsof sandokanid genera are contingent upon analytical treatmentof molecular partitions (with additional sandokanid exemplarsdata not shown) reflecting conflict among datasets documentedby Sharma and Giribet (2009)

The other South-east Asian families

Epedanidae was postulated to be sister to Gonyleptoidea in acladistic analysis based on morphological characters (Kury1993) Subsequently Kury (2003) proposed that Epedanidaewas sister to the clade (Assamiidae (Stygnopsidae +Gonyleptoidea)) The single epedanid previously included in amolecular phylogeny was similarly unstable in placement eithernestingwithin Assamiidae or sister to the African lsquophalangodidsrsquo(Conomma and Maiorerus) in neither case with appreciablenodal support (Giribet et al 2010) Furthermore previousinclusion of several lineages (eg Tithaeus) within Epedanidaethat do not bear characters typical of true epedanids ndash sexuallydimorphic chelicera with heavy dentition elongate andspined pedipalpi male genitalia with setae surroundingthe capsula interna ndash has also made this family difficult todefine Consequently we included only Epedaninae (egPseudoepedanus Alloepedanus and Euepedanus) as exemplarsof true epedanids the systematic validity of the remaining threesubfamilies (and particularly the inclusion of Dibuninae) isbeyond the scope of this study and remains to be investigated

The monophyly of each of four South-east Asian families ndashEpedanidae (represented by epedanines) TithaeidaePetrobunidae and Podoctidae ndash is recovered with high nodalsupport (all BS = 100 PP = 100) These lineages are somehowrelated to each other and while they form a clade in bothML andBI analyses this result receives insignificant nodal support(PP = 077) In the topology recovered by BEAST the South-east Asian families form a clade that includes Sandokanidaea result consistent with the distribution of sandokanids albeitwithout support (PPBEAST = 085) Tithaeidae is probably closelyrelated to Podoctidae given the occurrence of a deeply cleftventral plate resulting in two flanking prongs in themale genitaliaof both families (Suzuki 1977 Lian et al 2008 Fig 19) Inaddition the clade (Podoctidae +Tithaeidae) is recovered withmoderate support in ML and BI analyses (BS = 59 PP = 097)In none of the analyses is Tithaeidae nested within or sister toEpedanidae sensu stricto

The morphology of Petrobunidae suggests some relationshipto previously described South-east Asian families oralternatively Phalangodidae but not inclusion within any ofthese (Fig 19) Molecular sequence data do not support anyspecificplacement ofPetrobunidae although it clusterswithotherSouth-east Asian families in all analyses and is recovered sisterto Epedanidae in two topologies (BI and BEAST)

Gonyleptoidea and Stygnopsidae

With over 2500 described species the superfamilyGonyleptoidea constitutes the most diverse and (arguably) themost charismatic lineage of Opiliones with most of this diversityconcentrated in Amazonia (some cosmetids occur as far north asthe mid-Atlantic states of the US) In a previous analysis

relationships of gonyleptoid families were unsupported andordid not accordwithmorphological studies (Giribet et al 2010) Inparticular the placement of the agoristenid exemplar Avimaalbiornata (Goodnight amp Goodnight 1947) ndash the putativesister family to the remaining Gonyleptoidea ndash within aparaphyletic Cranaidae was particularly suspect given thelimited availability of sequence data for Avima (complete 18SrRNA a300-bp fragmentof 28S rRNA andCOI) In addition thesister group of Gonyleptoidea was ambiguous and contingentupon analytical parameters

Redoubling sequencing efforts and addition of taxaparticularly in the case of Agoristenidae (currently sequencedfor 12S rRNA complete 18S rRNA a 2000-bp fragment of 28SrRNA COI H3 and EF-1a) improved the assessment ofgonyleptoid relationships A monophyletic Gonyleptoidea(BS = 58 PP = 066) is recovered sister to the familyStygnopsidae (BS = 57 PP = 100) Within Gonyleptoidea asplit between Agoristenidae and the remaining gonyleptoids isstrongly supported (BS = 100 PP = 100) followed by thedivergence of Stygnidae (BS = 71 PP = 099) Thisplacement of Agoristenidae is supported by morphologicalstudies (Pinto-da-Rocha and Kury 2007) although in aminority of tree topologies sampled in BI analysesAgoristenidae is sister to Stygnopsidae (hence lower nodalsupport for the monophyly of Gonyleptoidea in BI) Theplacement of Manaosbiidae is uncertain it is recoveredsister to either (Gonyleptidae +Cranaidae) (PP = 089) or toCosmetidae (PPBEAST = 092) but these results are notsupported Cranaidae is recovered as monophyletic (BS = 99PP = 100) and nested within a paraphyletic Gonyleptidae

The present sampling of Cosmetidae and Gonyleptidae doesnot do justice to the diversity of these lineages (~700 and 800described species respectively) A phylogenetic assessment ofall 16 subfamilies of Gonyleptidae alone constitutes the subjectof an arduous and exacting study Fortunately cladistic analysesof morphological characters continue to advance phylogeneticinvestigation of subfamilial lineages (eg BourguyiinaeYamaguti and Pinto-da-Rocha 2009 Goniosomatinae DaSilvaandGnaspini 2009HernandariinaeDaSilva andPinto-da-Rocha2010) Elucidating the phylogeny of Gonyleptoidea is one of themost exciting research topics in the study of Opiliones

The Afrotropical families

The third most diverse family of Laniatores Assamiidaeconstitutes the dominant opiliofauna of the African continent(excluding Madagascar) with some lineages occurring in SouthAsia the Indo-Malay Archipelago and Australia (Trionyxellinaeand Dampetrinae) Proposed to be related to EpedanidaeStygnopsidae andor Gonyleptoidea (Kury 2007) on the basisof genitalic structures assamiids were not recovered asmonophyletic in a previous study (paraphyly was induced byeither Epedanidae orAfricanBiantidae) and the placement of thesubfamily Trionyxellinae was particularly suspect (Giribet et al2010) Trionyxellinae was considered a separate family byMello-Leitatildeo (1949) though others considered it nested withinAssamiidae (eg Starega 1992) In our analyses the monophylyof Assamiidae is supported (BS = 79 PP = 100)lsquoTrionyxellinaersquo (Trionyxella and Mysorea both with a

Molecular phylogeny of Laniatores Invertebrate Systematics 127

Fig 17 Evolutionary time tree of Laniatores inferred fromBEASTanalysis of allmolecular data Coloured bars indicate 95highestposterior density (HPD) intervals for nodes of interest Numbers on nodes indicate posterior probabilities asterisks indicate posteriorprobability of 100

128 Invertebrate Systematics P P Sharma and G Giribet

pseudonychium on the third and fourth tarsi) is a diphyletic entitynested within the other Assamiidae (for the node renderingdiphyly BS = 100 PP = 100) disfavouring family status fortrionyxellines

The African lsquophalangodidsrsquo (sometimes called thelsquoPyramidops grouprsquo) were recognised as a new family byStarega (1992) but not formalised and included 13 genera(Conomma Pyramidops and related lineages) Consistentwith this hypothesis we recovered strong support for thePyramidops group (represented by Conomma and cfPyramidops) as a lineage separate from the true Phalangodidae(egBishopella and Scotolemon) recapitulating a previous result(Giribet et al 2010) The African lsquophalangodidsrsquowere recoveredas the sister lineage of Assamiidae although this relationshipis variably supported in our analyses (BS = 40 PP = 095PPBEAST = 100) A review and formal description of thePyramidops group as a new family lsquoPyramidopidaersquo ndash a namewidely available on the internet including GBIF but notformalised ndash is undertaken elsewhere (Sharma et al 2011)

While we have endeavoured to improve the sampling ofAssamiidae from South-east Asia the internal systematics ofthis family remain a high value target for phylogenetic researchHowever revision of assamiid systematics is inherently difficultfor two reasons (1) the family is peppered with questionablehierarchies and monotypic genera (~12 subfamilies and 250genera for less than 500 described species) and (2) occurs insome of the most inaccessible regions of the world namely sub-Saharan Africa

In all analyses the clade (Assamiidae + Pyramidopidae) issister to the clade (Zalmoxoidea + Samooidea) though this resultis only supported in one analysis (PP= 100) The divergence ofthese four lineages is estimated to have occurred 252Mya and isconsistent with diversification in West Tropical Gondwanaoccurring at least 140million years before the fragmentation ofthis terrane (~110Mya)

Zalmoxoidea

As currently defined the largely Neotropical superfamilyZalmoxoidea includes four families FissiphalliidaeGuasiniidae Icaleptidae and Zalmoxidae Guasiniidae hasnever before been included in a molecular phylogeny In thepresent study we sequenced a guasiniid for six genes and ouranalyses strongly support theplacement ofGuasiniidae as sister tothe samooid family Kimulidae (formerly Minuidae) (BS = 86PP = 098 PPBEAST = 099) and this clade in turn sister to anothersamooid family Escadabiidae (BS = 65 PP = 096PPBEAST = 100) The families Fissiphalliidae Icaleptidaeand Zalmoxidae in turn form a separate clade (BS = 100PP = 100 PPBEAST = 100) with strong support for the sisterrelationship of Zalmoxidae and Fissiphalliidae (BS = 99PP = 100 PPBEAST = 100) corroborating relationshipsproposed by morphological studies (Kury and Peacuterez G 2002Pinto-da-Rocha and Kury 2003b)

Previous analyses have suggested that Samooidea (discussedbelow) is a paraphyletic grade with respect to Zalmoxoidea(Giribet et al 2010) In the present analysis the cladeSamooidea + Zalmoxoidea is strongly supported (BS = 85PP = 100 PPBEAST = 100) as previously suggested by PeacuterezGonzaacutelez and Kury (2007) and by excluding Escadabiidae and

Kimulidae Samooidea is rendered a monophyletic entity albeitwith limited support (BS = 53 PP = 062 PPBEAST = 081) Thestrong support from molecular sequence data for the cladeincluding Escadabiidae Kimulidae and the four zalmoxoidfamilies (BS = 89 PP = 100 PPBEAST = 100) suggests thatthese may form a natural group

Re-examination of the morphology of these six families incomparisonwith true samooid lineages (Biantidae Samoidae andStygnommatidae) corroborates the exclusionofEscadabiidae andKimulidae from true Samooidea Escadabiidae and Kimulidae(1) lack the scopula characteristic of Samoidae and stenostygnineBiantidae (2) lack a sexually dimorphic metatarsus IIIcharacteristic of Samoidae Stygnommatidae and stenostygnineBiantidae and (3) lack a penial calyx characteristic of SamoidaeConsistent with placement within Zalmoxoidea EscadabiidaeandKimulidae (1) possess a small oculariumbearing the eyes thatis removed from the margin of the carapace (2) bear a wellmarked dorsal protuberance (bulla) on the proximal segmentof the chelicera that lacks armature and (3) possess sexuallydimorphic leg IV segments particularly the femur and tibiawhich may be variedly arcuate incrassate and spinedAdditionally Escadabiidae Fissiphalliidae and Zalmoxidae allpossess sexually dimorphic tegumental glandopeningson tibia IIwhereas Biantidae Samoidae and Stygnommatidae possessthese structures on metatarsus III (Willemart et al 2010)While data on tegumental gland openings are only availablefor a small handful of species these may constitute significantdiagnostic characters for species wherein sexual dimorphismdoes not manifest itself in the readily observable form ofenlarged and spiny segments

Given the results of our phylogenetic analyses maintainingSamooidea (as currently defined) renders it a paraphyletic gradewith respect to a diphyletic Zalmoxoidea (as currently defined)Consequently based on the aforementioned morphologicalcharacters and robust molecular phylogenetic signal wetransfer Escadabiidae and Kimulidae to Zalmoxoidea

Samooidea

A previous cladistic analysis based upon morphological datasuggested close relationship between six families ndash BiantidaeEscadabiidae Kimulidae Podoctidae Samoidae andStygnommatidae ndash thenceforth known as Samooidea (Kury1993) the only pantropical Laniatores superfamily HoweverPodoctidae does not have any obvious relationship to Samooideaand has subsequently been transferred (Kury 2007) in ouranalyses Podoctidae is sister to Tithaeidae or Sandokanidaeie distantly related to all samooid families Moreover ouranalyses strongly favour the exclusion of Escadabiidae andKimulidae from Samooidea

The remaining three families ndash Biantidae Samoidae andStygnommatidae ndash are distributed in the Neotropics and partsof Africa with a handful of suspect lineages in South-east AsiaRe-examination and reassignment of many Samoidae genera(eg the Indonesian lsquosamoidrsquo Waigeucola palpalis PeacuterezGonzaacutelez 2011) suggest that the range of Samoidae does notinclude South-east Asia Peacuterez Gonzaacutelez and Kury (2007) alsoobserved that the lsquosamoidsrsquo of Africa Madagascar and theSeychelles may not be true Samoidae either Similarlyinclusion of the genus Stygnomimus an Indonesian lineage

Molecular phylogeny of Laniatores Invertebrate Systematics 129

within Stygnommatidae is highly dubious as the twoIndonesian lsquostygnommatidsrsquo are either highly autapomorphic(Stygnomimus conopygus (Roewer 1927)) or described on the

basis of a generic female that is not readily distinguishable fromfemales of other species (Stygnomimus malayensis (Suzuki1970))

Fig 18 Strict consensus of tree topologies obtained by all phylogenetic analyses

130 Invertebrate Systematics P P Sharma and G Giribet

Previous efforts to assess the systematic validity of Samooideaby means of molecular sequence data were limited insofar asonly two Samoidae three Biantidae (all Metabiantes) and twoStygnommatidae were sampled (Giribet et al 2010) Thesampling of Samoidae was especially problematic only asingle Neotropical adult (Pellobunus) and one African juvenilesamoid (lsquoSamoidae gen sprsquo) were included The designation ofthe latter is suspect as juveniles of Samoidae are oftenindistinguishable from the juveniles of other lineages becausemany diagnostic secondary sexual characters in Grassatores(eg spines and incrassate appendages) are not acquired untilafter several postembryonic stages (Townsend et al 2009)

In the present study though the type genus of Samoidae(Samoa from Samoa) was not available we sequenced theclosely related genus Badessa (from Fiji collected byP P S) as well as additional Biantidae and StygnommatidaeOur analyses recovered a monophyletic Samooidea (excludingEscadabiidae and Kimulidae BS = 53 PP = 062) withSamoidae sensu stricto (Pellobunus +Badessa BS = 100PP = 100) nested within a paraphyletic Stygnommatidae aplacement that is supported (BS = 87 PP = 100) Bycontrast the African lsquosamoidrsquo is sister to the AfricanBiantidae a relationship that is also well supported(BS = 100 PP = 100) These relationships suggest a basal

Fig 19 Cladogram of male genitalic evolution in South-east Asian families superimposed upon a schematised molecular phylogeny based on ML and BIanalyses of all molecular data Exemplars (a) Pseudoepedanus doiensis Suzuki 1969 (redrawn from Suzuki 1969) dorsal view (b) Pseudoepedanus doiensisSuzuki 1969 (redrawn from Suzuki 1969) ventral view (c) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) ventral view(d) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) dorsal view (e) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki1976) dorsal view (f) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki 1976) ventral view (g) Petrobunus torosus lateral view (h) ZalmoxidagibberaSuzuki 1969 dorsal view (i)Zalmoxida sp (MCZDNA102677) dorsolateral view (j)Metatithaeus rubidusSuzuki 1969 (redrawn fromSuzuki 1969)ventral view (k)Tithaeus kokutnusSuzuki 1985 (redrawn fromSuzuki 1985) ventral view (l)Tithaeus similisSuzuki 1985 (redrawn fromSuzuki 1985) ventralview (m)DongmoaoshimensisSuzuki 1964 (redrawn fromSuzuki 1964) ventral view (n)Bonea longipalpisSuzuki 1977 (redrawn fromSuzuki 1977) ventralview (o) Santobius annulipes Soslashrensen 1886 (redrawn from Kury and Machado 2009) ventral view (p) Lomanius longipalpus mindanaoensis Suzuki 1977(redrawn from Suzuki 1977) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 131

dichotomy within Samooidea that corresponds to one groupof Neotropical and Pacific lineages and a second group ofAfrican lineages However as we were unable to samplestenostygnine (Neotropical) and Indo-Pacific Biantidae aswell as numerous monotypic genera dubiously placed inSamoidae biogeographical extrapolations for Samooidea aretenuous (discussed below)

The internal relationships of Samooidea suggest that themorphology of Samoidae may have evolved convergently Asthe African samoid is a juvenile (the same specimen previouslysequenced by Giribet et al 2010 now sequenced for additional28S rRNA and other genes) we cannot rule out the possibility ofa monophyletic Samoidae that includes African species (thespecimen in question could be a juvenile biantid) In any casethe paraphyly of Stygnommatidae and putative polyphyly ofSamoidae strongly advocate systematic revision of samooidfamilies as currently defined corroborating hypotheses of non-monophyly based on morphology (Peacuterez Gonzaacutelez 2007 PeacuterezGonzaacutelez and Kury 2007) Our sampling of these families isinsufficient to advocate specific taxonomic action but an ongoing

study of samooidean systematics will shed more light on thevalidity of constituent families (A Peacuterez Gonzaacutelez work inprogress)

Biogeography of Zalmoxoidea and Samooidea

While most superfamilies of Grassatores are restricted to aspecific part of the tropics (eg Neotropics South-east Asia)two are distributed in multiple biogeographical provincesSamooidea occurs in the Neotropics and Afrotropics withquestionable records from South-east Asia Zalmoxoidea isconcentrated in the Neotropics with the exception of oneIndo-Pacific lineage of Zalmoxidae (represented here byZalmoxis sp) The ages and distributions of Samooidea andZalmoxoidea suggest that their biogeography was influencedby the fragmentation of West Tropical Gondwana ndash causingthe former to diverge basally throughout West TropicalGondwanan terranes and the latter to become isolated to theNeotropics (with possible subsequent dispersal)

Fig 20 Ancestral range reconstructions for Samooidea +Zalmoxoidea inferred by Lagrange using stratified models corresponding to two vicariant events(indicated by dotted lines) Coloured squares at terminals indicate ranges occupied by sampled species Coloured squares on nodes indicate ranges reconstructedfor hypothetical ancestors Numbers on nodes indicate relative probability of ranges reconstructed

Fig 21 Best hypothesis of Laniatores relationships based on all available evidence Bracketed nodes indicate non-monophyletic entities Dashed line indicatesambiguity in the placement of Sandokanidae (alternatively placed as shown or as sister to Podoctidae) Exemplars of Laniatores diversity are Synthetonychiaoliveae (Synthetonychiidae) Equitius doriae (Triaenonychidae) Hadziana clavigera (Travuniidae) Erebomaster flavescens flavescens (Cladonychiidae)Scotolemon lespesi (Phalangodidae) Palaeoncopus gunung (Sandokanidae) Santobius sp (Podoctidae) Tithaeus sp (Tithaeidae) Petrobunus spinifer(Petrobunidae) Alloepedanus sp (Epedanidae) Hoplobunus sp (Stygnopsidae) Torreana spinata (Agoristenidae) Stygnoplus clavotibialis (Stygnidae)Metalibitia paraguayensis (Cosmetidae)Acutisoma longipes (Gonyleptidae)Conommaoedipus (Pyramidopsgroup)Mysorea thaiensis (Assamiidae)Lacurbssp (Biantidae) Stygnomma sp (Stygnommatidae) Badessa sp (Samoidae) Guasinia sp (Guasiniidae) Icaleptes sp (Icaleptidae) Fissiphallius chicoi(Fissiphalliidae) Zalmoxis sp (Zalmoxidae) Kimula goodnightiorum (Kimulidae)

132 Invertebrate Systematics P P Sharma and G Giribet

Molecular phylogeny of Laniatores Invertebrate Systematics 133

To test this hypothesis we conducted likelihood analysisof range evolution using the program Lagrange (Ree et al2005 Ree and Smith 2008) for the clade (Zalmoxoidea +Samooidea) The stratified analysis resulted in a globalmaximum likelihood of ndashlnL= 1556 outperforming anunconstrained analysis that did not include any dispersalconstraints (ndashlnL= 1676) Likelihood analysis of rangeoptimisation (Fig 20) indicates that the ancestral range ofSamooidea includes both the Afrotropics and the Neotropics(relative probability pr = 1000) but a subsequent split occursbetween an African lineage (pr = 1000) and a NeotropicalIndo-Pacific lineage with a Neotropical ancestral range (pr = 0986)Samoidea of the Indo-Pacific occur on young oceanic islands(eg Fiji Samoa) indicating recent transoceanic dispersal fromthe Neotropics

Ancestral range reconstructions for Samooidea are allconsistent with estimated divergence times for these clades(diversification of Samooidea predates the rifting of WestAfrica from northern South America) favouring an underlyingvicariant process for the basal topology with subsequent recentdispersal events However these results are contingent upon thepresent sampling which does not include all samooid lineages(eg stenostygnine Biantidae) but basal range reconstructionsare likely unaffected (eg Stenostygninae is exclusivelyNeotropical)

In contrast the ancestor of Zalmoxoidea is reconstructedas singularly Neotropical (pr = 0996) This is consistent withisolation of a zalmoxoid ancestor to Amazonia which thenradiated ~191Mya Subsequent ancestral ranges are alsoreconstructed as Neotropical with high relative probabilityHowever the ancestral range of the clade (Icaleptidae +Fissiphalliidae + Zalmoxidae) is ambiguously reconstructedas either Neotropical (pr = 0935) or Neotropical + Indo-Pacific(pr = 0064) as is the split between Fissiphalliidae andZalmoxidae (Neotropical pr = 0856 Neotropical + Indo-Pacific pr = 0141)

These results suggest that the Indo-Pacific lineage ofZalmoxidae which split from Neotropical Zalmoxidae ~83Myais likely the result of long-distance dispersal from the NeotropicsHowever due to the persistence of transantarctic connectionsbetween the Australian plate and temperate South America untilthe Tertiary a competing vicariant scenario cannot be ruled outwithout densely sampling zalmoxid diversity The biogeographyof Zalmoxidae is presently being explored in greater detail in aseparate study (P P Sharma unpubl data)

Finally the ancestral range of (Samooidea + Zalmoxoidea)includes both Africa and the Neotropics (pr = 0957) consistentwith a tropical West Gondwanan ancestor This resultlends circumstantial evidence to a sister relationship of theAfrotropical families (Assamiidae + Pyramidopidae) and theclade (Samooidea + Zalmoxoidea) recovered in all analyses

The diversification of Grassatores

While numerous interfamilial relationships are supported inthis study particularly among gonyleptoid and zalmoxoidfamilies some relationships between superfamilies ofGrassatores are not supported and are contingent upon

analytical treatments namely the deployment of substitutionmodels and data partitioning (Fig 21) The cause of thisinstability could be related to insufficient data particularly inthe EF-1a partition (the length of an intron which can exceed400 bp in some taxa makes this gene particularly difficult toamplify) However examination of clade divergence timessuggests that rapid diversification of Grassatores lineagescould in part augment phylogenetic uncertainty in basal partsof the topology

The split between Phalangodidae and the remainingGrassatores is estimated to have occurred ~302Mya but aseries of divergences resulted in the origin of all superfamiliallineages between 232 and 271Mya Relative to the estimatedage of Laniatores (348Mya) this 39-million-year period isremarkably narrow and inherently problematic as the amountof phylogenetic signal for a given stem subtending a node isdirectly proportional to the amount of time that the stem inquestion spans (Lanyon 1988 Rokas and Carroll 2006) Thesmall internal edge lengths of the stems corresponding to basaldivergences of non-phalangodid Grassatores (Figs 15 16)combined with the ancient age of lineages derived from thesedivergences result in relationships that are difficult to estimatewithout a large amount of sequence data andor the inclusion ofdata that are less afflicted by homoplasy (because longer edgelengths imply more indel and substitution events on edges)(Whitfield and Lockhart 2007)

We additionally observe that the origins of most Grassatoressuperfamilies occur in the wake of the end-Permian massextinction (~254Mya) Rapid radiation in the wake of a massextinction has occurred in multiple metazoan lineagesthe putative result of relaxed selection and opening ofpreviously occupied ecological niche space (Labandeira andSepkoski 1993 Sahney and Benton 2008) The rapiddiversification of early Grassatores lineages could be anexample of this phenomenon but this hypothesis is difficult totest in the absence of Mesozoic Grassatores fossils (reviewed byDunlop 2007)

Finally we observe that contrary to traditional hierarchiesproposed for Laniatores many of the clades recovered in ouranalyses correspond to geographical regions particularly in thecase of Grassatores For example the southern hemispheretriaenonychids are restricted to temperate Gondwananlandmasses Gonyleptoidea and their sister group Stygnopsidaeform a Neotropical (AmazonianMesoamericanAntillean) cladethat excludes Assamiidae which has been hypothesised to be amember of a broader Gonyleptoidea (Kury and Cokendolpher2000 Mendes and Kury 2007) In our analyses Assamiidae isin fact a member of a largely Afrotropical clade together withthe Pyramidopidae South-east Asian families usually form oneclade (at most two) albeit with limited support Samooideafamilies are divided into two clusters African and NeotropicalWith one exception (described above) Zalmoxoidea is restrictedto the Neotropics The ages that we estimate for Laniatoresradiations are consistent with ancient diversification beforethe fragmentation of Pangaea An ancient diversification inconjunction with the climatic stability of the tropics may in partexplain the comparatively greater diversity of the armouredharvestmen with respect to the other Opiliones suborders

134 Invertebrate Systematics P P Sharma and G Giribet

Acknowledgements

Weare indebted toPeter J Schwendingerwho collected andprovidedmost ofthe material for study from South-east Asia Some Thai and most of theNeotropical Laniatores were obtained from the TIGER (Thailand InventoryGroup for Entomological Research) and LLAMA (Leaf Litter Arthropods ofMeso-America) projects toC Lienhard and J Longino respectivelyMaterialfrom Madagascar was generously contributed by Charles Griswold and theCalifornia Academy of Sciences Jesse Czekanski-Moir in conjunction withthe Belau NationalMuseum contributed elusive specimens from Palau AbelPeacuterezGonzaacutelez identifiedmanyNeotropical species included in the study andcontributed specimens fromCubaRicardoPinto-da-Rocha identified someofthe live photographed animals from the Neotropics Discussions with RonaldMClouseAbelPeacuterezGonzaacutelezAdrianoBKury andCarlosEPrieto refinedmanyof the ideas presentedhereTwoanonymous reviewers and the associateeditor provided comments that helped to improve an earlier version ofthis manuscript Laura Leibensperger sorted and accessioned TIGER andLLAMA material as well as MCZ type material Adam Graham and theCenter forNanoscaleStudies atHarvardUniversityprovided support forSEMwork Collecting efforts in New Caledonia were greatly facilitated by theguidance of Herveacute Jourdan (Institut de rechercheacute pour de developpementNoumea) and his teammembers Collecting efforts in Fiji weremade possibleby Marika Tuiwawa (University of the South Pacific Suva) and his teammembers Hilda Waqa and Tokasaya lsquoToxrsquo Cakacaka we are especiallygrateful to Tox for his good company during fieldwork and to his familyfor graciously enabling a visit toOvalau SuzieYee Shawprovided invaluablelogistical support in Fiji and her sons Colin and Joshua Yee Shaw assistedwith sorting Fijian material Fieldwork in Indonesia and West Africa wassupported by two MCZ Putnam Expedition Grants awarded to RonaldM Clouse and G G (2006) and to G G (2009) respectively Fieldworkin New Caledonia was supported by the Goelet award the Kalathia FamilyTrust and the Explorers Club awarded to P P S in 2006 Fieldwork in Fijiand in Palauwas supported by twoMCZPutnamExpeditionGrants awardedto P P S (2008) and to Ronald M Clouse and P P S (2010) respectivelyP P S was supported by a Faculty of Arts and Sciences Graduate Fellowshipfrom Harvard University

References

Castresana J (2000) Selectionof conservedblocks frommultiple alignmentsfor their use in phylogenetic analysis Molecular Biology and Evolution17 540ndash552

Colgan D J McLauchlan A Wislon G D F Livingston S MacaranasJ Edgecombe G D Cassis G and Gray M R (1998) Molecularphylogenetics of the Arthropoda relationships based on histone H3and U2 snRNA DNA sequences Australian Journal of Zoology 46419ndash437 doi101071ZO98048

DaSilva M B and Gnaspini P (2009) A systematic revision ofGoniosomatinae (Arachnida Opiliones Gonyleptidae) with a cladisticanalysis and biogeographical notes Invertebrate Systematics 23530ndash624 doi101071IS09022

DaSilva M B and Pinto-da-Rocha R (2010) Systematic review andcladistic analysis of the Hernandariinae (Opiliones Gonyleptidae)Zoologia 27 577ndash642

Derkarabetian S Steinmann D B and Hedin M (2010) Repeatedand time-correlated morphological convergence in cave-dwellingharvestmen (Opiliones Laniatores) from montane western NorthAmerica PLoS ONE 5 e10388 doi101371journalpone0010388

Drummond A J and Rambaut A (2007) BEAST Bayesian evolutionaryanalysis by sampling trees BMC Evolutionary Biology 7 214doi1011861471-2148-7-214

Drummond A J Ho S Y W Phillips M J and Rambaut A (2006)Relaxed phylogenetics and dating with confidence PLoS Biology 4 e88doi101371journalpbio0040088

Dunlop J A (2007) Paleontology In lsquoHarvestmen The Biology ofOpilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 247ndash265 (Harvard University Press Cambridge MA USA)

Dunlop J A and Anderson L I (2005) A fossil harvestman (ArachnidaOpiliones) from theMississippian of East Kirkton Scotland The Journalof Arachnology 33 482ndash489 doi10163604-791

Dunlop JAAndersonL IKerpH andHassH (2003)Preservedorgansof Devonian harvestmen Nature 425 916 doi101038425916a

Dunlop J A Anderson L I Kerp H and Hass H (2004) A harvestman(Arachnida Opiliones) from the Early Devonian Rhynie chertsAberdeenshire Scotland Transactions of the Royal Society ofEdinburgh Earth Sciences 94 341ndash354

Edgar R C (2004) MUSCLE multiple sequence alignment with highaccuracy and high throughput Nucleic Acids Research 32 1792ndash1797doi101093nargkh340

Edgecombe G D and Giribet G (2006) A century laterndash a total evidencere-evaluation of scutigeromorph centipedes (Myriapoda Chilopoda)Invertebrate Systematics 20 503ndash525 doi101071IS05044

Edgecombe G D Giribet G and Wheeler W C (2002) Phylogeny ofHenicopidae (Chilopoda Lithobiomorpha) a combined analysis ofmorphology and five molecular loci Systematic Entomology 2731ndash64 doi101046j0307-6970200100163x

FolmerOBlackMHoehWLutzR andVrijenhoekRC (1994)DNAprimers for amplification ofmitochondrial cytochrome c oxidase subunit Ifrom diverse metazoan invertebrates Molecular Marine Biology andBiotechnology 3 294ndash299

Forster R R (1954) The New Zealand harvestmen (sub-order Laniatores)Canterbury Museum Bulletin 2 1ndash329

Giribet G and Kury A B (2007) Phylogeny and biogeography InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 62ndash87 (Harvard University PressCambridge MA USA)

Giribet G Carranza S Baguntildeagrave J Riutort M and Ribera C (1996) Firstmolecular evidence for the existence of a Tardigrada +Arthropoda cladeMolecular Biology and Evolution 13 76ndash84

Giribet G Rambla M Carranza S Baguntildeagrave J Riutort M and Ribera C(1999) Phylogeny of the arachnid order Opiliones (Arthropoda)inferred from a combined approach of complete 18S and partial 28Sribosomal DNA sequences and morphology Molecular Phylogeneticsand Evolution 11 296ndash307 doi101006mpev19980583

Giribet G Edgecombe G D Wheeler W C and Babbitt C (2002)Phylogeny and systematic position of Opiliones a combined analysis ofchelicerate relationships using morphological and molecular dataCladistics 18 5ndash70

Giribet G Vogt L PeacuterezGonzaacutelez A Sharma P andKury A B (2010)A multilocus approach to harvestman (Arachnida Opiliones) phylogenywith emphasis on biogeography and the systematics of LaniatoresCladistics 26 408ndash437

Hara M R Gnaspini P and Machado G (2003) Male egg guardingbehavior in the Neotropical harvestman Ampheres leucopheus (Mello-Leitatildeo 1922) (Opiliones Gonyleptidae) The Journal of Arachnology 31441ndash444 doi101636S02-32

Hedin M Derkarabetian S McCormack M and Richart C (2010) Thephylogenetic utility of the nuclear protein-encoding gene EF-1a forresolving recent divergences in Opiliones emphasizing intronevolution The Journal of Arachnology 38 9ndash20 doi101636HA09-491

Huelsenbeck J P and Ronquist F (2005) Bayesian analyses of molecularevolution using MrBayes In lsquoStatistical Methods in MolecularEvolutionrsquo (Ed R Nielsen) (Springer New York)

HunterRK ProundDNBurns JA Tibbetts JA andTownsendVR(2007) Parental care in the Neotropical harvestman Phareicranauscalcariferus (Opiliones Cranaidae) The Journal of Arachnology 35199ndash201 doi101636ST06-181

Molecular phylogeny of Laniatores Invertebrate Systematics 135

Kocher T D Thoma W K Meyer A Edwards S V Paumlaumlbo SVillablanca F X and Wilson A C (1989) Dynamics ofmitochondrial DNA evolution in animals amplification andsequencing with conserved primers Proceedings of the NationalAcademy of Sciences of the United States of America 86 6196ndash6200doi101073pnas86166196

Kury A B (1993) Anaacutelise filogeneacutetica de Gonyleptoidea (ArachnidaOpiliones Laniatores) PhD Thesis Universidade de Satildeo Paulo SatildeoPaulo Brazil

Kury A B (2003) Annotated catalogue of the Laniatores of the NewWorld (Arachnida Opiliones) Revista Ibeacuterica de AracnologiacuteaVolumen Especial Monograacutefico 1 1ndash337

Kury A B (2006) Checklist of valid genera of Opiliones of theWorld Museu NacionalUFRJ Available from httpwwwmuseunacionalufrjbrmndiAracnologiachecklaniatorhtm [Accessed1 February 2011]

Kury A B (2007) Podoctidae Roewer 1912 In lsquoHarvestmen The Biologyof Opilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 221ndash224 (Harvard University Press Cambridge MA USA)

Kury A B and Cokendolpher J C (2000) Opiliones In lsquoBiodiversidadTaxonomiacutea y Biogeografiacutea de Artoacutepodos de Meacutexico Hacia una Sintesisde su Conocimientorsquo vol 2 (Eds J E Llorente E Gonzaacutelez andN Papavero) pp 137ndash157 (Universidad Nacional Autoacutenoma deMexico Meacutexico DF Mexico)

Kury A B and Machado G (2009) Notes on Santobius from Vanuatu andFiji and the status of the eastern Melanesian Ibalonius (ArachnidaOpiliones Podoctidae) Zoological Studies 48 524ndash538

Kury A B and Peacuterez G A (2002) A new family of Laniatores fromnorthwestern South America (Arachnida Opiliones) Revista Ibeacuterica deAracnologiacutea 6 3ndash11

Labandeira C C and Sepkoski J J (1993) Insect diversity in the fossilrecord Science 261 310ndash315 doi101126science11536548

Lanyon S M (1988) The stochastic mode of molecular evolutionwhat consequences for systematic investigations The Auk 105565ndash573

Lian W-G Zhu M-S and Kury A B (2008) A new species of the genusTithaeus from China (Arachnida Laniatores Epedanidae) Zootaxa1841 53ndash60

Machado G Requena G S Buzatto B A Osses F and Rossetto L M(2004) Five new cases of paternal care in harvestmen (ArachnidaOpiliones) implications for the evolution of male guarding in theNeotropical family Gonyleptidae Sociobiology 44 577ndash598

Martens J (1976) Genitalmorphologie System und Phylogenie derWeberknechte (Arachnida Opiliones) Entomologica GermanicaZeitschrift fuumlr das Gesamtgebiet der Wissenschaftlichen Entomologie3 51ndash68

Martens J (1980) Versuch eines phylogenetischen Systems der OpilionesIn lsquoProceedings 8th International Congress of Arachnology ViennaVerhandlungenrsquo (Ed J Gruber) pp 355ndash360 (Vienna Austria)

Martens J (1986) Die Grossgliederung der Opiliones und die Evolutionder Ordnung (Arachnida) Actas del X Congreso Internacional deAracnologiacutea Jaca 1 289ndash310

Martens J (1993) Further cases of paternal care in Opiliones (Arachnida)Tropical Zoology 6 97ndash107

Martens J and Schwendinger P S (1998) A taxonomic revision ofthe family Oncopodidae I New genera and new species of GnomulusThorell (Opiliones Laniatores) Revue Suisse de Zoologie 105 499ndash555

Martens J Hoheisel U and Goumltze M (1981) Vergleichende Anatomieder Legeroumlhren der Opiliones als Beitrag zur Phylogenie der Ordnung(Arachnida) Zoologische Jahrbucher Abteilung fur Anatomie undOntogenie der Tiere 105 13ndash76

Mello-Leitatildeo C F (1949) Famiacutelias subfamiacutelia espeacutecies e gecircneros novos deopiliotildees e notas de sinoniacutemia Boletim do Museu Nacional Nova SeacuterieZoologia Rio de Janeiro 94 1ndash33

Mendes A C and Kury A B (2007) Stygnopsidae Soslashrensen 1932 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 232ndash234 (Harvard University PressCambridge MA USA)

Mendes A C and Kury A B (2008) Intercontinental Triaenonychidae ndashthe case of Ceratomontia (Opiliones Insidiatores) The Journal ofArachnology 36 273ndash279 doi101636CH07-931

Murphree C S (1988) Morphology of the dorsal integument of tenopilionid species (Arachnida Opiliones) The Journal of Arachnology16 237ndash252

Park J K andOacuteFoighilD (2000) Sphaeriid and corbiculid clams representseparate heterodont bivalve radiations into freshwater environmentsMolecular Phylogenetics and Evolution 14 75ndash88 doi101006mpev19990691

Peacuterez Gonzaacutelez A (2006) lsquoRevisatildeo Sistemaacutetica e Anaacutelise Filogeneacutetica deStygnommatidae (Arachnida Opiliones Laniatores)rsquo (Museu NacionalUniversidade Federal de Rio de Janeiro Rio de Janeiro Brazil)

Peacuterez Gonzaacutelez A (2007) Stygnommatidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 229ndash232 (Harvard University PressCambridge MA USA)

Peacuterez Gonzaacutelez A (2011) New familial assignment for two harvestmanspecies of the infraorder Grassatores (Arachnida Opiliones Laniatores)Zootaxa 2757 24ndash28

Peacuterez Gonzaacutelez A and Kury A B (2007) Samoidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 224ndash226 (Harvard University PressCambridge MA USA)

Pineau P Henry M Suspegravene R Marchio A Dettai A Debruyne RPetit T Leacutecu A Moisson P Dejean A Wain-Hobson S andVartanian J-P (2005) A universal primer set for PCR amplificationof nuclear histone H4 genes from all animal species Molecular Biologyand Evolution 22 582ndash588 doi101093molbevmsi053

Pinto-da-Rocha R (1997) Systematic review of the Neotropical familyStygnidae (Opiliones Laniatores Gonyleptoidea) Arquivos deZoologia 33 163ndash342

Pinto-da-Rocha R and Kury A B (2003a) Phylogenetic analysis ofSantinezia with description of five new species (Opiliones LaniatoresCranaidae) The Journal of Arachnology 31 173ndash208 doi1016360161-8202(2003)031[0173PAOSWD]20CO2

Pinto-da-Rocha R and Kury A B (2003b) Third species of Guasiniidae(Opiliones Laniatores) with comments on familial relationships TheJournal of Arachnology 31 394ndash399 doi101636H02-59

Pinto-da-Rocha R and Kury A B (2007) Agoristenidae Silhavy 1973 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 171ndash173 (Harvard University PressCambridge MA USA)

Posada D (2005) Modeltest 37 Program and documentation available athttpdarwinuvigoes [Accessed 28 May 2011]

Posada D and Buckley T (2004) Model selection and model averaging inphylogenetics advantages of Akaike information criterion and Bayesianapproaches over likelihood ratio tests Systematic Biology 53 793ndash808doi10108010635150490522304

Posada D and Crandall K A (1998) Modeltest testing the model ofDNA substitution Bioinformatics (Oxford England) 14 817ndash818doi101093bioinformatics149817

Prendini L Weygoldt P and Wheeler W C (2005) Systematics of theDamon variegates group of African whip spiders (ChelicerataAmblypygi) evidence from behaviour morphology and DNAOrganisms Diversity amp Evolution 5 203ndash236 doi101016jode200412004

Rambaut A E (1996) Se-Al sequence alignment editor University ofOxford UK Program and documentation available at httptreebioedacuksoftwarefigtree [Accessed 21 December 2009]

136 Invertebrate Systematics P P Sharma and G Giribet

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 20: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

We recovered a monophyletic Travunioidea which includesBriggsidae in all analyses (BS = 100PP = 100) corroboratingthe superfamilial placement of briggsids Briggsidae isrecovered sister to either Trojanella (ML) or Holoscotolemon(BI) or part of a grade with both of these taxa (BEAST) butthese placements are not supported (BS lt 50 PPBEAST = 085and PP = 051 respectively) Missing data for Briggsidaedepresses nodal support in ML analyses within Travunioideaobscuring interfamilial relationships In the absence ofBriggsidae we recover a sister relationship betweenSclerobunidae (Zuma acuta Goodnight amp Goodnight 1942)and the remaining Travunioidea (BS = 75) and themonophyly of Travuniidae +Cladonychiidae (BS = 77)

A recent molecular dating of Travunioidea obtained muchyounger dates than estimated herein in spite of similar taxaand molecular loci In that study Derkarabetian et al (2010)investigated the evolution of troglobitism in Sclerobunidae(also referred to as the lsquoNorth American triaenonychidsrsquo)and used the cladonychiid fossil Protoholoscotolemon(38ndash54Mya Ubick and Dunlop 2005) to constrain theminimum age of Travunioidea in addition to calibration pointsderived from geological ages of strata These practicesaccord with the scope of the troglobitism study (thedivergences of interest were comparatively recent ndash Plioceneor younger) but we did not utilise Protoholoscotolemon in ourdating for two reasons (1) we do not obtain an unambiguouslymonophyletic Cladonychiidae in our analyses and (2) theDevonian and Carboniferous fossils we utilised as calibrationpoints are sufficiently old to obtain a result consistent with anEocene cladonychiid fossil The different calibration pointsimplemented in the respective studies therefore account forthe discrepancy in the dating In addition the morphologicalconservatism of Opiliones makes it doubtful that the age ofProtoholoscotolemon is the maximum age of the superfamily

Our sampling of Insidiatores lineages remains limited andbarring the inclusion of Briggsidae additions to taxonomicsampling largely concern Grassatores Consequently continuedsampling and systematic studies of Insidiatores (eg Mendesand Kury 2008 Thomas and Hedin 2008 Derkarabetian et al2010) are instrumental and imperative to addressing outstandingquestions of phylogenetic relationships and morphologicalevolution A phylogeny of Triaenonychidae is particularlywanting

Early diverging Grassatores Phalangodidaeand Sandokanidae

The recovery of a monophyletic Grassatores (supported inall analyses BS = 99 PP = 100) is consistent with severalmorphological synapomorphies uniting this diverse groupsuch as the presence of two tarsal claws on walking legs IIIand IV However the basal topology of Grassatores has longbeen contentious Previously two superfamilies of Grassatoreswere recognised Oncopodoidea (with the single familySandokanidae (formerly Oncopodidae)) and lsquoGonyleptoidearsquo(with the remaining families) (Martens 1976 1986 Martenset al 1981) This dichotomy was largely based upon theunique morphology of Sandokanidae ndash characters such as thescutum completum (fused opisthosomal tergites) reduced tarsal

articles and genitalic structures which are not found in theremaining Grassatores (Martens 1980 Giribet et al 2002Sharma and Giribet 2009) It was alternatively contended thatthese characters constituted autapomorphies of Sandokanidaewhich was nested within lsquoGonyleptoidearsquo itself (Kury 2003)

In all analyses we obtained an initial divergence betweenPhalangodidae and the remaining Grassatores (BS = 100PP = 096) refuting the traditional dichotomy betweenSandokanidae and lsquoGonyleptoidearsquo Therefore we hereindefine Gonyleptoidea as the taxon consisting of AgoristenidaeCosmetidae Cranaidae Gonyleptidae Manaosbiidae andStygnidae The split between Phalangodidae and the remainingGrassatores has been postulated to correspond to the rifting ofthe ancient supercontinents Laurasia and Gondwana as thedistribution of Phalangodidae was believed to be strictlyHolarctic (Giribet et al 2010) However the inclusion of theMadagascar genus Remyus previously placed in Zalmoxidae(Starega 1989) within a monophyletic Phalangodidae indicatesbroader distribution of phalangodids ndash complementing theTriaenonychidae-Fumontana case discussed above Moreoverthe origin of Phalangodidae is estimated to have occurred around302Mya (95 HPD 264ndash335Mya) greatly predating thebreakup of the supercontinents These results indicate thatPhalangodidae may be narrowly defined and we consequentlytransfer Remyus to Phalangodidae (new familial assignment)

The unusual family Sandokanidae has been postulated to besister toPodoctidae (SharmaandGiribet 2009Giribet et al 2010)or to form agradewith Phalangodidae (Kuryrsquos lsquoPhalangodoidearsquopartly) In the present study ML and BI topologies reconstructSandokanidae as sister to the remaining non-phalangodidGrassatores albeit with insignificant nodal support (BS = 21PP = 078) Curiously the topology obtained byBEAST recoversthe clade (Sandokanidae + Podoctidae) nested within a singleclade of South-east Asian families (PPBEAST = 085) Theseresults do not unambiguously favour one hypothesis overanother and the phylogenetic placement of Sandokanidae inthe Grassatores tree therefore remains debatable

Regardless of the inclusion of Sandokanidae within theSouth-east Asian group of families that the sister family to theremaining Grassatores is Phalangodidae not Sandokanidaeindicates that the peculiar morphology of sandokanids is theresult of multiple apomorphic reversals not the retention ofplesiomorphic characters (Martens and Schwendinger 1998)The large scutum and low tarsomere number found inSandokanidae also occur in Trogulidae and Dicranolasmatidae(suborder Dyspnoi) and all Cyphophthalmi and appear to haveevolved convergently This morphology may reflect adaptationsto a shared ecological niche all these groups inhabit leaf litterinclude no arboricolous species and are limited in vagility ndash

although these life history traits are also found in other groupsHowever this hypothesis has yet to be rigorously tested

Sandokanidae is presently one of few families of Grassatoresfor which a molecular phylogeny assessing intergenericrelationships is available (Sharma and Giribet 2009) andconsistent with earlier results the monophyly of Sandokanidaeis strongly supported (BS = 100 PP = 100) as is the initial splitbetweenMartensiellus and the remaining genera (an undescribedspecies was referred to as lsquogen sprsquo by Sharma and Giribet 2009but subsequent morphological investigation revealed this to be

Molecular phylogeny of Laniatores Invertebrate Systematics 125

Fig 16 Phylogenetic relationships of Laniatores inferred fromBayesian inference analysis of allmolecular data Numbers on nodes indicateposterior probabilities

126 Invertebrate Systematics P P Sharma and G Giribet

a miniature species of Martensiellus P J Schwendinger perscomm) (BS = 92 PP = 100) Intergeneric relationshipsof sandokanid genera are contingent upon analytical treatmentof molecular partitions (with additional sandokanid exemplarsdata not shown) reflecting conflict among datasets documentedby Sharma and Giribet (2009)

The other South-east Asian families

Epedanidae was postulated to be sister to Gonyleptoidea in acladistic analysis based on morphological characters (Kury1993) Subsequently Kury (2003) proposed that Epedanidaewas sister to the clade (Assamiidae (Stygnopsidae +Gonyleptoidea)) The single epedanid previously included in amolecular phylogeny was similarly unstable in placement eithernestingwithin Assamiidae or sister to the African lsquophalangodidsrsquo(Conomma and Maiorerus) in neither case with appreciablenodal support (Giribet et al 2010) Furthermore previousinclusion of several lineages (eg Tithaeus) within Epedanidaethat do not bear characters typical of true epedanids ndash sexuallydimorphic chelicera with heavy dentition elongate andspined pedipalpi male genitalia with setae surroundingthe capsula interna ndash has also made this family difficult todefine Consequently we included only Epedaninae (egPseudoepedanus Alloepedanus and Euepedanus) as exemplarsof true epedanids the systematic validity of the remaining threesubfamilies (and particularly the inclusion of Dibuninae) isbeyond the scope of this study and remains to be investigated

The monophyly of each of four South-east Asian families ndashEpedanidae (represented by epedanines) TithaeidaePetrobunidae and Podoctidae ndash is recovered with high nodalsupport (all BS = 100 PP = 100) These lineages are somehowrelated to each other and while they form a clade in bothML andBI analyses this result receives insignificant nodal support(PP = 077) In the topology recovered by BEAST the South-east Asian families form a clade that includes Sandokanidaea result consistent with the distribution of sandokanids albeitwithout support (PPBEAST = 085) Tithaeidae is probably closelyrelated to Podoctidae given the occurrence of a deeply cleftventral plate resulting in two flanking prongs in themale genitaliaof both families (Suzuki 1977 Lian et al 2008 Fig 19) Inaddition the clade (Podoctidae +Tithaeidae) is recovered withmoderate support in ML and BI analyses (BS = 59 PP = 097)In none of the analyses is Tithaeidae nested within or sister toEpedanidae sensu stricto

The morphology of Petrobunidae suggests some relationshipto previously described South-east Asian families oralternatively Phalangodidae but not inclusion within any ofthese (Fig 19) Molecular sequence data do not support anyspecificplacement ofPetrobunidae although it clusterswithotherSouth-east Asian families in all analyses and is recovered sisterto Epedanidae in two topologies (BI and BEAST)

Gonyleptoidea and Stygnopsidae

With over 2500 described species the superfamilyGonyleptoidea constitutes the most diverse and (arguably) themost charismatic lineage of Opiliones with most of this diversityconcentrated in Amazonia (some cosmetids occur as far north asthe mid-Atlantic states of the US) In a previous analysis

relationships of gonyleptoid families were unsupported andordid not accordwithmorphological studies (Giribet et al 2010) Inparticular the placement of the agoristenid exemplar Avimaalbiornata (Goodnight amp Goodnight 1947) ndash the putativesister family to the remaining Gonyleptoidea ndash within aparaphyletic Cranaidae was particularly suspect given thelimited availability of sequence data for Avima (complete 18SrRNA a300-bp fragmentof 28S rRNA andCOI) In addition thesister group of Gonyleptoidea was ambiguous and contingentupon analytical parameters

Redoubling sequencing efforts and addition of taxaparticularly in the case of Agoristenidae (currently sequencedfor 12S rRNA complete 18S rRNA a 2000-bp fragment of 28SrRNA COI H3 and EF-1a) improved the assessment ofgonyleptoid relationships A monophyletic Gonyleptoidea(BS = 58 PP = 066) is recovered sister to the familyStygnopsidae (BS = 57 PP = 100) Within Gonyleptoidea asplit between Agoristenidae and the remaining gonyleptoids isstrongly supported (BS = 100 PP = 100) followed by thedivergence of Stygnidae (BS = 71 PP = 099) Thisplacement of Agoristenidae is supported by morphologicalstudies (Pinto-da-Rocha and Kury 2007) although in aminority of tree topologies sampled in BI analysesAgoristenidae is sister to Stygnopsidae (hence lower nodalsupport for the monophyly of Gonyleptoidea in BI) Theplacement of Manaosbiidae is uncertain it is recoveredsister to either (Gonyleptidae +Cranaidae) (PP = 089) or toCosmetidae (PPBEAST = 092) but these results are notsupported Cranaidae is recovered as monophyletic (BS = 99PP = 100) and nested within a paraphyletic Gonyleptidae

The present sampling of Cosmetidae and Gonyleptidae doesnot do justice to the diversity of these lineages (~700 and 800described species respectively) A phylogenetic assessment ofall 16 subfamilies of Gonyleptidae alone constitutes the subjectof an arduous and exacting study Fortunately cladistic analysesof morphological characters continue to advance phylogeneticinvestigation of subfamilial lineages (eg BourguyiinaeYamaguti and Pinto-da-Rocha 2009 Goniosomatinae DaSilvaandGnaspini 2009HernandariinaeDaSilva andPinto-da-Rocha2010) Elucidating the phylogeny of Gonyleptoidea is one of themost exciting research topics in the study of Opiliones

The Afrotropical families

The third most diverse family of Laniatores Assamiidaeconstitutes the dominant opiliofauna of the African continent(excluding Madagascar) with some lineages occurring in SouthAsia the Indo-Malay Archipelago and Australia (Trionyxellinaeand Dampetrinae) Proposed to be related to EpedanidaeStygnopsidae andor Gonyleptoidea (Kury 2007) on the basisof genitalic structures assamiids were not recovered asmonophyletic in a previous study (paraphyly was induced byeither Epedanidae orAfricanBiantidae) and the placement of thesubfamily Trionyxellinae was particularly suspect (Giribet et al2010) Trionyxellinae was considered a separate family byMello-Leitatildeo (1949) though others considered it nested withinAssamiidae (eg Starega 1992) In our analyses the monophylyof Assamiidae is supported (BS = 79 PP = 100)lsquoTrionyxellinaersquo (Trionyxella and Mysorea both with a

Molecular phylogeny of Laniatores Invertebrate Systematics 127

Fig 17 Evolutionary time tree of Laniatores inferred fromBEASTanalysis of allmolecular data Coloured bars indicate 95highestposterior density (HPD) intervals for nodes of interest Numbers on nodes indicate posterior probabilities asterisks indicate posteriorprobability of 100

128 Invertebrate Systematics P P Sharma and G Giribet

pseudonychium on the third and fourth tarsi) is a diphyletic entitynested within the other Assamiidae (for the node renderingdiphyly BS = 100 PP = 100) disfavouring family status fortrionyxellines

The African lsquophalangodidsrsquo (sometimes called thelsquoPyramidops grouprsquo) were recognised as a new family byStarega (1992) but not formalised and included 13 genera(Conomma Pyramidops and related lineages) Consistentwith this hypothesis we recovered strong support for thePyramidops group (represented by Conomma and cfPyramidops) as a lineage separate from the true Phalangodidae(egBishopella and Scotolemon) recapitulating a previous result(Giribet et al 2010) The African lsquophalangodidsrsquowere recoveredas the sister lineage of Assamiidae although this relationshipis variably supported in our analyses (BS = 40 PP = 095PPBEAST = 100) A review and formal description of thePyramidops group as a new family lsquoPyramidopidaersquo ndash a namewidely available on the internet including GBIF but notformalised ndash is undertaken elsewhere (Sharma et al 2011)

While we have endeavoured to improve the sampling ofAssamiidae from South-east Asia the internal systematics ofthis family remain a high value target for phylogenetic researchHowever revision of assamiid systematics is inherently difficultfor two reasons (1) the family is peppered with questionablehierarchies and monotypic genera (~12 subfamilies and 250genera for less than 500 described species) and (2) occurs insome of the most inaccessible regions of the world namely sub-Saharan Africa

In all analyses the clade (Assamiidae + Pyramidopidae) issister to the clade (Zalmoxoidea + Samooidea) though this resultis only supported in one analysis (PP= 100) The divergence ofthese four lineages is estimated to have occurred 252Mya and isconsistent with diversification in West Tropical Gondwanaoccurring at least 140million years before the fragmentation ofthis terrane (~110Mya)

Zalmoxoidea

As currently defined the largely Neotropical superfamilyZalmoxoidea includes four families FissiphalliidaeGuasiniidae Icaleptidae and Zalmoxidae Guasiniidae hasnever before been included in a molecular phylogeny In thepresent study we sequenced a guasiniid for six genes and ouranalyses strongly support theplacement ofGuasiniidae as sister tothe samooid family Kimulidae (formerly Minuidae) (BS = 86PP = 098 PPBEAST = 099) and this clade in turn sister to anothersamooid family Escadabiidae (BS = 65 PP = 096PPBEAST = 100) The families Fissiphalliidae Icaleptidaeand Zalmoxidae in turn form a separate clade (BS = 100PP = 100 PPBEAST = 100) with strong support for the sisterrelationship of Zalmoxidae and Fissiphalliidae (BS = 99PP = 100 PPBEAST = 100) corroborating relationshipsproposed by morphological studies (Kury and Peacuterez G 2002Pinto-da-Rocha and Kury 2003b)

Previous analyses have suggested that Samooidea (discussedbelow) is a paraphyletic grade with respect to Zalmoxoidea(Giribet et al 2010) In the present analysis the cladeSamooidea + Zalmoxoidea is strongly supported (BS = 85PP = 100 PPBEAST = 100) as previously suggested by PeacuterezGonzaacutelez and Kury (2007) and by excluding Escadabiidae and

Kimulidae Samooidea is rendered a monophyletic entity albeitwith limited support (BS = 53 PP = 062 PPBEAST = 081) Thestrong support from molecular sequence data for the cladeincluding Escadabiidae Kimulidae and the four zalmoxoidfamilies (BS = 89 PP = 100 PPBEAST = 100) suggests thatthese may form a natural group

Re-examination of the morphology of these six families incomparisonwith true samooid lineages (Biantidae Samoidae andStygnommatidae) corroborates the exclusionofEscadabiidae andKimulidae from true Samooidea Escadabiidae and Kimulidae(1) lack the scopula characteristic of Samoidae and stenostygnineBiantidae (2) lack a sexually dimorphic metatarsus IIIcharacteristic of Samoidae Stygnommatidae and stenostygnineBiantidae and (3) lack a penial calyx characteristic of SamoidaeConsistent with placement within Zalmoxoidea EscadabiidaeandKimulidae (1) possess a small oculariumbearing the eyes thatis removed from the margin of the carapace (2) bear a wellmarked dorsal protuberance (bulla) on the proximal segmentof the chelicera that lacks armature and (3) possess sexuallydimorphic leg IV segments particularly the femur and tibiawhich may be variedly arcuate incrassate and spinedAdditionally Escadabiidae Fissiphalliidae and Zalmoxidae allpossess sexually dimorphic tegumental glandopeningson tibia IIwhereas Biantidae Samoidae and Stygnommatidae possessthese structures on metatarsus III (Willemart et al 2010)While data on tegumental gland openings are only availablefor a small handful of species these may constitute significantdiagnostic characters for species wherein sexual dimorphismdoes not manifest itself in the readily observable form ofenlarged and spiny segments

Given the results of our phylogenetic analyses maintainingSamooidea (as currently defined) renders it a paraphyletic gradewith respect to a diphyletic Zalmoxoidea (as currently defined)Consequently based on the aforementioned morphologicalcharacters and robust molecular phylogenetic signal wetransfer Escadabiidae and Kimulidae to Zalmoxoidea

Samooidea

A previous cladistic analysis based upon morphological datasuggested close relationship between six families ndash BiantidaeEscadabiidae Kimulidae Podoctidae Samoidae andStygnommatidae ndash thenceforth known as Samooidea (Kury1993) the only pantropical Laniatores superfamily HoweverPodoctidae does not have any obvious relationship to Samooideaand has subsequently been transferred (Kury 2007) in ouranalyses Podoctidae is sister to Tithaeidae or Sandokanidaeie distantly related to all samooid families Moreover ouranalyses strongly favour the exclusion of Escadabiidae andKimulidae from Samooidea

The remaining three families ndash Biantidae Samoidae andStygnommatidae ndash are distributed in the Neotropics and partsof Africa with a handful of suspect lineages in South-east AsiaRe-examination and reassignment of many Samoidae genera(eg the Indonesian lsquosamoidrsquo Waigeucola palpalis PeacuterezGonzaacutelez 2011) suggest that the range of Samoidae does notinclude South-east Asia Peacuterez Gonzaacutelez and Kury (2007) alsoobserved that the lsquosamoidsrsquo of Africa Madagascar and theSeychelles may not be true Samoidae either Similarlyinclusion of the genus Stygnomimus an Indonesian lineage

Molecular phylogeny of Laniatores Invertebrate Systematics 129

within Stygnommatidae is highly dubious as the twoIndonesian lsquostygnommatidsrsquo are either highly autapomorphic(Stygnomimus conopygus (Roewer 1927)) or described on the

basis of a generic female that is not readily distinguishable fromfemales of other species (Stygnomimus malayensis (Suzuki1970))

Fig 18 Strict consensus of tree topologies obtained by all phylogenetic analyses

130 Invertebrate Systematics P P Sharma and G Giribet

Previous efforts to assess the systematic validity of Samooideaby means of molecular sequence data were limited insofar asonly two Samoidae three Biantidae (all Metabiantes) and twoStygnommatidae were sampled (Giribet et al 2010) Thesampling of Samoidae was especially problematic only asingle Neotropical adult (Pellobunus) and one African juvenilesamoid (lsquoSamoidae gen sprsquo) were included The designation ofthe latter is suspect as juveniles of Samoidae are oftenindistinguishable from the juveniles of other lineages becausemany diagnostic secondary sexual characters in Grassatores(eg spines and incrassate appendages) are not acquired untilafter several postembryonic stages (Townsend et al 2009)

In the present study though the type genus of Samoidae(Samoa from Samoa) was not available we sequenced theclosely related genus Badessa (from Fiji collected byP P S) as well as additional Biantidae and StygnommatidaeOur analyses recovered a monophyletic Samooidea (excludingEscadabiidae and Kimulidae BS = 53 PP = 062) withSamoidae sensu stricto (Pellobunus +Badessa BS = 100PP = 100) nested within a paraphyletic Stygnommatidae aplacement that is supported (BS = 87 PP = 100) Bycontrast the African lsquosamoidrsquo is sister to the AfricanBiantidae a relationship that is also well supported(BS = 100 PP = 100) These relationships suggest a basal

Fig 19 Cladogram of male genitalic evolution in South-east Asian families superimposed upon a schematised molecular phylogeny based on ML and BIanalyses of all molecular data Exemplars (a) Pseudoepedanus doiensis Suzuki 1969 (redrawn from Suzuki 1969) dorsal view (b) Pseudoepedanus doiensisSuzuki 1969 (redrawn from Suzuki 1969) ventral view (c) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) ventral view(d) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) dorsal view (e) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki1976) dorsal view (f) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki 1976) ventral view (g) Petrobunus torosus lateral view (h) ZalmoxidagibberaSuzuki 1969 dorsal view (i)Zalmoxida sp (MCZDNA102677) dorsolateral view (j)Metatithaeus rubidusSuzuki 1969 (redrawn fromSuzuki 1969)ventral view (k)Tithaeus kokutnusSuzuki 1985 (redrawn fromSuzuki 1985) ventral view (l)Tithaeus similisSuzuki 1985 (redrawn fromSuzuki 1985) ventralview (m)DongmoaoshimensisSuzuki 1964 (redrawn fromSuzuki 1964) ventral view (n)Bonea longipalpisSuzuki 1977 (redrawn fromSuzuki 1977) ventralview (o) Santobius annulipes Soslashrensen 1886 (redrawn from Kury and Machado 2009) ventral view (p) Lomanius longipalpus mindanaoensis Suzuki 1977(redrawn from Suzuki 1977) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 131

dichotomy within Samooidea that corresponds to one groupof Neotropical and Pacific lineages and a second group ofAfrican lineages However as we were unable to samplestenostygnine (Neotropical) and Indo-Pacific Biantidae aswell as numerous monotypic genera dubiously placed inSamoidae biogeographical extrapolations for Samooidea aretenuous (discussed below)

The internal relationships of Samooidea suggest that themorphology of Samoidae may have evolved convergently Asthe African samoid is a juvenile (the same specimen previouslysequenced by Giribet et al 2010 now sequenced for additional28S rRNA and other genes) we cannot rule out the possibility ofa monophyletic Samoidae that includes African species (thespecimen in question could be a juvenile biantid) In any casethe paraphyly of Stygnommatidae and putative polyphyly ofSamoidae strongly advocate systematic revision of samooidfamilies as currently defined corroborating hypotheses of non-monophyly based on morphology (Peacuterez Gonzaacutelez 2007 PeacuterezGonzaacutelez and Kury 2007) Our sampling of these families isinsufficient to advocate specific taxonomic action but an ongoing

study of samooidean systematics will shed more light on thevalidity of constituent families (A Peacuterez Gonzaacutelez work inprogress)

Biogeography of Zalmoxoidea and Samooidea

While most superfamilies of Grassatores are restricted to aspecific part of the tropics (eg Neotropics South-east Asia)two are distributed in multiple biogeographical provincesSamooidea occurs in the Neotropics and Afrotropics withquestionable records from South-east Asia Zalmoxoidea isconcentrated in the Neotropics with the exception of oneIndo-Pacific lineage of Zalmoxidae (represented here byZalmoxis sp) The ages and distributions of Samooidea andZalmoxoidea suggest that their biogeography was influencedby the fragmentation of West Tropical Gondwana ndash causingthe former to diverge basally throughout West TropicalGondwanan terranes and the latter to become isolated to theNeotropics (with possible subsequent dispersal)

Fig 20 Ancestral range reconstructions for Samooidea +Zalmoxoidea inferred by Lagrange using stratified models corresponding to two vicariant events(indicated by dotted lines) Coloured squares at terminals indicate ranges occupied by sampled species Coloured squares on nodes indicate ranges reconstructedfor hypothetical ancestors Numbers on nodes indicate relative probability of ranges reconstructed

Fig 21 Best hypothesis of Laniatores relationships based on all available evidence Bracketed nodes indicate non-monophyletic entities Dashed line indicatesambiguity in the placement of Sandokanidae (alternatively placed as shown or as sister to Podoctidae) Exemplars of Laniatores diversity are Synthetonychiaoliveae (Synthetonychiidae) Equitius doriae (Triaenonychidae) Hadziana clavigera (Travuniidae) Erebomaster flavescens flavescens (Cladonychiidae)Scotolemon lespesi (Phalangodidae) Palaeoncopus gunung (Sandokanidae) Santobius sp (Podoctidae) Tithaeus sp (Tithaeidae) Petrobunus spinifer(Petrobunidae) Alloepedanus sp (Epedanidae) Hoplobunus sp (Stygnopsidae) Torreana spinata (Agoristenidae) Stygnoplus clavotibialis (Stygnidae)Metalibitia paraguayensis (Cosmetidae)Acutisoma longipes (Gonyleptidae)Conommaoedipus (Pyramidopsgroup)Mysorea thaiensis (Assamiidae)Lacurbssp (Biantidae) Stygnomma sp (Stygnommatidae) Badessa sp (Samoidae) Guasinia sp (Guasiniidae) Icaleptes sp (Icaleptidae) Fissiphallius chicoi(Fissiphalliidae) Zalmoxis sp (Zalmoxidae) Kimula goodnightiorum (Kimulidae)

132 Invertebrate Systematics P P Sharma and G Giribet

Molecular phylogeny of Laniatores Invertebrate Systematics 133

To test this hypothesis we conducted likelihood analysisof range evolution using the program Lagrange (Ree et al2005 Ree and Smith 2008) for the clade (Zalmoxoidea +Samooidea) The stratified analysis resulted in a globalmaximum likelihood of ndashlnL= 1556 outperforming anunconstrained analysis that did not include any dispersalconstraints (ndashlnL= 1676) Likelihood analysis of rangeoptimisation (Fig 20) indicates that the ancestral range ofSamooidea includes both the Afrotropics and the Neotropics(relative probability pr = 1000) but a subsequent split occursbetween an African lineage (pr = 1000) and a NeotropicalIndo-Pacific lineage with a Neotropical ancestral range (pr = 0986)Samoidea of the Indo-Pacific occur on young oceanic islands(eg Fiji Samoa) indicating recent transoceanic dispersal fromthe Neotropics

Ancestral range reconstructions for Samooidea are allconsistent with estimated divergence times for these clades(diversification of Samooidea predates the rifting of WestAfrica from northern South America) favouring an underlyingvicariant process for the basal topology with subsequent recentdispersal events However these results are contingent upon thepresent sampling which does not include all samooid lineages(eg stenostygnine Biantidae) but basal range reconstructionsare likely unaffected (eg Stenostygninae is exclusivelyNeotropical)

In contrast the ancestor of Zalmoxoidea is reconstructedas singularly Neotropical (pr = 0996) This is consistent withisolation of a zalmoxoid ancestor to Amazonia which thenradiated ~191Mya Subsequent ancestral ranges are alsoreconstructed as Neotropical with high relative probabilityHowever the ancestral range of the clade (Icaleptidae +Fissiphalliidae + Zalmoxidae) is ambiguously reconstructedas either Neotropical (pr = 0935) or Neotropical + Indo-Pacific(pr = 0064) as is the split between Fissiphalliidae andZalmoxidae (Neotropical pr = 0856 Neotropical + Indo-Pacific pr = 0141)

These results suggest that the Indo-Pacific lineage ofZalmoxidae which split from Neotropical Zalmoxidae ~83Myais likely the result of long-distance dispersal from the NeotropicsHowever due to the persistence of transantarctic connectionsbetween the Australian plate and temperate South America untilthe Tertiary a competing vicariant scenario cannot be ruled outwithout densely sampling zalmoxid diversity The biogeographyof Zalmoxidae is presently being explored in greater detail in aseparate study (P P Sharma unpubl data)

Finally the ancestral range of (Samooidea + Zalmoxoidea)includes both Africa and the Neotropics (pr = 0957) consistentwith a tropical West Gondwanan ancestor This resultlends circumstantial evidence to a sister relationship of theAfrotropical families (Assamiidae + Pyramidopidae) and theclade (Samooidea + Zalmoxoidea) recovered in all analyses

The diversification of Grassatores

While numerous interfamilial relationships are supported inthis study particularly among gonyleptoid and zalmoxoidfamilies some relationships between superfamilies ofGrassatores are not supported and are contingent upon

analytical treatments namely the deployment of substitutionmodels and data partitioning (Fig 21) The cause of thisinstability could be related to insufficient data particularly inthe EF-1a partition (the length of an intron which can exceed400 bp in some taxa makes this gene particularly difficult toamplify) However examination of clade divergence timessuggests that rapid diversification of Grassatores lineagescould in part augment phylogenetic uncertainty in basal partsof the topology

The split between Phalangodidae and the remainingGrassatores is estimated to have occurred ~302Mya but aseries of divergences resulted in the origin of all superfamiliallineages between 232 and 271Mya Relative to the estimatedage of Laniatores (348Mya) this 39-million-year period isremarkably narrow and inherently problematic as the amountof phylogenetic signal for a given stem subtending a node isdirectly proportional to the amount of time that the stem inquestion spans (Lanyon 1988 Rokas and Carroll 2006) Thesmall internal edge lengths of the stems corresponding to basaldivergences of non-phalangodid Grassatores (Figs 15 16)combined with the ancient age of lineages derived from thesedivergences result in relationships that are difficult to estimatewithout a large amount of sequence data andor the inclusion ofdata that are less afflicted by homoplasy (because longer edgelengths imply more indel and substitution events on edges)(Whitfield and Lockhart 2007)

We additionally observe that the origins of most Grassatoressuperfamilies occur in the wake of the end-Permian massextinction (~254Mya) Rapid radiation in the wake of a massextinction has occurred in multiple metazoan lineagesthe putative result of relaxed selection and opening ofpreviously occupied ecological niche space (Labandeira andSepkoski 1993 Sahney and Benton 2008) The rapiddiversification of early Grassatores lineages could be anexample of this phenomenon but this hypothesis is difficult totest in the absence of Mesozoic Grassatores fossils (reviewed byDunlop 2007)

Finally we observe that contrary to traditional hierarchiesproposed for Laniatores many of the clades recovered in ouranalyses correspond to geographical regions particularly in thecase of Grassatores For example the southern hemispheretriaenonychids are restricted to temperate Gondwananlandmasses Gonyleptoidea and their sister group Stygnopsidaeform a Neotropical (AmazonianMesoamericanAntillean) cladethat excludes Assamiidae which has been hypothesised to be amember of a broader Gonyleptoidea (Kury and Cokendolpher2000 Mendes and Kury 2007) In our analyses Assamiidae isin fact a member of a largely Afrotropical clade together withthe Pyramidopidae South-east Asian families usually form oneclade (at most two) albeit with limited support Samooideafamilies are divided into two clusters African and NeotropicalWith one exception (described above) Zalmoxoidea is restrictedto the Neotropics The ages that we estimate for Laniatoresradiations are consistent with ancient diversification beforethe fragmentation of Pangaea An ancient diversification inconjunction with the climatic stability of the tropics may in partexplain the comparatively greater diversity of the armouredharvestmen with respect to the other Opiliones suborders

134 Invertebrate Systematics P P Sharma and G Giribet

Acknowledgements

Weare indebted toPeter J Schwendingerwho collected andprovidedmost ofthe material for study from South-east Asia Some Thai and most of theNeotropical Laniatores were obtained from the TIGER (Thailand InventoryGroup for Entomological Research) and LLAMA (Leaf Litter Arthropods ofMeso-America) projects toC Lienhard and J Longino respectivelyMaterialfrom Madagascar was generously contributed by Charles Griswold and theCalifornia Academy of Sciences Jesse Czekanski-Moir in conjunction withthe Belau NationalMuseum contributed elusive specimens from Palau AbelPeacuterezGonzaacutelez identifiedmanyNeotropical species included in the study andcontributed specimens fromCubaRicardoPinto-da-Rocha identified someofthe live photographed animals from the Neotropics Discussions with RonaldMClouseAbelPeacuterezGonzaacutelezAdrianoBKury andCarlosEPrieto refinedmanyof the ideas presentedhereTwoanonymous reviewers and the associateeditor provided comments that helped to improve an earlier version ofthis manuscript Laura Leibensperger sorted and accessioned TIGER andLLAMA material as well as MCZ type material Adam Graham and theCenter forNanoscaleStudies atHarvardUniversityprovided support forSEMwork Collecting efforts in New Caledonia were greatly facilitated by theguidance of Herveacute Jourdan (Institut de rechercheacute pour de developpementNoumea) and his teammembers Collecting efforts in Fiji weremade possibleby Marika Tuiwawa (University of the South Pacific Suva) and his teammembers Hilda Waqa and Tokasaya lsquoToxrsquo Cakacaka we are especiallygrateful to Tox for his good company during fieldwork and to his familyfor graciously enabling a visit toOvalau SuzieYee Shawprovided invaluablelogistical support in Fiji and her sons Colin and Joshua Yee Shaw assistedwith sorting Fijian material Fieldwork in Indonesia and West Africa wassupported by two MCZ Putnam Expedition Grants awarded to RonaldM Clouse and G G (2006) and to G G (2009) respectively Fieldworkin New Caledonia was supported by the Goelet award the Kalathia FamilyTrust and the Explorers Club awarded to P P S in 2006 Fieldwork in Fijiand in Palauwas supported by twoMCZPutnamExpeditionGrants awardedto P P S (2008) and to Ronald M Clouse and P P S (2010) respectivelyP P S was supported by a Faculty of Arts and Sciences Graduate Fellowshipfrom Harvard University

References

Castresana J (2000) Selectionof conservedblocks frommultiple alignmentsfor their use in phylogenetic analysis Molecular Biology and Evolution17 540ndash552

Colgan D J McLauchlan A Wislon G D F Livingston S MacaranasJ Edgecombe G D Cassis G and Gray M R (1998) Molecularphylogenetics of the Arthropoda relationships based on histone H3and U2 snRNA DNA sequences Australian Journal of Zoology 46419ndash437 doi101071ZO98048

DaSilva M B and Gnaspini P (2009) A systematic revision ofGoniosomatinae (Arachnida Opiliones Gonyleptidae) with a cladisticanalysis and biogeographical notes Invertebrate Systematics 23530ndash624 doi101071IS09022

DaSilva M B and Pinto-da-Rocha R (2010) Systematic review andcladistic analysis of the Hernandariinae (Opiliones Gonyleptidae)Zoologia 27 577ndash642

Derkarabetian S Steinmann D B and Hedin M (2010) Repeatedand time-correlated morphological convergence in cave-dwellingharvestmen (Opiliones Laniatores) from montane western NorthAmerica PLoS ONE 5 e10388 doi101371journalpone0010388

Drummond A J and Rambaut A (2007) BEAST Bayesian evolutionaryanalysis by sampling trees BMC Evolutionary Biology 7 214doi1011861471-2148-7-214

Drummond A J Ho S Y W Phillips M J and Rambaut A (2006)Relaxed phylogenetics and dating with confidence PLoS Biology 4 e88doi101371journalpbio0040088

Dunlop J A (2007) Paleontology In lsquoHarvestmen The Biology ofOpilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 247ndash265 (Harvard University Press Cambridge MA USA)

Dunlop J A and Anderson L I (2005) A fossil harvestman (ArachnidaOpiliones) from theMississippian of East Kirkton Scotland The Journalof Arachnology 33 482ndash489 doi10163604-791

Dunlop JAAndersonL IKerpH andHassH (2003)Preservedorgansof Devonian harvestmen Nature 425 916 doi101038425916a

Dunlop J A Anderson L I Kerp H and Hass H (2004) A harvestman(Arachnida Opiliones) from the Early Devonian Rhynie chertsAberdeenshire Scotland Transactions of the Royal Society ofEdinburgh Earth Sciences 94 341ndash354

Edgar R C (2004) MUSCLE multiple sequence alignment with highaccuracy and high throughput Nucleic Acids Research 32 1792ndash1797doi101093nargkh340

Edgecombe G D and Giribet G (2006) A century laterndash a total evidencere-evaluation of scutigeromorph centipedes (Myriapoda Chilopoda)Invertebrate Systematics 20 503ndash525 doi101071IS05044

Edgecombe G D Giribet G and Wheeler W C (2002) Phylogeny ofHenicopidae (Chilopoda Lithobiomorpha) a combined analysis ofmorphology and five molecular loci Systematic Entomology 2731ndash64 doi101046j0307-6970200100163x

FolmerOBlackMHoehWLutzR andVrijenhoekRC (1994)DNAprimers for amplification ofmitochondrial cytochrome c oxidase subunit Ifrom diverse metazoan invertebrates Molecular Marine Biology andBiotechnology 3 294ndash299

Forster R R (1954) The New Zealand harvestmen (sub-order Laniatores)Canterbury Museum Bulletin 2 1ndash329

Giribet G and Kury A B (2007) Phylogeny and biogeography InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 62ndash87 (Harvard University PressCambridge MA USA)

Giribet G Carranza S Baguntildeagrave J Riutort M and Ribera C (1996) Firstmolecular evidence for the existence of a Tardigrada +Arthropoda cladeMolecular Biology and Evolution 13 76ndash84

Giribet G Rambla M Carranza S Baguntildeagrave J Riutort M and Ribera C(1999) Phylogeny of the arachnid order Opiliones (Arthropoda)inferred from a combined approach of complete 18S and partial 28Sribosomal DNA sequences and morphology Molecular Phylogeneticsand Evolution 11 296ndash307 doi101006mpev19980583

Giribet G Edgecombe G D Wheeler W C and Babbitt C (2002)Phylogeny and systematic position of Opiliones a combined analysis ofchelicerate relationships using morphological and molecular dataCladistics 18 5ndash70

Giribet G Vogt L PeacuterezGonzaacutelez A Sharma P andKury A B (2010)A multilocus approach to harvestman (Arachnida Opiliones) phylogenywith emphasis on biogeography and the systematics of LaniatoresCladistics 26 408ndash437

Hara M R Gnaspini P and Machado G (2003) Male egg guardingbehavior in the Neotropical harvestman Ampheres leucopheus (Mello-Leitatildeo 1922) (Opiliones Gonyleptidae) The Journal of Arachnology 31441ndash444 doi101636S02-32

Hedin M Derkarabetian S McCormack M and Richart C (2010) Thephylogenetic utility of the nuclear protein-encoding gene EF-1a forresolving recent divergences in Opiliones emphasizing intronevolution The Journal of Arachnology 38 9ndash20 doi101636HA09-491

Huelsenbeck J P and Ronquist F (2005) Bayesian analyses of molecularevolution using MrBayes In lsquoStatistical Methods in MolecularEvolutionrsquo (Ed R Nielsen) (Springer New York)

HunterRK ProundDNBurns JA Tibbetts JA andTownsendVR(2007) Parental care in the Neotropical harvestman Phareicranauscalcariferus (Opiliones Cranaidae) The Journal of Arachnology 35199ndash201 doi101636ST06-181

Molecular phylogeny of Laniatores Invertebrate Systematics 135

Kocher T D Thoma W K Meyer A Edwards S V Paumlaumlbo SVillablanca F X and Wilson A C (1989) Dynamics ofmitochondrial DNA evolution in animals amplification andsequencing with conserved primers Proceedings of the NationalAcademy of Sciences of the United States of America 86 6196ndash6200doi101073pnas86166196

Kury A B (1993) Anaacutelise filogeneacutetica de Gonyleptoidea (ArachnidaOpiliones Laniatores) PhD Thesis Universidade de Satildeo Paulo SatildeoPaulo Brazil

Kury A B (2003) Annotated catalogue of the Laniatores of the NewWorld (Arachnida Opiliones) Revista Ibeacuterica de AracnologiacuteaVolumen Especial Monograacutefico 1 1ndash337

Kury A B (2006) Checklist of valid genera of Opiliones of theWorld Museu NacionalUFRJ Available from httpwwwmuseunacionalufrjbrmndiAracnologiachecklaniatorhtm [Accessed1 February 2011]

Kury A B (2007) Podoctidae Roewer 1912 In lsquoHarvestmen The Biologyof Opilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 221ndash224 (Harvard University Press Cambridge MA USA)

Kury A B and Cokendolpher J C (2000) Opiliones In lsquoBiodiversidadTaxonomiacutea y Biogeografiacutea de Artoacutepodos de Meacutexico Hacia una Sintesisde su Conocimientorsquo vol 2 (Eds J E Llorente E Gonzaacutelez andN Papavero) pp 137ndash157 (Universidad Nacional Autoacutenoma deMexico Meacutexico DF Mexico)

Kury A B and Machado G (2009) Notes on Santobius from Vanuatu andFiji and the status of the eastern Melanesian Ibalonius (ArachnidaOpiliones Podoctidae) Zoological Studies 48 524ndash538

Kury A B and Peacuterez G A (2002) A new family of Laniatores fromnorthwestern South America (Arachnida Opiliones) Revista Ibeacuterica deAracnologiacutea 6 3ndash11

Labandeira C C and Sepkoski J J (1993) Insect diversity in the fossilrecord Science 261 310ndash315 doi101126science11536548

Lanyon S M (1988) The stochastic mode of molecular evolutionwhat consequences for systematic investigations The Auk 105565ndash573

Lian W-G Zhu M-S and Kury A B (2008) A new species of the genusTithaeus from China (Arachnida Laniatores Epedanidae) Zootaxa1841 53ndash60

Machado G Requena G S Buzatto B A Osses F and Rossetto L M(2004) Five new cases of paternal care in harvestmen (ArachnidaOpiliones) implications for the evolution of male guarding in theNeotropical family Gonyleptidae Sociobiology 44 577ndash598

Martens J (1976) Genitalmorphologie System und Phylogenie derWeberknechte (Arachnida Opiliones) Entomologica GermanicaZeitschrift fuumlr das Gesamtgebiet der Wissenschaftlichen Entomologie3 51ndash68

Martens J (1980) Versuch eines phylogenetischen Systems der OpilionesIn lsquoProceedings 8th International Congress of Arachnology ViennaVerhandlungenrsquo (Ed J Gruber) pp 355ndash360 (Vienna Austria)

Martens J (1986) Die Grossgliederung der Opiliones und die Evolutionder Ordnung (Arachnida) Actas del X Congreso Internacional deAracnologiacutea Jaca 1 289ndash310

Martens J (1993) Further cases of paternal care in Opiliones (Arachnida)Tropical Zoology 6 97ndash107

Martens J and Schwendinger P S (1998) A taxonomic revision ofthe family Oncopodidae I New genera and new species of GnomulusThorell (Opiliones Laniatores) Revue Suisse de Zoologie 105 499ndash555

Martens J Hoheisel U and Goumltze M (1981) Vergleichende Anatomieder Legeroumlhren der Opiliones als Beitrag zur Phylogenie der Ordnung(Arachnida) Zoologische Jahrbucher Abteilung fur Anatomie undOntogenie der Tiere 105 13ndash76

Mello-Leitatildeo C F (1949) Famiacutelias subfamiacutelia espeacutecies e gecircneros novos deopiliotildees e notas de sinoniacutemia Boletim do Museu Nacional Nova SeacuterieZoologia Rio de Janeiro 94 1ndash33

Mendes A C and Kury A B (2007) Stygnopsidae Soslashrensen 1932 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 232ndash234 (Harvard University PressCambridge MA USA)

Mendes A C and Kury A B (2008) Intercontinental Triaenonychidae ndashthe case of Ceratomontia (Opiliones Insidiatores) The Journal ofArachnology 36 273ndash279 doi101636CH07-931

Murphree C S (1988) Morphology of the dorsal integument of tenopilionid species (Arachnida Opiliones) The Journal of Arachnology16 237ndash252

Park J K andOacuteFoighilD (2000) Sphaeriid and corbiculid clams representseparate heterodont bivalve radiations into freshwater environmentsMolecular Phylogenetics and Evolution 14 75ndash88 doi101006mpev19990691

Peacuterez Gonzaacutelez A (2006) lsquoRevisatildeo Sistemaacutetica e Anaacutelise Filogeneacutetica deStygnommatidae (Arachnida Opiliones Laniatores)rsquo (Museu NacionalUniversidade Federal de Rio de Janeiro Rio de Janeiro Brazil)

Peacuterez Gonzaacutelez A (2007) Stygnommatidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 229ndash232 (Harvard University PressCambridge MA USA)

Peacuterez Gonzaacutelez A (2011) New familial assignment for two harvestmanspecies of the infraorder Grassatores (Arachnida Opiliones Laniatores)Zootaxa 2757 24ndash28

Peacuterez Gonzaacutelez A and Kury A B (2007) Samoidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 224ndash226 (Harvard University PressCambridge MA USA)

Pineau P Henry M Suspegravene R Marchio A Dettai A Debruyne RPetit T Leacutecu A Moisson P Dejean A Wain-Hobson S andVartanian J-P (2005) A universal primer set for PCR amplificationof nuclear histone H4 genes from all animal species Molecular Biologyand Evolution 22 582ndash588 doi101093molbevmsi053

Pinto-da-Rocha R (1997) Systematic review of the Neotropical familyStygnidae (Opiliones Laniatores Gonyleptoidea) Arquivos deZoologia 33 163ndash342

Pinto-da-Rocha R and Kury A B (2003a) Phylogenetic analysis ofSantinezia with description of five new species (Opiliones LaniatoresCranaidae) The Journal of Arachnology 31 173ndash208 doi1016360161-8202(2003)031[0173PAOSWD]20CO2

Pinto-da-Rocha R and Kury A B (2003b) Third species of Guasiniidae(Opiliones Laniatores) with comments on familial relationships TheJournal of Arachnology 31 394ndash399 doi101636H02-59

Pinto-da-Rocha R and Kury A B (2007) Agoristenidae Silhavy 1973 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 171ndash173 (Harvard University PressCambridge MA USA)

Posada D (2005) Modeltest 37 Program and documentation available athttpdarwinuvigoes [Accessed 28 May 2011]

Posada D and Buckley T (2004) Model selection and model averaging inphylogenetics advantages of Akaike information criterion and Bayesianapproaches over likelihood ratio tests Systematic Biology 53 793ndash808doi10108010635150490522304

Posada D and Crandall K A (1998) Modeltest testing the model ofDNA substitution Bioinformatics (Oxford England) 14 817ndash818doi101093bioinformatics149817

Prendini L Weygoldt P and Wheeler W C (2005) Systematics of theDamon variegates group of African whip spiders (ChelicerataAmblypygi) evidence from behaviour morphology and DNAOrganisms Diversity amp Evolution 5 203ndash236 doi101016jode200412004

Rambaut A E (1996) Se-Al sequence alignment editor University ofOxford UK Program and documentation available at httptreebioedacuksoftwarefigtree [Accessed 21 December 2009]

136 Invertebrate Systematics P P Sharma and G Giribet

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 21: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

Fig 16 Phylogenetic relationships of Laniatores inferred fromBayesian inference analysis of allmolecular data Numbers on nodes indicateposterior probabilities

126 Invertebrate Systematics P P Sharma and G Giribet

a miniature species of Martensiellus P J Schwendinger perscomm) (BS = 92 PP = 100) Intergeneric relationshipsof sandokanid genera are contingent upon analytical treatmentof molecular partitions (with additional sandokanid exemplarsdata not shown) reflecting conflict among datasets documentedby Sharma and Giribet (2009)

The other South-east Asian families

Epedanidae was postulated to be sister to Gonyleptoidea in acladistic analysis based on morphological characters (Kury1993) Subsequently Kury (2003) proposed that Epedanidaewas sister to the clade (Assamiidae (Stygnopsidae +Gonyleptoidea)) The single epedanid previously included in amolecular phylogeny was similarly unstable in placement eithernestingwithin Assamiidae or sister to the African lsquophalangodidsrsquo(Conomma and Maiorerus) in neither case with appreciablenodal support (Giribet et al 2010) Furthermore previousinclusion of several lineages (eg Tithaeus) within Epedanidaethat do not bear characters typical of true epedanids ndash sexuallydimorphic chelicera with heavy dentition elongate andspined pedipalpi male genitalia with setae surroundingthe capsula interna ndash has also made this family difficult todefine Consequently we included only Epedaninae (egPseudoepedanus Alloepedanus and Euepedanus) as exemplarsof true epedanids the systematic validity of the remaining threesubfamilies (and particularly the inclusion of Dibuninae) isbeyond the scope of this study and remains to be investigated

The monophyly of each of four South-east Asian families ndashEpedanidae (represented by epedanines) TithaeidaePetrobunidae and Podoctidae ndash is recovered with high nodalsupport (all BS = 100 PP = 100) These lineages are somehowrelated to each other and while they form a clade in bothML andBI analyses this result receives insignificant nodal support(PP = 077) In the topology recovered by BEAST the South-east Asian families form a clade that includes Sandokanidaea result consistent with the distribution of sandokanids albeitwithout support (PPBEAST = 085) Tithaeidae is probably closelyrelated to Podoctidae given the occurrence of a deeply cleftventral plate resulting in two flanking prongs in themale genitaliaof both families (Suzuki 1977 Lian et al 2008 Fig 19) Inaddition the clade (Podoctidae +Tithaeidae) is recovered withmoderate support in ML and BI analyses (BS = 59 PP = 097)In none of the analyses is Tithaeidae nested within or sister toEpedanidae sensu stricto

The morphology of Petrobunidae suggests some relationshipto previously described South-east Asian families oralternatively Phalangodidae but not inclusion within any ofthese (Fig 19) Molecular sequence data do not support anyspecificplacement ofPetrobunidae although it clusterswithotherSouth-east Asian families in all analyses and is recovered sisterto Epedanidae in two topologies (BI and BEAST)

Gonyleptoidea and Stygnopsidae

With over 2500 described species the superfamilyGonyleptoidea constitutes the most diverse and (arguably) themost charismatic lineage of Opiliones with most of this diversityconcentrated in Amazonia (some cosmetids occur as far north asthe mid-Atlantic states of the US) In a previous analysis

relationships of gonyleptoid families were unsupported andordid not accordwithmorphological studies (Giribet et al 2010) Inparticular the placement of the agoristenid exemplar Avimaalbiornata (Goodnight amp Goodnight 1947) ndash the putativesister family to the remaining Gonyleptoidea ndash within aparaphyletic Cranaidae was particularly suspect given thelimited availability of sequence data for Avima (complete 18SrRNA a300-bp fragmentof 28S rRNA andCOI) In addition thesister group of Gonyleptoidea was ambiguous and contingentupon analytical parameters

Redoubling sequencing efforts and addition of taxaparticularly in the case of Agoristenidae (currently sequencedfor 12S rRNA complete 18S rRNA a 2000-bp fragment of 28SrRNA COI H3 and EF-1a) improved the assessment ofgonyleptoid relationships A monophyletic Gonyleptoidea(BS = 58 PP = 066) is recovered sister to the familyStygnopsidae (BS = 57 PP = 100) Within Gonyleptoidea asplit between Agoristenidae and the remaining gonyleptoids isstrongly supported (BS = 100 PP = 100) followed by thedivergence of Stygnidae (BS = 71 PP = 099) Thisplacement of Agoristenidae is supported by morphologicalstudies (Pinto-da-Rocha and Kury 2007) although in aminority of tree topologies sampled in BI analysesAgoristenidae is sister to Stygnopsidae (hence lower nodalsupport for the monophyly of Gonyleptoidea in BI) Theplacement of Manaosbiidae is uncertain it is recoveredsister to either (Gonyleptidae +Cranaidae) (PP = 089) or toCosmetidae (PPBEAST = 092) but these results are notsupported Cranaidae is recovered as monophyletic (BS = 99PP = 100) and nested within a paraphyletic Gonyleptidae

The present sampling of Cosmetidae and Gonyleptidae doesnot do justice to the diversity of these lineages (~700 and 800described species respectively) A phylogenetic assessment ofall 16 subfamilies of Gonyleptidae alone constitutes the subjectof an arduous and exacting study Fortunately cladistic analysesof morphological characters continue to advance phylogeneticinvestigation of subfamilial lineages (eg BourguyiinaeYamaguti and Pinto-da-Rocha 2009 Goniosomatinae DaSilvaandGnaspini 2009HernandariinaeDaSilva andPinto-da-Rocha2010) Elucidating the phylogeny of Gonyleptoidea is one of themost exciting research topics in the study of Opiliones

The Afrotropical families

The third most diverse family of Laniatores Assamiidaeconstitutes the dominant opiliofauna of the African continent(excluding Madagascar) with some lineages occurring in SouthAsia the Indo-Malay Archipelago and Australia (Trionyxellinaeand Dampetrinae) Proposed to be related to EpedanidaeStygnopsidae andor Gonyleptoidea (Kury 2007) on the basisof genitalic structures assamiids were not recovered asmonophyletic in a previous study (paraphyly was induced byeither Epedanidae orAfricanBiantidae) and the placement of thesubfamily Trionyxellinae was particularly suspect (Giribet et al2010) Trionyxellinae was considered a separate family byMello-Leitatildeo (1949) though others considered it nested withinAssamiidae (eg Starega 1992) In our analyses the monophylyof Assamiidae is supported (BS = 79 PP = 100)lsquoTrionyxellinaersquo (Trionyxella and Mysorea both with a

Molecular phylogeny of Laniatores Invertebrate Systematics 127

Fig 17 Evolutionary time tree of Laniatores inferred fromBEASTanalysis of allmolecular data Coloured bars indicate 95highestposterior density (HPD) intervals for nodes of interest Numbers on nodes indicate posterior probabilities asterisks indicate posteriorprobability of 100

128 Invertebrate Systematics P P Sharma and G Giribet

pseudonychium on the third and fourth tarsi) is a diphyletic entitynested within the other Assamiidae (for the node renderingdiphyly BS = 100 PP = 100) disfavouring family status fortrionyxellines

The African lsquophalangodidsrsquo (sometimes called thelsquoPyramidops grouprsquo) were recognised as a new family byStarega (1992) but not formalised and included 13 genera(Conomma Pyramidops and related lineages) Consistentwith this hypothesis we recovered strong support for thePyramidops group (represented by Conomma and cfPyramidops) as a lineage separate from the true Phalangodidae(egBishopella and Scotolemon) recapitulating a previous result(Giribet et al 2010) The African lsquophalangodidsrsquowere recoveredas the sister lineage of Assamiidae although this relationshipis variably supported in our analyses (BS = 40 PP = 095PPBEAST = 100) A review and formal description of thePyramidops group as a new family lsquoPyramidopidaersquo ndash a namewidely available on the internet including GBIF but notformalised ndash is undertaken elsewhere (Sharma et al 2011)

While we have endeavoured to improve the sampling ofAssamiidae from South-east Asia the internal systematics ofthis family remain a high value target for phylogenetic researchHowever revision of assamiid systematics is inherently difficultfor two reasons (1) the family is peppered with questionablehierarchies and monotypic genera (~12 subfamilies and 250genera for less than 500 described species) and (2) occurs insome of the most inaccessible regions of the world namely sub-Saharan Africa

In all analyses the clade (Assamiidae + Pyramidopidae) issister to the clade (Zalmoxoidea + Samooidea) though this resultis only supported in one analysis (PP= 100) The divergence ofthese four lineages is estimated to have occurred 252Mya and isconsistent with diversification in West Tropical Gondwanaoccurring at least 140million years before the fragmentation ofthis terrane (~110Mya)

Zalmoxoidea

As currently defined the largely Neotropical superfamilyZalmoxoidea includes four families FissiphalliidaeGuasiniidae Icaleptidae and Zalmoxidae Guasiniidae hasnever before been included in a molecular phylogeny In thepresent study we sequenced a guasiniid for six genes and ouranalyses strongly support theplacement ofGuasiniidae as sister tothe samooid family Kimulidae (formerly Minuidae) (BS = 86PP = 098 PPBEAST = 099) and this clade in turn sister to anothersamooid family Escadabiidae (BS = 65 PP = 096PPBEAST = 100) The families Fissiphalliidae Icaleptidaeand Zalmoxidae in turn form a separate clade (BS = 100PP = 100 PPBEAST = 100) with strong support for the sisterrelationship of Zalmoxidae and Fissiphalliidae (BS = 99PP = 100 PPBEAST = 100) corroborating relationshipsproposed by morphological studies (Kury and Peacuterez G 2002Pinto-da-Rocha and Kury 2003b)

Previous analyses have suggested that Samooidea (discussedbelow) is a paraphyletic grade with respect to Zalmoxoidea(Giribet et al 2010) In the present analysis the cladeSamooidea + Zalmoxoidea is strongly supported (BS = 85PP = 100 PPBEAST = 100) as previously suggested by PeacuterezGonzaacutelez and Kury (2007) and by excluding Escadabiidae and

Kimulidae Samooidea is rendered a monophyletic entity albeitwith limited support (BS = 53 PP = 062 PPBEAST = 081) Thestrong support from molecular sequence data for the cladeincluding Escadabiidae Kimulidae and the four zalmoxoidfamilies (BS = 89 PP = 100 PPBEAST = 100) suggests thatthese may form a natural group

Re-examination of the morphology of these six families incomparisonwith true samooid lineages (Biantidae Samoidae andStygnommatidae) corroborates the exclusionofEscadabiidae andKimulidae from true Samooidea Escadabiidae and Kimulidae(1) lack the scopula characteristic of Samoidae and stenostygnineBiantidae (2) lack a sexually dimorphic metatarsus IIIcharacteristic of Samoidae Stygnommatidae and stenostygnineBiantidae and (3) lack a penial calyx characteristic of SamoidaeConsistent with placement within Zalmoxoidea EscadabiidaeandKimulidae (1) possess a small oculariumbearing the eyes thatis removed from the margin of the carapace (2) bear a wellmarked dorsal protuberance (bulla) on the proximal segmentof the chelicera that lacks armature and (3) possess sexuallydimorphic leg IV segments particularly the femur and tibiawhich may be variedly arcuate incrassate and spinedAdditionally Escadabiidae Fissiphalliidae and Zalmoxidae allpossess sexually dimorphic tegumental glandopeningson tibia IIwhereas Biantidae Samoidae and Stygnommatidae possessthese structures on metatarsus III (Willemart et al 2010)While data on tegumental gland openings are only availablefor a small handful of species these may constitute significantdiagnostic characters for species wherein sexual dimorphismdoes not manifest itself in the readily observable form ofenlarged and spiny segments

Given the results of our phylogenetic analyses maintainingSamooidea (as currently defined) renders it a paraphyletic gradewith respect to a diphyletic Zalmoxoidea (as currently defined)Consequently based on the aforementioned morphologicalcharacters and robust molecular phylogenetic signal wetransfer Escadabiidae and Kimulidae to Zalmoxoidea

Samooidea

A previous cladistic analysis based upon morphological datasuggested close relationship between six families ndash BiantidaeEscadabiidae Kimulidae Podoctidae Samoidae andStygnommatidae ndash thenceforth known as Samooidea (Kury1993) the only pantropical Laniatores superfamily HoweverPodoctidae does not have any obvious relationship to Samooideaand has subsequently been transferred (Kury 2007) in ouranalyses Podoctidae is sister to Tithaeidae or Sandokanidaeie distantly related to all samooid families Moreover ouranalyses strongly favour the exclusion of Escadabiidae andKimulidae from Samooidea

The remaining three families ndash Biantidae Samoidae andStygnommatidae ndash are distributed in the Neotropics and partsof Africa with a handful of suspect lineages in South-east AsiaRe-examination and reassignment of many Samoidae genera(eg the Indonesian lsquosamoidrsquo Waigeucola palpalis PeacuterezGonzaacutelez 2011) suggest that the range of Samoidae does notinclude South-east Asia Peacuterez Gonzaacutelez and Kury (2007) alsoobserved that the lsquosamoidsrsquo of Africa Madagascar and theSeychelles may not be true Samoidae either Similarlyinclusion of the genus Stygnomimus an Indonesian lineage

Molecular phylogeny of Laniatores Invertebrate Systematics 129

within Stygnommatidae is highly dubious as the twoIndonesian lsquostygnommatidsrsquo are either highly autapomorphic(Stygnomimus conopygus (Roewer 1927)) or described on the

basis of a generic female that is not readily distinguishable fromfemales of other species (Stygnomimus malayensis (Suzuki1970))

Fig 18 Strict consensus of tree topologies obtained by all phylogenetic analyses

130 Invertebrate Systematics P P Sharma and G Giribet

Previous efforts to assess the systematic validity of Samooideaby means of molecular sequence data were limited insofar asonly two Samoidae three Biantidae (all Metabiantes) and twoStygnommatidae were sampled (Giribet et al 2010) Thesampling of Samoidae was especially problematic only asingle Neotropical adult (Pellobunus) and one African juvenilesamoid (lsquoSamoidae gen sprsquo) were included The designation ofthe latter is suspect as juveniles of Samoidae are oftenindistinguishable from the juveniles of other lineages becausemany diagnostic secondary sexual characters in Grassatores(eg spines and incrassate appendages) are not acquired untilafter several postembryonic stages (Townsend et al 2009)

In the present study though the type genus of Samoidae(Samoa from Samoa) was not available we sequenced theclosely related genus Badessa (from Fiji collected byP P S) as well as additional Biantidae and StygnommatidaeOur analyses recovered a monophyletic Samooidea (excludingEscadabiidae and Kimulidae BS = 53 PP = 062) withSamoidae sensu stricto (Pellobunus +Badessa BS = 100PP = 100) nested within a paraphyletic Stygnommatidae aplacement that is supported (BS = 87 PP = 100) Bycontrast the African lsquosamoidrsquo is sister to the AfricanBiantidae a relationship that is also well supported(BS = 100 PP = 100) These relationships suggest a basal

Fig 19 Cladogram of male genitalic evolution in South-east Asian families superimposed upon a schematised molecular phylogeny based on ML and BIanalyses of all molecular data Exemplars (a) Pseudoepedanus doiensis Suzuki 1969 (redrawn from Suzuki 1969) dorsal view (b) Pseudoepedanus doiensisSuzuki 1969 (redrawn from Suzuki 1969) ventral view (c) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) ventral view(d) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) dorsal view (e) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki1976) dorsal view (f) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki 1976) ventral view (g) Petrobunus torosus lateral view (h) ZalmoxidagibberaSuzuki 1969 dorsal view (i)Zalmoxida sp (MCZDNA102677) dorsolateral view (j)Metatithaeus rubidusSuzuki 1969 (redrawn fromSuzuki 1969)ventral view (k)Tithaeus kokutnusSuzuki 1985 (redrawn fromSuzuki 1985) ventral view (l)Tithaeus similisSuzuki 1985 (redrawn fromSuzuki 1985) ventralview (m)DongmoaoshimensisSuzuki 1964 (redrawn fromSuzuki 1964) ventral view (n)Bonea longipalpisSuzuki 1977 (redrawn fromSuzuki 1977) ventralview (o) Santobius annulipes Soslashrensen 1886 (redrawn from Kury and Machado 2009) ventral view (p) Lomanius longipalpus mindanaoensis Suzuki 1977(redrawn from Suzuki 1977) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 131

dichotomy within Samooidea that corresponds to one groupof Neotropical and Pacific lineages and a second group ofAfrican lineages However as we were unable to samplestenostygnine (Neotropical) and Indo-Pacific Biantidae aswell as numerous monotypic genera dubiously placed inSamoidae biogeographical extrapolations for Samooidea aretenuous (discussed below)

The internal relationships of Samooidea suggest that themorphology of Samoidae may have evolved convergently Asthe African samoid is a juvenile (the same specimen previouslysequenced by Giribet et al 2010 now sequenced for additional28S rRNA and other genes) we cannot rule out the possibility ofa monophyletic Samoidae that includes African species (thespecimen in question could be a juvenile biantid) In any casethe paraphyly of Stygnommatidae and putative polyphyly ofSamoidae strongly advocate systematic revision of samooidfamilies as currently defined corroborating hypotheses of non-monophyly based on morphology (Peacuterez Gonzaacutelez 2007 PeacuterezGonzaacutelez and Kury 2007) Our sampling of these families isinsufficient to advocate specific taxonomic action but an ongoing

study of samooidean systematics will shed more light on thevalidity of constituent families (A Peacuterez Gonzaacutelez work inprogress)

Biogeography of Zalmoxoidea and Samooidea

While most superfamilies of Grassatores are restricted to aspecific part of the tropics (eg Neotropics South-east Asia)two are distributed in multiple biogeographical provincesSamooidea occurs in the Neotropics and Afrotropics withquestionable records from South-east Asia Zalmoxoidea isconcentrated in the Neotropics with the exception of oneIndo-Pacific lineage of Zalmoxidae (represented here byZalmoxis sp) The ages and distributions of Samooidea andZalmoxoidea suggest that their biogeography was influencedby the fragmentation of West Tropical Gondwana ndash causingthe former to diverge basally throughout West TropicalGondwanan terranes and the latter to become isolated to theNeotropics (with possible subsequent dispersal)

Fig 20 Ancestral range reconstructions for Samooidea +Zalmoxoidea inferred by Lagrange using stratified models corresponding to two vicariant events(indicated by dotted lines) Coloured squares at terminals indicate ranges occupied by sampled species Coloured squares on nodes indicate ranges reconstructedfor hypothetical ancestors Numbers on nodes indicate relative probability of ranges reconstructed

Fig 21 Best hypothesis of Laniatores relationships based on all available evidence Bracketed nodes indicate non-monophyletic entities Dashed line indicatesambiguity in the placement of Sandokanidae (alternatively placed as shown or as sister to Podoctidae) Exemplars of Laniatores diversity are Synthetonychiaoliveae (Synthetonychiidae) Equitius doriae (Triaenonychidae) Hadziana clavigera (Travuniidae) Erebomaster flavescens flavescens (Cladonychiidae)Scotolemon lespesi (Phalangodidae) Palaeoncopus gunung (Sandokanidae) Santobius sp (Podoctidae) Tithaeus sp (Tithaeidae) Petrobunus spinifer(Petrobunidae) Alloepedanus sp (Epedanidae) Hoplobunus sp (Stygnopsidae) Torreana spinata (Agoristenidae) Stygnoplus clavotibialis (Stygnidae)Metalibitia paraguayensis (Cosmetidae)Acutisoma longipes (Gonyleptidae)Conommaoedipus (Pyramidopsgroup)Mysorea thaiensis (Assamiidae)Lacurbssp (Biantidae) Stygnomma sp (Stygnommatidae) Badessa sp (Samoidae) Guasinia sp (Guasiniidae) Icaleptes sp (Icaleptidae) Fissiphallius chicoi(Fissiphalliidae) Zalmoxis sp (Zalmoxidae) Kimula goodnightiorum (Kimulidae)

132 Invertebrate Systematics P P Sharma and G Giribet

Molecular phylogeny of Laniatores Invertebrate Systematics 133

To test this hypothesis we conducted likelihood analysisof range evolution using the program Lagrange (Ree et al2005 Ree and Smith 2008) for the clade (Zalmoxoidea +Samooidea) The stratified analysis resulted in a globalmaximum likelihood of ndashlnL= 1556 outperforming anunconstrained analysis that did not include any dispersalconstraints (ndashlnL= 1676) Likelihood analysis of rangeoptimisation (Fig 20) indicates that the ancestral range ofSamooidea includes both the Afrotropics and the Neotropics(relative probability pr = 1000) but a subsequent split occursbetween an African lineage (pr = 1000) and a NeotropicalIndo-Pacific lineage with a Neotropical ancestral range (pr = 0986)Samoidea of the Indo-Pacific occur on young oceanic islands(eg Fiji Samoa) indicating recent transoceanic dispersal fromthe Neotropics

Ancestral range reconstructions for Samooidea are allconsistent with estimated divergence times for these clades(diversification of Samooidea predates the rifting of WestAfrica from northern South America) favouring an underlyingvicariant process for the basal topology with subsequent recentdispersal events However these results are contingent upon thepresent sampling which does not include all samooid lineages(eg stenostygnine Biantidae) but basal range reconstructionsare likely unaffected (eg Stenostygninae is exclusivelyNeotropical)

In contrast the ancestor of Zalmoxoidea is reconstructedas singularly Neotropical (pr = 0996) This is consistent withisolation of a zalmoxoid ancestor to Amazonia which thenradiated ~191Mya Subsequent ancestral ranges are alsoreconstructed as Neotropical with high relative probabilityHowever the ancestral range of the clade (Icaleptidae +Fissiphalliidae + Zalmoxidae) is ambiguously reconstructedas either Neotropical (pr = 0935) or Neotropical + Indo-Pacific(pr = 0064) as is the split between Fissiphalliidae andZalmoxidae (Neotropical pr = 0856 Neotropical + Indo-Pacific pr = 0141)

These results suggest that the Indo-Pacific lineage ofZalmoxidae which split from Neotropical Zalmoxidae ~83Myais likely the result of long-distance dispersal from the NeotropicsHowever due to the persistence of transantarctic connectionsbetween the Australian plate and temperate South America untilthe Tertiary a competing vicariant scenario cannot be ruled outwithout densely sampling zalmoxid diversity The biogeographyof Zalmoxidae is presently being explored in greater detail in aseparate study (P P Sharma unpubl data)

Finally the ancestral range of (Samooidea + Zalmoxoidea)includes both Africa and the Neotropics (pr = 0957) consistentwith a tropical West Gondwanan ancestor This resultlends circumstantial evidence to a sister relationship of theAfrotropical families (Assamiidae + Pyramidopidae) and theclade (Samooidea + Zalmoxoidea) recovered in all analyses

The diversification of Grassatores

While numerous interfamilial relationships are supported inthis study particularly among gonyleptoid and zalmoxoidfamilies some relationships between superfamilies ofGrassatores are not supported and are contingent upon

analytical treatments namely the deployment of substitutionmodels and data partitioning (Fig 21) The cause of thisinstability could be related to insufficient data particularly inthe EF-1a partition (the length of an intron which can exceed400 bp in some taxa makes this gene particularly difficult toamplify) However examination of clade divergence timessuggests that rapid diversification of Grassatores lineagescould in part augment phylogenetic uncertainty in basal partsof the topology

The split between Phalangodidae and the remainingGrassatores is estimated to have occurred ~302Mya but aseries of divergences resulted in the origin of all superfamiliallineages between 232 and 271Mya Relative to the estimatedage of Laniatores (348Mya) this 39-million-year period isremarkably narrow and inherently problematic as the amountof phylogenetic signal for a given stem subtending a node isdirectly proportional to the amount of time that the stem inquestion spans (Lanyon 1988 Rokas and Carroll 2006) Thesmall internal edge lengths of the stems corresponding to basaldivergences of non-phalangodid Grassatores (Figs 15 16)combined with the ancient age of lineages derived from thesedivergences result in relationships that are difficult to estimatewithout a large amount of sequence data andor the inclusion ofdata that are less afflicted by homoplasy (because longer edgelengths imply more indel and substitution events on edges)(Whitfield and Lockhart 2007)

We additionally observe that the origins of most Grassatoressuperfamilies occur in the wake of the end-Permian massextinction (~254Mya) Rapid radiation in the wake of a massextinction has occurred in multiple metazoan lineagesthe putative result of relaxed selection and opening ofpreviously occupied ecological niche space (Labandeira andSepkoski 1993 Sahney and Benton 2008) The rapiddiversification of early Grassatores lineages could be anexample of this phenomenon but this hypothesis is difficult totest in the absence of Mesozoic Grassatores fossils (reviewed byDunlop 2007)

Finally we observe that contrary to traditional hierarchiesproposed for Laniatores many of the clades recovered in ouranalyses correspond to geographical regions particularly in thecase of Grassatores For example the southern hemispheretriaenonychids are restricted to temperate Gondwananlandmasses Gonyleptoidea and their sister group Stygnopsidaeform a Neotropical (AmazonianMesoamericanAntillean) cladethat excludes Assamiidae which has been hypothesised to be amember of a broader Gonyleptoidea (Kury and Cokendolpher2000 Mendes and Kury 2007) In our analyses Assamiidae isin fact a member of a largely Afrotropical clade together withthe Pyramidopidae South-east Asian families usually form oneclade (at most two) albeit with limited support Samooideafamilies are divided into two clusters African and NeotropicalWith one exception (described above) Zalmoxoidea is restrictedto the Neotropics The ages that we estimate for Laniatoresradiations are consistent with ancient diversification beforethe fragmentation of Pangaea An ancient diversification inconjunction with the climatic stability of the tropics may in partexplain the comparatively greater diversity of the armouredharvestmen with respect to the other Opiliones suborders

134 Invertebrate Systematics P P Sharma and G Giribet

Acknowledgements

Weare indebted toPeter J Schwendingerwho collected andprovidedmost ofthe material for study from South-east Asia Some Thai and most of theNeotropical Laniatores were obtained from the TIGER (Thailand InventoryGroup for Entomological Research) and LLAMA (Leaf Litter Arthropods ofMeso-America) projects toC Lienhard and J Longino respectivelyMaterialfrom Madagascar was generously contributed by Charles Griswold and theCalifornia Academy of Sciences Jesse Czekanski-Moir in conjunction withthe Belau NationalMuseum contributed elusive specimens from Palau AbelPeacuterezGonzaacutelez identifiedmanyNeotropical species included in the study andcontributed specimens fromCubaRicardoPinto-da-Rocha identified someofthe live photographed animals from the Neotropics Discussions with RonaldMClouseAbelPeacuterezGonzaacutelezAdrianoBKury andCarlosEPrieto refinedmanyof the ideas presentedhereTwoanonymous reviewers and the associateeditor provided comments that helped to improve an earlier version ofthis manuscript Laura Leibensperger sorted and accessioned TIGER andLLAMA material as well as MCZ type material Adam Graham and theCenter forNanoscaleStudies atHarvardUniversityprovided support forSEMwork Collecting efforts in New Caledonia were greatly facilitated by theguidance of Herveacute Jourdan (Institut de rechercheacute pour de developpementNoumea) and his teammembers Collecting efforts in Fiji weremade possibleby Marika Tuiwawa (University of the South Pacific Suva) and his teammembers Hilda Waqa and Tokasaya lsquoToxrsquo Cakacaka we are especiallygrateful to Tox for his good company during fieldwork and to his familyfor graciously enabling a visit toOvalau SuzieYee Shawprovided invaluablelogistical support in Fiji and her sons Colin and Joshua Yee Shaw assistedwith sorting Fijian material Fieldwork in Indonesia and West Africa wassupported by two MCZ Putnam Expedition Grants awarded to RonaldM Clouse and G G (2006) and to G G (2009) respectively Fieldworkin New Caledonia was supported by the Goelet award the Kalathia FamilyTrust and the Explorers Club awarded to P P S in 2006 Fieldwork in Fijiand in Palauwas supported by twoMCZPutnamExpeditionGrants awardedto P P S (2008) and to Ronald M Clouse and P P S (2010) respectivelyP P S was supported by a Faculty of Arts and Sciences Graduate Fellowshipfrom Harvard University

References

Castresana J (2000) Selectionof conservedblocks frommultiple alignmentsfor their use in phylogenetic analysis Molecular Biology and Evolution17 540ndash552

Colgan D J McLauchlan A Wislon G D F Livingston S MacaranasJ Edgecombe G D Cassis G and Gray M R (1998) Molecularphylogenetics of the Arthropoda relationships based on histone H3and U2 snRNA DNA sequences Australian Journal of Zoology 46419ndash437 doi101071ZO98048

DaSilva M B and Gnaspini P (2009) A systematic revision ofGoniosomatinae (Arachnida Opiliones Gonyleptidae) with a cladisticanalysis and biogeographical notes Invertebrate Systematics 23530ndash624 doi101071IS09022

DaSilva M B and Pinto-da-Rocha R (2010) Systematic review andcladistic analysis of the Hernandariinae (Opiliones Gonyleptidae)Zoologia 27 577ndash642

Derkarabetian S Steinmann D B and Hedin M (2010) Repeatedand time-correlated morphological convergence in cave-dwellingharvestmen (Opiliones Laniatores) from montane western NorthAmerica PLoS ONE 5 e10388 doi101371journalpone0010388

Drummond A J and Rambaut A (2007) BEAST Bayesian evolutionaryanalysis by sampling trees BMC Evolutionary Biology 7 214doi1011861471-2148-7-214

Drummond A J Ho S Y W Phillips M J and Rambaut A (2006)Relaxed phylogenetics and dating with confidence PLoS Biology 4 e88doi101371journalpbio0040088

Dunlop J A (2007) Paleontology In lsquoHarvestmen The Biology ofOpilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 247ndash265 (Harvard University Press Cambridge MA USA)

Dunlop J A and Anderson L I (2005) A fossil harvestman (ArachnidaOpiliones) from theMississippian of East Kirkton Scotland The Journalof Arachnology 33 482ndash489 doi10163604-791

Dunlop JAAndersonL IKerpH andHassH (2003)Preservedorgansof Devonian harvestmen Nature 425 916 doi101038425916a

Dunlop J A Anderson L I Kerp H and Hass H (2004) A harvestman(Arachnida Opiliones) from the Early Devonian Rhynie chertsAberdeenshire Scotland Transactions of the Royal Society ofEdinburgh Earth Sciences 94 341ndash354

Edgar R C (2004) MUSCLE multiple sequence alignment with highaccuracy and high throughput Nucleic Acids Research 32 1792ndash1797doi101093nargkh340

Edgecombe G D and Giribet G (2006) A century laterndash a total evidencere-evaluation of scutigeromorph centipedes (Myriapoda Chilopoda)Invertebrate Systematics 20 503ndash525 doi101071IS05044

Edgecombe G D Giribet G and Wheeler W C (2002) Phylogeny ofHenicopidae (Chilopoda Lithobiomorpha) a combined analysis ofmorphology and five molecular loci Systematic Entomology 2731ndash64 doi101046j0307-6970200100163x

FolmerOBlackMHoehWLutzR andVrijenhoekRC (1994)DNAprimers for amplification ofmitochondrial cytochrome c oxidase subunit Ifrom diverse metazoan invertebrates Molecular Marine Biology andBiotechnology 3 294ndash299

Forster R R (1954) The New Zealand harvestmen (sub-order Laniatores)Canterbury Museum Bulletin 2 1ndash329

Giribet G and Kury A B (2007) Phylogeny and biogeography InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 62ndash87 (Harvard University PressCambridge MA USA)

Giribet G Carranza S Baguntildeagrave J Riutort M and Ribera C (1996) Firstmolecular evidence for the existence of a Tardigrada +Arthropoda cladeMolecular Biology and Evolution 13 76ndash84

Giribet G Rambla M Carranza S Baguntildeagrave J Riutort M and Ribera C(1999) Phylogeny of the arachnid order Opiliones (Arthropoda)inferred from a combined approach of complete 18S and partial 28Sribosomal DNA sequences and morphology Molecular Phylogeneticsand Evolution 11 296ndash307 doi101006mpev19980583

Giribet G Edgecombe G D Wheeler W C and Babbitt C (2002)Phylogeny and systematic position of Opiliones a combined analysis ofchelicerate relationships using morphological and molecular dataCladistics 18 5ndash70

Giribet G Vogt L PeacuterezGonzaacutelez A Sharma P andKury A B (2010)A multilocus approach to harvestman (Arachnida Opiliones) phylogenywith emphasis on biogeography and the systematics of LaniatoresCladistics 26 408ndash437

Hara M R Gnaspini P and Machado G (2003) Male egg guardingbehavior in the Neotropical harvestman Ampheres leucopheus (Mello-Leitatildeo 1922) (Opiliones Gonyleptidae) The Journal of Arachnology 31441ndash444 doi101636S02-32

Hedin M Derkarabetian S McCormack M and Richart C (2010) Thephylogenetic utility of the nuclear protein-encoding gene EF-1a forresolving recent divergences in Opiliones emphasizing intronevolution The Journal of Arachnology 38 9ndash20 doi101636HA09-491

Huelsenbeck J P and Ronquist F (2005) Bayesian analyses of molecularevolution using MrBayes In lsquoStatistical Methods in MolecularEvolutionrsquo (Ed R Nielsen) (Springer New York)

HunterRK ProundDNBurns JA Tibbetts JA andTownsendVR(2007) Parental care in the Neotropical harvestman Phareicranauscalcariferus (Opiliones Cranaidae) The Journal of Arachnology 35199ndash201 doi101636ST06-181

Molecular phylogeny of Laniatores Invertebrate Systematics 135

Kocher T D Thoma W K Meyer A Edwards S V Paumlaumlbo SVillablanca F X and Wilson A C (1989) Dynamics ofmitochondrial DNA evolution in animals amplification andsequencing with conserved primers Proceedings of the NationalAcademy of Sciences of the United States of America 86 6196ndash6200doi101073pnas86166196

Kury A B (1993) Anaacutelise filogeneacutetica de Gonyleptoidea (ArachnidaOpiliones Laniatores) PhD Thesis Universidade de Satildeo Paulo SatildeoPaulo Brazil

Kury A B (2003) Annotated catalogue of the Laniatores of the NewWorld (Arachnida Opiliones) Revista Ibeacuterica de AracnologiacuteaVolumen Especial Monograacutefico 1 1ndash337

Kury A B (2006) Checklist of valid genera of Opiliones of theWorld Museu NacionalUFRJ Available from httpwwwmuseunacionalufrjbrmndiAracnologiachecklaniatorhtm [Accessed1 February 2011]

Kury A B (2007) Podoctidae Roewer 1912 In lsquoHarvestmen The Biologyof Opilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 221ndash224 (Harvard University Press Cambridge MA USA)

Kury A B and Cokendolpher J C (2000) Opiliones In lsquoBiodiversidadTaxonomiacutea y Biogeografiacutea de Artoacutepodos de Meacutexico Hacia una Sintesisde su Conocimientorsquo vol 2 (Eds J E Llorente E Gonzaacutelez andN Papavero) pp 137ndash157 (Universidad Nacional Autoacutenoma deMexico Meacutexico DF Mexico)

Kury A B and Machado G (2009) Notes on Santobius from Vanuatu andFiji and the status of the eastern Melanesian Ibalonius (ArachnidaOpiliones Podoctidae) Zoological Studies 48 524ndash538

Kury A B and Peacuterez G A (2002) A new family of Laniatores fromnorthwestern South America (Arachnida Opiliones) Revista Ibeacuterica deAracnologiacutea 6 3ndash11

Labandeira C C and Sepkoski J J (1993) Insect diversity in the fossilrecord Science 261 310ndash315 doi101126science11536548

Lanyon S M (1988) The stochastic mode of molecular evolutionwhat consequences for systematic investigations The Auk 105565ndash573

Lian W-G Zhu M-S and Kury A B (2008) A new species of the genusTithaeus from China (Arachnida Laniatores Epedanidae) Zootaxa1841 53ndash60

Machado G Requena G S Buzatto B A Osses F and Rossetto L M(2004) Five new cases of paternal care in harvestmen (ArachnidaOpiliones) implications for the evolution of male guarding in theNeotropical family Gonyleptidae Sociobiology 44 577ndash598

Martens J (1976) Genitalmorphologie System und Phylogenie derWeberknechte (Arachnida Opiliones) Entomologica GermanicaZeitschrift fuumlr das Gesamtgebiet der Wissenschaftlichen Entomologie3 51ndash68

Martens J (1980) Versuch eines phylogenetischen Systems der OpilionesIn lsquoProceedings 8th International Congress of Arachnology ViennaVerhandlungenrsquo (Ed J Gruber) pp 355ndash360 (Vienna Austria)

Martens J (1986) Die Grossgliederung der Opiliones und die Evolutionder Ordnung (Arachnida) Actas del X Congreso Internacional deAracnologiacutea Jaca 1 289ndash310

Martens J (1993) Further cases of paternal care in Opiliones (Arachnida)Tropical Zoology 6 97ndash107

Martens J and Schwendinger P S (1998) A taxonomic revision ofthe family Oncopodidae I New genera and new species of GnomulusThorell (Opiliones Laniatores) Revue Suisse de Zoologie 105 499ndash555

Martens J Hoheisel U and Goumltze M (1981) Vergleichende Anatomieder Legeroumlhren der Opiliones als Beitrag zur Phylogenie der Ordnung(Arachnida) Zoologische Jahrbucher Abteilung fur Anatomie undOntogenie der Tiere 105 13ndash76

Mello-Leitatildeo C F (1949) Famiacutelias subfamiacutelia espeacutecies e gecircneros novos deopiliotildees e notas de sinoniacutemia Boletim do Museu Nacional Nova SeacuterieZoologia Rio de Janeiro 94 1ndash33

Mendes A C and Kury A B (2007) Stygnopsidae Soslashrensen 1932 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 232ndash234 (Harvard University PressCambridge MA USA)

Mendes A C and Kury A B (2008) Intercontinental Triaenonychidae ndashthe case of Ceratomontia (Opiliones Insidiatores) The Journal ofArachnology 36 273ndash279 doi101636CH07-931

Murphree C S (1988) Morphology of the dorsal integument of tenopilionid species (Arachnida Opiliones) The Journal of Arachnology16 237ndash252

Park J K andOacuteFoighilD (2000) Sphaeriid and corbiculid clams representseparate heterodont bivalve radiations into freshwater environmentsMolecular Phylogenetics and Evolution 14 75ndash88 doi101006mpev19990691

Peacuterez Gonzaacutelez A (2006) lsquoRevisatildeo Sistemaacutetica e Anaacutelise Filogeneacutetica deStygnommatidae (Arachnida Opiliones Laniatores)rsquo (Museu NacionalUniversidade Federal de Rio de Janeiro Rio de Janeiro Brazil)

Peacuterez Gonzaacutelez A (2007) Stygnommatidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 229ndash232 (Harvard University PressCambridge MA USA)

Peacuterez Gonzaacutelez A (2011) New familial assignment for two harvestmanspecies of the infraorder Grassatores (Arachnida Opiliones Laniatores)Zootaxa 2757 24ndash28

Peacuterez Gonzaacutelez A and Kury A B (2007) Samoidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 224ndash226 (Harvard University PressCambridge MA USA)

Pineau P Henry M Suspegravene R Marchio A Dettai A Debruyne RPetit T Leacutecu A Moisson P Dejean A Wain-Hobson S andVartanian J-P (2005) A universal primer set for PCR amplificationof nuclear histone H4 genes from all animal species Molecular Biologyand Evolution 22 582ndash588 doi101093molbevmsi053

Pinto-da-Rocha R (1997) Systematic review of the Neotropical familyStygnidae (Opiliones Laniatores Gonyleptoidea) Arquivos deZoologia 33 163ndash342

Pinto-da-Rocha R and Kury A B (2003a) Phylogenetic analysis ofSantinezia with description of five new species (Opiliones LaniatoresCranaidae) The Journal of Arachnology 31 173ndash208 doi1016360161-8202(2003)031[0173PAOSWD]20CO2

Pinto-da-Rocha R and Kury A B (2003b) Third species of Guasiniidae(Opiliones Laniatores) with comments on familial relationships TheJournal of Arachnology 31 394ndash399 doi101636H02-59

Pinto-da-Rocha R and Kury A B (2007) Agoristenidae Silhavy 1973 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 171ndash173 (Harvard University PressCambridge MA USA)

Posada D (2005) Modeltest 37 Program and documentation available athttpdarwinuvigoes [Accessed 28 May 2011]

Posada D and Buckley T (2004) Model selection and model averaging inphylogenetics advantages of Akaike information criterion and Bayesianapproaches over likelihood ratio tests Systematic Biology 53 793ndash808doi10108010635150490522304

Posada D and Crandall K A (1998) Modeltest testing the model ofDNA substitution Bioinformatics (Oxford England) 14 817ndash818doi101093bioinformatics149817

Prendini L Weygoldt P and Wheeler W C (2005) Systematics of theDamon variegates group of African whip spiders (ChelicerataAmblypygi) evidence from behaviour morphology and DNAOrganisms Diversity amp Evolution 5 203ndash236 doi101016jode200412004

Rambaut A E (1996) Se-Al sequence alignment editor University ofOxford UK Program and documentation available at httptreebioedacuksoftwarefigtree [Accessed 21 December 2009]

136 Invertebrate Systematics P P Sharma and G Giribet

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 22: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

a miniature species of Martensiellus P J Schwendinger perscomm) (BS = 92 PP = 100) Intergeneric relationshipsof sandokanid genera are contingent upon analytical treatmentof molecular partitions (with additional sandokanid exemplarsdata not shown) reflecting conflict among datasets documentedby Sharma and Giribet (2009)

The other South-east Asian families

Epedanidae was postulated to be sister to Gonyleptoidea in acladistic analysis based on morphological characters (Kury1993) Subsequently Kury (2003) proposed that Epedanidaewas sister to the clade (Assamiidae (Stygnopsidae +Gonyleptoidea)) The single epedanid previously included in amolecular phylogeny was similarly unstable in placement eithernestingwithin Assamiidae or sister to the African lsquophalangodidsrsquo(Conomma and Maiorerus) in neither case with appreciablenodal support (Giribet et al 2010) Furthermore previousinclusion of several lineages (eg Tithaeus) within Epedanidaethat do not bear characters typical of true epedanids ndash sexuallydimorphic chelicera with heavy dentition elongate andspined pedipalpi male genitalia with setae surroundingthe capsula interna ndash has also made this family difficult todefine Consequently we included only Epedaninae (egPseudoepedanus Alloepedanus and Euepedanus) as exemplarsof true epedanids the systematic validity of the remaining threesubfamilies (and particularly the inclusion of Dibuninae) isbeyond the scope of this study and remains to be investigated

The monophyly of each of four South-east Asian families ndashEpedanidae (represented by epedanines) TithaeidaePetrobunidae and Podoctidae ndash is recovered with high nodalsupport (all BS = 100 PP = 100) These lineages are somehowrelated to each other and while they form a clade in bothML andBI analyses this result receives insignificant nodal support(PP = 077) In the topology recovered by BEAST the South-east Asian families form a clade that includes Sandokanidaea result consistent with the distribution of sandokanids albeitwithout support (PPBEAST = 085) Tithaeidae is probably closelyrelated to Podoctidae given the occurrence of a deeply cleftventral plate resulting in two flanking prongs in themale genitaliaof both families (Suzuki 1977 Lian et al 2008 Fig 19) Inaddition the clade (Podoctidae +Tithaeidae) is recovered withmoderate support in ML and BI analyses (BS = 59 PP = 097)In none of the analyses is Tithaeidae nested within or sister toEpedanidae sensu stricto

The morphology of Petrobunidae suggests some relationshipto previously described South-east Asian families oralternatively Phalangodidae but not inclusion within any ofthese (Fig 19) Molecular sequence data do not support anyspecificplacement ofPetrobunidae although it clusterswithotherSouth-east Asian families in all analyses and is recovered sisterto Epedanidae in two topologies (BI and BEAST)

Gonyleptoidea and Stygnopsidae

With over 2500 described species the superfamilyGonyleptoidea constitutes the most diverse and (arguably) themost charismatic lineage of Opiliones with most of this diversityconcentrated in Amazonia (some cosmetids occur as far north asthe mid-Atlantic states of the US) In a previous analysis

relationships of gonyleptoid families were unsupported andordid not accordwithmorphological studies (Giribet et al 2010) Inparticular the placement of the agoristenid exemplar Avimaalbiornata (Goodnight amp Goodnight 1947) ndash the putativesister family to the remaining Gonyleptoidea ndash within aparaphyletic Cranaidae was particularly suspect given thelimited availability of sequence data for Avima (complete 18SrRNA a300-bp fragmentof 28S rRNA andCOI) In addition thesister group of Gonyleptoidea was ambiguous and contingentupon analytical parameters

Redoubling sequencing efforts and addition of taxaparticularly in the case of Agoristenidae (currently sequencedfor 12S rRNA complete 18S rRNA a 2000-bp fragment of 28SrRNA COI H3 and EF-1a) improved the assessment ofgonyleptoid relationships A monophyletic Gonyleptoidea(BS = 58 PP = 066) is recovered sister to the familyStygnopsidae (BS = 57 PP = 100) Within Gonyleptoidea asplit between Agoristenidae and the remaining gonyleptoids isstrongly supported (BS = 100 PP = 100) followed by thedivergence of Stygnidae (BS = 71 PP = 099) Thisplacement of Agoristenidae is supported by morphologicalstudies (Pinto-da-Rocha and Kury 2007) although in aminority of tree topologies sampled in BI analysesAgoristenidae is sister to Stygnopsidae (hence lower nodalsupport for the monophyly of Gonyleptoidea in BI) Theplacement of Manaosbiidae is uncertain it is recoveredsister to either (Gonyleptidae +Cranaidae) (PP = 089) or toCosmetidae (PPBEAST = 092) but these results are notsupported Cranaidae is recovered as monophyletic (BS = 99PP = 100) and nested within a paraphyletic Gonyleptidae

The present sampling of Cosmetidae and Gonyleptidae doesnot do justice to the diversity of these lineages (~700 and 800described species respectively) A phylogenetic assessment ofall 16 subfamilies of Gonyleptidae alone constitutes the subjectof an arduous and exacting study Fortunately cladistic analysesof morphological characters continue to advance phylogeneticinvestigation of subfamilial lineages (eg BourguyiinaeYamaguti and Pinto-da-Rocha 2009 Goniosomatinae DaSilvaandGnaspini 2009HernandariinaeDaSilva andPinto-da-Rocha2010) Elucidating the phylogeny of Gonyleptoidea is one of themost exciting research topics in the study of Opiliones

The Afrotropical families

The third most diverse family of Laniatores Assamiidaeconstitutes the dominant opiliofauna of the African continent(excluding Madagascar) with some lineages occurring in SouthAsia the Indo-Malay Archipelago and Australia (Trionyxellinaeand Dampetrinae) Proposed to be related to EpedanidaeStygnopsidae andor Gonyleptoidea (Kury 2007) on the basisof genitalic structures assamiids were not recovered asmonophyletic in a previous study (paraphyly was induced byeither Epedanidae orAfricanBiantidae) and the placement of thesubfamily Trionyxellinae was particularly suspect (Giribet et al2010) Trionyxellinae was considered a separate family byMello-Leitatildeo (1949) though others considered it nested withinAssamiidae (eg Starega 1992) In our analyses the monophylyof Assamiidae is supported (BS = 79 PP = 100)lsquoTrionyxellinaersquo (Trionyxella and Mysorea both with a

Molecular phylogeny of Laniatores Invertebrate Systematics 127

Fig 17 Evolutionary time tree of Laniatores inferred fromBEASTanalysis of allmolecular data Coloured bars indicate 95highestposterior density (HPD) intervals for nodes of interest Numbers on nodes indicate posterior probabilities asterisks indicate posteriorprobability of 100

128 Invertebrate Systematics P P Sharma and G Giribet

pseudonychium on the third and fourth tarsi) is a diphyletic entitynested within the other Assamiidae (for the node renderingdiphyly BS = 100 PP = 100) disfavouring family status fortrionyxellines

The African lsquophalangodidsrsquo (sometimes called thelsquoPyramidops grouprsquo) were recognised as a new family byStarega (1992) but not formalised and included 13 genera(Conomma Pyramidops and related lineages) Consistentwith this hypothesis we recovered strong support for thePyramidops group (represented by Conomma and cfPyramidops) as a lineage separate from the true Phalangodidae(egBishopella and Scotolemon) recapitulating a previous result(Giribet et al 2010) The African lsquophalangodidsrsquowere recoveredas the sister lineage of Assamiidae although this relationshipis variably supported in our analyses (BS = 40 PP = 095PPBEAST = 100) A review and formal description of thePyramidops group as a new family lsquoPyramidopidaersquo ndash a namewidely available on the internet including GBIF but notformalised ndash is undertaken elsewhere (Sharma et al 2011)

While we have endeavoured to improve the sampling ofAssamiidae from South-east Asia the internal systematics ofthis family remain a high value target for phylogenetic researchHowever revision of assamiid systematics is inherently difficultfor two reasons (1) the family is peppered with questionablehierarchies and monotypic genera (~12 subfamilies and 250genera for less than 500 described species) and (2) occurs insome of the most inaccessible regions of the world namely sub-Saharan Africa

In all analyses the clade (Assamiidae + Pyramidopidae) issister to the clade (Zalmoxoidea + Samooidea) though this resultis only supported in one analysis (PP= 100) The divergence ofthese four lineages is estimated to have occurred 252Mya and isconsistent with diversification in West Tropical Gondwanaoccurring at least 140million years before the fragmentation ofthis terrane (~110Mya)

Zalmoxoidea

As currently defined the largely Neotropical superfamilyZalmoxoidea includes four families FissiphalliidaeGuasiniidae Icaleptidae and Zalmoxidae Guasiniidae hasnever before been included in a molecular phylogeny In thepresent study we sequenced a guasiniid for six genes and ouranalyses strongly support theplacement ofGuasiniidae as sister tothe samooid family Kimulidae (formerly Minuidae) (BS = 86PP = 098 PPBEAST = 099) and this clade in turn sister to anothersamooid family Escadabiidae (BS = 65 PP = 096PPBEAST = 100) The families Fissiphalliidae Icaleptidaeand Zalmoxidae in turn form a separate clade (BS = 100PP = 100 PPBEAST = 100) with strong support for the sisterrelationship of Zalmoxidae and Fissiphalliidae (BS = 99PP = 100 PPBEAST = 100) corroborating relationshipsproposed by morphological studies (Kury and Peacuterez G 2002Pinto-da-Rocha and Kury 2003b)

Previous analyses have suggested that Samooidea (discussedbelow) is a paraphyletic grade with respect to Zalmoxoidea(Giribet et al 2010) In the present analysis the cladeSamooidea + Zalmoxoidea is strongly supported (BS = 85PP = 100 PPBEAST = 100) as previously suggested by PeacuterezGonzaacutelez and Kury (2007) and by excluding Escadabiidae and

Kimulidae Samooidea is rendered a monophyletic entity albeitwith limited support (BS = 53 PP = 062 PPBEAST = 081) Thestrong support from molecular sequence data for the cladeincluding Escadabiidae Kimulidae and the four zalmoxoidfamilies (BS = 89 PP = 100 PPBEAST = 100) suggests thatthese may form a natural group

Re-examination of the morphology of these six families incomparisonwith true samooid lineages (Biantidae Samoidae andStygnommatidae) corroborates the exclusionofEscadabiidae andKimulidae from true Samooidea Escadabiidae and Kimulidae(1) lack the scopula characteristic of Samoidae and stenostygnineBiantidae (2) lack a sexually dimorphic metatarsus IIIcharacteristic of Samoidae Stygnommatidae and stenostygnineBiantidae and (3) lack a penial calyx characteristic of SamoidaeConsistent with placement within Zalmoxoidea EscadabiidaeandKimulidae (1) possess a small oculariumbearing the eyes thatis removed from the margin of the carapace (2) bear a wellmarked dorsal protuberance (bulla) on the proximal segmentof the chelicera that lacks armature and (3) possess sexuallydimorphic leg IV segments particularly the femur and tibiawhich may be variedly arcuate incrassate and spinedAdditionally Escadabiidae Fissiphalliidae and Zalmoxidae allpossess sexually dimorphic tegumental glandopeningson tibia IIwhereas Biantidae Samoidae and Stygnommatidae possessthese structures on metatarsus III (Willemart et al 2010)While data on tegumental gland openings are only availablefor a small handful of species these may constitute significantdiagnostic characters for species wherein sexual dimorphismdoes not manifest itself in the readily observable form ofenlarged and spiny segments

Given the results of our phylogenetic analyses maintainingSamooidea (as currently defined) renders it a paraphyletic gradewith respect to a diphyletic Zalmoxoidea (as currently defined)Consequently based on the aforementioned morphologicalcharacters and robust molecular phylogenetic signal wetransfer Escadabiidae and Kimulidae to Zalmoxoidea

Samooidea

A previous cladistic analysis based upon morphological datasuggested close relationship between six families ndash BiantidaeEscadabiidae Kimulidae Podoctidae Samoidae andStygnommatidae ndash thenceforth known as Samooidea (Kury1993) the only pantropical Laniatores superfamily HoweverPodoctidae does not have any obvious relationship to Samooideaand has subsequently been transferred (Kury 2007) in ouranalyses Podoctidae is sister to Tithaeidae or Sandokanidaeie distantly related to all samooid families Moreover ouranalyses strongly favour the exclusion of Escadabiidae andKimulidae from Samooidea

The remaining three families ndash Biantidae Samoidae andStygnommatidae ndash are distributed in the Neotropics and partsof Africa with a handful of suspect lineages in South-east AsiaRe-examination and reassignment of many Samoidae genera(eg the Indonesian lsquosamoidrsquo Waigeucola palpalis PeacuterezGonzaacutelez 2011) suggest that the range of Samoidae does notinclude South-east Asia Peacuterez Gonzaacutelez and Kury (2007) alsoobserved that the lsquosamoidsrsquo of Africa Madagascar and theSeychelles may not be true Samoidae either Similarlyinclusion of the genus Stygnomimus an Indonesian lineage

Molecular phylogeny of Laniatores Invertebrate Systematics 129

within Stygnommatidae is highly dubious as the twoIndonesian lsquostygnommatidsrsquo are either highly autapomorphic(Stygnomimus conopygus (Roewer 1927)) or described on the

basis of a generic female that is not readily distinguishable fromfemales of other species (Stygnomimus malayensis (Suzuki1970))

Fig 18 Strict consensus of tree topologies obtained by all phylogenetic analyses

130 Invertebrate Systematics P P Sharma and G Giribet

Previous efforts to assess the systematic validity of Samooideaby means of molecular sequence data were limited insofar asonly two Samoidae three Biantidae (all Metabiantes) and twoStygnommatidae were sampled (Giribet et al 2010) Thesampling of Samoidae was especially problematic only asingle Neotropical adult (Pellobunus) and one African juvenilesamoid (lsquoSamoidae gen sprsquo) were included The designation ofthe latter is suspect as juveniles of Samoidae are oftenindistinguishable from the juveniles of other lineages becausemany diagnostic secondary sexual characters in Grassatores(eg spines and incrassate appendages) are not acquired untilafter several postembryonic stages (Townsend et al 2009)

In the present study though the type genus of Samoidae(Samoa from Samoa) was not available we sequenced theclosely related genus Badessa (from Fiji collected byP P S) as well as additional Biantidae and StygnommatidaeOur analyses recovered a monophyletic Samooidea (excludingEscadabiidae and Kimulidae BS = 53 PP = 062) withSamoidae sensu stricto (Pellobunus +Badessa BS = 100PP = 100) nested within a paraphyletic Stygnommatidae aplacement that is supported (BS = 87 PP = 100) Bycontrast the African lsquosamoidrsquo is sister to the AfricanBiantidae a relationship that is also well supported(BS = 100 PP = 100) These relationships suggest a basal

Fig 19 Cladogram of male genitalic evolution in South-east Asian families superimposed upon a schematised molecular phylogeny based on ML and BIanalyses of all molecular data Exemplars (a) Pseudoepedanus doiensis Suzuki 1969 (redrawn from Suzuki 1969) dorsal view (b) Pseudoepedanus doiensisSuzuki 1969 (redrawn from Suzuki 1969) ventral view (c) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) ventral view(d) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) dorsal view (e) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki1976) dorsal view (f) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki 1976) ventral view (g) Petrobunus torosus lateral view (h) ZalmoxidagibberaSuzuki 1969 dorsal view (i)Zalmoxida sp (MCZDNA102677) dorsolateral view (j)Metatithaeus rubidusSuzuki 1969 (redrawn fromSuzuki 1969)ventral view (k)Tithaeus kokutnusSuzuki 1985 (redrawn fromSuzuki 1985) ventral view (l)Tithaeus similisSuzuki 1985 (redrawn fromSuzuki 1985) ventralview (m)DongmoaoshimensisSuzuki 1964 (redrawn fromSuzuki 1964) ventral view (n)Bonea longipalpisSuzuki 1977 (redrawn fromSuzuki 1977) ventralview (o) Santobius annulipes Soslashrensen 1886 (redrawn from Kury and Machado 2009) ventral view (p) Lomanius longipalpus mindanaoensis Suzuki 1977(redrawn from Suzuki 1977) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 131

dichotomy within Samooidea that corresponds to one groupof Neotropical and Pacific lineages and a second group ofAfrican lineages However as we were unable to samplestenostygnine (Neotropical) and Indo-Pacific Biantidae aswell as numerous monotypic genera dubiously placed inSamoidae biogeographical extrapolations for Samooidea aretenuous (discussed below)

The internal relationships of Samooidea suggest that themorphology of Samoidae may have evolved convergently Asthe African samoid is a juvenile (the same specimen previouslysequenced by Giribet et al 2010 now sequenced for additional28S rRNA and other genes) we cannot rule out the possibility ofa monophyletic Samoidae that includes African species (thespecimen in question could be a juvenile biantid) In any casethe paraphyly of Stygnommatidae and putative polyphyly ofSamoidae strongly advocate systematic revision of samooidfamilies as currently defined corroborating hypotheses of non-monophyly based on morphology (Peacuterez Gonzaacutelez 2007 PeacuterezGonzaacutelez and Kury 2007) Our sampling of these families isinsufficient to advocate specific taxonomic action but an ongoing

study of samooidean systematics will shed more light on thevalidity of constituent families (A Peacuterez Gonzaacutelez work inprogress)

Biogeography of Zalmoxoidea and Samooidea

While most superfamilies of Grassatores are restricted to aspecific part of the tropics (eg Neotropics South-east Asia)two are distributed in multiple biogeographical provincesSamooidea occurs in the Neotropics and Afrotropics withquestionable records from South-east Asia Zalmoxoidea isconcentrated in the Neotropics with the exception of oneIndo-Pacific lineage of Zalmoxidae (represented here byZalmoxis sp) The ages and distributions of Samooidea andZalmoxoidea suggest that their biogeography was influencedby the fragmentation of West Tropical Gondwana ndash causingthe former to diverge basally throughout West TropicalGondwanan terranes and the latter to become isolated to theNeotropics (with possible subsequent dispersal)

Fig 20 Ancestral range reconstructions for Samooidea +Zalmoxoidea inferred by Lagrange using stratified models corresponding to two vicariant events(indicated by dotted lines) Coloured squares at terminals indicate ranges occupied by sampled species Coloured squares on nodes indicate ranges reconstructedfor hypothetical ancestors Numbers on nodes indicate relative probability of ranges reconstructed

Fig 21 Best hypothesis of Laniatores relationships based on all available evidence Bracketed nodes indicate non-monophyletic entities Dashed line indicatesambiguity in the placement of Sandokanidae (alternatively placed as shown or as sister to Podoctidae) Exemplars of Laniatores diversity are Synthetonychiaoliveae (Synthetonychiidae) Equitius doriae (Triaenonychidae) Hadziana clavigera (Travuniidae) Erebomaster flavescens flavescens (Cladonychiidae)Scotolemon lespesi (Phalangodidae) Palaeoncopus gunung (Sandokanidae) Santobius sp (Podoctidae) Tithaeus sp (Tithaeidae) Petrobunus spinifer(Petrobunidae) Alloepedanus sp (Epedanidae) Hoplobunus sp (Stygnopsidae) Torreana spinata (Agoristenidae) Stygnoplus clavotibialis (Stygnidae)Metalibitia paraguayensis (Cosmetidae)Acutisoma longipes (Gonyleptidae)Conommaoedipus (Pyramidopsgroup)Mysorea thaiensis (Assamiidae)Lacurbssp (Biantidae) Stygnomma sp (Stygnommatidae) Badessa sp (Samoidae) Guasinia sp (Guasiniidae) Icaleptes sp (Icaleptidae) Fissiphallius chicoi(Fissiphalliidae) Zalmoxis sp (Zalmoxidae) Kimula goodnightiorum (Kimulidae)

132 Invertebrate Systematics P P Sharma and G Giribet

Molecular phylogeny of Laniatores Invertebrate Systematics 133

To test this hypothesis we conducted likelihood analysisof range evolution using the program Lagrange (Ree et al2005 Ree and Smith 2008) for the clade (Zalmoxoidea +Samooidea) The stratified analysis resulted in a globalmaximum likelihood of ndashlnL= 1556 outperforming anunconstrained analysis that did not include any dispersalconstraints (ndashlnL= 1676) Likelihood analysis of rangeoptimisation (Fig 20) indicates that the ancestral range ofSamooidea includes both the Afrotropics and the Neotropics(relative probability pr = 1000) but a subsequent split occursbetween an African lineage (pr = 1000) and a NeotropicalIndo-Pacific lineage with a Neotropical ancestral range (pr = 0986)Samoidea of the Indo-Pacific occur on young oceanic islands(eg Fiji Samoa) indicating recent transoceanic dispersal fromthe Neotropics

Ancestral range reconstructions for Samooidea are allconsistent with estimated divergence times for these clades(diversification of Samooidea predates the rifting of WestAfrica from northern South America) favouring an underlyingvicariant process for the basal topology with subsequent recentdispersal events However these results are contingent upon thepresent sampling which does not include all samooid lineages(eg stenostygnine Biantidae) but basal range reconstructionsare likely unaffected (eg Stenostygninae is exclusivelyNeotropical)

In contrast the ancestor of Zalmoxoidea is reconstructedas singularly Neotropical (pr = 0996) This is consistent withisolation of a zalmoxoid ancestor to Amazonia which thenradiated ~191Mya Subsequent ancestral ranges are alsoreconstructed as Neotropical with high relative probabilityHowever the ancestral range of the clade (Icaleptidae +Fissiphalliidae + Zalmoxidae) is ambiguously reconstructedas either Neotropical (pr = 0935) or Neotropical + Indo-Pacific(pr = 0064) as is the split between Fissiphalliidae andZalmoxidae (Neotropical pr = 0856 Neotropical + Indo-Pacific pr = 0141)

These results suggest that the Indo-Pacific lineage ofZalmoxidae which split from Neotropical Zalmoxidae ~83Myais likely the result of long-distance dispersal from the NeotropicsHowever due to the persistence of transantarctic connectionsbetween the Australian plate and temperate South America untilthe Tertiary a competing vicariant scenario cannot be ruled outwithout densely sampling zalmoxid diversity The biogeographyof Zalmoxidae is presently being explored in greater detail in aseparate study (P P Sharma unpubl data)

Finally the ancestral range of (Samooidea + Zalmoxoidea)includes both Africa and the Neotropics (pr = 0957) consistentwith a tropical West Gondwanan ancestor This resultlends circumstantial evidence to a sister relationship of theAfrotropical families (Assamiidae + Pyramidopidae) and theclade (Samooidea + Zalmoxoidea) recovered in all analyses

The diversification of Grassatores

While numerous interfamilial relationships are supported inthis study particularly among gonyleptoid and zalmoxoidfamilies some relationships between superfamilies ofGrassatores are not supported and are contingent upon

analytical treatments namely the deployment of substitutionmodels and data partitioning (Fig 21) The cause of thisinstability could be related to insufficient data particularly inthe EF-1a partition (the length of an intron which can exceed400 bp in some taxa makes this gene particularly difficult toamplify) However examination of clade divergence timessuggests that rapid diversification of Grassatores lineagescould in part augment phylogenetic uncertainty in basal partsof the topology

The split between Phalangodidae and the remainingGrassatores is estimated to have occurred ~302Mya but aseries of divergences resulted in the origin of all superfamiliallineages between 232 and 271Mya Relative to the estimatedage of Laniatores (348Mya) this 39-million-year period isremarkably narrow and inherently problematic as the amountof phylogenetic signal for a given stem subtending a node isdirectly proportional to the amount of time that the stem inquestion spans (Lanyon 1988 Rokas and Carroll 2006) Thesmall internal edge lengths of the stems corresponding to basaldivergences of non-phalangodid Grassatores (Figs 15 16)combined with the ancient age of lineages derived from thesedivergences result in relationships that are difficult to estimatewithout a large amount of sequence data andor the inclusion ofdata that are less afflicted by homoplasy (because longer edgelengths imply more indel and substitution events on edges)(Whitfield and Lockhart 2007)

We additionally observe that the origins of most Grassatoressuperfamilies occur in the wake of the end-Permian massextinction (~254Mya) Rapid radiation in the wake of a massextinction has occurred in multiple metazoan lineagesthe putative result of relaxed selection and opening ofpreviously occupied ecological niche space (Labandeira andSepkoski 1993 Sahney and Benton 2008) The rapiddiversification of early Grassatores lineages could be anexample of this phenomenon but this hypothesis is difficult totest in the absence of Mesozoic Grassatores fossils (reviewed byDunlop 2007)

Finally we observe that contrary to traditional hierarchiesproposed for Laniatores many of the clades recovered in ouranalyses correspond to geographical regions particularly in thecase of Grassatores For example the southern hemispheretriaenonychids are restricted to temperate Gondwananlandmasses Gonyleptoidea and their sister group Stygnopsidaeform a Neotropical (AmazonianMesoamericanAntillean) cladethat excludes Assamiidae which has been hypothesised to be amember of a broader Gonyleptoidea (Kury and Cokendolpher2000 Mendes and Kury 2007) In our analyses Assamiidae isin fact a member of a largely Afrotropical clade together withthe Pyramidopidae South-east Asian families usually form oneclade (at most two) albeit with limited support Samooideafamilies are divided into two clusters African and NeotropicalWith one exception (described above) Zalmoxoidea is restrictedto the Neotropics The ages that we estimate for Laniatoresradiations are consistent with ancient diversification beforethe fragmentation of Pangaea An ancient diversification inconjunction with the climatic stability of the tropics may in partexplain the comparatively greater diversity of the armouredharvestmen with respect to the other Opiliones suborders

134 Invertebrate Systematics P P Sharma and G Giribet

Acknowledgements

Weare indebted toPeter J Schwendingerwho collected andprovidedmost ofthe material for study from South-east Asia Some Thai and most of theNeotropical Laniatores were obtained from the TIGER (Thailand InventoryGroup for Entomological Research) and LLAMA (Leaf Litter Arthropods ofMeso-America) projects toC Lienhard and J Longino respectivelyMaterialfrom Madagascar was generously contributed by Charles Griswold and theCalifornia Academy of Sciences Jesse Czekanski-Moir in conjunction withthe Belau NationalMuseum contributed elusive specimens from Palau AbelPeacuterezGonzaacutelez identifiedmanyNeotropical species included in the study andcontributed specimens fromCubaRicardoPinto-da-Rocha identified someofthe live photographed animals from the Neotropics Discussions with RonaldMClouseAbelPeacuterezGonzaacutelezAdrianoBKury andCarlosEPrieto refinedmanyof the ideas presentedhereTwoanonymous reviewers and the associateeditor provided comments that helped to improve an earlier version ofthis manuscript Laura Leibensperger sorted and accessioned TIGER andLLAMA material as well as MCZ type material Adam Graham and theCenter forNanoscaleStudies atHarvardUniversityprovided support forSEMwork Collecting efforts in New Caledonia were greatly facilitated by theguidance of Herveacute Jourdan (Institut de rechercheacute pour de developpementNoumea) and his teammembers Collecting efforts in Fiji weremade possibleby Marika Tuiwawa (University of the South Pacific Suva) and his teammembers Hilda Waqa and Tokasaya lsquoToxrsquo Cakacaka we are especiallygrateful to Tox for his good company during fieldwork and to his familyfor graciously enabling a visit toOvalau SuzieYee Shawprovided invaluablelogistical support in Fiji and her sons Colin and Joshua Yee Shaw assistedwith sorting Fijian material Fieldwork in Indonesia and West Africa wassupported by two MCZ Putnam Expedition Grants awarded to RonaldM Clouse and G G (2006) and to G G (2009) respectively Fieldworkin New Caledonia was supported by the Goelet award the Kalathia FamilyTrust and the Explorers Club awarded to P P S in 2006 Fieldwork in Fijiand in Palauwas supported by twoMCZPutnamExpeditionGrants awardedto P P S (2008) and to Ronald M Clouse and P P S (2010) respectivelyP P S was supported by a Faculty of Arts and Sciences Graduate Fellowshipfrom Harvard University

References

Castresana J (2000) Selectionof conservedblocks frommultiple alignmentsfor their use in phylogenetic analysis Molecular Biology and Evolution17 540ndash552

Colgan D J McLauchlan A Wislon G D F Livingston S MacaranasJ Edgecombe G D Cassis G and Gray M R (1998) Molecularphylogenetics of the Arthropoda relationships based on histone H3and U2 snRNA DNA sequences Australian Journal of Zoology 46419ndash437 doi101071ZO98048

DaSilva M B and Gnaspini P (2009) A systematic revision ofGoniosomatinae (Arachnida Opiliones Gonyleptidae) with a cladisticanalysis and biogeographical notes Invertebrate Systematics 23530ndash624 doi101071IS09022

DaSilva M B and Pinto-da-Rocha R (2010) Systematic review andcladistic analysis of the Hernandariinae (Opiliones Gonyleptidae)Zoologia 27 577ndash642

Derkarabetian S Steinmann D B and Hedin M (2010) Repeatedand time-correlated morphological convergence in cave-dwellingharvestmen (Opiliones Laniatores) from montane western NorthAmerica PLoS ONE 5 e10388 doi101371journalpone0010388

Drummond A J and Rambaut A (2007) BEAST Bayesian evolutionaryanalysis by sampling trees BMC Evolutionary Biology 7 214doi1011861471-2148-7-214

Drummond A J Ho S Y W Phillips M J and Rambaut A (2006)Relaxed phylogenetics and dating with confidence PLoS Biology 4 e88doi101371journalpbio0040088

Dunlop J A (2007) Paleontology In lsquoHarvestmen The Biology ofOpilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 247ndash265 (Harvard University Press Cambridge MA USA)

Dunlop J A and Anderson L I (2005) A fossil harvestman (ArachnidaOpiliones) from theMississippian of East Kirkton Scotland The Journalof Arachnology 33 482ndash489 doi10163604-791

Dunlop JAAndersonL IKerpH andHassH (2003)Preservedorgansof Devonian harvestmen Nature 425 916 doi101038425916a

Dunlop J A Anderson L I Kerp H and Hass H (2004) A harvestman(Arachnida Opiliones) from the Early Devonian Rhynie chertsAberdeenshire Scotland Transactions of the Royal Society ofEdinburgh Earth Sciences 94 341ndash354

Edgar R C (2004) MUSCLE multiple sequence alignment with highaccuracy and high throughput Nucleic Acids Research 32 1792ndash1797doi101093nargkh340

Edgecombe G D and Giribet G (2006) A century laterndash a total evidencere-evaluation of scutigeromorph centipedes (Myriapoda Chilopoda)Invertebrate Systematics 20 503ndash525 doi101071IS05044

Edgecombe G D Giribet G and Wheeler W C (2002) Phylogeny ofHenicopidae (Chilopoda Lithobiomorpha) a combined analysis ofmorphology and five molecular loci Systematic Entomology 2731ndash64 doi101046j0307-6970200100163x

FolmerOBlackMHoehWLutzR andVrijenhoekRC (1994)DNAprimers for amplification ofmitochondrial cytochrome c oxidase subunit Ifrom diverse metazoan invertebrates Molecular Marine Biology andBiotechnology 3 294ndash299

Forster R R (1954) The New Zealand harvestmen (sub-order Laniatores)Canterbury Museum Bulletin 2 1ndash329

Giribet G and Kury A B (2007) Phylogeny and biogeography InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 62ndash87 (Harvard University PressCambridge MA USA)

Giribet G Carranza S Baguntildeagrave J Riutort M and Ribera C (1996) Firstmolecular evidence for the existence of a Tardigrada +Arthropoda cladeMolecular Biology and Evolution 13 76ndash84

Giribet G Rambla M Carranza S Baguntildeagrave J Riutort M and Ribera C(1999) Phylogeny of the arachnid order Opiliones (Arthropoda)inferred from a combined approach of complete 18S and partial 28Sribosomal DNA sequences and morphology Molecular Phylogeneticsand Evolution 11 296ndash307 doi101006mpev19980583

Giribet G Edgecombe G D Wheeler W C and Babbitt C (2002)Phylogeny and systematic position of Opiliones a combined analysis ofchelicerate relationships using morphological and molecular dataCladistics 18 5ndash70

Giribet G Vogt L PeacuterezGonzaacutelez A Sharma P andKury A B (2010)A multilocus approach to harvestman (Arachnida Opiliones) phylogenywith emphasis on biogeography and the systematics of LaniatoresCladistics 26 408ndash437

Hara M R Gnaspini P and Machado G (2003) Male egg guardingbehavior in the Neotropical harvestman Ampheres leucopheus (Mello-Leitatildeo 1922) (Opiliones Gonyleptidae) The Journal of Arachnology 31441ndash444 doi101636S02-32

Hedin M Derkarabetian S McCormack M and Richart C (2010) Thephylogenetic utility of the nuclear protein-encoding gene EF-1a forresolving recent divergences in Opiliones emphasizing intronevolution The Journal of Arachnology 38 9ndash20 doi101636HA09-491

Huelsenbeck J P and Ronquist F (2005) Bayesian analyses of molecularevolution using MrBayes In lsquoStatistical Methods in MolecularEvolutionrsquo (Ed R Nielsen) (Springer New York)

HunterRK ProundDNBurns JA Tibbetts JA andTownsendVR(2007) Parental care in the Neotropical harvestman Phareicranauscalcariferus (Opiliones Cranaidae) The Journal of Arachnology 35199ndash201 doi101636ST06-181

Molecular phylogeny of Laniatores Invertebrate Systematics 135

Kocher T D Thoma W K Meyer A Edwards S V Paumlaumlbo SVillablanca F X and Wilson A C (1989) Dynamics ofmitochondrial DNA evolution in animals amplification andsequencing with conserved primers Proceedings of the NationalAcademy of Sciences of the United States of America 86 6196ndash6200doi101073pnas86166196

Kury A B (1993) Anaacutelise filogeneacutetica de Gonyleptoidea (ArachnidaOpiliones Laniatores) PhD Thesis Universidade de Satildeo Paulo SatildeoPaulo Brazil

Kury A B (2003) Annotated catalogue of the Laniatores of the NewWorld (Arachnida Opiliones) Revista Ibeacuterica de AracnologiacuteaVolumen Especial Monograacutefico 1 1ndash337

Kury A B (2006) Checklist of valid genera of Opiliones of theWorld Museu NacionalUFRJ Available from httpwwwmuseunacionalufrjbrmndiAracnologiachecklaniatorhtm [Accessed1 February 2011]

Kury A B (2007) Podoctidae Roewer 1912 In lsquoHarvestmen The Biologyof Opilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 221ndash224 (Harvard University Press Cambridge MA USA)

Kury A B and Cokendolpher J C (2000) Opiliones In lsquoBiodiversidadTaxonomiacutea y Biogeografiacutea de Artoacutepodos de Meacutexico Hacia una Sintesisde su Conocimientorsquo vol 2 (Eds J E Llorente E Gonzaacutelez andN Papavero) pp 137ndash157 (Universidad Nacional Autoacutenoma deMexico Meacutexico DF Mexico)

Kury A B and Machado G (2009) Notes on Santobius from Vanuatu andFiji and the status of the eastern Melanesian Ibalonius (ArachnidaOpiliones Podoctidae) Zoological Studies 48 524ndash538

Kury A B and Peacuterez G A (2002) A new family of Laniatores fromnorthwestern South America (Arachnida Opiliones) Revista Ibeacuterica deAracnologiacutea 6 3ndash11

Labandeira C C and Sepkoski J J (1993) Insect diversity in the fossilrecord Science 261 310ndash315 doi101126science11536548

Lanyon S M (1988) The stochastic mode of molecular evolutionwhat consequences for systematic investigations The Auk 105565ndash573

Lian W-G Zhu M-S and Kury A B (2008) A new species of the genusTithaeus from China (Arachnida Laniatores Epedanidae) Zootaxa1841 53ndash60

Machado G Requena G S Buzatto B A Osses F and Rossetto L M(2004) Five new cases of paternal care in harvestmen (ArachnidaOpiliones) implications for the evolution of male guarding in theNeotropical family Gonyleptidae Sociobiology 44 577ndash598

Martens J (1976) Genitalmorphologie System und Phylogenie derWeberknechte (Arachnida Opiliones) Entomologica GermanicaZeitschrift fuumlr das Gesamtgebiet der Wissenschaftlichen Entomologie3 51ndash68

Martens J (1980) Versuch eines phylogenetischen Systems der OpilionesIn lsquoProceedings 8th International Congress of Arachnology ViennaVerhandlungenrsquo (Ed J Gruber) pp 355ndash360 (Vienna Austria)

Martens J (1986) Die Grossgliederung der Opiliones und die Evolutionder Ordnung (Arachnida) Actas del X Congreso Internacional deAracnologiacutea Jaca 1 289ndash310

Martens J (1993) Further cases of paternal care in Opiliones (Arachnida)Tropical Zoology 6 97ndash107

Martens J and Schwendinger P S (1998) A taxonomic revision ofthe family Oncopodidae I New genera and new species of GnomulusThorell (Opiliones Laniatores) Revue Suisse de Zoologie 105 499ndash555

Martens J Hoheisel U and Goumltze M (1981) Vergleichende Anatomieder Legeroumlhren der Opiliones als Beitrag zur Phylogenie der Ordnung(Arachnida) Zoologische Jahrbucher Abteilung fur Anatomie undOntogenie der Tiere 105 13ndash76

Mello-Leitatildeo C F (1949) Famiacutelias subfamiacutelia espeacutecies e gecircneros novos deopiliotildees e notas de sinoniacutemia Boletim do Museu Nacional Nova SeacuterieZoologia Rio de Janeiro 94 1ndash33

Mendes A C and Kury A B (2007) Stygnopsidae Soslashrensen 1932 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 232ndash234 (Harvard University PressCambridge MA USA)

Mendes A C and Kury A B (2008) Intercontinental Triaenonychidae ndashthe case of Ceratomontia (Opiliones Insidiatores) The Journal ofArachnology 36 273ndash279 doi101636CH07-931

Murphree C S (1988) Morphology of the dorsal integument of tenopilionid species (Arachnida Opiliones) The Journal of Arachnology16 237ndash252

Park J K andOacuteFoighilD (2000) Sphaeriid and corbiculid clams representseparate heterodont bivalve radiations into freshwater environmentsMolecular Phylogenetics and Evolution 14 75ndash88 doi101006mpev19990691

Peacuterez Gonzaacutelez A (2006) lsquoRevisatildeo Sistemaacutetica e Anaacutelise Filogeneacutetica deStygnommatidae (Arachnida Opiliones Laniatores)rsquo (Museu NacionalUniversidade Federal de Rio de Janeiro Rio de Janeiro Brazil)

Peacuterez Gonzaacutelez A (2007) Stygnommatidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 229ndash232 (Harvard University PressCambridge MA USA)

Peacuterez Gonzaacutelez A (2011) New familial assignment for two harvestmanspecies of the infraorder Grassatores (Arachnida Opiliones Laniatores)Zootaxa 2757 24ndash28

Peacuterez Gonzaacutelez A and Kury A B (2007) Samoidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 224ndash226 (Harvard University PressCambridge MA USA)

Pineau P Henry M Suspegravene R Marchio A Dettai A Debruyne RPetit T Leacutecu A Moisson P Dejean A Wain-Hobson S andVartanian J-P (2005) A universal primer set for PCR amplificationof nuclear histone H4 genes from all animal species Molecular Biologyand Evolution 22 582ndash588 doi101093molbevmsi053

Pinto-da-Rocha R (1997) Systematic review of the Neotropical familyStygnidae (Opiliones Laniatores Gonyleptoidea) Arquivos deZoologia 33 163ndash342

Pinto-da-Rocha R and Kury A B (2003a) Phylogenetic analysis ofSantinezia with description of five new species (Opiliones LaniatoresCranaidae) The Journal of Arachnology 31 173ndash208 doi1016360161-8202(2003)031[0173PAOSWD]20CO2

Pinto-da-Rocha R and Kury A B (2003b) Third species of Guasiniidae(Opiliones Laniatores) with comments on familial relationships TheJournal of Arachnology 31 394ndash399 doi101636H02-59

Pinto-da-Rocha R and Kury A B (2007) Agoristenidae Silhavy 1973 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 171ndash173 (Harvard University PressCambridge MA USA)

Posada D (2005) Modeltest 37 Program and documentation available athttpdarwinuvigoes [Accessed 28 May 2011]

Posada D and Buckley T (2004) Model selection and model averaging inphylogenetics advantages of Akaike information criterion and Bayesianapproaches over likelihood ratio tests Systematic Biology 53 793ndash808doi10108010635150490522304

Posada D and Crandall K A (1998) Modeltest testing the model ofDNA substitution Bioinformatics (Oxford England) 14 817ndash818doi101093bioinformatics149817

Prendini L Weygoldt P and Wheeler W C (2005) Systematics of theDamon variegates group of African whip spiders (ChelicerataAmblypygi) evidence from behaviour morphology and DNAOrganisms Diversity amp Evolution 5 203ndash236 doi101016jode200412004

Rambaut A E (1996) Se-Al sequence alignment editor University ofOxford UK Program and documentation available at httptreebioedacuksoftwarefigtree [Accessed 21 December 2009]

136 Invertebrate Systematics P P Sharma and G Giribet

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 23: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

Fig 17 Evolutionary time tree of Laniatores inferred fromBEASTanalysis of allmolecular data Coloured bars indicate 95highestposterior density (HPD) intervals for nodes of interest Numbers on nodes indicate posterior probabilities asterisks indicate posteriorprobability of 100

128 Invertebrate Systematics P P Sharma and G Giribet

pseudonychium on the third and fourth tarsi) is a diphyletic entitynested within the other Assamiidae (for the node renderingdiphyly BS = 100 PP = 100) disfavouring family status fortrionyxellines

The African lsquophalangodidsrsquo (sometimes called thelsquoPyramidops grouprsquo) were recognised as a new family byStarega (1992) but not formalised and included 13 genera(Conomma Pyramidops and related lineages) Consistentwith this hypothesis we recovered strong support for thePyramidops group (represented by Conomma and cfPyramidops) as a lineage separate from the true Phalangodidae(egBishopella and Scotolemon) recapitulating a previous result(Giribet et al 2010) The African lsquophalangodidsrsquowere recoveredas the sister lineage of Assamiidae although this relationshipis variably supported in our analyses (BS = 40 PP = 095PPBEAST = 100) A review and formal description of thePyramidops group as a new family lsquoPyramidopidaersquo ndash a namewidely available on the internet including GBIF but notformalised ndash is undertaken elsewhere (Sharma et al 2011)

While we have endeavoured to improve the sampling ofAssamiidae from South-east Asia the internal systematics ofthis family remain a high value target for phylogenetic researchHowever revision of assamiid systematics is inherently difficultfor two reasons (1) the family is peppered with questionablehierarchies and monotypic genera (~12 subfamilies and 250genera for less than 500 described species) and (2) occurs insome of the most inaccessible regions of the world namely sub-Saharan Africa

In all analyses the clade (Assamiidae + Pyramidopidae) issister to the clade (Zalmoxoidea + Samooidea) though this resultis only supported in one analysis (PP= 100) The divergence ofthese four lineages is estimated to have occurred 252Mya and isconsistent with diversification in West Tropical Gondwanaoccurring at least 140million years before the fragmentation ofthis terrane (~110Mya)

Zalmoxoidea

As currently defined the largely Neotropical superfamilyZalmoxoidea includes four families FissiphalliidaeGuasiniidae Icaleptidae and Zalmoxidae Guasiniidae hasnever before been included in a molecular phylogeny In thepresent study we sequenced a guasiniid for six genes and ouranalyses strongly support theplacement ofGuasiniidae as sister tothe samooid family Kimulidae (formerly Minuidae) (BS = 86PP = 098 PPBEAST = 099) and this clade in turn sister to anothersamooid family Escadabiidae (BS = 65 PP = 096PPBEAST = 100) The families Fissiphalliidae Icaleptidaeand Zalmoxidae in turn form a separate clade (BS = 100PP = 100 PPBEAST = 100) with strong support for the sisterrelationship of Zalmoxidae and Fissiphalliidae (BS = 99PP = 100 PPBEAST = 100) corroborating relationshipsproposed by morphological studies (Kury and Peacuterez G 2002Pinto-da-Rocha and Kury 2003b)

Previous analyses have suggested that Samooidea (discussedbelow) is a paraphyletic grade with respect to Zalmoxoidea(Giribet et al 2010) In the present analysis the cladeSamooidea + Zalmoxoidea is strongly supported (BS = 85PP = 100 PPBEAST = 100) as previously suggested by PeacuterezGonzaacutelez and Kury (2007) and by excluding Escadabiidae and

Kimulidae Samooidea is rendered a monophyletic entity albeitwith limited support (BS = 53 PP = 062 PPBEAST = 081) Thestrong support from molecular sequence data for the cladeincluding Escadabiidae Kimulidae and the four zalmoxoidfamilies (BS = 89 PP = 100 PPBEAST = 100) suggests thatthese may form a natural group

Re-examination of the morphology of these six families incomparisonwith true samooid lineages (Biantidae Samoidae andStygnommatidae) corroborates the exclusionofEscadabiidae andKimulidae from true Samooidea Escadabiidae and Kimulidae(1) lack the scopula characteristic of Samoidae and stenostygnineBiantidae (2) lack a sexually dimorphic metatarsus IIIcharacteristic of Samoidae Stygnommatidae and stenostygnineBiantidae and (3) lack a penial calyx characteristic of SamoidaeConsistent with placement within Zalmoxoidea EscadabiidaeandKimulidae (1) possess a small oculariumbearing the eyes thatis removed from the margin of the carapace (2) bear a wellmarked dorsal protuberance (bulla) on the proximal segmentof the chelicera that lacks armature and (3) possess sexuallydimorphic leg IV segments particularly the femur and tibiawhich may be variedly arcuate incrassate and spinedAdditionally Escadabiidae Fissiphalliidae and Zalmoxidae allpossess sexually dimorphic tegumental glandopeningson tibia IIwhereas Biantidae Samoidae and Stygnommatidae possessthese structures on metatarsus III (Willemart et al 2010)While data on tegumental gland openings are only availablefor a small handful of species these may constitute significantdiagnostic characters for species wherein sexual dimorphismdoes not manifest itself in the readily observable form ofenlarged and spiny segments

Given the results of our phylogenetic analyses maintainingSamooidea (as currently defined) renders it a paraphyletic gradewith respect to a diphyletic Zalmoxoidea (as currently defined)Consequently based on the aforementioned morphologicalcharacters and robust molecular phylogenetic signal wetransfer Escadabiidae and Kimulidae to Zalmoxoidea

Samooidea

A previous cladistic analysis based upon morphological datasuggested close relationship between six families ndash BiantidaeEscadabiidae Kimulidae Podoctidae Samoidae andStygnommatidae ndash thenceforth known as Samooidea (Kury1993) the only pantropical Laniatores superfamily HoweverPodoctidae does not have any obvious relationship to Samooideaand has subsequently been transferred (Kury 2007) in ouranalyses Podoctidae is sister to Tithaeidae or Sandokanidaeie distantly related to all samooid families Moreover ouranalyses strongly favour the exclusion of Escadabiidae andKimulidae from Samooidea

The remaining three families ndash Biantidae Samoidae andStygnommatidae ndash are distributed in the Neotropics and partsof Africa with a handful of suspect lineages in South-east AsiaRe-examination and reassignment of many Samoidae genera(eg the Indonesian lsquosamoidrsquo Waigeucola palpalis PeacuterezGonzaacutelez 2011) suggest that the range of Samoidae does notinclude South-east Asia Peacuterez Gonzaacutelez and Kury (2007) alsoobserved that the lsquosamoidsrsquo of Africa Madagascar and theSeychelles may not be true Samoidae either Similarlyinclusion of the genus Stygnomimus an Indonesian lineage

Molecular phylogeny of Laniatores Invertebrate Systematics 129

within Stygnommatidae is highly dubious as the twoIndonesian lsquostygnommatidsrsquo are either highly autapomorphic(Stygnomimus conopygus (Roewer 1927)) or described on the

basis of a generic female that is not readily distinguishable fromfemales of other species (Stygnomimus malayensis (Suzuki1970))

Fig 18 Strict consensus of tree topologies obtained by all phylogenetic analyses

130 Invertebrate Systematics P P Sharma and G Giribet

Previous efforts to assess the systematic validity of Samooideaby means of molecular sequence data were limited insofar asonly two Samoidae three Biantidae (all Metabiantes) and twoStygnommatidae were sampled (Giribet et al 2010) Thesampling of Samoidae was especially problematic only asingle Neotropical adult (Pellobunus) and one African juvenilesamoid (lsquoSamoidae gen sprsquo) were included The designation ofthe latter is suspect as juveniles of Samoidae are oftenindistinguishable from the juveniles of other lineages becausemany diagnostic secondary sexual characters in Grassatores(eg spines and incrassate appendages) are not acquired untilafter several postembryonic stages (Townsend et al 2009)

In the present study though the type genus of Samoidae(Samoa from Samoa) was not available we sequenced theclosely related genus Badessa (from Fiji collected byP P S) as well as additional Biantidae and StygnommatidaeOur analyses recovered a monophyletic Samooidea (excludingEscadabiidae and Kimulidae BS = 53 PP = 062) withSamoidae sensu stricto (Pellobunus +Badessa BS = 100PP = 100) nested within a paraphyletic Stygnommatidae aplacement that is supported (BS = 87 PP = 100) Bycontrast the African lsquosamoidrsquo is sister to the AfricanBiantidae a relationship that is also well supported(BS = 100 PP = 100) These relationships suggest a basal

Fig 19 Cladogram of male genitalic evolution in South-east Asian families superimposed upon a schematised molecular phylogeny based on ML and BIanalyses of all molecular data Exemplars (a) Pseudoepedanus doiensis Suzuki 1969 (redrawn from Suzuki 1969) dorsal view (b) Pseudoepedanus doiensisSuzuki 1969 (redrawn from Suzuki 1969) ventral view (c) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) ventral view(d) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) dorsal view (e) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki1976) dorsal view (f) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki 1976) ventral view (g) Petrobunus torosus lateral view (h) ZalmoxidagibberaSuzuki 1969 dorsal view (i)Zalmoxida sp (MCZDNA102677) dorsolateral view (j)Metatithaeus rubidusSuzuki 1969 (redrawn fromSuzuki 1969)ventral view (k)Tithaeus kokutnusSuzuki 1985 (redrawn fromSuzuki 1985) ventral view (l)Tithaeus similisSuzuki 1985 (redrawn fromSuzuki 1985) ventralview (m)DongmoaoshimensisSuzuki 1964 (redrawn fromSuzuki 1964) ventral view (n)Bonea longipalpisSuzuki 1977 (redrawn fromSuzuki 1977) ventralview (o) Santobius annulipes Soslashrensen 1886 (redrawn from Kury and Machado 2009) ventral view (p) Lomanius longipalpus mindanaoensis Suzuki 1977(redrawn from Suzuki 1977) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 131

dichotomy within Samooidea that corresponds to one groupof Neotropical and Pacific lineages and a second group ofAfrican lineages However as we were unable to samplestenostygnine (Neotropical) and Indo-Pacific Biantidae aswell as numerous monotypic genera dubiously placed inSamoidae biogeographical extrapolations for Samooidea aretenuous (discussed below)

The internal relationships of Samooidea suggest that themorphology of Samoidae may have evolved convergently Asthe African samoid is a juvenile (the same specimen previouslysequenced by Giribet et al 2010 now sequenced for additional28S rRNA and other genes) we cannot rule out the possibility ofa monophyletic Samoidae that includes African species (thespecimen in question could be a juvenile biantid) In any casethe paraphyly of Stygnommatidae and putative polyphyly ofSamoidae strongly advocate systematic revision of samooidfamilies as currently defined corroborating hypotheses of non-monophyly based on morphology (Peacuterez Gonzaacutelez 2007 PeacuterezGonzaacutelez and Kury 2007) Our sampling of these families isinsufficient to advocate specific taxonomic action but an ongoing

study of samooidean systematics will shed more light on thevalidity of constituent families (A Peacuterez Gonzaacutelez work inprogress)

Biogeography of Zalmoxoidea and Samooidea

While most superfamilies of Grassatores are restricted to aspecific part of the tropics (eg Neotropics South-east Asia)two are distributed in multiple biogeographical provincesSamooidea occurs in the Neotropics and Afrotropics withquestionable records from South-east Asia Zalmoxoidea isconcentrated in the Neotropics with the exception of oneIndo-Pacific lineage of Zalmoxidae (represented here byZalmoxis sp) The ages and distributions of Samooidea andZalmoxoidea suggest that their biogeography was influencedby the fragmentation of West Tropical Gondwana ndash causingthe former to diverge basally throughout West TropicalGondwanan terranes and the latter to become isolated to theNeotropics (with possible subsequent dispersal)

Fig 20 Ancestral range reconstructions for Samooidea +Zalmoxoidea inferred by Lagrange using stratified models corresponding to two vicariant events(indicated by dotted lines) Coloured squares at terminals indicate ranges occupied by sampled species Coloured squares on nodes indicate ranges reconstructedfor hypothetical ancestors Numbers on nodes indicate relative probability of ranges reconstructed

Fig 21 Best hypothesis of Laniatores relationships based on all available evidence Bracketed nodes indicate non-monophyletic entities Dashed line indicatesambiguity in the placement of Sandokanidae (alternatively placed as shown or as sister to Podoctidae) Exemplars of Laniatores diversity are Synthetonychiaoliveae (Synthetonychiidae) Equitius doriae (Triaenonychidae) Hadziana clavigera (Travuniidae) Erebomaster flavescens flavescens (Cladonychiidae)Scotolemon lespesi (Phalangodidae) Palaeoncopus gunung (Sandokanidae) Santobius sp (Podoctidae) Tithaeus sp (Tithaeidae) Petrobunus spinifer(Petrobunidae) Alloepedanus sp (Epedanidae) Hoplobunus sp (Stygnopsidae) Torreana spinata (Agoristenidae) Stygnoplus clavotibialis (Stygnidae)Metalibitia paraguayensis (Cosmetidae)Acutisoma longipes (Gonyleptidae)Conommaoedipus (Pyramidopsgroup)Mysorea thaiensis (Assamiidae)Lacurbssp (Biantidae) Stygnomma sp (Stygnommatidae) Badessa sp (Samoidae) Guasinia sp (Guasiniidae) Icaleptes sp (Icaleptidae) Fissiphallius chicoi(Fissiphalliidae) Zalmoxis sp (Zalmoxidae) Kimula goodnightiorum (Kimulidae)

132 Invertebrate Systematics P P Sharma and G Giribet

Molecular phylogeny of Laniatores Invertebrate Systematics 133

To test this hypothesis we conducted likelihood analysisof range evolution using the program Lagrange (Ree et al2005 Ree and Smith 2008) for the clade (Zalmoxoidea +Samooidea) The stratified analysis resulted in a globalmaximum likelihood of ndashlnL= 1556 outperforming anunconstrained analysis that did not include any dispersalconstraints (ndashlnL= 1676) Likelihood analysis of rangeoptimisation (Fig 20) indicates that the ancestral range ofSamooidea includes both the Afrotropics and the Neotropics(relative probability pr = 1000) but a subsequent split occursbetween an African lineage (pr = 1000) and a NeotropicalIndo-Pacific lineage with a Neotropical ancestral range (pr = 0986)Samoidea of the Indo-Pacific occur on young oceanic islands(eg Fiji Samoa) indicating recent transoceanic dispersal fromthe Neotropics

Ancestral range reconstructions for Samooidea are allconsistent with estimated divergence times for these clades(diversification of Samooidea predates the rifting of WestAfrica from northern South America) favouring an underlyingvicariant process for the basal topology with subsequent recentdispersal events However these results are contingent upon thepresent sampling which does not include all samooid lineages(eg stenostygnine Biantidae) but basal range reconstructionsare likely unaffected (eg Stenostygninae is exclusivelyNeotropical)

In contrast the ancestor of Zalmoxoidea is reconstructedas singularly Neotropical (pr = 0996) This is consistent withisolation of a zalmoxoid ancestor to Amazonia which thenradiated ~191Mya Subsequent ancestral ranges are alsoreconstructed as Neotropical with high relative probabilityHowever the ancestral range of the clade (Icaleptidae +Fissiphalliidae + Zalmoxidae) is ambiguously reconstructedas either Neotropical (pr = 0935) or Neotropical + Indo-Pacific(pr = 0064) as is the split between Fissiphalliidae andZalmoxidae (Neotropical pr = 0856 Neotropical + Indo-Pacific pr = 0141)

These results suggest that the Indo-Pacific lineage ofZalmoxidae which split from Neotropical Zalmoxidae ~83Myais likely the result of long-distance dispersal from the NeotropicsHowever due to the persistence of transantarctic connectionsbetween the Australian plate and temperate South America untilthe Tertiary a competing vicariant scenario cannot be ruled outwithout densely sampling zalmoxid diversity The biogeographyof Zalmoxidae is presently being explored in greater detail in aseparate study (P P Sharma unpubl data)

Finally the ancestral range of (Samooidea + Zalmoxoidea)includes both Africa and the Neotropics (pr = 0957) consistentwith a tropical West Gondwanan ancestor This resultlends circumstantial evidence to a sister relationship of theAfrotropical families (Assamiidae + Pyramidopidae) and theclade (Samooidea + Zalmoxoidea) recovered in all analyses

The diversification of Grassatores

While numerous interfamilial relationships are supported inthis study particularly among gonyleptoid and zalmoxoidfamilies some relationships between superfamilies ofGrassatores are not supported and are contingent upon

analytical treatments namely the deployment of substitutionmodels and data partitioning (Fig 21) The cause of thisinstability could be related to insufficient data particularly inthe EF-1a partition (the length of an intron which can exceed400 bp in some taxa makes this gene particularly difficult toamplify) However examination of clade divergence timessuggests that rapid diversification of Grassatores lineagescould in part augment phylogenetic uncertainty in basal partsof the topology

The split between Phalangodidae and the remainingGrassatores is estimated to have occurred ~302Mya but aseries of divergences resulted in the origin of all superfamiliallineages between 232 and 271Mya Relative to the estimatedage of Laniatores (348Mya) this 39-million-year period isremarkably narrow and inherently problematic as the amountof phylogenetic signal for a given stem subtending a node isdirectly proportional to the amount of time that the stem inquestion spans (Lanyon 1988 Rokas and Carroll 2006) Thesmall internal edge lengths of the stems corresponding to basaldivergences of non-phalangodid Grassatores (Figs 15 16)combined with the ancient age of lineages derived from thesedivergences result in relationships that are difficult to estimatewithout a large amount of sequence data andor the inclusion ofdata that are less afflicted by homoplasy (because longer edgelengths imply more indel and substitution events on edges)(Whitfield and Lockhart 2007)

We additionally observe that the origins of most Grassatoressuperfamilies occur in the wake of the end-Permian massextinction (~254Mya) Rapid radiation in the wake of a massextinction has occurred in multiple metazoan lineagesthe putative result of relaxed selection and opening ofpreviously occupied ecological niche space (Labandeira andSepkoski 1993 Sahney and Benton 2008) The rapiddiversification of early Grassatores lineages could be anexample of this phenomenon but this hypothesis is difficult totest in the absence of Mesozoic Grassatores fossils (reviewed byDunlop 2007)

Finally we observe that contrary to traditional hierarchiesproposed for Laniatores many of the clades recovered in ouranalyses correspond to geographical regions particularly in thecase of Grassatores For example the southern hemispheretriaenonychids are restricted to temperate Gondwananlandmasses Gonyleptoidea and their sister group Stygnopsidaeform a Neotropical (AmazonianMesoamericanAntillean) cladethat excludes Assamiidae which has been hypothesised to be amember of a broader Gonyleptoidea (Kury and Cokendolpher2000 Mendes and Kury 2007) In our analyses Assamiidae isin fact a member of a largely Afrotropical clade together withthe Pyramidopidae South-east Asian families usually form oneclade (at most two) albeit with limited support Samooideafamilies are divided into two clusters African and NeotropicalWith one exception (described above) Zalmoxoidea is restrictedto the Neotropics The ages that we estimate for Laniatoresradiations are consistent with ancient diversification beforethe fragmentation of Pangaea An ancient diversification inconjunction with the climatic stability of the tropics may in partexplain the comparatively greater diversity of the armouredharvestmen with respect to the other Opiliones suborders

134 Invertebrate Systematics P P Sharma and G Giribet

Acknowledgements

Weare indebted toPeter J Schwendingerwho collected andprovidedmost ofthe material for study from South-east Asia Some Thai and most of theNeotropical Laniatores were obtained from the TIGER (Thailand InventoryGroup for Entomological Research) and LLAMA (Leaf Litter Arthropods ofMeso-America) projects toC Lienhard and J Longino respectivelyMaterialfrom Madagascar was generously contributed by Charles Griswold and theCalifornia Academy of Sciences Jesse Czekanski-Moir in conjunction withthe Belau NationalMuseum contributed elusive specimens from Palau AbelPeacuterezGonzaacutelez identifiedmanyNeotropical species included in the study andcontributed specimens fromCubaRicardoPinto-da-Rocha identified someofthe live photographed animals from the Neotropics Discussions with RonaldMClouseAbelPeacuterezGonzaacutelezAdrianoBKury andCarlosEPrieto refinedmanyof the ideas presentedhereTwoanonymous reviewers and the associateeditor provided comments that helped to improve an earlier version ofthis manuscript Laura Leibensperger sorted and accessioned TIGER andLLAMA material as well as MCZ type material Adam Graham and theCenter forNanoscaleStudies atHarvardUniversityprovided support forSEMwork Collecting efforts in New Caledonia were greatly facilitated by theguidance of Herveacute Jourdan (Institut de rechercheacute pour de developpementNoumea) and his teammembers Collecting efforts in Fiji weremade possibleby Marika Tuiwawa (University of the South Pacific Suva) and his teammembers Hilda Waqa and Tokasaya lsquoToxrsquo Cakacaka we are especiallygrateful to Tox for his good company during fieldwork and to his familyfor graciously enabling a visit toOvalau SuzieYee Shawprovided invaluablelogistical support in Fiji and her sons Colin and Joshua Yee Shaw assistedwith sorting Fijian material Fieldwork in Indonesia and West Africa wassupported by two MCZ Putnam Expedition Grants awarded to RonaldM Clouse and G G (2006) and to G G (2009) respectively Fieldworkin New Caledonia was supported by the Goelet award the Kalathia FamilyTrust and the Explorers Club awarded to P P S in 2006 Fieldwork in Fijiand in Palauwas supported by twoMCZPutnamExpeditionGrants awardedto P P S (2008) and to Ronald M Clouse and P P S (2010) respectivelyP P S was supported by a Faculty of Arts and Sciences Graduate Fellowshipfrom Harvard University

References

Castresana J (2000) Selectionof conservedblocks frommultiple alignmentsfor their use in phylogenetic analysis Molecular Biology and Evolution17 540ndash552

Colgan D J McLauchlan A Wislon G D F Livingston S MacaranasJ Edgecombe G D Cassis G and Gray M R (1998) Molecularphylogenetics of the Arthropoda relationships based on histone H3and U2 snRNA DNA sequences Australian Journal of Zoology 46419ndash437 doi101071ZO98048

DaSilva M B and Gnaspini P (2009) A systematic revision ofGoniosomatinae (Arachnida Opiliones Gonyleptidae) with a cladisticanalysis and biogeographical notes Invertebrate Systematics 23530ndash624 doi101071IS09022

DaSilva M B and Pinto-da-Rocha R (2010) Systematic review andcladistic analysis of the Hernandariinae (Opiliones Gonyleptidae)Zoologia 27 577ndash642

Derkarabetian S Steinmann D B and Hedin M (2010) Repeatedand time-correlated morphological convergence in cave-dwellingharvestmen (Opiliones Laniatores) from montane western NorthAmerica PLoS ONE 5 e10388 doi101371journalpone0010388

Drummond A J and Rambaut A (2007) BEAST Bayesian evolutionaryanalysis by sampling trees BMC Evolutionary Biology 7 214doi1011861471-2148-7-214

Drummond A J Ho S Y W Phillips M J and Rambaut A (2006)Relaxed phylogenetics and dating with confidence PLoS Biology 4 e88doi101371journalpbio0040088

Dunlop J A (2007) Paleontology In lsquoHarvestmen The Biology ofOpilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 247ndash265 (Harvard University Press Cambridge MA USA)

Dunlop J A and Anderson L I (2005) A fossil harvestman (ArachnidaOpiliones) from theMississippian of East Kirkton Scotland The Journalof Arachnology 33 482ndash489 doi10163604-791

Dunlop JAAndersonL IKerpH andHassH (2003)Preservedorgansof Devonian harvestmen Nature 425 916 doi101038425916a

Dunlop J A Anderson L I Kerp H and Hass H (2004) A harvestman(Arachnida Opiliones) from the Early Devonian Rhynie chertsAberdeenshire Scotland Transactions of the Royal Society ofEdinburgh Earth Sciences 94 341ndash354

Edgar R C (2004) MUSCLE multiple sequence alignment with highaccuracy and high throughput Nucleic Acids Research 32 1792ndash1797doi101093nargkh340

Edgecombe G D and Giribet G (2006) A century laterndash a total evidencere-evaluation of scutigeromorph centipedes (Myriapoda Chilopoda)Invertebrate Systematics 20 503ndash525 doi101071IS05044

Edgecombe G D Giribet G and Wheeler W C (2002) Phylogeny ofHenicopidae (Chilopoda Lithobiomorpha) a combined analysis ofmorphology and five molecular loci Systematic Entomology 2731ndash64 doi101046j0307-6970200100163x

FolmerOBlackMHoehWLutzR andVrijenhoekRC (1994)DNAprimers for amplification ofmitochondrial cytochrome c oxidase subunit Ifrom diverse metazoan invertebrates Molecular Marine Biology andBiotechnology 3 294ndash299

Forster R R (1954) The New Zealand harvestmen (sub-order Laniatores)Canterbury Museum Bulletin 2 1ndash329

Giribet G and Kury A B (2007) Phylogeny and biogeography InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 62ndash87 (Harvard University PressCambridge MA USA)

Giribet G Carranza S Baguntildeagrave J Riutort M and Ribera C (1996) Firstmolecular evidence for the existence of a Tardigrada +Arthropoda cladeMolecular Biology and Evolution 13 76ndash84

Giribet G Rambla M Carranza S Baguntildeagrave J Riutort M and Ribera C(1999) Phylogeny of the arachnid order Opiliones (Arthropoda)inferred from a combined approach of complete 18S and partial 28Sribosomal DNA sequences and morphology Molecular Phylogeneticsand Evolution 11 296ndash307 doi101006mpev19980583

Giribet G Edgecombe G D Wheeler W C and Babbitt C (2002)Phylogeny and systematic position of Opiliones a combined analysis ofchelicerate relationships using morphological and molecular dataCladistics 18 5ndash70

Giribet G Vogt L PeacuterezGonzaacutelez A Sharma P andKury A B (2010)A multilocus approach to harvestman (Arachnida Opiliones) phylogenywith emphasis on biogeography and the systematics of LaniatoresCladistics 26 408ndash437

Hara M R Gnaspini P and Machado G (2003) Male egg guardingbehavior in the Neotropical harvestman Ampheres leucopheus (Mello-Leitatildeo 1922) (Opiliones Gonyleptidae) The Journal of Arachnology 31441ndash444 doi101636S02-32

Hedin M Derkarabetian S McCormack M and Richart C (2010) Thephylogenetic utility of the nuclear protein-encoding gene EF-1a forresolving recent divergences in Opiliones emphasizing intronevolution The Journal of Arachnology 38 9ndash20 doi101636HA09-491

Huelsenbeck J P and Ronquist F (2005) Bayesian analyses of molecularevolution using MrBayes In lsquoStatistical Methods in MolecularEvolutionrsquo (Ed R Nielsen) (Springer New York)

HunterRK ProundDNBurns JA Tibbetts JA andTownsendVR(2007) Parental care in the Neotropical harvestman Phareicranauscalcariferus (Opiliones Cranaidae) The Journal of Arachnology 35199ndash201 doi101636ST06-181

Molecular phylogeny of Laniatores Invertebrate Systematics 135

Kocher T D Thoma W K Meyer A Edwards S V Paumlaumlbo SVillablanca F X and Wilson A C (1989) Dynamics ofmitochondrial DNA evolution in animals amplification andsequencing with conserved primers Proceedings of the NationalAcademy of Sciences of the United States of America 86 6196ndash6200doi101073pnas86166196

Kury A B (1993) Anaacutelise filogeneacutetica de Gonyleptoidea (ArachnidaOpiliones Laniatores) PhD Thesis Universidade de Satildeo Paulo SatildeoPaulo Brazil

Kury A B (2003) Annotated catalogue of the Laniatores of the NewWorld (Arachnida Opiliones) Revista Ibeacuterica de AracnologiacuteaVolumen Especial Monograacutefico 1 1ndash337

Kury A B (2006) Checklist of valid genera of Opiliones of theWorld Museu NacionalUFRJ Available from httpwwwmuseunacionalufrjbrmndiAracnologiachecklaniatorhtm [Accessed1 February 2011]

Kury A B (2007) Podoctidae Roewer 1912 In lsquoHarvestmen The Biologyof Opilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 221ndash224 (Harvard University Press Cambridge MA USA)

Kury A B and Cokendolpher J C (2000) Opiliones In lsquoBiodiversidadTaxonomiacutea y Biogeografiacutea de Artoacutepodos de Meacutexico Hacia una Sintesisde su Conocimientorsquo vol 2 (Eds J E Llorente E Gonzaacutelez andN Papavero) pp 137ndash157 (Universidad Nacional Autoacutenoma deMexico Meacutexico DF Mexico)

Kury A B and Machado G (2009) Notes on Santobius from Vanuatu andFiji and the status of the eastern Melanesian Ibalonius (ArachnidaOpiliones Podoctidae) Zoological Studies 48 524ndash538

Kury A B and Peacuterez G A (2002) A new family of Laniatores fromnorthwestern South America (Arachnida Opiliones) Revista Ibeacuterica deAracnologiacutea 6 3ndash11

Labandeira C C and Sepkoski J J (1993) Insect diversity in the fossilrecord Science 261 310ndash315 doi101126science11536548

Lanyon S M (1988) The stochastic mode of molecular evolutionwhat consequences for systematic investigations The Auk 105565ndash573

Lian W-G Zhu M-S and Kury A B (2008) A new species of the genusTithaeus from China (Arachnida Laniatores Epedanidae) Zootaxa1841 53ndash60

Machado G Requena G S Buzatto B A Osses F and Rossetto L M(2004) Five new cases of paternal care in harvestmen (ArachnidaOpiliones) implications for the evolution of male guarding in theNeotropical family Gonyleptidae Sociobiology 44 577ndash598

Martens J (1976) Genitalmorphologie System und Phylogenie derWeberknechte (Arachnida Opiliones) Entomologica GermanicaZeitschrift fuumlr das Gesamtgebiet der Wissenschaftlichen Entomologie3 51ndash68

Martens J (1980) Versuch eines phylogenetischen Systems der OpilionesIn lsquoProceedings 8th International Congress of Arachnology ViennaVerhandlungenrsquo (Ed J Gruber) pp 355ndash360 (Vienna Austria)

Martens J (1986) Die Grossgliederung der Opiliones und die Evolutionder Ordnung (Arachnida) Actas del X Congreso Internacional deAracnologiacutea Jaca 1 289ndash310

Martens J (1993) Further cases of paternal care in Opiliones (Arachnida)Tropical Zoology 6 97ndash107

Martens J and Schwendinger P S (1998) A taxonomic revision ofthe family Oncopodidae I New genera and new species of GnomulusThorell (Opiliones Laniatores) Revue Suisse de Zoologie 105 499ndash555

Martens J Hoheisel U and Goumltze M (1981) Vergleichende Anatomieder Legeroumlhren der Opiliones als Beitrag zur Phylogenie der Ordnung(Arachnida) Zoologische Jahrbucher Abteilung fur Anatomie undOntogenie der Tiere 105 13ndash76

Mello-Leitatildeo C F (1949) Famiacutelias subfamiacutelia espeacutecies e gecircneros novos deopiliotildees e notas de sinoniacutemia Boletim do Museu Nacional Nova SeacuterieZoologia Rio de Janeiro 94 1ndash33

Mendes A C and Kury A B (2007) Stygnopsidae Soslashrensen 1932 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 232ndash234 (Harvard University PressCambridge MA USA)

Mendes A C and Kury A B (2008) Intercontinental Triaenonychidae ndashthe case of Ceratomontia (Opiliones Insidiatores) The Journal ofArachnology 36 273ndash279 doi101636CH07-931

Murphree C S (1988) Morphology of the dorsal integument of tenopilionid species (Arachnida Opiliones) The Journal of Arachnology16 237ndash252

Park J K andOacuteFoighilD (2000) Sphaeriid and corbiculid clams representseparate heterodont bivalve radiations into freshwater environmentsMolecular Phylogenetics and Evolution 14 75ndash88 doi101006mpev19990691

Peacuterez Gonzaacutelez A (2006) lsquoRevisatildeo Sistemaacutetica e Anaacutelise Filogeneacutetica deStygnommatidae (Arachnida Opiliones Laniatores)rsquo (Museu NacionalUniversidade Federal de Rio de Janeiro Rio de Janeiro Brazil)

Peacuterez Gonzaacutelez A (2007) Stygnommatidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 229ndash232 (Harvard University PressCambridge MA USA)

Peacuterez Gonzaacutelez A (2011) New familial assignment for two harvestmanspecies of the infraorder Grassatores (Arachnida Opiliones Laniatores)Zootaxa 2757 24ndash28

Peacuterez Gonzaacutelez A and Kury A B (2007) Samoidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 224ndash226 (Harvard University PressCambridge MA USA)

Pineau P Henry M Suspegravene R Marchio A Dettai A Debruyne RPetit T Leacutecu A Moisson P Dejean A Wain-Hobson S andVartanian J-P (2005) A universal primer set for PCR amplificationof nuclear histone H4 genes from all animal species Molecular Biologyand Evolution 22 582ndash588 doi101093molbevmsi053

Pinto-da-Rocha R (1997) Systematic review of the Neotropical familyStygnidae (Opiliones Laniatores Gonyleptoidea) Arquivos deZoologia 33 163ndash342

Pinto-da-Rocha R and Kury A B (2003a) Phylogenetic analysis ofSantinezia with description of five new species (Opiliones LaniatoresCranaidae) The Journal of Arachnology 31 173ndash208 doi1016360161-8202(2003)031[0173PAOSWD]20CO2

Pinto-da-Rocha R and Kury A B (2003b) Third species of Guasiniidae(Opiliones Laniatores) with comments on familial relationships TheJournal of Arachnology 31 394ndash399 doi101636H02-59

Pinto-da-Rocha R and Kury A B (2007) Agoristenidae Silhavy 1973 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 171ndash173 (Harvard University PressCambridge MA USA)

Posada D (2005) Modeltest 37 Program and documentation available athttpdarwinuvigoes [Accessed 28 May 2011]

Posada D and Buckley T (2004) Model selection and model averaging inphylogenetics advantages of Akaike information criterion and Bayesianapproaches over likelihood ratio tests Systematic Biology 53 793ndash808doi10108010635150490522304

Posada D and Crandall K A (1998) Modeltest testing the model ofDNA substitution Bioinformatics (Oxford England) 14 817ndash818doi101093bioinformatics149817

Prendini L Weygoldt P and Wheeler W C (2005) Systematics of theDamon variegates group of African whip spiders (ChelicerataAmblypygi) evidence from behaviour morphology and DNAOrganisms Diversity amp Evolution 5 203ndash236 doi101016jode200412004

Rambaut A E (1996) Se-Al sequence alignment editor University ofOxford UK Program and documentation available at httptreebioedacuksoftwarefigtree [Accessed 21 December 2009]

136 Invertebrate Systematics P P Sharma and G Giribet

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 24: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

pseudonychium on the third and fourth tarsi) is a diphyletic entitynested within the other Assamiidae (for the node renderingdiphyly BS = 100 PP = 100) disfavouring family status fortrionyxellines

The African lsquophalangodidsrsquo (sometimes called thelsquoPyramidops grouprsquo) were recognised as a new family byStarega (1992) but not formalised and included 13 genera(Conomma Pyramidops and related lineages) Consistentwith this hypothesis we recovered strong support for thePyramidops group (represented by Conomma and cfPyramidops) as a lineage separate from the true Phalangodidae(egBishopella and Scotolemon) recapitulating a previous result(Giribet et al 2010) The African lsquophalangodidsrsquowere recoveredas the sister lineage of Assamiidae although this relationshipis variably supported in our analyses (BS = 40 PP = 095PPBEAST = 100) A review and formal description of thePyramidops group as a new family lsquoPyramidopidaersquo ndash a namewidely available on the internet including GBIF but notformalised ndash is undertaken elsewhere (Sharma et al 2011)

While we have endeavoured to improve the sampling ofAssamiidae from South-east Asia the internal systematics ofthis family remain a high value target for phylogenetic researchHowever revision of assamiid systematics is inherently difficultfor two reasons (1) the family is peppered with questionablehierarchies and monotypic genera (~12 subfamilies and 250genera for less than 500 described species) and (2) occurs insome of the most inaccessible regions of the world namely sub-Saharan Africa

In all analyses the clade (Assamiidae + Pyramidopidae) issister to the clade (Zalmoxoidea + Samooidea) though this resultis only supported in one analysis (PP= 100) The divergence ofthese four lineages is estimated to have occurred 252Mya and isconsistent with diversification in West Tropical Gondwanaoccurring at least 140million years before the fragmentation ofthis terrane (~110Mya)

Zalmoxoidea

As currently defined the largely Neotropical superfamilyZalmoxoidea includes four families FissiphalliidaeGuasiniidae Icaleptidae and Zalmoxidae Guasiniidae hasnever before been included in a molecular phylogeny In thepresent study we sequenced a guasiniid for six genes and ouranalyses strongly support theplacement ofGuasiniidae as sister tothe samooid family Kimulidae (formerly Minuidae) (BS = 86PP = 098 PPBEAST = 099) and this clade in turn sister to anothersamooid family Escadabiidae (BS = 65 PP = 096PPBEAST = 100) The families Fissiphalliidae Icaleptidaeand Zalmoxidae in turn form a separate clade (BS = 100PP = 100 PPBEAST = 100) with strong support for the sisterrelationship of Zalmoxidae and Fissiphalliidae (BS = 99PP = 100 PPBEAST = 100) corroborating relationshipsproposed by morphological studies (Kury and Peacuterez G 2002Pinto-da-Rocha and Kury 2003b)

Previous analyses have suggested that Samooidea (discussedbelow) is a paraphyletic grade with respect to Zalmoxoidea(Giribet et al 2010) In the present analysis the cladeSamooidea + Zalmoxoidea is strongly supported (BS = 85PP = 100 PPBEAST = 100) as previously suggested by PeacuterezGonzaacutelez and Kury (2007) and by excluding Escadabiidae and

Kimulidae Samooidea is rendered a monophyletic entity albeitwith limited support (BS = 53 PP = 062 PPBEAST = 081) Thestrong support from molecular sequence data for the cladeincluding Escadabiidae Kimulidae and the four zalmoxoidfamilies (BS = 89 PP = 100 PPBEAST = 100) suggests thatthese may form a natural group

Re-examination of the morphology of these six families incomparisonwith true samooid lineages (Biantidae Samoidae andStygnommatidae) corroborates the exclusionofEscadabiidae andKimulidae from true Samooidea Escadabiidae and Kimulidae(1) lack the scopula characteristic of Samoidae and stenostygnineBiantidae (2) lack a sexually dimorphic metatarsus IIIcharacteristic of Samoidae Stygnommatidae and stenostygnineBiantidae and (3) lack a penial calyx characteristic of SamoidaeConsistent with placement within Zalmoxoidea EscadabiidaeandKimulidae (1) possess a small oculariumbearing the eyes thatis removed from the margin of the carapace (2) bear a wellmarked dorsal protuberance (bulla) on the proximal segmentof the chelicera that lacks armature and (3) possess sexuallydimorphic leg IV segments particularly the femur and tibiawhich may be variedly arcuate incrassate and spinedAdditionally Escadabiidae Fissiphalliidae and Zalmoxidae allpossess sexually dimorphic tegumental glandopeningson tibia IIwhereas Biantidae Samoidae and Stygnommatidae possessthese structures on metatarsus III (Willemart et al 2010)While data on tegumental gland openings are only availablefor a small handful of species these may constitute significantdiagnostic characters for species wherein sexual dimorphismdoes not manifest itself in the readily observable form ofenlarged and spiny segments

Given the results of our phylogenetic analyses maintainingSamooidea (as currently defined) renders it a paraphyletic gradewith respect to a diphyletic Zalmoxoidea (as currently defined)Consequently based on the aforementioned morphologicalcharacters and robust molecular phylogenetic signal wetransfer Escadabiidae and Kimulidae to Zalmoxoidea

Samooidea

A previous cladistic analysis based upon morphological datasuggested close relationship between six families ndash BiantidaeEscadabiidae Kimulidae Podoctidae Samoidae andStygnommatidae ndash thenceforth known as Samooidea (Kury1993) the only pantropical Laniatores superfamily HoweverPodoctidae does not have any obvious relationship to Samooideaand has subsequently been transferred (Kury 2007) in ouranalyses Podoctidae is sister to Tithaeidae or Sandokanidaeie distantly related to all samooid families Moreover ouranalyses strongly favour the exclusion of Escadabiidae andKimulidae from Samooidea

The remaining three families ndash Biantidae Samoidae andStygnommatidae ndash are distributed in the Neotropics and partsof Africa with a handful of suspect lineages in South-east AsiaRe-examination and reassignment of many Samoidae genera(eg the Indonesian lsquosamoidrsquo Waigeucola palpalis PeacuterezGonzaacutelez 2011) suggest that the range of Samoidae does notinclude South-east Asia Peacuterez Gonzaacutelez and Kury (2007) alsoobserved that the lsquosamoidsrsquo of Africa Madagascar and theSeychelles may not be true Samoidae either Similarlyinclusion of the genus Stygnomimus an Indonesian lineage

Molecular phylogeny of Laniatores Invertebrate Systematics 129

within Stygnommatidae is highly dubious as the twoIndonesian lsquostygnommatidsrsquo are either highly autapomorphic(Stygnomimus conopygus (Roewer 1927)) or described on the

basis of a generic female that is not readily distinguishable fromfemales of other species (Stygnomimus malayensis (Suzuki1970))

Fig 18 Strict consensus of tree topologies obtained by all phylogenetic analyses

130 Invertebrate Systematics P P Sharma and G Giribet

Previous efforts to assess the systematic validity of Samooideaby means of molecular sequence data were limited insofar asonly two Samoidae three Biantidae (all Metabiantes) and twoStygnommatidae were sampled (Giribet et al 2010) Thesampling of Samoidae was especially problematic only asingle Neotropical adult (Pellobunus) and one African juvenilesamoid (lsquoSamoidae gen sprsquo) were included The designation ofthe latter is suspect as juveniles of Samoidae are oftenindistinguishable from the juveniles of other lineages becausemany diagnostic secondary sexual characters in Grassatores(eg spines and incrassate appendages) are not acquired untilafter several postembryonic stages (Townsend et al 2009)

In the present study though the type genus of Samoidae(Samoa from Samoa) was not available we sequenced theclosely related genus Badessa (from Fiji collected byP P S) as well as additional Biantidae and StygnommatidaeOur analyses recovered a monophyletic Samooidea (excludingEscadabiidae and Kimulidae BS = 53 PP = 062) withSamoidae sensu stricto (Pellobunus +Badessa BS = 100PP = 100) nested within a paraphyletic Stygnommatidae aplacement that is supported (BS = 87 PP = 100) Bycontrast the African lsquosamoidrsquo is sister to the AfricanBiantidae a relationship that is also well supported(BS = 100 PP = 100) These relationships suggest a basal

Fig 19 Cladogram of male genitalic evolution in South-east Asian families superimposed upon a schematised molecular phylogeny based on ML and BIanalyses of all molecular data Exemplars (a) Pseudoepedanus doiensis Suzuki 1969 (redrawn from Suzuki 1969) dorsal view (b) Pseudoepedanus doiensisSuzuki 1969 (redrawn from Suzuki 1969) ventral view (c) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) ventral view(d) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) dorsal view (e) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki1976) dorsal view (f) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki 1976) ventral view (g) Petrobunus torosus lateral view (h) ZalmoxidagibberaSuzuki 1969 dorsal view (i)Zalmoxida sp (MCZDNA102677) dorsolateral view (j)Metatithaeus rubidusSuzuki 1969 (redrawn fromSuzuki 1969)ventral view (k)Tithaeus kokutnusSuzuki 1985 (redrawn fromSuzuki 1985) ventral view (l)Tithaeus similisSuzuki 1985 (redrawn fromSuzuki 1985) ventralview (m)DongmoaoshimensisSuzuki 1964 (redrawn fromSuzuki 1964) ventral view (n)Bonea longipalpisSuzuki 1977 (redrawn fromSuzuki 1977) ventralview (o) Santobius annulipes Soslashrensen 1886 (redrawn from Kury and Machado 2009) ventral view (p) Lomanius longipalpus mindanaoensis Suzuki 1977(redrawn from Suzuki 1977) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 131

dichotomy within Samooidea that corresponds to one groupof Neotropical and Pacific lineages and a second group ofAfrican lineages However as we were unable to samplestenostygnine (Neotropical) and Indo-Pacific Biantidae aswell as numerous monotypic genera dubiously placed inSamoidae biogeographical extrapolations for Samooidea aretenuous (discussed below)

The internal relationships of Samooidea suggest that themorphology of Samoidae may have evolved convergently Asthe African samoid is a juvenile (the same specimen previouslysequenced by Giribet et al 2010 now sequenced for additional28S rRNA and other genes) we cannot rule out the possibility ofa monophyletic Samoidae that includes African species (thespecimen in question could be a juvenile biantid) In any casethe paraphyly of Stygnommatidae and putative polyphyly ofSamoidae strongly advocate systematic revision of samooidfamilies as currently defined corroborating hypotheses of non-monophyly based on morphology (Peacuterez Gonzaacutelez 2007 PeacuterezGonzaacutelez and Kury 2007) Our sampling of these families isinsufficient to advocate specific taxonomic action but an ongoing

study of samooidean systematics will shed more light on thevalidity of constituent families (A Peacuterez Gonzaacutelez work inprogress)

Biogeography of Zalmoxoidea and Samooidea

While most superfamilies of Grassatores are restricted to aspecific part of the tropics (eg Neotropics South-east Asia)two are distributed in multiple biogeographical provincesSamooidea occurs in the Neotropics and Afrotropics withquestionable records from South-east Asia Zalmoxoidea isconcentrated in the Neotropics with the exception of oneIndo-Pacific lineage of Zalmoxidae (represented here byZalmoxis sp) The ages and distributions of Samooidea andZalmoxoidea suggest that their biogeography was influencedby the fragmentation of West Tropical Gondwana ndash causingthe former to diverge basally throughout West TropicalGondwanan terranes and the latter to become isolated to theNeotropics (with possible subsequent dispersal)

Fig 20 Ancestral range reconstructions for Samooidea +Zalmoxoidea inferred by Lagrange using stratified models corresponding to two vicariant events(indicated by dotted lines) Coloured squares at terminals indicate ranges occupied by sampled species Coloured squares on nodes indicate ranges reconstructedfor hypothetical ancestors Numbers on nodes indicate relative probability of ranges reconstructed

Fig 21 Best hypothesis of Laniatores relationships based on all available evidence Bracketed nodes indicate non-monophyletic entities Dashed line indicatesambiguity in the placement of Sandokanidae (alternatively placed as shown or as sister to Podoctidae) Exemplars of Laniatores diversity are Synthetonychiaoliveae (Synthetonychiidae) Equitius doriae (Triaenonychidae) Hadziana clavigera (Travuniidae) Erebomaster flavescens flavescens (Cladonychiidae)Scotolemon lespesi (Phalangodidae) Palaeoncopus gunung (Sandokanidae) Santobius sp (Podoctidae) Tithaeus sp (Tithaeidae) Petrobunus spinifer(Petrobunidae) Alloepedanus sp (Epedanidae) Hoplobunus sp (Stygnopsidae) Torreana spinata (Agoristenidae) Stygnoplus clavotibialis (Stygnidae)Metalibitia paraguayensis (Cosmetidae)Acutisoma longipes (Gonyleptidae)Conommaoedipus (Pyramidopsgroup)Mysorea thaiensis (Assamiidae)Lacurbssp (Biantidae) Stygnomma sp (Stygnommatidae) Badessa sp (Samoidae) Guasinia sp (Guasiniidae) Icaleptes sp (Icaleptidae) Fissiphallius chicoi(Fissiphalliidae) Zalmoxis sp (Zalmoxidae) Kimula goodnightiorum (Kimulidae)

132 Invertebrate Systematics P P Sharma and G Giribet

Molecular phylogeny of Laniatores Invertebrate Systematics 133

To test this hypothesis we conducted likelihood analysisof range evolution using the program Lagrange (Ree et al2005 Ree and Smith 2008) for the clade (Zalmoxoidea +Samooidea) The stratified analysis resulted in a globalmaximum likelihood of ndashlnL= 1556 outperforming anunconstrained analysis that did not include any dispersalconstraints (ndashlnL= 1676) Likelihood analysis of rangeoptimisation (Fig 20) indicates that the ancestral range ofSamooidea includes both the Afrotropics and the Neotropics(relative probability pr = 1000) but a subsequent split occursbetween an African lineage (pr = 1000) and a NeotropicalIndo-Pacific lineage with a Neotropical ancestral range (pr = 0986)Samoidea of the Indo-Pacific occur on young oceanic islands(eg Fiji Samoa) indicating recent transoceanic dispersal fromthe Neotropics

Ancestral range reconstructions for Samooidea are allconsistent with estimated divergence times for these clades(diversification of Samooidea predates the rifting of WestAfrica from northern South America) favouring an underlyingvicariant process for the basal topology with subsequent recentdispersal events However these results are contingent upon thepresent sampling which does not include all samooid lineages(eg stenostygnine Biantidae) but basal range reconstructionsare likely unaffected (eg Stenostygninae is exclusivelyNeotropical)

In contrast the ancestor of Zalmoxoidea is reconstructedas singularly Neotropical (pr = 0996) This is consistent withisolation of a zalmoxoid ancestor to Amazonia which thenradiated ~191Mya Subsequent ancestral ranges are alsoreconstructed as Neotropical with high relative probabilityHowever the ancestral range of the clade (Icaleptidae +Fissiphalliidae + Zalmoxidae) is ambiguously reconstructedas either Neotropical (pr = 0935) or Neotropical + Indo-Pacific(pr = 0064) as is the split between Fissiphalliidae andZalmoxidae (Neotropical pr = 0856 Neotropical + Indo-Pacific pr = 0141)

These results suggest that the Indo-Pacific lineage ofZalmoxidae which split from Neotropical Zalmoxidae ~83Myais likely the result of long-distance dispersal from the NeotropicsHowever due to the persistence of transantarctic connectionsbetween the Australian plate and temperate South America untilthe Tertiary a competing vicariant scenario cannot be ruled outwithout densely sampling zalmoxid diversity The biogeographyof Zalmoxidae is presently being explored in greater detail in aseparate study (P P Sharma unpubl data)

Finally the ancestral range of (Samooidea + Zalmoxoidea)includes both Africa and the Neotropics (pr = 0957) consistentwith a tropical West Gondwanan ancestor This resultlends circumstantial evidence to a sister relationship of theAfrotropical families (Assamiidae + Pyramidopidae) and theclade (Samooidea + Zalmoxoidea) recovered in all analyses

The diversification of Grassatores

While numerous interfamilial relationships are supported inthis study particularly among gonyleptoid and zalmoxoidfamilies some relationships between superfamilies ofGrassatores are not supported and are contingent upon

analytical treatments namely the deployment of substitutionmodels and data partitioning (Fig 21) The cause of thisinstability could be related to insufficient data particularly inthe EF-1a partition (the length of an intron which can exceed400 bp in some taxa makes this gene particularly difficult toamplify) However examination of clade divergence timessuggests that rapid diversification of Grassatores lineagescould in part augment phylogenetic uncertainty in basal partsof the topology

The split between Phalangodidae and the remainingGrassatores is estimated to have occurred ~302Mya but aseries of divergences resulted in the origin of all superfamiliallineages between 232 and 271Mya Relative to the estimatedage of Laniatores (348Mya) this 39-million-year period isremarkably narrow and inherently problematic as the amountof phylogenetic signal for a given stem subtending a node isdirectly proportional to the amount of time that the stem inquestion spans (Lanyon 1988 Rokas and Carroll 2006) Thesmall internal edge lengths of the stems corresponding to basaldivergences of non-phalangodid Grassatores (Figs 15 16)combined with the ancient age of lineages derived from thesedivergences result in relationships that are difficult to estimatewithout a large amount of sequence data andor the inclusion ofdata that are less afflicted by homoplasy (because longer edgelengths imply more indel and substitution events on edges)(Whitfield and Lockhart 2007)

We additionally observe that the origins of most Grassatoressuperfamilies occur in the wake of the end-Permian massextinction (~254Mya) Rapid radiation in the wake of a massextinction has occurred in multiple metazoan lineagesthe putative result of relaxed selection and opening ofpreviously occupied ecological niche space (Labandeira andSepkoski 1993 Sahney and Benton 2008) The rapiddiversification of early Grassatores lineages could be anexample of this phenomenon but this hypothesis is difficult totest in the absence of Mesozoic Grassatores fossils (reviewed byDunlop 2007)

Finally we observe that contrary to traditional hierarchiesproposed for Laniatores many of the clades recovered in ouranalyses correspond to geographical regions particularly in thecase of Grassatores For example the southern hemispheretriaenonychids are restricted to temperate Gondwananlandmasses Gonyleptoidea and their sister group Stygnopsidaeform a Neotropical (AmazonianMesoamericanAntillean) cladethat excludes Assamiidae which has been hypothesised to be amember of a broader Gonyleptoidea (Kury and Cokendolpher2000 Mendes and Kury 2007) In our analyses Assamiidae isin fact a member of a largely Afrotropical clade together withthe Pyramidopidae South-east Asian families usually form oneclade (at most two) albeit with limited support Samooideafamilies are divided into two clusters African and NeotropicalWith one exception (described above) Zalmoxoidea is restrictedto the Neotropics The ages that we estimate for Laniatoresradiations are consistent with ancient diversification beforethe fragmentation of Pangaea An ancient diversification inconjunction with the climatic stability of the tropics may in partexplain the comparatively greater diversity of the armouredharvestmen with respect to the other Opiliones suborders

134 Invertebrate Systematics P P Sharma and G Giribet

Acknowledgements

Weare indebted toPeter J Schwendingerwho collected andprovidedmost ofthe material for study from South-east Asia Some Thai and most of theNeotropical Laniatores were obtained from the TIGER (Thailand InventoryGroup for Entomological Research) and LLAMA (Leaf Litter Arthropods ofMeso-America) projects toC Lienhard and J Longino respectivelyMaterialfrom Madagascar was generously contributed by Charles Griswold and theCalifornia Academy of Sciences Jesse Czekanski-Moir in conjunction withthe Belau NationalMuseum contributed elusive specimens from Palau AbelPeacuterezGonzaacutelez identifiedmanyNeotropical species included in the study andcontributed specimens fromCubaRicardoPinto-da-Rocha identified someofthe live photographed animals from the Neotropics Discussions with RonaldMClouseAbelPeacuterezGonzaacutelezAdrianoBKury andCarlosEPrieto refinedmanyof the ideas presentedhereTwoanonymous reviewers and the associateeditor provided comments that helped to improve an earlier version ofthis manuscript Laura Leibensperger sorted and accessioned TIGER andLLAMA material as well as MCZ type material Adam Graham and theCenter forNanoscaleStudies atHarvardUniversityprovided support forSEMwork Collecting efforts in New Caledonia were greatly facilitated by theguidance of Herveacute Jourdan (Institut de rechercheacute pour de developpementNoumea) and his teammembers Collecting efforts in Fiji weremade possibleby Marika Tuiwawa (University of the South Pacific Suva) and his teammembers Hilda Waqa and Tokasaya lsquoToxrsquo Cakacaka we are especiallygrateful to Tox for his good company during fieldwork and to his familyfor graciously enabling a visit toOvalau SuzieYee Shawprovided invaluablelogistical support in Fiji and her sons Colin and Joshua Yee Shaw assistedwith sorting Fijian material Fieldwork in Indonesia and West Africa wassupported by two MCZ Putnam Expedition Grants awarded to RonaldM Clouse and G G (2006) and to G G (2009) respectively Fieldworkin New Caledonia was supported by the Goelet award the Kalathia FamilyTrust and the Explorers Club awarded to P P S in 2006 Fieldwork in Fijiand in Palauwas supported by twoMCZPutnamExpeditionGrants awardedto P P S (2008) and to Ronald M Clouse and P P S (2010) respectivelyP P S was supported by a Faculty of Arts and Sciences Graduate Fellowshipfrom Harvard University

References

Castresana J (2000) Selectionof conservedblocks frommultiple alignmentsfor their use in phylogenetic analysis Molecular Biology and Evolution17 540ndash552

Colgan D J McLauchlan A Wislon G D F Livingston S MacaranasJ Edgecombe G D Cassis G and Gray M R (1998) Molecularphylogenetics of the Arthropoda relationships based on histone H3and U2 snRNA DNA sequences Australian Journal of Zoology 46419ndash437 doi101071ZO98048

DaSilva M B and Gnaspini P (2009) A systematic revision ofGoniosomatinae (Arachnida Opiliones Gonyleptidae) with a cladisticanalysis and biogeographical notes Invertebrate Systematics 23530ndash624 doi101071IS09022

DaSilva M B and Pinto-da-Rocha R (2010) Systematic review andcladistic analysis of the Hernandariinae (Opiliones Gonyleptidae)Zoologia 27 577ndash642

Derkarabetian S Steinmann D B and Hedin M (2010) Repeatedand time-correlated morphological convergence in cave-dwellingharvestmen (Opiliones Laniatores) from montane western NorthAmerica PLoS ONE 5 e10388 doi101371journalpone0010388

Drummond A J and Rambaut A (2007) BEAST Bayesian evolutionaryanalysis by sampling trees BMC Evolutionary Biology 7 214doi1011861471-2148-7-214

Drummond A J Ho S Y W Phillips M J and Rambaut A (2006)Relaxed phylogenetics and dating with confidence PLoS Biology 4 e88doi101371journalpbio0040088

Dunlop J A (2007) Paleontology In lsquoHarvestmen The Biology ofOpilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 247ndash265 (Harvard University Press Cambridge MA USA)

Dunlop J A and Anderson L I (2005) A fossil harvestman (ArachnidaOpiliones) from theMississippian of East Kirkton Scotland The Journalof Arachnology 33 482ndash489 doi10163604-791

Dunlop JAAndersonL IKerpH andHassH (2003)Preservedorgansof Devonian harvestmen Nature 425 916 doi101038425916a

Dunlop J A Anderson L I Kerp H and Hass H (2004) A harvestman(Arachnida Opiliones) from the Early Devonian Rhynie chertsAberdeenshire Scotland Transactions of the Royal Society ofEdinburgh Earth Sciences 94 341ndash354

Edgar R C (2004) MUSCLE multiple sequence alignment with highaccuracy and high throughput Nucleic Acids Research 32 1792ndash1797doi101093nargkh340

Edgecombe G D and Giribet G (2006) A century laterndash a total evidencere-evaluation of scutigeromorph centipedes (Myriapoda Chilopoda)Invertebrate Systematics 20 503ndash525 doi101071IS05044

Edgecombe G D Giribet G and Wheeler W C (2002) Phylogeny ofHenicopidae (Chilopoda Lithobiomorpha) a combined analysis ofmorphology and five molecular loci Systematic Entomology 2731ndash64 doi101046j0307-6970200100163x

FolmerOBlackMHoehWLutzR andVrijenhoekRC (1994)DNAprimers for amplification ofmitochondrial cytochrome c oxidase subunit Ifrom diverse metazoan invertebrates Molecular Marine Biology andBiotechnology 3 294ndash299

Forster R R (1954) The New Zealand harvestmen (sub-order Laniatores)Canterbury Museum Bulletin 2 1ndash329

Giribet G and Kury A B (2007) Phylogeny and biogeography InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 62ndash87 (Harvard University PressCambridge MA USA)

Giribet G Carranza S Baguntildeagrave J Riutort M and Ribera C (1996) Firstmolecular evidence for the existence of a Tardigrada +Arthropoda cladeMolecular Biology and Evolution 13 76ndash84

Giribet G Rambla M Carranza S Baguntildeagrave J Riutort M and Ribera C(1999) Phylogeny of the arachnid order Opiliones (Arthropoda)inferred from a combined approach of complete 18S and partial 28Sribosomal DNA sequences and morphology Molecular Phylogeneticsand Evolution 11 296ndash307 doi101006mpev19980583

Giribet G Edgecombe G D Wheeler W C and Babbitt C (2002)Phylogeny and systematic position of Opiliones a combined analysis ofchelicerate relationships using morphological and molecular dataCladistics 18 5ndash70

Giribet G Vogt L PeacuterezGonzaacutelez A Sharma P andKury A B (2010)A multilocus approach to harvestman (Arachnida Opiliones) phylogenywith emphasis on biogeography and the systematics of LaniatoresCladistics 26 408ndash437

Hara M R Gnaspini P and Machado G (2003) Male egg guardingbehavior in the Neotropical harvestman Ampheres leucopheus (Mello-Leitatildeo 1922) (Opiliones Gonyleptidae) The Journal of Arachnology 31441ndash444 doi101636S02-32

Hedin M Derkarabetian S McCormack M and Richart C (2010) Thephylogenetic utility of the nuclear protein-encoding gene EF-1a forresolving recent divergences in Opiliones emphasizing intronevolution The Journal of Arachnology 38 9ndash20 doi101636HA09-491

Huelsenbeck J P and Ronquist F (2005) Bayesian analyses of molecularevolution using MrBayes In lsquoStatistical Methods in MolecularEvolutionrsquo (Ed R Nielsen) (Springer New York)

HunterRK ProundDNBurns JA Tibbetts JA andTownsendVR(2007) Parental care in the Neotropical harvestman Phareicranauscalcariferus (Opiliones Cranaidae) The Journal of Arachnology 35199ndash201 doi101636ST06-181

Molecular phylogeny of Laniatores Invertebrate Systematics 135

Kocher T D Thoma W K Meyer A Edwards S V Paumlaumlbo SVillablanca F X and Wilson A C (1989) Dynamics ofmitochondrial DNA evolution in animals amplification andsequencing with conserved primers Proceedings of the NationalAcademy of Sciences of the United States of America 86 6196ndash6200doi101073pnas86166196

Kury A B (1993) Anaacutelise filogeneacutetica de Gonyleptoidea (ArachnidaOpiliones Laniatores) PhD Thesis Universidade de Satildeo Paulo SatildeoPaulo Brazil

Kury A B (2003) Annotated catalogue of the Laniatores of the NewWorld (Arachnida Opiliones) Revista Ibeacuterica de AracnologiacuteaVolumen Especial Monograacutefico 1 1ndash337

Kury A B (2006) Checklist of valid genera of Opiliones of theWorld Museu NacionalUFRJ Available from httpwwwmuseunacionalufrjbrmndiAracnologiachecklaniatorhtm [Accessed1 February 2011]

Kury A B (2007) Podoctidae Roewer 1912 In lsquoHarvestmen The Biologyof Opilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 221ndash224 (Harvard University Press Cambridge MA USA)

Kury A B and Cokendolpher J C (2000) Opiliones In lsquoBiodiversidadTaxonomiacutea y Biogeografiacutea de Artoacutepodos de Meacutexico Hacia una Sintesisde su Conocimientorsquo vol 2 (Eds J E Llorente E Gonzaacutelez andN Papavero) pp 137ndash157 (Universidad Nacional Autoacutenoma deMexico Meacutexico DF Mexico)

Kury A B and Machado G (2009) Notes on Santobius from Vanuatu andFiji and the status of the eastern Melanesian Ibalonius (ArachnidaOpiliones Podoctidae) Zoological Studies 48 524ndash538

Kury A B and Peacuterez G A (2002) A new family of Laniatores fromnorthwestern South America (Arachnida Opiliones) Revista Ibeacuterica deAracnologiacutea 6 3ndash11

Labandeira C C and Sepkoski J J (1993) Insect diversity in the fossilrecord Science 261 310ndash315 doi101126science11536548

Lanyon S M (1988) The stochastic mode of molecular evolutionwhat consequences for systematic investigations The Auk 105565ndash573

Lian W-G Zhu M-S and Kury A B (2008) A new species of the genusTithaeus from China (Arachnida Laniatores Epedanidae) Zootaxa1841 53ndash60

Machado G Requena G S Buzatto B A Osses F and Rossetto L M(2004) Five new cases of paternal care in harvestmen (ArachnidaOpiliones) implications for the evolution of male guarding in theNeotropical family Gonyleptidae Sociobiology 44 577ndash598

Martens J (1976) Genitalmorphologie System und Phylogenie derWeberknechte (Arachnida Opiliones) Entomologica GermanicaZeitschrift fuumlr das Gesamtgebiet der Wissenschaftlichen Entomologie3 51ndash68

Martens J (1980) Versuch eines phylogenetischen Systems der OpilionesIn lsquoProceedings 8th International Congress of Arachnology ViennaVerhandlungenrsquo (Ed J Gruber) pp 355ndash360 (Vienna Austria)

Martens J (1986) Die Grossgliederung der Opiliones und die Evolutionder Ordnung (Arachnida) Actas del X Congreso Internacional deAracnologiacutea Jaca 1 289ndash310

Martens J (1993) Further cases of paternal care in Opiliones (Arachnida)Tropical Zoology 6 97ndash107

Martens J and Schwendinger P S (1998) A taxonomic revision ofthe family Oncopodidae I New genera and new species of GnomulusThorell (Opiliones Laniatores) Revue Suisse de Zoologie 105 499ndash555

Martens J Hoheisel U and Goumltze M (1981) Vergleichende Anatomieder Legeroumlhren der Opiliones als Beitrag zur Phylogenie der Ordnung(Arachnida) Zoologische Jahrbucher Abteilung fur Anatomie undOntogenie der Tiere 105 13ndash76

Mello-Leitatildeo C F (1949) Famiacutelias subfamiacutelia espeacutecies e gecircneros novos deopiliotildees e notas de sinoniacutemia Boletim do Museu Nacional Nova SeacuterieZoologia Rio de Janeiro 94 1ndash33

Mendes A C and Kury A B (2007) Stygnopsidae Soslashrensen 1932 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 232ndash234 (Harvard University PressCambridge MA USA)

Mendes A C and Kury A B (2008) Intercontinental Triaenonychidae ndashthe case of Ceratomontia (Opiliones Insidiatores) The Journal ofArachnology 36 273ndash279 doi101636CH07-931

Murphree C S (1988) Morphology of the dorsal integument of tenopilionid species (Arachnida Opiliones) The Journal of Arachnology16 237ndash252

Park J K andOacuteFoighilD (2000) Sphaeriid and corbiculid clams representseparate heterodont bivalve radiations into freshwater environmentsMolecular Phylogenetics and Evolution 14 75ndash88 doi101006mpev19990691

Peacuterez Gonzaacutelez A (2006) lsquoRevisatildeo Sistemaacutetica e Anaacutelise Filogeneacutetica deStygnommatidae (Arachnida Opiliones Laniatores)rsquo (Museu NacionalUniversidade Federal de Rio de Janeiro Rio de Janeiro Brazil)

Peacuterez Gonzaacutelez A (2007) Stygnommatidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 229ndash232 (Harvard University PressCambridge MA USA)

Peacuterez Gonzaacutelez A (2011) New familial assignment for two harvestmanspecies of the infraorder Grassatores (Arachnida Opiliones Laniatores)Zootaxa 2757 24ndash28

Peacuterez Gonzaacutelez A and Kury A B (2007) Samoidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 224ndash226 (Harvard University PressCambridge MA USA)

Pineau P Henry M Suspegravene R Marchio A Dettai A Debruyne RPetit T Leacutecu A Moisson P Dejean A Wain-Hobson S andVartanian J-P (2005) A universal primer set for PCR amplificationof nuclear histone H4 genes from all animal species Molecular Biologyand Evolution 22 582ndash588 doi101093molbevmsi053

Pinto-da-Rocha R (1997) Systematic review of the Neotropical familyStygnidae (Opiliones Laniatores Gonyleptoidea) Arquivos deZoologia 33 163ndash342

Pinto-da-Rocha R and Kury A B (2003a) Phylogenetic analysis ofSantinezia with description of five new species (Opiliones LaniatoresCranaidae) The Journal of Arachnology 31 173ndash208 doi1016360161-8202(2003)031[0173PAOSWD]20CO2

Pinto-da-Rocha R and Kury A B (2003b) Third species of Guasiniidae(Opiliones Laniatores) with comments on familial relationships TheJournal of Arachnology 31 394ndash399 doi101636H02-59

Pinto-da-Rocha R and Kury A B (2007) Agoristenidae Silhavy 1973 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 171ndash173 (Harvard University PressCambridge MA USA)

Posada D (2005) Modeltest 37 Program and documentation available athttpdarwinuvigoes [Accessed 28 May 2011]

Posada D and Buckley T (2004) Model selection and model averaging inphylogenetics advantages of Akaike information criterion and Bayesianapproaches over likelihood ratio tests Systematic Biology 53 793ndash808doi10108010635150490522304

Posada D and Crandall K A (1998) Modeltest testing the model ofDNA substitution Bioinformatics (Oxford England) 14 817ndash818doi101093bioinformatics149817

Prendini L Weygoldt P and Wheeler W C (2005) Systematics of theDamon variegates group of African whip spiders (ChelicerataAmblypygi) evidence from behaviour morphology and DNAOrganisms Diversity amp Evolution 5 203ndash236 doi101016jode200412004

Rambaut A E (1996) Se-Al sequence alignment editor University ofOxford UK Program and documentation available at httptreebioedacuksoftwarefigtree [Accessed 21 December 2009]

136 Invertebrate Systematics P P Sharma and G Giribet

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 25: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

within Stygnommatidae is highly dubious as the twoIndonesian lsquostygnommatidsrsquo are either highly autapomorphic(Stygnomimus conopygus (Roewer 1927)) or described on the

basis of a generic female that is not readily distinguishable fromfemales of other species (Stygnomimus malayensis (Suzuki1970))

Fig 18 Strict consensus of tree topologies obtained by all phylogenetic analyses

130 Invertebrate Systematics P P Sharma and G Giribet

Previous efforts to assess the systematic validity of Samooideaby means of molecular sequence data were limited insofar asonly two Samoidae three Biantidae (all Metabiantes) and twoStygnommatidae were sampled (Giribet et al 2010) Thesampling of Samoidae was especially problematic only asingle Neotropical adult (Pellobunus) and one African juvenilesamoid (lsquoSamoidae gen sprsquo) were included The designation ofthe latter is suspect as juveniles of Samoidae are oftenindistinguishable from the juveniles of other lineages becausemany diagnostic secondary sexual characters in Grassatores(eg spines and incrassate appendages) are not acquired untilafter several postembryonic stages (Townsend et al 2009)

In the present study though the type genus of Samoidae(Samoa from Samoa) was not available we sequenced theclosely related genus Badessa (from Fiji collected byP P S) as well as additional Biantidae and StygnommatidaeOur analyses recovered a monophyletic Samooidea (excludingEscadabiidae and Kimulidae BS = 53 PP = 062) withSamoidae sensu stricto (Pellobunus +Badessa BS = 100PP = 100) nested within a paraphyletic Stygnommatidae aplacement that is supported (BS = 87 PP = 100) Bycontrast the African lsquosamoidrsquo is sister to the AfricanBiantidae a relationship that is also well supported(BS = 100 PP = 100) These relationships suggest a basal

Fig 19 Cladogram of male genitalic evolution in South-east Asian families superimposed upon a schematised molecular phylogeny based on ML and BIanalyses of all molecular data Exemplars (a) Pseudoepedanus doiensis Suzuki 1969 (redrawn from Suzuki 1969) dorsal view (b) Pseudoepedanus doiensisSuzuki 1969 (redrawn from Suzuki 1969) ventral view (c) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) ventral view(d) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) dorsal view (e) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki1976) dorsal view (f) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki 1976) ventral view (g) Petrobunus torosus lateral view (h) ZalmoxidagibberaSuzuki 1969 dorsal view (i)Zalmoxida sp (MCZDNA102677) dorsolateral view (j)Metatithaeus rubidusSuzuki 1969 (redrawn fromSuzuki 1969)ventral view (k)Tithaeus kokutnusSuzuki 1985 (redrawn fromSuzuki 1985) ventral view (l)Tithaeus similisSuzuki 1985 (redrawn fromSuzuki 1985) ventralview (m)DongmoaoshimensisSuzuki 1964 (redrawn fromSuzuki 1964) ventral view (n)Bonea longipalpisSuzuki 1977 (redrawn fromSuzuki 1977) ventralview (o) Santobius annulipes Soslashrensen 1886 (redrawn from Kury and Machado 2009) ventral view (p) Lomanius longipalpus mindanaoensis Suzuki 1977(redrawn from Suzuki 1977) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 131

dichotomy within Samooidea that corresponds to one groupof Neotropical and Pacific lineages and a second group ofAfrican lineages However as we were unable to samplestenostygnine (Neotropical) and Indo-Pacific Biantidae aswell as numerous monotypic genera dubiously placed inSamoidae biogeographical extrapolations for Samooidea aretenuous (discussed below)

The internal relationships of Samooidea suggest that themorphology of Samoidae may have evolved convergently Asthe African samoid is a juvenile (the same specimen previouslysequenced by Giribet et al 2010 now sequenced for additional28S rRNA and other genes) we cannot rule out the possibility ofa monophyletic Samoidae that includes African species (thespecimen in question could be a juvenile biantid) In any casethe paraphyly of Stygnommatidae and putative polyphyly ofSamoidae strongly advocate systematic revision of samooidfamilies as currently defined corroborating hypotheses of non-monophyly based on morphology (Peacuterez Gonzaacutelez 2007 PeacuterezGonzaacutelez and Kury 2007) Our sampling of these families isinsufficient to advocate specific taxonomic action but an ongoing

study of samooidean systematics will shed more light on thevalidity of constituent families (A Peacuterez Gonzaacutelez work inprogress)

Biogeography of Zalmoxoidea and Samooidea

While most superfamilies of Grassatores are restricted to aspecific part of the tropics (eg Neotropics South-east Asia)two are distributed in multiple biogeographical provincesSamooidea occurs in the Neotropics and Afrotropics withquestionable records from South-east Asia Zalmoxoidea isconcentrated in the Neotropics with the exception of oneIndo-Pacific lineage of Zalmoxidae (represented here byZalmoxis sp) The ages and distributions of Samooidea andZalmoxoidea suggest that their biogeography was influencedby the fragmentation of West Tropical Gondwana ndash causingthe former to diverge basally throughout West TropicalGondwanan terranes and the latter to become isolated to theNeotropics (with possible subsequent dispersal)

Fig 20 Ancestral range reconstructions for Samooidea +Zalmoxoidea inferred by Lagrange using stratified models corresponding to two vicariant events(indicated by dotted lines) Coloured squares at terminals indicate ranges occupied by sampled species Coloured squares on nodes indicate ranges reconstructedfor hypothetical ancestors Numbers on nodes indicate relative probability of ranges reconstructed

Fig 21 Best hypothesis of Laniatores relationships based on all available evidence Bracketed nodes indicate non-monophyletic entities Dashed line indicatesambiguity in the placement of Sandokanidae (alternatively placed as shown or as sister to Podoctidae) Exemplars of Laniatores diversity are Synthetonychiaoliveae (Synthetonychiidae) Equitius doriae (Triaenonychidae) Hadziana clavigera (Travuniidae) Erebomaster flavescens flavescens (Cladonychiidae)Scotolemon lespesi (Phalangodidae) Palaeoncopus gunung (Sandokanidae) Santobius sp (Podoctidae) Tithaeus sp (Tithaeidae) Petrobunus spinifer(Petrobunidae) Alloepedanus sp (Epedanidae) Hoplobunus sp (Stygnopsidae) Torreana spinata (Agoristenidae) Stygnoplus clavotibialis (Stygnidae)Metalibitia paraguayensis (Cosmetidae)Acutisoma longipes (Gonyleptidae)Conommaoedipus (Pyramidopsgroup)Mysorea thaiensis (Assamiidae)Lacurbssp (Biantidae) Stygnomma sp (Stygnommatidae) Badessa sp (Samoidae) Guasinia sp (Guasiniidae) Icaleptes sp (Icaleptidae) Fissiphallius chicoi(Fissiphalliidae) Zalmoxis sp (Zalmoxidae) Kimula goodnightiorum (Kimulidae)

132 Invertebrate Systematics P P Sharma and G Giribet

Molecular phylogeny of Laniatores Invertebrate Systematics 133

To test this hypothesis we conducted likelihood analysisof range evolution using the program Lagrange (Ree et al2005 Ree and Smith 2008) for the clade (Zalmoxoidea +Samooidea) The stratified analysis resulted in a globalmaximum likelihood of ndashlnL= 1556 outperforming anunconstrained analysis that did not include any dispersalconstraints (ndashlnL= 1676) Likelihood analysis of rangeoptimisation (Fig 20) indicates that the ancestral range ofSamooidea includes both the Afrotropics and the Neotropics(relative probability pr = 1000) but a subsequent split occursbetween an African lineage (pr = 1000) and a NeotropicalIndo-Pacific lineage with a Neotropical ancestral range (pr = 0986)Samoidea of the Indo-Pacific occur on young oceanic islands(eg Fiji Samoa) indicating recent transoceanic dispersal fromthe Neotropics

Ancestral range reconstructions for Samooidea are allconsistent with estimated divergence times for these clades(diversification of Samooidea predates the rifting of WestAfrica from northern South America) favouring an underlyingvicariant process for the basal topology with subsequent recentdispersal events However these results are contingent upon thepresent sampling which does not include all samooid lineages(eg stenostygnine Biantidae) but basal range reconstructionsare likely unaffected (eg Stenostygninae is exclusivelyNeotropical)

In contrast the ancestor of Zalmoxoidea is reconstructedas singularly Neotropical (pr = 0996) This is consistent withisolation of a zalmoxoid ancestor to Amazonia which thenradiated ~191Mya Subsequent ancestral ranges are alsoreconstructed as Neotropical with high relative probabilityHowever the ancestral range of the clade (Icaleptidae +Fissiphalliidae + Zalmoxidae) is ambiguously reconstructedas either Neotropical (pr = 0935) or Neotropical + Indo-Pacific(pr = 0064) as is the split between Fissiphalliidae andZalmoxidae (Neotropical pr = 0856 Neotropical + Indo-Pacific pr = 0141)

These results suggest that the Indo-Pacific lineage ofZalmoxidae which split from Neotropical Zalmoxidae ~83Myais likely the result of long-distance dispersal from the NeotropicsHowever due to the persistence of transantarctic connectionsbetween the Australian plate and temperate South America untilthe Tertiary a competing vicariant scenario cannot be ruled outwithout densely sampling zalmoxid diversity The biogeographyof Zalmoxidae is presently being explored in greater detail in aseparate study (P P Sharma unpubl data)

Finally the ancestral range of (Samooidea + Zalmoxoidea)includes both Africa and the Neotropics (pr = 0957) consistentwith a tropical West Gondwanan ancestor This resultlends circumstantial evidence to a sister relationship of theAfrotropical families (Assamiidae + Pyramidopidae) and theclade (Samooidea + Zalmoxoidea) recovered in all analyses

The diversification of Grassatores

While numerous interfamilial relationships are supported inthis study particularly among gonyleptoid and zalmoxoidfamilies some relationships between superfamilies ofGrassatores are not supported and are contingent upon

analytical treatments namely the deployment of substitutionmodels and data partitioning (Fig 21) The cause of thisinstability could be related to insufficient data particularly inthe EF-1a partition (the length of an intron which can exceed400 bp in some taxa makes this gene particularly difficult toamplify) However examination of clade divergence timessuggests that rapid diversification of Grassatores lineagescould in part augment phylogenetic uncertainty in basal partsof the topology

The split between Phalangodidae and the remainingGrassatores is estimated to have occurred ~302Mya but aseries of divergences resulted in the origin of all superfamiliallineages between 232 and 271Mya Relative to the estimatedage of Laniatores (348Mya) this 39-million-year period isremarkably narrow and inherently problematic as the amountof phylogenetic signal for a given stem subtending a node isdirectly proportional to the amount of time that the stem inquestion spans (Lanyon 1988 Rokas and Carroll 2006) Thesmall internal edge lengths of the stems corresponding to basaldivergences of non-phalangodid Grassatores (Figs 15 16)combined with the ancient age of lineages derived from thesedivergences result in relationships that are difficult to estimatewithout a large amount of sequence data andor the inclusion ofdata that are less afflicted by homoplasy (because longer edgelengths imply more indel and substitution events on edges)(Whitfield and Lockhart 2007)

We additionally observe that the origins of most Grassatoressuperfamilies occur in the wake of the end-Permian massextinction (~254Mya) Rapid radiation in the wake of a massextinction has occurred in multiple metazoan lineagesthe putative result of relaxed selection and opening ofpreviously occupied ecological niche space (Labandeira andSepkoski 1993 Sahney and Benton 2008) The rapiddiversification of early Grassatores lineages could be anexample of this phenomenon but this hypothesis is difficult totest in the absence of Mesozoic Grassatores fossils (reviewed byDunlop 2007)

Finally we observe that contrary to traditional hierarchiesproposed for Laniatores many of the clades recovered in ouranalyses correspond to geographical regions particularly in thecase of Grassatores For example the southern hemispheretriaenonychids are restricted to temperate Gondwananlandmasses Gonyleptoidea and their sister group Stygnopsidaeform a Neotropical (AmazonianMesoamericanAntillean) cladethat excludes Assamiidae which has been hypothesised to be amember of a broader Gonyleptoidea (Kury and Cokendolpher2000 Mendes and Kury 2007) In our analyses Assamiidae isin fact a member of a largely Afrotropical clade together withthe Pyramidopidae South-east Asian families usually form oneclade (at most two) albeit with limited support Samooideafamilies are divided into two clusters African and NeotropicalWith one exception (described above) Zalmoxoidea is restrictedto the Neotropics The ages that we estimate for Laniatoresradiations are consistent with ancient diversification beforethe fragmentation of Pangaea An ancient diversification inconjunction with the climatic stability of the tropics may in partexplain the comparatively greater diversity of the armouredharvestmen with respect to the other Opiliones suborders

134 Invertebrate Systematics P P Sharma and G Giribet

Acknowledgements

Weare indebted toPeter J Schwendingerwho collected andprovidedmost ofthe material for study from South-east Asia Some Thai and most of theNeotropical Laniatores were obtained from the TIGER (Thailand InventoryGroup for Entomological Research) and LLAMA (Leaf Litter Arthropods ofMeso-America) projects toC Lienhard and J Longino respectivelyMaterialfrom Madagascar was generously contributed by Charles Griswold and theCalifornia Academy of Sciences Jesse Czekanski-Moir in conjunction withthe Belau NationalMuseum contributed elusive specimens from Palau AbelPeacuterezGonzaacutelez identifiedmanyNeotropical species included in the study andcontributed specimens fromCubaRicardoPinto-da-Rocha identified someofthe live photographed animals from the Neotropics Discussions with RonaldMClouseAbelPeacuterezGonzaacutelezAdrianoBKury andCarlosEPrieto refinedmanyof the ideas presentedhereTwoanonymous reviewers and the associateeditor provided comments that helped to improve an earlier version ofthis manuscript Laura Leibensperger sorted and accessioned TIGER andLLAMA material as well as MCZ type material Adam Graham and theCenter forNanoscaleStudies atHarvardUniversityprovided support forSEMwork Collecting efforts in New Caledonia were greatly facilitated by theguidance of Herveacute Jourdan (Institut de rechercheacute pour de developpementNoumea) and his teammembers Collecting efforts in Fiji weremade possibleby Marika Tuiwawa (University of the South Pacific Suva) and his teammembers Hilda Waqa and Tokasaya lsquoToxrsquo Cakacaka we are especiallygrateful to Tox for his good company during fieldwork and to his familyfor graciously enabling a visit toOvalau SuzieYee Shawprovided invaluablelogistical support in Fiji and her sons Colin and Joshua Yee Shaw assistedwith sorting Fijian material Fieldwork in Indonesia and West Africa wassupported by two MCZ Putnam Expedition Grants awarded to RonaldM Clouse and G G (2006) and to G G (2009) respectively Fieldworkin New Caledonia was supported by the Goelet award the Kalathia FamilyTrust and the Explorers Club awarded to P P S in 2006 Fieldwork in Fijiand in Palauwas supported by twoMCZPutnamExpeditionGrants awardedto P P S (2008) and to Ronald M Clouse and P P S (2010) respectivelyP P S was supported by a Faculty of Arts and Sciences Graduate Fellowshipfrom Harvard University

References

Castresana J (2000) Selectionof conservedblocks frommultiple alignmentsfor their use in phylogenetic analysis Molecular Biology and Evolution17 540ndash552

Colgan D J McLauchlan A Wislon G D F Livingston S MacaranasJ Edgecombe G D Cassis G and Gray M R (1998) Molecularphylogenetics of the Arthropoda relationships based on histone H3and U2 snRNA DNA sequences Australian Journal of Zoology 46419ndash437 doi101071ZO98048

DaSilva M B and Gnaspini P (2009) A systematic revision ofGoniosomatinae (Arachnida Opiliones Gonyleptidae) with a cladisticanalysis and biogeographical notes Invertebrate Systematics 23530ndash624 doi101071IS09022

DaSilva M B and Pinto-da-Rocha R (2010) Systematic review andcladistic analysis of the Hernandariinae (Opiliones Gonyleptidae)Zoologia 27 577ndash642

Derkarabetian S Steinmann D B and Hedin M (2010) Repeatedand time-correlated morphological convergence in cave-dwellingharvestmen (Opiliones Laniatores) from montane western NorthAmerica PLoS ONE 5 e10388 doi101371journalpone0010388

Drummond A J and Rambaut A (2007) BEAST Bayesian evolutionaryanalysis by sampling trees BMC Evolutionary Biology 7 214doi1011861471-2148-7-214

Drummond A J Ho S Y W Phillips M J and Rambaut A (2006)Relaxed phylogenetics and dating with confidence PLoS Biology 4 e88doi101371journalpbio0040088

Dunlop J A (2007) Paleontology In lsquoHarvestmen The Biology ofOpilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 247ndash265 (Harvard University Press Cambridge MA USA)

Dunlop J A and Anderson L I (2005) A fossil harvestman (ArachnidaOpiliones) from theMississippian of East Kirkton Scotland The Journalof Arachnology 33 482ndash489 doi10163604-791

Dunlop JAAndersonL IKerpH andHassH (2003)Preservedorgansof Devonian harvestmen Nature 425 916 doi101038425916a

Dunlop J A Anderson L I Kerp H and Hass H (2004) A harvestman(Arachnida Opiliones) from the Early Devonian Rhynie chertsAberdeenshire Scotland Transactions of the Royal Society ofEdinburgh Earth Sciences 94 341ndash354

Edgar R C (2004) MUSCLE multiple sequence alignment with highaccuracy and high throughput Nucleic Acids Research 32 1792ndash1797doi101093nargkh340

Edgecombe G D and Giribet G (2006) A century laterndash a total evidencere-evaluation of scutigeromorph centipedes (Myriapoda Chilopoda)Invertebrate Systematics 20 503ndash525 doi101071IS05044

Edgecombe G D Giribet G and Wheeler W C (2002) Phylogeny ofHenicopidae (Chilopoda Lithobiomorpha) a combined analysis ofmorphology and five molecular loci Systematic Entomology 2731ndash64 doi101046j0307-6970200100163x

FolmerOBlackMHoehWLutzR andVrijenhoekRC (1994)DNAprimers for amplification ofmitochondrial cytochrome c oxidase subunit Ifrom diverse metazoan invertebrates Molecular Marine Biology andBiotechnology 3 294ndash299

Forster R R (1954) The New Zealand harvestmen (sub-order Laniatores)Canterbury Museum Bulletin 2 1ndash329

Giribet G and Kury A B (2007) Phylogeny and biogeography InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 62ndash87 (Harvard University PressCambridge MA USA)

Giribet G Carranza S Baguntildeagrave J Riutort M and Ribera C (1996) Firstmolecular evidence for the existence of a Tardigrada +Arthropoda cladeMolecular Biology and Evolution 13 76ndash84

Giribet G Rambla M Carranza S Baguntildeagrave J Riutort M and Ribera C(1999) Phylogeny of the arachnid order Opiliones (Arthropoda)inferred from a combined approach of complete 18S and partial 28Sribosomal DNA sequences and morphology Molecular Phylogeneticsand Evolution 11 296ndash307 doi101006mpev19980583

Giribet G Edgecombe G D Wheeler W C and Babbitt C (2002)Phylogeny and systematic position of Opiliones a combined analysis ofchelicerate relationships using morphological and molecular dataCladistics 18 5ndash70

Giribet G Vogt L PeacuterezGonzaacutelez A Sharma P andKury A B (2010)A multilocus approach to harvestman (Arachnida Opiliones) phylogenywith emphasis on biogeography and the systematics of LaniatoresCladistics 26 408ndash437

Hara M R Gnaspini P and Machado G (2003) Male egg guardingbehavior in the Neotropical harvestman Ampheres leucopheus (Mello-Leitatildeo 1922) (Opiliones Gonyleptidae) The Journal of Arachnology 31441ndash444 doi101636S02-32

Hedin M Derkarabetian S McCormack M and Richart C (2010) Thephylogenetic utility of the nuclear protein-encoding gene EF-1a forresolving recent divergences in Opiliones emphasizing intronevolution The Journal of Arachnology 38 9ndash20 doi101636HA09-491

Huelsenbeck J P and Ronquist F (2005) Bayesian analyses of molecularevolution using MrBayes In lsquoStatistical Methods in MolecularEvolutionrsquo (Ed R Nielsen) (Springer New York)

HunterRK ProundDNBurns JA Tibbetts JA andTownsendVR(2007) Parental care in the Neotropical harvestman Phareicranauscalcariferus (Opiliones Cranaidae) The Journal of Arachnology 35199ndash201 doi101636ST06-181

Molecular phylogeny of Laniatores Invertebrate Systematics 135

Kocher T D Thoma W K Meyer A Edwards S V Paumlaumlbo SVillablanca F X and Wilson A C (1989) Dynamics ofmitochondrial DNA evolution in animals amplification andsequencing with conserved primers Proceedings of the NationalAcademy of Sciences of the United States of America 86 6196ndash6200doi101073pnas86166196

Kury A B (1993) Anaacutelise filogeneacutetica de Gonyleptoidea (ArachnidaOpiliones Laniatores) PhD Thesis Universidade de Satildeo Paulo SatildeoPaulo Brazil

Kury A B (2003) Annotated catalogue of the Laniatores of the NewWorld (Arachnida Opiliones) Revista Ibeacuterica de AracnologiacuteaVolumen Especial Monograacutefico 1 1ndash337

Kury A B (2006) Checklist of valid genera of Opiliones of theWorld Museu NacionalUFRJ Available from httpwwwmuseunacionalufrjbrmndiAracnologiachecklaniatorhtm [Accessed1 February 2011]

Kury A B (2007) Podoctidae Roewer 1912 In lsquoHarvestmen The Biologyof Opilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 221ndash224 (Harvard University Press Cambridge MA USA)

Kury A B and Cokendolpher J C (2000) Opiliones In lsquoBiodiversidadTaxonomiacutea y Biogeografiacutea de Artoacutepodos de Meacutexico Hacia una Sintesisde su Conocimientorsquo vol 2 (Eds J E Llorente E Gonzaacutelez andN Papavero) pp 137ndash157 (Universidad Nacional Autoacutenoma deMexico Meacutexico DF Mexico)

Kury A B and Machado G (2009) Notes on Santobius from Vanuatu andFiji and the status of the eastern Melanesian Ibalonius (ArachnidaOpiliones Podoctidae) Zoological Studies 48 524ndash538

Kury A B and Peacuterez G A (2002) A new family of Laniatores fromnorthwestern South America (Arachnida Opiliones) Revista Ibeacuterica deAracnologiacutea 6 3ndash11

Labandeira C C and Sepkoski J J (1993) Insect diversity in the fossilrecord Science 261 310ndash315 doi101126science11536548

Lanyon S M (1988) The stochastic mode of molecular evolutionwhat consequences for systematic investigations The Auk 105565ndash573

Lian W-G Zhu M-S and Kury A B (2008) A new species of the genusTithaeus from China (Arachnida Laniatores Epedanidae) Zootaxa1841 53ndash60

Machado G Requena G S Buzatto B A Osses F and Rossetto L M(2004) Five new cases of paternal care in harvestmen (ArachnidaOpiliones) implications for the evolution of male guarding in theNeotropical family Gonyleptidae Sociobiology 44 577ndash598

Martens J (1976) Genitalmorphologie System und Phylogenie derWeberknechte (Arachnida Opiliones) Entomologica GermanicaZeitschrift fuumlr das Gesamtgebiet der Wissenschaftlichen Entomologie3 51ndash68

Martens J (1980) Versuch eines phylogenetischen Systems der OpilionesIn lsquoProceedings 8th International Congress of Arachnology ViennaVerhandlungenrsquo (Ed J Gruber) pp 355ndash360 (Vienna Austria)

Martens J (1986) Die Grossgliederung der Opiliones und die Evolutionder Ordnung (Arachnida) Actas del X Congreso Internacional deAracnologiacutea Jaca 1 289ndash310

Martens J (1993) Further cases of paternal care in Opiliones (Arachnida)Tropical Zoology 6 97ndash107

Martens J and Schwendinger P S (1998) A taxonomic revision ofthe family Oncopodidae I New genera and new species of GnomulusThorell (Opiliones Laniatores) Revue Suisse de Zoologie 105 499ndash555

Martens J Hoheisel U and Goumltze M (1981) Vergleichende Anatomieder Legeroumlhren der Opiliones als Beitrag zur Phylogenie der Ordnung(Arachnida) Zoologische Jahrbucher Abteilung fur Anatomie undOntogenie der Tiere 105 13ndash76

Mello-Leitatildeo C F (1949) Famiacutelias subfamiacutelia espeacutecies e gecircneros novos deopiliotildees e notas de sinoniacutemia Boletim do Museu Nacional Nova SeacuterieZoologia Rio de Janeiro 94 1ndash33

Mendes A C and Kury A B (2007) Stygnopsidae Soslashrensen 1932 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 232ndash234 (Harvard University PressCambridge MA USA)

Mendes A C and Kury A B (2008) Intercontinental Triaenonychidae ndashthe case of Ceratomontia (Opiliones Insidiatores) The Journal ofArachnology 36 273ndash279 doi101636CH07-931

Murphree C S (1988) Morphology of the dorsal integument of tenopilionid species (Arachnida Opiliones) The Journal of Arachnology16 237ndash252

Park J K andOacuteFoighilD (2000) Sphaeriid and corbiculid clams representseparate heterodont bivalve radiations into freshwater environmentsMolecular Phylogenetics and Evolution 14 75ndash88 doi101006mpev19990691

Peacuterez Gonzaacutelez A (2006) lsquoRevisatildeo Sistemaacutetica e Anaacutelise Filogeneacutetica deStygnommatidae (Arachnida Opiliones Laniatores)rsquo (Museu NacionalUniversidade Federal de Rio de Janeiro Rio de Janeiro Brazil)

Peacuterez Gonzaacutelez A (2007) Stygnommatidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 229ndash232 (Harvard University PressCambridge MA USA)

Peacuterez Gonzaacutelez A (2011) New familial assignment for two harvestmanspecies of the infraorder Grassatores (Arachnida Opiliones Laniatores)Zootaxa 2757 24ndash28

Peacuterez Gonzaacutelez A and Kury A B (2007) Samoidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 224ndash226 (Harvard University PressCambridge MA USA)

Pineau P Henry M Suspegravene R Marchio A Dettai A Debruyne RPetit T Leacutecu A Moisson P Dejean A Wain-Hobson S andVartanian J-P (2005) A universal primer set for PCR amplificationof nuclear histone H4 genes from all animal species Molecular Biologyand Evolution 22 582ndash588 doi101093molbevmsi053

Pinto-da-Rocha R (1997) Systematic review of the Neotropical familyStygnidae (Opiliones Laniatores Gonyleptoidea) Arquivos deZoologia 33 163ndash342

Pinto-da-Rocha R and Kury A B (2003a) Phylogenetic analysis ofSantinezia with description of five new species (Opiliones LaniatoresCranaidae) The Journal of Arachnology 31 173ndash208 doi1016360161-8202(2003)031[0173PAOSWD]20CO2

Pinto-da-Rocha R and Kury A B (2003b) Third species of Guasiniidae(Opiliones Laniatores) with comments on familial relationships TheJournal of Arachnology 31 394ndash399 doi101636H02-59

Pinto-da-Rocha R and Kury A B (2007) Agoristenidae Silhavy 1973 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 171ndash173 (Harvard University PressCambridge MA USA)

Posada D (2005) Modeltest 37 Program and documentation available athttpdarwinuvigoes [Accessed 28 May 2011]

Posada D and Buckley T (2004) Model selection and model averaging inphylogenetics advantages of Akaike information criterion and Bayesianapproaches over likelihood ratio tests Systematic Biology 53 793ndash808doi10108010635150490522304

Posada D and Crandall K A (1998) Modeltest testing the model ofDNA substitution Bioinformatics (Oxford England) 14 817ndash818doi101093bioinformatics149817

Prendini L Weygoldt P and Wheeler W C (2005) Systematics of theDamon variegates group of African whip spiders (ChelicerataAmblypygi) evidence from behaviour morphology and DNAOrganisms Diversity amp Evolution 5 203ndash236 doi101016jode200412004

Rambaut A E (1996) Se-Al sequence alignment editor University ofOxford UK Program and documentation available at httptreebioedacuksoftwarefigtree [Accessed 21 December 2009]

136 Invertebrate Systematics P P Sharma and G Giribet

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 26: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

Previous efforts to assess the systematic validity of Samooideaby means of molecular sequence data were limited insofar asonly two Samoidae three Biantidae (all Metabiantes) and twoStygnommatidae were sampled (Giribet et al 2010) Thesampling of Samoidae was especially problematic only asingle Neotropical adult (Pellobunus) and one African juvenilesamoid (lsquoSamoidae gen sprsquo) were included The designation ofthe latter is suspect as juveniles of Samoidae are oftenindistinguishable from the juveniles of other lineages becausemany diagnostic secondary sexual characters in Grassatores(eg spines and incrassate appendages) are not acquired untilafter several postembryonic stages (Townsend et al 2009)

In the present study though the type genus of Samoidae(Samoa from Samoa) was not available we sequenced theclosely related genus Badessa (from Fiji collected byP P S) as well as additional Biantidae and StygnommatidaeOur analyses recovered a monophyletic Samooidea (excludingEscadabiidae and Kimulidae BS = 53 PP = 062) withSamoidae sensu stricto (Pellobunus +Badessa BS = 100PP = 100) nested within a paraphyletic Stygnommatidae aplacement that is supported (BS = 87 PP = 100) Bycontrast the African lsquosamoidrsquo is sister to the AfricanBiantidae a relationship that is also well supported(BS = 100 PP = 100) These relationships suggest a basal

Fig 19 Cladogram of male genitalic evolution in South-east Asian families superimposed upon a schematised molecular phylogeny based on ML and BIanalyses of all molecular data Exemplars (a) Pseudoepedanus doiensis Suzuki 1969 (redrawn from Suzuki 1969) dorsal view (b) Pseudoepedanus doiensisSuzuki 1969 (redrawn from Suzuki 1969) ventral view (c) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) ventral view(d) Paracrobunus bimaculatus Suzuki 1977 (redrawn from Suzuki 1977) dorsal view (e) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki1976) dorsal view (f) Opelytus spinichelis Roewer 1938 (redrawn from Suzuki 1976) ventral view (g) Petrobunus torosus lateral view (h) ZalmoxidagibberaSuzuki 1969 dorsal view (i)Zalmoxida sp (MCZDNA102677) dorsolateral view (j)Metatithaeus rubidusSuzuki 1969 (redrawn fromSuzuki 1969)ventral view (k)Tithaeus kokutnusSuzuki 1985 (redrawn fromSuzuki 1985) ventral view (l)Tithaeus similisSuzuki 1985 (redrawn fromSuzuki 1985) ventralview (m)DongmoaoshimensisSuzuki 1964 (redrawn fromSuzuki 1964) ventral view (n)Bonea longipalpisSuzuki 1977 (redrawn fromSuzuki 1977) ventralview (o) Santobius annulipes Soslashrensen 1886 (redrawn from Kury and Machado 2009) ventral view (p) Lomanius longipalpus mindanaoensis Suzuki 1977(redrawn from Suzuki 1977) ventral view

Molecular phylogeny of Laniatores Invertebrate Systematics 131

dichotomy within Samooidea that corresponds to one groupof Neotropical and Pacific lineages and a second group ofAfrican lineages However as we were unable to samplestenostygnine (Neotropical) and Indo-Pacific Biantidae aswell as numerous monotypic genera dubiously placed inSamoidae biogeographical extrapolations for Samooidea aretenuous (discussed below)

The internal relationships of Samooidea suggest that themorphology of Samoidae may have evolved convergently Asthe African samoid is a juvenile (the same specimen previouslysequenced by Giribet et al 2010 now sequenced for additional28S rRNA and other genes) we cannot rule out the possibility ofa monophyletic Samoidae that includes African species (thespecimen in question could be a juvenile biantid) In any casethe paraphyly of Stygnommatidae and putative polyphyly ofSamoidae strongly advocate systematic revision of samooidfamilies as currently defined corroborating hypotheses of non-monophyly based on morphology (Peacuterez Gonzaacutelez 2007 PeacuterezGonzaacutelez and Kury 2007) Our sampling of these families isinsufficient to advocate specific taxonomic action but an ongoing

study of samooidean systematics will shed more light on thevalidity of constituent families (A Peacuterez Gonzaacutelez work inprogress)

Biogeography of Zalmoxoidea and Samooidea

While most superfamilies of Grassatores are restricted to aspecific part of the tropics (eg Neotropics South-east Asia)two are distributed in multiple biogeographical provincesSamooidea occurs in the Neotropics and Afrotropics withquestionable records from South-east Asia Zalmoxoidea isconcentrated in the Neotropics with the exception of oneIndo-Pacific lineage of Zalmoxidae (represented here byZalmoxis sp) The ages and distributions of Samooidea andZalmoxoidea suggest that their biogeography was influencedby the fragmentation of West Tropical Gondwana ndash causingthe former to diverge basally throughout West TropicalGondwanan terranes and the latter to become isolated to theNeotropics (with possible subsequent dispersal)

Fig 20 Ancestral range reconstructions for Samooidea +Zalmoxoidea inferred by Lagrange using stratified models corresponding to two vicariant events(indicated by dotted lines) Coloured squares at terminals indicate ranges occupied by sampled species Coloured squares on nodes indicate ranges reconstructedfor hypothetical ancestors Numbers on nodes indicate relative probability of ranges reconstructed

Fig 21 Best hypothesis of Laniatores relationships based on all available evidence Bracketed nodes indicate non-monophyletic entities Dashed line indicatesambiguity in the placement of Sandokanidae (alternatively placed as shown or as sister to Podoctidae) Exemplars of Laniatores diversity are Synthetonychiaoliveae (Synthetonychiidae) Equitius doriae (Triaenonychidae) Hadziana clavigera (Travuniidae) Erebomaster flavescens flavescens (Cladonychiidae)Scotolemon lespesi (Phalangodidae) Palaeoncopus gunung (Sandokanidae) Santobius sp (Podoctidae) Tithaeus sp (Tithaeidae) Petrobunus spinifer(Petrobunidae) Alloepedanus sp (Epedanidae) Hoplobunus sp (Stygnopsidae) Torreana spinata (Agoristenidae) Stygnoplus clavotibialis (Stygnidae)Metalibitia paraguayensis (Cosmetidae)Acutisoma longipes (Gonyleptidae)Conommaoedipus (Pyramidopsgroup)Mysorea thaiensis (Assamiidae)Lacurbssp (Biantidae) Stygnomma sp (Stygnommatidae) Badessa sp (Samoidae) Guasinia sp (Guasiniidae) Icaleptes sp (Icaleptidae) Fissiphallius chicoi(Fissiphalliidae) Zalmoxis sp (Zalmoxidae) Kimula goodnightiorum (Kimulidae)

132 Invertebrate Systematics P P Sharma and G Giribet

Molecular phylogeny of Laniatores Invertebrate Systematics 133

To test this hypothesis we conducted likelihood analysisof range evolution using the program Lagrange (Ree et al2005 Ree and Smith 2008) for the clade (Zalmoxoidea +Samooidea) The stratified analysis resulted in a globalmaximum likelihood of ndashlnL= 1556 outperforming anunconstrained analysis that did not include any dispersalconstraints (ndashlnL= 1676) Likelihood analysis of rangeoptimisation (Fig 20) indicates that the ancestral range ofSamooidea includes both the Afrotropics and the Neotropics(relative probability pr = 1000) but a subsequent split occursbetween an African lineage (pr = 1000) and a NeotropicalIndo-Pacific lineage with a Neotropical ancestral range (pr = 0986)Samoidea of the Indo-Pacific occur on young oceanic islands(eg Fiji Samoa) indicating recent transoceanic dispersal fromthe Neotropics

Ancestral range reconstructions for Samooidea are allconsistent with estimated divergence times for these clades(diversification of Samooidea predates the rifting of WestAfrica from northern South America) favouring an underlyingvicariant process for the basal topology with subsequent recentdispersal events However these results are contingent upon thepresent sampling which does not include all samooid lineages(eg stenostygnine Biantidae) but basal range reconstructionsare likely unaffected (eg Stenostygninae is exclusivelyNeotropical)

In contrast the ancestor of Zalmoxoidea is reconstructedas singularly Neotropical (pr = 0996) This is consistent withisolation of a zalmoxoid ancestor to Amazonia which thenradiated ~191Mya Subsequent ancestral ranges are alsoreconstructed as Neotropical with high relative probabilityHowever the ancestral range of the clade (Icaleptidae +Fissiphalliidae + Zalmoxidae) is ambiguously reconstructedas either Neotropical (pr = 0935) or Neotropical + Indo-Pacific(pr = 0064) as is the split between Fissiphalliidae andZalmoxidae (Neotropical pr = 0856 Neotropical + Indo-Pacific pr = 0141)

These results suggest that the Indo-Pacific lineage ofZalmoxidae which split from Neotropical Zalmoxidae ~83Myais likely the result of long-distance dispersal from the NeotropicsHowever due to the persistence of transantarctic connectionsbetween the Australian plate and temperate South America untilthe Tertiary a competing vicariant scenario cannot be ruled outwithout densely sampling zalmoxid diversity The biogeographyof Zalmoxidae is presently being explored in greater detail in aseparate study (P P Sharma unpubl data)

Finally the ancestral range of (Samooidea + Zalmoxoidea)includes both Africa and the Neotropics (pr = 0957) consistentwith a tropical West Gondwanan ancestor This resultlends circumstantial evidence to a sister relationship of theAfrotropical families (Assamiidae + Pyramidopidae) and theclade (Samooidea + Zalmoxoidea) recovered in all analyses

The diversification of Grassatores

While numerous interfamilial relationships are supported inthis study particularly among gonyleptoid and zalmoxoidfamilies some relationships between superfamilies ofGrassatores are not supported and are contingent upon

analytical treatments namely the deployment of substitutionmodels and data partitioning (Fig 21) The cause of thisinstability could be related to insufficient data particularly inthe EF-1a partition (the length of an intron which can exceed400 bp in some taxa makes this gene particularly difficult toamplify) However examination of clade divergence timessuggests that rapid diversification of Grassatores lineagescould in part augment phylogenetic uncertainty in basal partsof the topology

The split between Phalangodidae and the remainingGrassatores is estimated to have occurred ~302Mya but aseries of divergences resulted in the origin of all superfamiliallineages between 232 and 271Mya Relative to the estimatedage of Laniatores (348Mya) this 39-million-year period isremarkably narrow and inherently problematic as the amountof phylogenetic signal for a given stem subtending a node isdirectly proportional to the amount of time that the stem inquestion spans (Lanyon 1988 Rokas and Carroll 2006) Thesmall internal edge lengths of the stems corresponding to basaldivergences of non-phalangodid Grassatores (Figs 15 16)combined with the ancient age of lineages derived from thesedivergences result in relationships that are difficult to estimatewithout a large amount of sequence data andor the inclusion ofdata that are less afflicted by homoplasy (because longer edgelengths imply more indel and substitution events on edges)(Whitfield and Lockhart 2007)

We additionally observe that the origins of most Grassatoressuperfamilies occur in the wake of the end-Permian massextinction (~254Mya) Rapid radiation in the wake of a massextinction has occurred in multiple metazoan lineagesthe putative result of relaxed selection and opening ofpreviously occupied ecological niche space (Labandeira andSepkoski 1993 Sahney and Benton 2008) The rapiddiversification of early Grassatores lineages could be anexample of this phenomenon but this hypothesis is difficult totest in the absence of Mesozoic Grassatores fossils (reviewed byDunlop 2007)

Finally we observe that contrary to traditional hierarchiesproposed for Laniatores many of the clades recovered in ouranalyses correspond to geographical regions particularly in thecase of Grassatores For example the southern hemispheretriaenonychids are restricted to temperate Gondwananlandmasses Gonyleptoidea and their sister group Stygnopsidaeform a Neotropical (AmazonianMesoamericanAntillean) cladethat excludes Assamiidae which has been hypothesised to be amember of a broader Gonyleptoidea (Kury and Cokendolpher2000 Mendes and Kury 2007) In our analyses Assamiidae isin fact a member of a largely Afrotropical clade together withthe Pyramidopidae South-east Asian families usually form oneclade (at most two) albeit with limited support Samooideafamilies are divided into two clusters African and NeotropicalWith one exception (described above) Zalmoxoidea is restrictedto the Neotropics The ages that we estimate for Laniatoresradiations are consistent with ancient diversification beforethe fragmentation of Pangaea An ancient diversification inconjunction with the climatic stability of the tropics may in partexplain the comparatively greater diversity of the armouredharvestmen with respect to the other Opiliones suborders

134 Invertebrate Systematics P P Sharma and G Giribet

Acknowledgements

Weare indebted toPeter J Schwendingerwho collected andprovidedmost ofthe material for study from South-east Asia Some Thai and most of theNeotropical Laniatores were obtained from the TIGER (Thailand InventoryGroup for Entomological Research) and LLAMA (Leaf Litter Arthropods ofMeso-America) projects toC Lienhard and J Longino respectivelyMaterialfrom Madagascar was generously contributed by Charles Griswold and theCalifornia Academy of Sciences Jesse Czekanski-Moir in conjunction withthe Belau NationalMuseum contributed elusive specimens from Palau AbelPeacuterezGonzaacutelez identifiedmanyNeotropical species included in the study andcontributed specimens fromCubaRicardoPinto-da-Rocha identified someofthe live photographed animals from the Neotropics Discussions with RonaldMClouseAbelPeacuterezGonzaacutelezAdrianoBKury andCarlosEPrieto refinedmanyof the ideas presentedhereTwoanonymous reviewers and the associateeditor provided comments that helped to improve an earlier version ofthis manuscript Laura Leibensperger sorted and accessioned TIGER andLLAMA material as well as MCZ type material Adam Graham and theCenter forNanoscaleStudies atHarvardUniversityprovided support forSEMwork Collecting efforts in New Caledonia were greatly facilitated by theguidance of Herveacute Jourdan (Institut de rechercheacute pour de developpementNoumea) and his teammembers Collecting efforts in Fiji weremade possibleby Marika Tuiwawa (University of the South Pacific Suva) and his teammembers Hilda Waqa and Tokasaya lsquoToxrsquo Cakacaka we are especiallygrateful to Tox for his good company during fieldwork and to his familyfor graciously enabling a visit toOvalau SuzieYee Shawprovided invaluablelogistical support in Fiji and her sons Colin and Joshua Yee Shaw assistedwith sorting Fijian material Fieldwork in Indonesia and West Africa wassupported by two MCZ Putnam Expedition Grants awarded to RonaldM Clouse and G G (2006) and to G G (2009) respectively Fieldworkin New Caledonia was supported by the Goelet award the Kalathia FamilyTrust and the Explorers Club awarded to P P S in 2006 Fieldwork in Fijiand in Palauwas supported by twoMCZPutnamExpeditionGrants awardedto P P S (2008) and to Ronald M Clouse and P P S (2010) respectivelyP P S was supported by a Faculty of Arts and Sciences Graduate Fellowshipfrom Harvard University

References

Castresana J (2000) Selectionof conservedblocks frommultiple alignmentsfor their use in phylogenetic analysis Molecular Biology and Evolution17 540ndash552

Colgan D J McLauchlan A Wislon G D F Livingston S MacaranasJ Edgecombe G D Cassis G and Gray M R (1998) Molecularphylogenetics of the Arthropoda relationships based on histone H3and U2 snRNA DNA sequences Australian Journal of Zoology 46419ndash437 doi101071ZO98048

DaSilva M B and Gnaspini P (2009) A systematic revision ofGoniosomatinae (Arachnida Opiliones Gonyleptidae) with a cladisticanalysis and biogeographical notes Invertebrate Systematics 23530ndash624 doi101071IS09022

DaSilva M B and Pinto-da-Rocha R (2010) Systematic review andcladistic analysis of the Hernandariinae (Opiliones Gonyleptidae)Zoologia 27 577ndash642

Derkarabetian S Steinmann D B and Hedin M (2010) Repeatedand time-correlated morphological convergence in cave-dwellingharvestmen (Opiliones Laniatores) from montane western NorthAmerica PLoS ONE 5 e10388 doi101371journalpone0010388

Drummond A J and Rambaut A (2007) BEAST Bayesian evolutionaryanalysis by sampling trees BMC Evolutionary Biology 7 214doi1011861471-2148-7-214

Drummond A J Ho S Y W Phillips M J and Rambaut A (2006)Relaxed phylogenetics and dating with confidence PLoS Biology 4 e88doi101371journalpbio0040088

Dunlop J A (2007) Paleontology In lsquoHarvestmen The Biology ofOpilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 247ndash265 (Harvard University Press Cambridge MA USA)

Dunlop J A and Anderson L I (2005) A fossil harvestman (ArachnidaOpiliones) from theMississippian of East Kirkton Scotland The Journalof Arachnology 33 482ndash489 doi10163604-791

Dunlop JAAndersonL IKerpH andHassH (2003)Preservedorgansof Devonian harvestmen Nature 425 916 doi101038425916a

Dunlop J A Anderson L I Kerp H and Hass H (2004) A harvestman(Arachnida Opiliones) from the Early Devonian Rhynie chertsAberdeenshire Scotland Transactions of the Royal Society ofEdinburgh Earth Sciences 94 341ndash354

Edgar R C (2004) MUSCLE multiple sequence alignment with highaccuracy and high throughput Nucleic Acids Research 32 1792ndash1797doi101093nargkh340

Edgecombe G D and Giribet G (2006) A century laterndash a total evidencere-evaluation of scutigeromorph centipedes (Myriapoda Chilopoda)Invertebrate Systematics 20 503ndash525 doi101071IS05044

Edgecombe G D Giribet G and Wheeler W C (2002) Phylogeny ofHenicopidae (Chilopoda Lithobiomorpha) a combined analysis ofmorphology and five molecular loci Systematic Entomology 2731ndash64 doi101046j0307-6970200100163x

FolmerOBlackMHoehWLutzR andVrijenhoekRC (1994)DNAprimers for amplification ofmitochondrial cytochrome c oxidase subunit Ifrom diverse metazoan invertebrates Molecular Marine Biology andBiotechnology 3 294ndash299

Forster R R (1954) The New Zealand harvestmen (sub-order Laniatores)Canterbury Museum Bulletin 2 1ndash329

Giribet G and Kury A B (2007) Phylogeny and biogeography InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 62ndash87 (Harvard University PressCambridge MA USA)

Giribet G Carranza S Baguntildeagrave J Riutort M and Ribera C (1996) Firstmolecular evidence for the existence of a Tardigrada +Arthropoda cladeMolecular Biology and Evolution 13 76ndash84

Giribet G Rambla M Carranza S Baguntildeagrave J Riutort M and Ribera C(1999) Phylogeny of the arachnid order Opiliones (Arthropoda)inferred from a combined approach of complete 18S and partial 28Sribosomal DNA sequences and morphology Molecular Phylogeneticsand Evolution 11 296ndash307 doi101006mpev19980583

Giribet G Edgecombe G D Wheeler W C and Babbitt C (2002)Phylogeny and systematic position of Opiliones a combined analysis ofchelicerate relationships using morphological and molecular dataCladistics 18 5ndash70

Giribet G Vogt L PeacuterezGonzaacutelez A Sharma P andKury A B (2010)A multilocus approach to harvestman (Arachnida Opiliones) phylogenywith emphasis on biogeography and the systematics of LaniatoresCladistics 26 408ndash437

Hara M R Gnaspini P and Machado G (2003) Male egg guardingbehavior in the Neotropical harvestman Ampheres leucopheus (Mello-Leitatildeo 1922) (Opiliones Gonyleptidae) The Journal of Arachnology 31441ndash444 doi101636S02-32

Hedin M Derkarabetian S McCormack M and Richart C (2010) Thephylogenetic utility of the nuclear protein-encoding gene EF-1a forresolving recent divergences in Opiliones emphasizing intronevolution The Journal of Arachnology 38 9ndash20 doi101636HA09-491

Huelsenbeck J P and Ronquist F (2005) Bayesian analyses of molecularevolution using MrBayes In lsquoStatistical Methods in MolecularEvolutionrsquo (Ed R Nielsen) (Springer New York)

HunterRK ProundDNBurns JA Tibbetts JA andTownsendVR(2007) Parental care in the Neotropical harvestman Phareicranauscalcariferus (Opiliones Cranaidae) The Journal of Arachnology 35199ndash201 doi101636ST06-181

Molecular phylogeny of Laniatores Invertebrate Systematics 135

Kocher T D Thoma W K Meyer A Edwards S V Paumlaumlbo SVillablanca F X and Wilson A C (1989) Dynamics ofmitochondrial DNA evolution in animals amplification andsequencing with conserved primers Proceedings of the NationalAcademy of Sciences of the United States of America 86 6196ndash6200doi101073pnas86166196

Kury A B (1993) Anaacutelise filogeneacutetica de Gonyleptoidea (ArachnidaOpiliones Laniatores) PhD Thesis Universidade de Satildeo Paulo SatildeoPaulo Brazil

Kury A B (2003) Annotated catalogue of the Laniatores of the NewWorld (Arachnida Opiliones) Revista Ibeacuterica de AracnologiacuteaVolumen Especial Monograacutefico 1 1ndash337

Kury A B (2006) Checklist of valid genera of Opiliones of theWorld Museu NacionalUFRJ Available from httpwwwmuseunacionalufrjbrmndiAracnologiachecklaniatorhtm [Accessed1 February 2011]

Kury A B (2007) Podoctidae Roewer 1912 In lsquoHarvestmen The Biologyof Opilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 221ndash224 (Harvard University Press Cambridge MA USA)

Kury A B and Cokendolpher J C (2000) Opiliones In lsquoBiodiversidadTaxonomiacutea y Biogeografiacutea de Artoacutepodos de Meacutexico Hacia una Sintesisde su Conocimientorsquo vol 2 (Eds J E Llorente E Gonzaacutelez andN Papavero) pp 137ndash157 (Universidad Nacional Autoacutenoma deMexico Meacutexico DF Mexico)

Kury A B and Machado G (2009) Notes on Santobius from Vanuatu andFiji and the status of the eastern Melanesian Ibalonius (ArachnidaOpiliones Podoctidae) Zoological Studies 48 524ndash538

Kury A B and Peacuterez G A (2002) A new family of Laniatores fromnorthwestern South America (Arachnida Opiliones) Revista Ibeacuterica deAracnologiacutea 6 3ndash11

Labandeira C C and Sepkoski J J (1993) Insect diversity in the fossilrecord Science 261 310ndash315 doi101126science11536548

Lanyon S M (1988) The stochastic mode of molecular evolutionwhat consequences for systematic investigations The Auk 105565ndash573

Lian W-G Zhu M-S and Kury A B (2008) A new species of the genusTithaeus from China (Arachnida Laniatores Epedanidae) Zootaxa1841 53ndash60

Machado G Requena G S Buzatto B A Osses F and Rossetto L M(2004) Five new cases of paternal care in harvestmen (ArachnidaOpiliones) implications for the evolution of male guarding in theNeotropical family Gonyleptidae Sociobiology 44 577ndash598

Martens J (1976) Genitalmorphologie System und Phylogenie derWeberknechte (Arachnida Opiliones) Entomologica GermanicaZeitschrift fuumlr das Gesamtgebiet der Wissenschaftlichen Entomologie3 51ndash68

Martens J (1980) Versuch eines phylogenetischen Systems der OpilionesIn lsquoProceedings 8th International Congress of Arachnology ViennaVerhandlungenrsquo (Ed J Gruber) pp 355ndash360 (Vienna Austria)

Martens J (1986) Die Grossgliederung der Opiliones und die Evolutionder Ordnung (Arachnida) Actas del X Congreso Internacional deAracnologiacutea Jaca 1 289ndash310

Martens J (1993) Further cases of paternal care in Opiliones (Arachnida)Tropical Zoology 6 97ndash107

Martens J and Schwendinger P S (1998) A taxonomic revision ofthe family Oncopodidae I New genera and new species of GnomulusThorell (Opiliones Laniatores) Revue Suisse de Zoologie 105 499ndash555

Martens J Hoheisel U and Goumltze M (1981) Vergleichende Anatomieder Legeroumlhren der Opiliones als Beitrag zur Phylogenie der Ordnung(Arachnida) Zoologische Jahrbucher Abteilung fur Anatomie undOntogenie der Tiere 105 13ndash76

Mello-Leitatildeo C F (1949) Famiacutelias subfamiacutelia espeacutecies e gecircneros novos deopiliotildees e notas de sinoniacutemia Boletim do Museu Nacional Nova SeacuterieZoologia Rio de Janeiro 94 1ndash33

Mendes A C and Kury A B (2007) Stygnopsidae Soslashrensen 1932 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 232ndash234 (Harvard University PressCambridge MA USA)

Mendes A C and Kury A B (2008) Intercontinental Triaenonychidae ndashthe case of Ceratomontia (Opiliones Insidiatores) The Journal ofArachnology 36 273ndash279 doi101636CH07-931

Murphree C S (1988) Morphology of the dorsal integument of tenopilionid species (Arachnida Opiliones) The Journal of Arachnology16 237ndash252

Park J K andOacuteFoighilD (2000) Sphaeriid and corbiculid clams representseparate heterodont bivalve radiations into freshwater environmentsMolecular Phylogenetics and Evolution 14 75ndash88 doi101006mpev19990691

Peacuterez Gonzaacutelez A (2006) lsquoRevisatildeo Sistemaacutetica e Anaacutelise Filogeneacutetica deStygnommatidae (Arachnida Opiliones Laniatores)rsquo (Museu NacionalUniversidade Federal de Rio de Janeiro Rio de Janeiro Brazil)

Peacuterez Gonzaacutelez A (2007) Stygnommatidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 229ndash232 (Harvard University PressCambridge MA USA)

Peacuterez Gonzaacutelez A (2011) New familial assignment for two harvestmanspecies of the infraorder Grassatores (Arachnida Opiliones Laniatores)Zootaxa 2757 24ndash28

Peacuterez Gonzaacutelez A and Kury A B (2007) Samoidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 224ndash226 (Harvard University PressCambridge MA USA)

Pineau P Henry M Suspegravene R Marchio A Dettai A Debruyne RPetit T Leacutecu A Moisson P Dejean A Wain-Hobson S andVartanian J-P (2005) A universal primer set for PCR amplificationof nuclear histone H4 genes from all animal species Molecular Biologyand Evolution 22 582ndash588 doi101093molbevmsi053

Pinto-da-Rocha R (1997) Systematic review of the Neotropical familyStygnidae (Opiliones Laniatores Gonyleptoidea) Arquivos deZoologia 33 163ndash342

Pinto-da-Rocha R and Kury A B (2003a) Phylogenetic analysis ofSantinezia with description of five new species (Opiliones LaniatoresCranaidae) The Journal of Arachnology 31 173ndash208 doi1016360161-8202(2003)031[0173PAOSWD]20CO2

Pinto-da-Rocha R and Kury A B (2003b) Third species of Guasiniidae(Opiliones Laniatores) with comments on familial relationships TheJournal of Arachnology 31 394ndash399 doi101636H02-59

Pinto-da-Rocha R and Kury A B (2007) Agoristenidae Silhavy 1973 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 171ndash173 (Harvard University PressCambridge MA USA)

Posada D (2005) Modeltest 37 Program and documentation available athttpdarwinuvigoes [Accessed 28 May 2011]

Posada D and Buckley T (2004) Model selection and model averaging inphylogenetics advantages of Akaike information criterion and Bayesianapproaches over likelihood ratio tests Systematic Biology 53 793ndash808doi10108010635150490522304

Posada D and Crandall K A (1998) Modeltest testing the model ofDNA substitution Bioinformatics (Oxford England) 14 817ndash818doi101093bioinformatics149817

Prendini L Weygoldt P and Wheeler W C (2005) Systematics of theDamon variegates group of African whip spiders (ChelicerataAmblypygi) evidence from behaviour morphology and DNAOrganisms Diversity amp Evolution 5 203ndash236 doi101016jode200412004

Rambaut A E (1996) Se-Al sequence alignment editor University ofOxford UK Program and documentation available at httptreebioedacuksoftwarefigtree [Accessed 21 December 2009]

136 Invertebrate Systematics P P Sharma and G Giribet

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 27: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

dichotomy within Samooidea that corresponds to one groupof Neotropical and Pacific lineages and a second group ofAfrican lineages However as we were unable to samplestenostygnine (Neotropical) and Indo-Pacific Biantidae aswell as numerous monotypic genera dubiously placed inSamoidae biogeographical extrapolations for Samooidea aretenuous (discussed below)

The internal relationships of Samooidea suggest that themorphology of Samoidae may have evolved convergently Asthe African samoid is a juvenile (the same specimen previouslysequenced by Giribet et al 2010 now sequenced for additional28S rRNA and other genes) we cannot rule out the possibility ofa monophyletic Samoidae that includes African species (thespecimen in question could be a juvenile biantid) In any casethe paraphyly of Stygnommatidae and putative polyphyly ofSamoidae strongly advocate systematic revision of samooidfamilies as currently defined corroborating hypotheses of non-monophyly based on morphology (Peacuterez Gonzaacutelez 2007 PeacuterezGonzaacutelez and Kury 2007) Our sampling of these families isinsufficient to advocate specific taxonomic action but an ongoing

study of samooidean systematics will shed more light on thevalidity of constituent families (A Peacuterez Gonzaacutelez work inprogress)

Biogeography of Zalmoxoidea and Samooidea

While most superfamilies of Grassatores are restricted to aspecific part of the tropics (eg Neotropics South-east Asia)two are distributed in multiple biogeographical provincesSamooidea occurs in the Neotropics and Afrotropics withquestionable records from South-east Asia Zalmoxoidea isconcentrated in the Neotropics with the exception of oneIndo-Pacific lineage of Zalmoxidae (represented here byZalmoxis sp) The ages and distributions of Samooidea andZalmoxoidea suggest that their biogeography was influencedby the fragmentation of West Tropical Gondwana ndash causingthe former to diverge basally throughout West TropicalGondwanan terranes and the latter to become isolated to theNeotropics (with possible subsequent dispersal)

Fig 20 Ancestral range reconstructions for Samooidea +Zalmoxoidea inferred by Lagrange using stratified models corresponding to two vicariant events(indicated by dotted lines) Coloured squares at terminals indicate ranges occupied by sampled species Coloured squares on nodes indicate ranges reconstructedfor hypothetical ancestors Numbers on nodes indicate relative probability of ranges reconstructed

Fig 21 Best hypothesis of Laniatores relationships based on all available evidence Bracketed nodes indicate non-monophyletic entities Dashed line indicatesambiguity in the placement of Sandokanidae (alternatively placed as shown or as sister to Podoctidae) Exemplars of Laniatores diversity are Synthetonychiaoliveae (Synthetonychiidae) Equitius doriae (Triaenonychidae) Hadziana clavigera (Travuniidae) Erebomaster flavescens flavescens (Cladonychiidae)Scotolemon lespesi (Phalangodidae) Palaeoncopus gunung (Sandokanidae) Santobius sp (Podoctidae) Tithaeus sp (Tithaeidae) Petrobunus spinifer(Petrobunidae) Alloepedanus sp (Epedanidae) Hoplobunus sp (Stygnopsidae) Torreana spinata (Agoristenidae) Stygnoplus clavotibialis (Stygnidae)Metalibitia paraguayensis (Cosmetidae)Acutisoma longipes (Gonyleptidae)Conommaoedipus (Pyramidopsgroup)Mysorea thaiensis (Assamiidae)Lacurbssp (Biantidae) Stygnomma sp (Stygnommatidae) Badessa sp (Samoidae) Guasinia sp (Guasiniidae) Icaleptes sp (Icaleptidae) Fissiphallius chicoi(Fissiphalliidae) Zalmoxis sp (Zalmoxidae) Kimula goodnightiorum (Kimulidae)

132 Invertebrate Systematics P P Sharma and G Giribet

Molecular phylogeny of Laniatores Invertebrate Systematics 133

To test this hypothesis we conducted likelihood analysisof range evolution using the program Lagrange (Ree et al2005 Ree and Smith 2008) for the clade (Zalmoxoidea +Samooidea) The stratified analysis resulted in a globalmaximum likelihood of ndashlnL= 1556 outperforming anunconstrained analysis that did not include any dispersalconstraints (ndashlnL= 1676) Likelihood analysis of rangeoptimisation (Fig 20) indicates that the ancestral range ofSamooidea includes both the Afrotropics and the Neotropics(relative probability pr = 1000) but a subsequent split occursbetween an African lineage (pr = 1000) and a NeotropicalIndo-Pacific lineage with a Neotropical ancestral range (pr = 0986)Samoidea of the Indo-Pacific occur on young oceanic islands(eg Fiji Samoa) indicating recent transoceanic dispersal fromthe Neotropics

Ancestral range reconstructions for Samooidea are allconsistent with estimated divergence times for these clades(diversification of Samooidea predates the rifting of WestAfrica from northern South America) favouring an underlyingvicariant process for the basal topology with subsequent recentdispersal events However these results are contingent upon thepresent sampling which does not include all samooid lineages(eg stenostygnine Biantidae) but basal range reconstructionsare likely unaffected (eg Stenostygninae is exclusivelyNeotropical)

In contrast the ancestor of Zalmoxoidea is reconstructedas singularly Neotropical (pr = 0996) This is consistent withisolation of a zalmoxoid ancestor to Amazonia which thenradiated ~191Mya Subsequent ancestral ranges are alsoreconstructed as Neotropical with high relative probabilityHowever the ancestral range of the clade (Icaleptidae +Fissiphalliidae + Zalmoxidae) is ambiguously reconstructedas either Neotropical (pr = 0935) or Neotropical + Indo-Pacific(pr = 0064) as is the split between Fissiphalliidae andZalmoxidae (Neotropical pr = 0856 Neotropical + Indo-Pacific pr = 0141)

These results suggest that the Indo-Pacific lineage ofZalmoxidae which split from Neotropical Zalmoxidae ~83Myais likely the result of long-distance dispersal from the NeotropicsHowever due to the persistence of transantarctic connectionsbetween the Australian plate and temperate South America untilthe Tertiary a competing vicariant scenario cannot be ruled outwithout densely sampling zalmoxid diversity The biogeographyof Zalmoxidae is presently being explored in greater detail in aseparate study (P P Sharma unpubl data)

Finally the ancestral range of (Samooidea + Zalmoxoidea)includes both Africa and the Neotropics (pr = 0957) consistentwith a tropical West Gondwanan ancestor This resultlends circumstantial evidence to a sister relationship of theAfrotropical families (Assamiidae + Pyramidopidae) and theclade (Samooidea + Zalmoxoidea) recovered in all analyses

The diversification of Grassatores

While numerous interfamilial relationships are supported inthis study particularly among gonyleptoid and zalmoxoidfamilies some relationships between superfamilies ofGrassatores are not supported and are contingent upon

analytical treatments namely the deployment of substitutionmodels and data partitioning (Fig 21) The cause of thisinstability could be related to insufficient data particularly inthe EF-1a partition (the length of an intron which can exceed400 bp in some taxa makes this gene particularly difficult toamplify) However examination of clade divergence timessuggests that rapid diversification of Grassatores lineagescould in part augment phylogenetic uncertainty in basal partsof the topology

The split between Phalangodidae and the remainingGrassatores is estimated to have occurred ~302Mya but aseries of divergences resulted in the origin of all superfamiliallineages between 232 and 271Mya Relative to the estimatedage of Laniatores (348Mya) this 39-million-year period isremarkably narrow and inherently problematic as the amountof phylogenetic signal for a given stem subtending a node isdirectly proportional to the amount of time that the stem inquestion spans (Lanyon 1988 Rokas and Carroll 2006) Thesmall internal edge lengths of the stems corresponding to basaldivergences of non-phalangodid Grassatores (Figs 15 16)combined with the ancient age of lineages derived from thesedivergences result in relationships that are difficult to estimatewithout a large amount of sequence data andor the inclusion ofdata that are less afflicted by homoplasy (because longer edgelengths imply more indel and substitution events on edges)(Whitfield and Lockhart 2007)

We additionally observe that the origins of most Grassatoressuperfamilies occur in the wake of the end-Permian massextinction (~254Mya) Rapid radiation in the wake of a massextinction has occurred in multiple metazoan lineagesthe putative result of relaxed selection and opening ofpreviously occupied ecological niche space (Labandeira andSepkoski 1993 Sahney and Benton 2008) The rapiddiversification of early Grassatores lineages could be anexample of this phenomenon but this hypothesis is difficult totest in the absence of Mesozoic Grassatores fossils (reviewed byDunlop 2007)

Finally we observe that contrary to traditional hierarchiesproposed for Laniatores many of the clades recovered in ouranalyses correspond to geographical regions particularly in thecase of Grassatores For example the southern hemispheretriaenonychids are restricted to temperate Gondwananlandmasses Gonyleptoidea and their sister group Stygnopsidaeform a Neotropical (AmazonianMesoamericanAntillean) cladethat excludes Assamiidae which has been hypothesised to be amember of a broader Gonyleptoidea (Kury and Cokendolpher2000 Mendes and Kury 2007) In our analyses Assamiidae isin fact a member of a largely Afrotropical clade together withthe Pyramidopidae South-east Asian families usually form oneclade (at most two) albeit with limited support Samooideafamilies are divided into two clusters African and NeotropicalWith one exception (described above) Zalmoxoidea is restrictedto the Neotropics The ages that we estimate for Laniatoresradiations are consistent with ancient diversification beforethe fragmentation of Pangaea An ancient diversification inconjunction with the climatic stability of the tropics may in partexplain the comparatively greater diversity of the armouredharvestmen with respect to the other Opiliones suborders

134 Invertebrate Systematics P P Sharma and G Giribet

Acknowledgements

Weare indebted toPeter J Schwendingerwho collected andprovidedmost ofthe material for study from South-east Asia Some Thai and most of theNeotropical Laniatores were obtained from the TIGER (Thailand InventoryGroup for Entomological Research) and LLAMA (Leaf Litter Arthropods ofMeso-America) projects toC Lienhard and J Longino respectivelyMaterialfrom Madagascar was generously contributed by Charles Griswold and theCalifornia Academy of Sciences Jesse Czekanski-Moir in conjunction withthe Belau NationalMuseum contributed elusive specimens from Palau AbelPeacuterezGonzaacutelez identifiedmanyNeotropical species included in the study andcontributed specimens fromCubaRicardoPinto-da-Rocha identified someofthe live photographed animals from the Neotropics Discussions with RonaldMClouseAbelPeacuterezGonzaacutelezAdrianoBKury andCarlosEPrieto refinedmanyof the ideas presentedhereTwoanonymous reviewers and the associateeditor provided comments that helped to improve an earlier version ofthis manuscript Laura Leibensperger sorted and accessioned TIGER andLLAMA material as well as MCZ type material Adam Graham and theCenter forNanoscaleStudies atHarvardUniversityprovided support forSEMwork Collecting efforts in New Caledonia were greatly facilitated by theguidance of Herveacute Jourdan (Institut de rechercheacute pour de developpementNoumea) and his teammembers Collecting efforts in Fiji weremade possibleby Marika Tuiwawa (University of the South Pacific Suva) and his teammembers Hilda Waqa and Tokasaya lsquoToxrsquo Cakacaka we are especiallygrateful to Tox for his good company during fieldwork and to his familyfor graciously enabling a visit toOvalau SuzieYee Shawprovided invaluablelogistical support in Fiji and her sons Colin and Joshua Yee Shaw assistedwith sorting Fijian material Fieldwork in Indonesia and West Africa wassupported by two MCZ Putnam Expedition Grants awarded to RonaldM Clouse and G G (2006) and to G G (2009) respectively Fieldworkin New Caledonia was supported by the Goelet award the Kalathia FamilyTrust and the Explorers Club awarded to P P S in 2006 Fieldwork in Fijiand in Palauwas supported by twoMCZPutnamExpeditionGrants awardedto P P S (2008) and to Ronald M Clouse and P P S (2010) respectivelyP P S was supported by a Faculty of Arts and Sciences Graduate Fellowshipfrom Harvard University

References

Castresana J (2000) Selectionof conservedblocks frommultiple alignmentsfor their use in phylogenetic analysis Molecular Biology and Evolution17 540ndash552

Colgan D J McLauchlan A Wislon G D F Livingston S MacaranasJ Edgecombe G D Cassis G and Gray M R (1998) Molecularphylogenetics of the Arthropoda relationships based on histone H3and U2 snRNA DNA sequences Australian Journal of Zoology 46419ndash437 doi101071ZO98048

DaSilva M B and Gnaspini P (2009) A systematic revision ofGoniosomatinae (Arachnida Opiliones Gonyleptidae) with a cladisticanalysis and biogeographical notes Invertebrate Systematics 23530ndash624 doi101071IS09022

DaSilva M B and Pinto-da-Rocha R (2010) Systematic review andcladistic analysis of the Hernandariinae (Opiliones Gonyleptidae)Zoologia 27 577ndash642

Derkarabetian S Steinmann D B and Hedin M (2010) Repeatedand time-correlated morphological convergence in cave-dwellingharvestmen (Opiliones Laniatores) from montane western NorthAmerica PLoS ONE 5 e10388 doi101371journalpone0010388

Drummond A J and Rambaut A (2007) BEAST Bayesian evolutionaryanalysis by sampling trees BMC Evolutionary Biology 7 214doi1011861471-2148-7-214

Drummond A J Ho S Y W Phillips M J and Rambaut A (2006)Relaxed phylogenetics and dating with confidence PLoS Biology 4 e88doi101371journalpbio0040088

Dunlop J A (2007) Paleontology In lsquoHarvestmen The Biology ofOpilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 247ndash265 (Harvard University Press Cambridge MA USA)

Dunlop J A and Anderson L I (2005) A fossil harvestman (ArachnidaOpiliones) from theMississippian of East Kirkton Scotland The Journalof Arachnology 33 482ndash489 doi10163604-791

Dunlop JAAndersonL IKerpH andHassH (2003)Preservedorgansof Devonian harvestmen Nature 425 916 doi101038425916a

Dunlop J A Anderson L I Kerp H and Hass H (2004) A harvestman(Arachnida Opiliones) from the Early Devonian Rhynie chertsAberdeenshire Scotland Transactions of the Royal Society ofEdinburgh Earth Sciences 94 341ndash354

Edgar R C (2004) MUSCLE multiple sequence alignment with highaccuracy and high throughput Nucleic Acids Research 32 1792ndash1797doi101093nargkh340

Edgecombe G D and Giribet G (2006) A century laterndash a total evidencere-evaluation of scutigeromorph centipedes (Myriapoda Chilopoda)Invertebrate Systematics 20 503ndash525 doi101071IS05044

Edgecombe G D Giribet G and Wheeler W C (2002) Phylogeny ofHenicopidae (Chilopoda Lithobiomorpha) a combined analysis ofmorphology and five molecular loci Systematic Entomology 2731ndash64 doi101046j0307-6970200100163x

FolmerOBlackMHoehWLutzR andVrijenhoekRC (1994)DNAprimers for amplification ofmitochondrial cytochrome c oxidase subunit Ifrom diverse metazoan invertebrates Molecular Marine Biology andBiotechnology 3 294ndash299

Forster R R (1954) The New Zealand harvestmen (sub-order Laniatores)Canterbury Museum Bulletin 2 1ndash329

Giribet G and Kury A B (2007) Phylogeny and biogeography InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 62ndash87 (Harvard University PressCambridge MA USA)

Giribet G Carranza S Baguntildeagrave J Riutort M and Ribera C (1996) Firstmolecular evidence for the existence of a Tardigrada +Arthropoda cladeMolecular Biology and Evolution 13 76ndash84

Giribet G Rambla M Carranza S Baguntildeagrave J Riutort M and Ribera C(1999) Phylogeny of the arachnid order Opiliones (Arthropoda)inferred from a combined approach of complete 18S and partial 28Sribosomal DNA sequences and morphology Molecular Phylogeneticsand Evolution 11 296ndash307 doi101006mpev19980583

Giribet G Edgecombe G D Wheeler W C and Babbitt C (2002)Phylogeny and systematic position of Opiliones a combined analysis ofchelicerate relationships using morphological and molecular dataCladistics 18 5ndash70

Giribet G Vogt L PeacuterezGonzaacutelez A Sharma P andKury A B (2010)A multilocus approach to harvestman (Arachnida Opiliones) phylogenywith emphasis on biogeography and the systematics of LaniatoresCladistics 26 408ndash437

Hara M R Gnaspini P and Machado G (2003) Male egg guardingbehavior in the Neotropical harvestman Ampheres leucopheus (Mello-Leitatildeo 1922) (Opiliones Gonyleptidae) The Journal of Arachnology 31441ndash444 doi101636S02-32

Hedin M Derkarabetian S McCormack M and Richart C (2010) Thephylogenetic utility of the nuclear protein-encoding gene EF-1a forresolving recent divergences in Opiliones emphasizing intronevolution The Journal of Arachnology 38 9ndash20 doi101636HA09-491

Huelsenbeck J P and Ronquist F (2005) Bayesian analyses of molecularevolution using MrBayes In lsquoStatistical Methods in MolecularEvolutionrsquo (Ed R Nielsen) (Springer New York)

HunterRK ProundDNBurns JA Tibbetts JA andTownsendVR(2007) Parental care in the Neotropical harvestman Phareicranauscalcariferus (Opiliones Cranaidae) The Journal of Arachnology 35199ndash201 doi101636ST06-181

Molecular phylogeny of Laniatores Invertebrate Systematics 135

Kocher T D Thoma W K Meyer A Edwards S V Paumlaumlbo SVillablanca F X and Wilson A C (1989) Dynamics ofmitochondrial DNA evolution in animals amplification andsequencing with conserved primers Proceedings of the NationalAcademy of Sciences of the United States of America 86 6196ndash6200doi101073pnas86166196

Kury A B (1993) Anaacutelise filogeneacutetica de Gonyleptoidea (ArachnidaOpiliones Laniatores) PhD Thesis Universidade de Satildeo Paulo SatildeoPaulo Brazil

Kury A B (2003) Annotated catalogue of the Laniatores of the NewWorld (Arachnida Opiliones) Revista Ibeacuterica de AracnologiacuteaVolumen Especial Monograacutefico 1 1ndash337

Kury A B (2006) Checklist of valid genera of Opiliones of theWorld Museu NacionalUFRJ Available from httpwwwmuseunacionalufrjbrmndiAracnologiachecklaniatorhtm [Accessed1 February 2011]

Kury A B (2007) Podoctidae Roewer 1912 In lsquoHarvestmen The Biologyof Opilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 221ndash224 (Harvard University Press Cambridge MA USA)

Kury A B and Cokendolpher J C (2000) Opiliones In lsquoBiodiversidadTaxonomiacutea y Biogeografiacutea de Artoacutepodos de Meacutexico Hacia una Sintesisde su Conocimientorsquo vol 2 (Eds J E Llorente E Gonzaacutelez andN Papavero) pp 137ndash157 (Universidad Nacional Autoacutenoma deMexico Meacutexico DF Mexico)

Kury A B and Machado G (2009) Notes on Santobius from Vanuatu andFiji and the status of the eastern Melanesian Ibalonius (ArachnidaOpiliones Podoctidae) Zoological Studies 48 524ndash538

Kury A B and Peacuterez G A (2002) A new family of Laniatores fromnorthwestern South America (Arachnida Opiliones) Revista Ibeacuterica deAracnologiacutea 6 3ndash11

Labandeira C C and Sepkoski J J (1993) Insect diversity in the fossilrecord Science 261 310ndash315 doi101126science11536548

Lanyon S M (1988) The stochastic mode of molecular evolutionwhat consequences for systematic investigations The Auk 105565ndash573

Lian W-G Zhu M-S and Kury A B (2008) A new species of the genusTithaeus from China (Arachnida Laniatores Epedanidae) Zootaxa1841 53ndash60

Machado G Requena G S Buzatto B A Osses F and Rossetto L M(2004) Five new cases of paternal care in harvestmen (ArachnidaOpiliones) implications for the evolution of male guarding in theNeotropical family Gonyleptidae Sociobiology 44 577ndash598

Martens J (1976) Genitalmorphologie System und Phylogenie derWeberknechte (Arachnida Opiliones) Entomologica GermanicaZeitschrift fuumlr das Gesamtgebiet der Wissenschaftlichen Entomologie3 51ndash68

Martens J (1980) Versuch eines phylogenetischen Systems der OpilionesIn lsquoProceedings 8th International Congress of Arachnology ViennaVerhandlungenrsquo (Ed J Gruber) pp 355ndash360 (Vienna Austria)

Martens J (1986) Die Grossgliederung der Opiliones und die Evolutionder Ordnung (Arachnida) Actas del X Congreso Internacional deAracnologiacutea Jaca 1 289ndash310

Martens J (1993) Further cases of paternal care in Opiliones (Arachnida)Tropical Zoology 6 97ndash107

Martens J and Schwendinger P S (1998) A taxonomic revision ofthe family Oncopodidae I New genera and new species of GnomulusThorell (Opiliones Laniatores) Revue Suisse de Zoologie 105 499ndash555

Martens J Hoheisel U and Goumltze M (1981) Vergleichende Anatomieder Legeroumlhren der Opiliones als Beitrag zur Phylogenie der Ordnung(Arachnida) Zoologische Jahrbucher Abteilung fur Anatomie undOntogenie der Tiere 105 13ndash76

Mello-Leitatildeo C F (1949) Famiacutelias subfamiacutelia espeacutecies e gecircneros novos deopiliotildees e notas de sinoniacutemia Boletim do Museu Nacional Nova SeacuterieZoologia Rio de Janeiro 94 1ndash33

Mendes A C and Kury A B (2007) Stygnopsidae Soslashrensen 1932 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 232ndash234 (Harvard University PressCambridge MA USA)

Mendes A C and Kury A B (2008) Intercontinental Triaenonychidae ndashthe case of Ceratomontia (Opiliones Insidiatores) The Journal ofArachnology 36 273ndash279 doi101636CH07-931

Murphree C S (1988) Morphology of the dorsal integument of tenopilionid species (Arachnida Opiliones) The Journal of Arachnology16 237ndash252

Park J K andOacuteFoighilD (2000) Sphaeriid and corbiculid clams representseparate heterodont bivalve radiations into freshwater environmentsMolecular Phylogenetics and Evolution 14 75ndash88 doi101006mpev19990691

Peacuterez Gonzaacutelez A (2006) lsquoRevisatildeo Sistemaacutetica e Anaacutelise Filogeneacutetica deStygnommatidae (Arachnida Opiliones Laniatores)rsquo (Museu NacionalUniversidade Federal de Rio de Janeiro Rio de Janeiro Brazil)

Peacuterez Gonzaacutelez A (2007) Stygnommatidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 229ndash232 (Harvard University PressCambridge MA USA)

Peacuterez Gonzaacutelez A (2011) New familial assignment for two harvestmanspecies of the infraorder Grassatores (Arachnida Opiliones Laniatores)Zootaxa 2757 24ndash28

Peacuterez Gonzaacutelez A and Kury A B (2007) Samoidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 224ndash226 (Harvard University PressCambridge MA USA)

Pineau P Henry M Suspegravene R Marchio A Dettai A Debruyne RPetit T Leacutecu A Moisson P Dejean A Wain-Hobson S andVartanian J-P (2005) A universal primer set for PCR amplificationof nuclear histone H4 genes from all animal species Molecular Biologyand Evolution 22 582ndash588 doi101093molbevmsi053

Pinto-da-Rocha R (1997) Systematic review of the Neotropical familyStygnidae (Opiliones Laniatores Gonyleptoidea) Arquivos deZoologia 33 163ndash342

Pinto-da-Rocha R and Kury A B (2003a) Phylogenetic analysis ofSantinezia with description of five new species (Opiliones LaniatoresCranaidae) The Journal of Arachnology 31 173ndash208 doi1016360161-8202(2003)031[0173PAOSWD]20CO2

Pinto-da-Rocha R and Kury A B (2003b) Third species of Guasiniidae(Opiliones Laniatores) with comments on familial relationships TheJournal of Arachnology 31 394ndash399 doi101636H02-59

Pinto-da-Rocha R and Kury A B (2007) Agoristenidae Silhavy 1973 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 171ndash173 (Harvard University PressCambridge MA USA)

Posada D (2005) Modeltest 37 Program and documentation available athttpdarwinuvigoes [Accessed 28 May 2011]

Posada D and Buckley T (2004) Model selection and model averaging inphylogenetics advantages of Akaike information criterion and Bayesianapproaches over likelihood ratio tests Systematic Biology 53 793ndash808doi10108010635150490522304

Posada D and Crandall K A (1998) Modeltest testing the model ofDNA substitution Bioinformatics (Oxford England) 14 817ndash818doi101093bioinformatics149817

Prendini L Weygoldt P and Wheeler W C (2005) Systematics of theDamon variegates group of African whip spiders (ChelicerataAmblypygi) evidence from behaviour morphology and DNAOrganisms Diversity amp Evolution 5 203ndash236 doi101016jode200412004

Rambaut A E (1996) Se-Al sequence alignment editor University ofOxford UK Program and documentation available at httptreebioedacuksoftwarefigtree [Accessed 21 December 2009]

136 Invertebrate Systematics P P Sharma and G Giribet

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 28: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

Molecular phylogeny of Laniatores Invertebrate Systematics 133

To test this hypothesis we conducted likelihood analysisof range evolution using the program Lagrange (Ree et al2005 Ree and Smith 2008) for the clade (Zalmoxoidea +Samooidea) The stratified analysis resulted in a globalmaximum likelihood of ndashlnL= 1556 outperforming anunconstrained analysis that did not include any dispersalconstraints (ndashlnL= 1676) Likelihood analysis of rangeoptimisation (Fig 20) indicates that the ancestral range ofSamooidea includes both the Afrotropics and the Neotropics(relative probability pr = 1000) but a subsequent split occursbetween an African lineage (pr = 1000) and a NeotropicalIndo-Pacific lineage with a Neotropical ancestral range (pr = 0986)Samoidea of the Indo-Pacific occur on young oceanic islands(eg Fiji Samoa) indicating recent transoceanic dispersal fromthe Neotropics

Ancestral range reconstructions for Samooidea are allconsistent with estimated divergence times for these clades(diversification of Samooidea predates the rifting of WestAfrica from northern South America) favouring an underlyingvicariant process for the basal topology with subsequent recentdispersal events However these results are contingent upon thepresent sampling which does not include all samooid lineages(eg stenostygnine Biantidae) but basal range reconstructionsare likely unaffected (eg Stenostygninae is exclusivelyNeotropical)

In contrast the ancestor of Zalmoxoidea is reconstructedas singularly Neotropical (pr = 0996) This is consistent withisolation of a zalmoxoid ancestor to Amazonia which thenradiated ~191Mya Subsequent ancestral ranges are alsoreconstructed as Neotropical with high relative probabilityHowever the ancestral range of the clade (Icaleptidae +Fissiphalliidae + Zalmoxidae) is ambiguously reconstructedas either Neotropical (pr = 0935) or Neotropical + Indo-Pacific(pr = 0064) as is the split between Fissiphalliidae andZalmoxidae (Neotropical pr = 0856 Neotropical + Indo-Pacific pr = 0141)

These results suggest that the Indo-Pacific lineage ofZalmoxidae which split from Neotropical Zalmoxidae ~83Myais likely the result of long-distance dispersal from the NeotropicsHowever due to the persistence of transantarctic connectionsbetween the Australian plate and temperate South America untilthe Tertiary a competing vicariant scenario cannot be ruled outwithout densely sampling zalmoxid diversity The biogeographyof Zalmoxidae is presently being explored in greater detail in aseparate study (P P Sharma unpubl data)

Finally the ancestral range of (Samooidea + Zalmoxoidea)includes both Africa and the Neotropics (pr = 0957) consistentwith a tropical West Gondwanan ancestor This resultlends circumstantial evidence to a sister relationship of theAfrotropical families (Assamiidae + Pyramidopidae) and theclade (Samooidea + Zalmoxoidea) recovered in all analyses

The diversification of Grassatores

While numerous interfamilial relationships are supported inthis study particularly among gonyleptoid and zalmoxoidfamilies some relationships between superfamilies ofGrassatores are not supported and are contingent upon

analytical treatments namely the deployment of substitutionmodels and data partitioning (Fig 21) The cause of thisinstability could be related to insufficient data particularly inthe EF-1a partition (the length of an intron which can exceed400 bp in some taxa makes this gene particularly difficult toamplify) However examination of clade divergence timessuggests that rapid diversification of Grassatores lineagescould in part augment phylogenetic uncertainty in basal partsof the topology

The split between Phalangodidae and the remainingGrassatores is estimated to have occurred ~302Mya but aseries of divergences resulted in the origin of all superfamiliallineages between 232 and 271Mya Relative to the estimatedage of Laniatores (348Mya) this 39-million-year period isremarkably narrow and inherently problematic as the amountof phylogenetic signal for a given stem subtending a node isdirectly proportional to the amount of time that the stem inquestion spans (Lanyon 1988 Rokas and Carroll 2006) Thesmall internal edge lengths of the stems corresponding to basaldivergences of non-phalangodid Grassatores (Figs 15 16)combined with the ancient age of lineages derived from thesedivergences result in relationships that are difficult to estimatewithout a large amount of sequence data andor the inclusion ofdata that are less afflicted by homoplasy (because longer edgelengths imply more indel and substitution events on edges)(Whitfield and Lockhart 2007)

We additionally observe that the origins of most Grassatoressuperfamilies occur in the wake of the end-Permian massextinction (~254Mya) Rapid radiation in the wake of a massextinction has occurred in multiple metazoan lineagesthe putative result of relaxed selection and opening ofpreviously occupied ecological niche space (Labandeira andSepkoski 1993 Sahney and Benton 2008) The rapiddiversification of early Grassatores lineages could be anexample of this phenomenon but this hypothesis is difficult totest in the absence of Mesozoic Grassatores fossils (reviewed byDunlop 2007)

Finally we observe that contrary to traditional hierarchiesproposed for Laniatores many of the clades recovered in ouranalyses correspond to geographical regions particularly in thecase of Grassatores For example the southern hemispheretriaenonychids are restricted to temperate Gondwananlandmasses Gonyleptoidea and their sister group Stygnopsidaeform a Neotropical (AmazonianMesoamericanAntillean) cladethat excludes Assamiidae which has been hypothesised to be amember of a broader Gonyleptoidea (Kury and Cokendolpher2000 Mendes and Kury 2007) In our analyses Assamiidae isin fact a member of a largely Afrotropical clade together withthe Pyramidopidae South-east Asian families usually form oneclade (at most two) albeit with limited support Samooideafamilies are divided into two clusters African and NeotropicalWith one exception (described above) Zalmoxoidea is restrictedto the Neotropics The ages that we estimate for Laniatoresradiations are consistent with ancient diversification beforethe fragmentation of Pangaea An ancient diversification inconjunction with the climatic stability of the tropics may in partexplain the comparatively greater diversity of the armouredharvestmen with respect to the other Opiliones suborders

134 Invertebrate Systematics P P Sharma and G Giribet

Acknowledgements

Weare indebted toPeter J Schwendingerwho collected andprovidedmost ofthe material for study from South-east Asia Some Thai and most of theNeotropical Laniatores were obtained from the TIGER (Thailand InventoryGroup for Entomological Research) and LLAMA (Leaf Litter Arthropods ofMeso-America) projects toC Lienhard and J Longino respectivelyMaterialfrom Madagascar was generously contributed by Charles Griswold and theCalifornia Academy of Sciences Jesse Czekanski-Moir in conjunction withthe Belau NationalMuseum contributed elusive specimens from Palau AbelPeacuterezGonzaacutelez identifiedmanyNeotropical species included in the study andcontributed specimens fromCubaRicardoPinto-da-Rocha identified someofthe live photographed animals from the Neotropics Discussions with RonaldMClouseAbelPeacuterezGonzaacutelezAdrianoBKury andCarlosEPrieto refinedmanyof the ideas presentedhereTwoanonymous reviewers and the associateeditor provided comments that helped to improve an earlier version ofthis manuscript Laura Leibensperger sorted and accessioned TIGER andLLAMA material as well as MCZ type material Adam Graham and theCenter forNanoscaleStudies atHarvardUniversityprovided support forSEMwork Collecting efforts in New Caledonia were greatly facilitated by theguidance of Herveacute Jourdan (Institut de rechercheacute pour de developpementNoumea) and his teammembers Collecting efforts in Fiji weremade possibleby Marika Tuiwawa (University of the South Pacific Suva) and his teammembers Hilda Waqa and Tokasaya lsquoToxrsquo Cakacaka we are especiallygrateful to Tox for his good company during fieldwork and to his familyfor graciously enabling a visit toOvalau SuzieYee Shawprovided invaluablelogistical support in Fiji and her sons Colin and Joshua Yee Shaw assistedwith sorting Fijian material Fieldwork in Indonesia and West Africa wassupported by two MCZ Putnam Expedition Grants awarded to RonaldM Clouse and G G (2006) and to G G (2009) respectively Fieldworkin New Caledonia was supported by the Goelet award the Kalathia FamilyTrust and the Explorers Club awarded to P P S in 2006 Fieldwork in Fijiand in Palauwas supported by twoMCZPutnamExpeditionGrants awardedto P P S (2008) and to Ronald M Clouse and P P S (2010) respectivelyP P S was supported by a Faculty of Arts and Sciences Graduate Fellowshipfrom Harvard University

References

Castresana J (2000) Selectionof conservedblocks frommultiple alignmentsfor their use in phylogenetic analysis Molecular Biology and Evolution17 540ndash552

Colgan D J McLauchlan A Wislon G D F Livingston S MacaranasJ Edgecombe G D Cassis G and Gray M R (1998) Molecularphylogenetics of the Arthropoda relationships based on histone H3and U2 snRNA DNA sequences Australian Journal of Zoology 46419ndash437 doi101071ZO98048

DaSilva M B and Gnaspini P (2009) A systematic revision ofGoniosomatinae (Arachnida Opiliones Gonyleptidae) with a cladisticanalysis and biogeographical notes Invertebrate Systematics 23530ndash624 doi101071IS09022

DaSilva M B and Pinto-da-Rocha R (2010) Systematic review andcladistic analysis of the Hernandariinae (Opiliones Gonyleptidae)Zoologia 27 577ndash642

Derkarabetian S Steinmann D B and Hedin M (2010) Repeatedand time-correlated morphological convergence in cave-dwellingharvestmen (Opiliones Laniatores) from montane western NorthAmerica PLoS ONE 5 e10388 doi101371journalpone0010388

Drummond A J and Rambaut A (2007) BEAST Bayesian evolutionaryanalysis by sampling trees BMC Evolutionary Biology 7 214doi1011861471-2148-7-214

Drummond A J Ho S Y W Phillips M J and Rambaut A (2006)Relaxed phylogenetics and dating with confidence PLoS Biology 4 e88doi101371journalpbio0040088

Dunlop J A (2007) Paleontology In lsquoHarvestmen The Biology ofOpilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 247ndash265 (Harvard University Press Cambridge MA USA)

Dunlop J A and Anderson L I (2005) A fossil harvestman (ArachnidaOpiliones) from theMississippian of East Kirkton Scotland The Journalof Arachnology 33 482ndash489 doi10163604-791

Dunlop JAAndersonL IKerpH andHassH (2003)Preservedorgansof Devonian harvestmen Nature 425 916 doi101038425916a

Dunlop J A Anderson L I Kerp H and Hass H (2004) A harvestman(Arachnida Opiliones) from the Early Devonian Rhynie chertsAberdeenshire Scotland Transactions of the Royal Society ofEdinburgh Earth Sciences 94 341ndash354

Edgar R C (2004) MUSCLE multiple sequence alignment with highaccuracy and high throughput Nucleic Acids Research 32 1792ndash1797doi101093nargkh340

Edgecombe G D and Giribet G (2006) A century laterndash a total evidencere-evaluation of scutigeromorph centipedes (Myriapoda Chilopoda)Invertebrate Systematics 20 503ndash525 doi101071IS05044

Edgecombe G D Giribet G and Wheeler W C (2002) Phylogeny ofHenicopidae (Chilopoda Lithobiomorpha) a combined analysis ofmorphology and five molecular loci Systematic Entomology 2731ndash64 doi101046j0307-6970200100163x

FolmerOBlackMHoehWLutzR andVrijenhoekRC (1994)DNAprimers for amplification ofmitochondrial cytochrome c oxidase subunit Ifrom diverse metazoan invertebrates Molecular Marine Biology andBiotechnology 3 294ndash299

Forster R R (1954) The New Zealand harvestmen (sub-order Laniatores)Canterbury Museum Bulletin 2 1ndash329

Giribet G and Kury A B (2007) Phylogeny and biogeography InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 62ndash87 (Harvard University PressCambridge MA USA)

Giribet G Carranza S Baguntildeagrave J Riutort M and Ribera C (1996) Firstmolecular evidence for the existence of a Tardigrada +Arthropoda cladeMolecular Biology and Evolution 13 76ndash84

Giribet G Rambla M Carranza S Baguntildeagrave J Riutort M and Ribera C(1999) Phylogeny of the arachnid order Opiliones (Arthropoda)inferred from a combined approach of complete 18S and partial 28Sribosomal DNA sequences and morphology Molecular Phylogeneticsand Evolution 11 296ndash307 doi101006mpev19980583

Giribet G Edgecombe G D Wheeler W C and Babbitt C (2002)Phylogeny and systematic position of Opiliones a combined analysis ofchelicerate relationships using morphological and molecular dataCladistics 18 5ndash70

Giribet G Vogt L PeacuterezGonzaacutelez A Sharma P andKury A B (2010)A multilocus approach to harvestman (Arachnida Opiliones) phylogenywith emphasis on biogeography and the systematics of LaniatoresCladistics 26 408ndash437

Hara M R Gnaspini P and Machado G (2003) Male egg guardingbehavior in the Neotropical harvestman Ampheres leucopheus (Mello-Leitatildeo 1922) (Opiliones Gonyleptidae) The Journal of Arachnology 31441ndash444 doi101636S02-32

Hedin M Derkarabetian S McCormack M and Richart C (2010) Thephylogenetic utility of the nuclear protein-encoding gene EF-1a forresolving recent divergences in Opiliones emphasizing intronevolution The Journal of Arachnology 38 9ndash20 doi101636HA09-491

Huelsenbeck J P and Ronquist F (2005) Bayesian analyses of molecularevolution using MrBayes In lsquoStatistical Methods in MolecularEvolutionrsquo (Ed R Nielsen) (Springer New York)

HunterRK ProundDNBurns JA Tibbetts JA andTownsendVR(2007) Parental care in the Neotropical harvestman Phareicranauscalcariferus (Opiliones Cranaidae) The Journal of Arachnology 35199ndash201 doi101636ST06-181

Molecular phylogeny of Laniatores Invertebrate Systematics 135

Kocher T D Thoma W K Meyer A Edwards S V Paumlaumlbo SVillablanca F X and Wilson A C (1989) Dynamics ofmitochondrial DNA evolution in animals amplification andsequencing with conserved primers Proceedings of the NationalAcademy of Sciences of the United States of America 86 6196ndash6200doi101073pnas86166196

Kury A B (1993) Anaacutelise filogeneacutetica de Gonyleptoidea (ArachnidaOpiliones Laniatores) PhD Thesis Universidade de Satildeo Paulo SatildeoPaulo Brazil

Kury A B (2003) Annotated catalogue of the Laniatores of the NewWorld (Arachnida Opiliones) Revista Ibeacuterica de AracnologiacuteaVolumen Especial Monograacutefico 1 1ndash337

Kury A B (2006) Checklist of valid genera of Opiliones of theWorld Museu NacionalUFRJ Available from httpwwwmuseunacionalufrjbrmndiAracnologiachecklaniatorhtm [Accessed1 February 2011]

Kury A B (2007) Podoctidae Roewer 1912 In lsquoHarvestmen The Biologyof Opilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 221ndash224 (Harvard University Press Cambridge MA USA)

Kury A B and Cokendolpher J C (2000) Opiliones In lsquoBiodiversidadTaxonomiacutea y Biogeografiacutea de Artoacutepodos de Meacutexico Hacia una Sintesisde su Conocimientorsquo vol 2 (Eds J E Llorente E Gonzaacutelez andN Papavero) pp 137ndash157 (Universidad Nacional Autoacutenoma deMexico Meacutexico DF Mexico)

Kury A B and Machado G (2009) Notes on Santobius from Vanuatu andFiji and the status of the eastern Melanesian Ibalonius (ArachnidaOpiliones Podoctidae) Zoological Studies 48 524ndash538

Kury A B and Peacuterez G A (2002) A new family of Laniatores fromnorthwestern South America (Arachnida Opiliones) Revista Ibeacuterica deAracnologiacutea 6 3ndash11

Labandeira C C and Sepkoski J J (1993) Insect diversity in the fossilrecord Science 261 310ndash315 doi101126science11536548

Lanyon S M (1988) The stochastic mode of molecular evolutionwhat consequences for systematic investigations The Auk 105565ndash573

Lian W-G Zhu M-S and Kury A B (2008) A new species of the genusTithaeus from China (Arachnida Laniatores Epedanidae) Zootaxa1841 53ndash60

Machado G Requena G S Buzatto B A Osses F and Rossetto L M(2004) Five new cases of paternal care in harvestmen (ArachnidaOpiliones) implications for the evolution of male guarding in theNeotropical family Gonyleptidae Sociobiology 44 577ndash598

Martens J (1976) Genitalmorphologie System und Phylogenie derWeberknechte (Arachnida Opiliones) Entomologica GermanicaZeitschrift fuumlr das Gesamtgebiet der Wissenschaftlichen Entomologie3 51ndash68

Martens J (1980) Versuch eines phylogenetischen Systems der OpilionesIn lsquoProceedings 8th International Congress of Arachnology ViennaVerhandlungenrsquo (Ed J Gruber) pp 355ndash360 (Vienna Austria)

Martens J (1986) Die Grossgliederung der Opiliones und die Evolutionder Ordnung (Arachnida) Actas del X Congreso Internacional deAracnologiacutea Jaca 1 289ndash310

Martens J (1993) Further cases of paternal care in Opiliones (Arachnida)Tropical Zoology 6 97ndash107

Martens J and Schwendinger P S (1998) A taxonomic revision ofthe family Oncopodidae I New genera and new species of GnomulusThorell (Opiliones Laniatores) Revue Suisse de Zoologie 105 499ndash555

Martens J Hoheisel U and Goumltze M (1981) Vergleichende Anatomieder Legeroumlhren der Opiliones als Beitrag zur Phylogenie der Ordnung(Arachnida) Zoologische Jahrbucher Abteilung fur Anatomie undOntogenie der Tiere 105 13ndash76

Mello-Leitatildeo C F (1949) Famiacutelias subfamiacutelia espeacutecies e gecircneros novos deopiliotildees e notas de sinoniacutemia Boletim do Museu Nacional Nova SeacuterieZoologia Rio de Janeiro 94 1ndash33

Mendes A C and Kury A B (2007) Stygnopsidae Soslashrensen 1932 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 232ndash234 (Harvard University PressCambridge MA USA)

Mendes A C and Kury A B (2008) Intercontinental Triaenonychidae ndashthe case of Ceratomontia (Opiliones Insidiatores) The Journal ofArachnology 36 273ndash279 doi101636CH07-931

Murphree C S (1988) Morphology of the dorsal integument of tenopilionid species (Arachnida Opiliones) The Journal of Arachnology16 237ndash252

Park J K andOacuteFoighilD (2000) Sphaeriid and corbiculid clams representseparate heterodont bivalve radiations into freshwater environmentsMolecular Phylogenetics and Evolution 14 75ndash88 doi101006mpev19990691

Peacuterez Gonzaacutelez A (2006) lsquoRevisatildeo Sistemaacutetica e Anaacutelise Filogeneacutetica deStygnommatidae (Arachnida Opiliones Laniatores)rsquo (Museu NacionalUniversidade Federal de Rio de Janeiro Rio de Janeiro Brazil)

Peacuterez Gonzaacutelez A (2007) Stygnommatidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 229ndash232 (Harvard University PressCambridge MA USA)

Peacuterez Gonzaacutelez A (2011) New familial assignment for two harvestmanspecies of the infraorder Grassatores (Arachnida Opiliones Laniatores)Zootaxa 2757 24ndash28

Peacuterez Gonzaacutelez A and Kury A B (2007) Samoidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 224ndash226 (Harvard University PressCambridge MA USA)

Pineau P Henry M Suspegravene R Marchio A Dettai A Debruyne RPetit T Leacutecu A Moisson P Dejean A Wain-Hobson S andVartanian J-P (2005) A universal primer set for PCR amplificationof nuclear histone H4 genes from all animal species Molecular Biologyand Evolution 22 582ndash588 doi101093molbevmsi053

Pinto-da-Rocha R (1997) Systematic review of the Neotropical familyStygnidae (Opiliones Laniatores Gonyleptoidea) Arquivos deZoologia 33 163ndash342

Pinto-da-Rocha R and Kury A B (2003a) Phylogenetic analysis ofSantinezia with description of five new species (Opiliones LaniatoresCranaidae) The Journal of Arachnology 31 173ndash208 doi1016360161-8202(2003)031[0173PAOSWD]20CO2

Pinto-da-Rocha R and Kury A B (2003b) Third species of Guasiniidae(Opiliones Laniatores) with comments on familial relationships TheJournal of Arachnology 31 394ndash399 doi101636H02-59

Pinto-da-Rocha R and Kury A B (2007) Agoristenidae Silhavy 1973 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 171ndash173 (Harvard University PressCambridge MA USA)

Posada D (2005) Modeltest 37 Program and documentation available athttpdarwinuvigoes [Accessed 28 May 2011]

Posada D and Buckley T (2004) Model selection and model averaging inphylogenetics advantages of Akaike information criterion and Bayesianapproaches over likelihood ratio tests Systematic Biology 53 793ndash808doi10108010635150490522304

Posada D and Crandall K A (1998) Modeltest testing the model ofDNA substitution Bioinformatics (Oxford England) 14 817ndash818doi101093bioinformatics149817

Prendini L Weygoldt P and Wheeler W C (2005) Systematics of theDamon variegates group of African whip spiders (ChelicerataAmblypygi) evidence from behaviour morphology and DNAOrganisms Diversity amp Evolution 5 203ndash236 doi101016jode200412004

Rambaut A E (1996) Se-Al sequence alignment editor University ofOxford UK Program and documentation available at httptreebioedacuksoftwarefigtree [Accessed 21 December 2009]

136 Invertebrate Systematics P P Sharma and G Giribet

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 29: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

To test this hypothesis we conducted likelihood analysisof range evolution using the program Lagrange (Ree et al2005 Ree and Smith 2008) for the clade (Zalmoxoidea +Samooidea) The stratified analysis resulted in a globalmaximum likelihood of ndashlnL= 1556 outperforming anunconstrained analysis that did not include any dispersalconstraints (ndashlnL= 1676) Likelihood analysis of rangeoptimisation (Fig 20) indicates that the ancestral range ofSamooidea includes both the Afrotropics and the Neotropics(relative probability pr = 1000) but a subsequent split occursbetween an African lineage (pr = 1000) and a NeotropicalIndo-Pacific lineage with a Neotropical ancestral range (pr = 0986)Samoidea of the Indo-Pacific occur on young oceanic islands(eg Fiji Samoa) indicating recent transoceanic dispersal fromthe Neotropics

Ancestral range reconstructions for Samooidea are allconsistent with estimated divergence times for these clades(diversification of Samooidea predates the rifting of WestAfrica from northern South America) favouring an underlyingvicariant process for the basal topology with subsequent recentdispersal events However these results are contingent upon thepresent sampling which does not include all samooid lineages(eg stenostygnine Biantidae) but basal range reconstructionsare likely unaffected (eg Stenostygninae is exclusivelyNeotropical)

In contrast the ancestor of Zalmoxoidea is reconstructedas singularly Neotropical (pr = 0996) This is consistent withisolation of a zalmoxoid ancestor to Amazonia which thenradiated ~191Mya Subsequent ancestral ranges are alsoreconstructed as Neotropical with high relative probabilityHowever the ancestral range of the clade (Icaleptidae +Fissiphalliidae + Zalmoxidae) is ambiguously reconstructedas either Neotropical (pr = 0935) or Neotropical + Indo-Pacific(pr = 0064) as is the split between Fissiphalliidae andZalmoxidae (Neotropical pr = 0856 Neotropical + Indo-Pacific pr = 0141)

These results suggest that the Indo-Pacific lineage ofZalmoxidae which split from Neotropical Zalmoxidae ~83Myais likely the result of long-distance dispersal from the NeotropicsHowever due to the persistence of transantarctic connectionsbetween the Australian plate and temperate South America untilthe Tertiary a competing vicariant scenario cannot be ruled outwithout densely sampling zalmoxid diversity The biogeographyof Zalmoxidae is presently being explored in greater detail in aseparate study (P P Sharma unpubl data)

Finally the ancestral range of (Samooidea + Zalmoxoidea)includes both Africa and the Neotropics (pr = 0957) consistentwith a tropical West Gondwanan ancestor This resultlends circumstantial evidence to a sister relationship of theAfrotropical families (Assamiidae + Pyramidopidae) and theclade (Samooidea + Zalmoxoidea) recovered in all analyses

The diversification of Grassatores

While numerous interfamilial relationships are supported inthis study particularly among gonyleptoid and zalmoxoidfamilies some relationships between superfamilies ofGrassatores are not supported and are contingent upon

analytical treatments namely the deployment of substitutionmodels and data partitioning (Fig 21) The cause of thisinstability could be related to insufficient data particularly inthe EF-1a partition (the length of an intron which can exceed400 bp in some taxa makes this gene particularly difficult toamplify) However examination of clade divergence timessuggests that rapid diversification of Grassatores lineagescould in part augment phylogenetic uncertainty in basal partsof the topology

The split between Phalangodidae and the remainingGrassatores is estimated to have occurred ~302Mya but aseries of divergences resulted in the origin of all superfamiliallineages between 232 and 271Mya Relative to the estimatedage of Laniatores (348Mya) this 39-million-year period isremarkably narrow and inherently problematic as the amountof phylogenetic signal for a given stem subtending a node isdirectly proportional to the amount of time that the stem inquestion spans (Lanyon 1988 Rokas and Carroll 2006) Thesmall internal edge lengths of the stems corresponding to basaldivergences of non-phalangodid Grassatores (Figs 15 16)combined with the ancient age of lineages derived from thesedivergences result in relationships that are difficult to estimatewithout a large amount of sequence data andor the inclusion ofdata that are less afflicted by homoplasy (because longer edgelengths imply more indel and substitution events on edges)(Whitfield and Lockhart 2007)

We additionally observe that the origins of most Grassatoressuperfamilies occur in the wake of the end-Permian massextinction (~254Mya) Rapid radiation in the wake of a massextinction has occurred in multiple metazoan lineagesthe putative result of relaxed selection and opening ofpreviously occupied ecological niche space (Labandeira andSepkoski 1993 Sahney and Benton 2008) The rapiddiversification of early Grassatores lineages could be anexample of this phenomenon but this hypothesis is difficult totest in the absence of Mesozoic Grassatores fossils (reviewed byDunlop 2007)

Finally we observe that contrary to traditional hierarchiesproposed for Laniatores many of the clades recovered in ouranalyses correspond to geographical regions particularly in thecase of Grassatores For example the southern hemispheretriaenonychids are restricted to temperate Gondwananlandmasses Gonyleptoidea and their sister group Stygnopsidaeform a Neotropical (AmazonianMesoamericanAntillean) cladethat excludes Assamiidae which has been hypothesised to be amember of a broader Gonyleptoidea (Kury and Cokendolpher2000 Mendes and Kury 2007) In our analyses Assamiidae isin fact a member of a largely Afrotropical clade together withthe Pyramidopidae South-east Asian families usually form oneclade (at most two) albeit with limited support Samooideafamilies are divided into two clusters African and NeotropicalWith one exception (described above) Zalmoxoidea is restrictedto the Neotropics The ages that we estimate for Laniatoresradiations are consistent with ancient diversification beforethe fragmentation of Pangaea An ancient diversification inconjunction with the climatic stability of the tropics may in partexplain the comparatively greater diversity of the armouredharvestmen with respect to the other Opiliones suborders

134 Invertebrate Systematics P P Sharma and G Giribet

Acknowledgements

Weare indebted toPeter J Schwendingerwho collected andprovidedmost ofthe material for study from South-east Asia Some Thai and most of theNeotropical Laniatores were obtained from the TIGER (Thailand InventoryGroup for Entomological Research) and LLAMA (Leaf Litter Arthropods ofMeso-America) projects toC Lienhard and J Longino respectivelyMaterialfrom Madagascar was generously contributed by Charles Griswold and theCalifornia Academy of Sciences Jesse Czekanski-Moir in conjunction withthe Belau NationalMuseum contributed elusive specimens from Palau AbelPeacuterezGonzaacutelez identifiedmanyNeotropical species included in the study andcontributed specimens fromCubaRicardoPinto-da-Rocha identified someofthe live photographed animals from the Neotropics Discussions with RonaldMClouseAbelPeacuterezGonzaacutelezAdrianoBKury andCarlosEPrieto refinedmanyof the ideas presentedhereTwoanonymous reviewers and the associateeditor provided comments that helped to improve an earlier version ofthis manuscript Laura Leibensperger sorted and accessioned TIGER andLLAMA material as well as MCZ type material Adam Graham and theCenter forNanoscaleStudies atHarvardUniversityprovided support forSEMwork Collecting efforts in New Caledonia were greatly facilitated by theguidance of Herveacute Jourdan (Institut de rechercheacute pour de developpementNoumea) and his teammembers Collecting efforts in Fiji weremade possibleby Marika Tuiwawa (University of the South Pacific Suva) and his teammembers Hilda Waqa and Tokasaya lsquoToxrsquo Cakacaka we are especiallygrateful to Tox for his good company during fieldwork and to his familyfor graciously enabling a visit toOvalau SuzieYee Shawprovided invaluablelogistical support in Fiji and her sons Colin and Joshua Yee Shaw assistedwith sorting Fijian material Fieldwork in Indonesia and West Africa wassupported by two MCZ Putnam Expedition Grants awarded to RonaldM Clouse and G G (2006) and to G G (2009) respectively Fieldworkin New Caledonia was supported by the Goelet award the Kalathia FamilyTrust and the Explorers Club awarded to P P S in 2006 Fieldwork in Fijiand in Palauwas supported by twoMCZPutnamExpeditionGrants awardedto P P S (2008) and to Ronald M Clouse and P P S (2010) respectivelyP P S was supported by a Faculty of Arts and Sciences Graduate Fellowshipfrom Harvard University

References

Castresana J (2000) Selectionof conservedblocks frommultiple alignmentsfor their use in phylogenetic analysis Molecular Biology and Evolution17 540ndash552

Colgan D J McLauchlan A Wislon G D F Livingston S MacaranasJ Edgecombe G D Cassis G and Gray M R (1998) Molecularphylogenetics of the Arthropoda relationships based on histone H3and U2 snRNA DNA sequences Australian Journal of Zoology 46419ndash437 doi101071ZO98048

DaSilva M B and Gnaspini P (2009) A systematic revision ofGoniosomatinae (Arachnida Opiliones Gonyleptidae) with a cladisticanalysis and biogeographical notes Invertebrate Systematics 23530ndash624 doi101071IS09022

DaSilva M B and Pinto-da-Rocha R (2010) Systematic review andcladistic analysis of the Hernandariinae (Opiliones Gonyleptidae)Zoologia 27 577ndash642

Derkarabetian S Steinmann D B and Hedin M (2010) Repeatedand time-correlated morphological convergence in cave-dwellingharvestmen (Opiliones Laniatores) from montane western NorthAmerica PLoS ONE 5 e10388 doi101371journalpone0010388

Drummond A J and Rambaut A (2007) BEAST Bayesian evolutionaryanalysis by sampling trees BMC Evolutionary Biology 7 214doi1011861471-2148-7-214

Drummond A J Ho S Y W Phillips M J and Rambaut A (2006)Relaxed phylogenetics and dating with confidence PLoS Biology 4 e88doi101371journalpbio0040088

Dunlop J A (2007) Paleontology In lsquoHarvestmen The Biology ofOpilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 247ndash265 (Harvard University Press Cambridge MA USA)

Dunlop J A and Anderson L I (2005) A fossil harvestman (ArachnidaOpiliones) from theMississippian of East Kirkton Scotland The Journalof Arachnology 33 482ndash489 doi10163604-791

Dunlop JAAndersonL IKerpH andHassH (2003)Preservedorgansof Devonian harvestmen Nature 425 916 doi101038425916a

Dunlop J A Anderson L I Kerp H and Hass H (2004) A harvestman(Arachnida Opiliones) from the Early Devonian Rhynie chertsAberdeenshire Scotland Transactions of the Royal Society ofEdinburgh Earth Sciences 94 341ndash354

Edgar R C (2004) MUSCLE multiple sequence alignment with highaccuracy and high throughput Nucleic Acids Research 32 1792ndash1797doi101093nargkh340

Edgecombe G D and Giribet G (2006) A century laterndash a total evidencere-evaluation of scutigeromorph centipedes (Myriapoda Chilopoda)Invertebrate Systematics 20 503ndash525 doi101071IS05044

Edgecombe G D Giribet G and Wheeler W C (2002) Phylogeny ofHenicopidae (Chilopoda Lithobiomorpha) a combined analysis ofmorphology and five molecular loci Systematic Entomology 2731ndash64 doi101046j0307-6970200100163x

FolmerOBlackMHoehWLutzR andVrijenhoekRC (1994)DNAprimers for amplification ofmitochondrial cytochrome c oxidase subunit Ifrom diverse metazoan invertebrates Molecular Marine Biology andBiotechnology 3 294ndash299

Forster R R (1954) The New Zealand harvestmen (sub-order Laniatores)Canterbury Museum Bulletin 2 1ndash329

Giribet G and Kury A B (2007) Phylogeny and biogeography InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 62ndash87 (Harvard University PressCambridge MA USA)

Giribet G Carranza S Baguntildeagrave J Riutort M and Ribera C (1996) Firstmolecular evidence for the existence of a Tardigrada +Arthropoda cladeMolecular Biology and Evolution 13 76ndash84

Giribet G Rambla M Carranza S Baguntildeagrave J Riutort M and Ribera C(1999) Phylogeny of the arachnid order Opiliones (Arthropoda)inferred from a combined approach of complete 18S and partial 28Sribosomal DNA sequences and morphology Molecular Phylogeneticsand Evolution 11 296ndash307 doi101006mpev19980583

Giribet G Edgecombe G D Wheeler W C and Babbitt C (2002)Phylogeny and systematic position of Opiliones a combined analysis ofchelicerate relationships using morphological and molecular dataCladistics 18 5ndash70

Giribet G Vogt L PeacuterezGonzaacutelez A Sharma P andKury A B (2010)A multilocus approach to harvestman (Arachnida Opiliones) phylogenywith emphasis on biogeography and the systematics of LaniatoresCladistics 26 408ndash437

Hara M R Gnaspini P and Machado G (2003) Male egg guardingbehavior in the Neotropical harvestman Ampheres leucopheus (Mello-Leitatildeo 1922) (Opiliones Gonyleptidae) The Journal of Arachnology 31441ndash444 doi101636S02-32

Hedin M Derkarabetian S McCormack M and Richart C (2010) Thephylogenetic utility of the nuclear protein-encoding gene EF-1a forresolving recent divergences in Opiliones emphasizing intronevolution The Journal of Arachnology 38 9ndash20 doi101636HA09-491

Huelsenbeck J P and Ronquist F (2005) Bayesian analyses of molecularevolution using MrBayes In lsquoStatistical Methods in MolecularEvolutionrsquo (Ed R Nielsen) (Springer New York)

HunterRK ProundDNBurns JA Tibbetts JA andTownsendVR(2007) Parental care in the Neotropical harvestman Phareicranauscalcariferus (Opiliones Cranaidae) The Journal of Arachnology 35199ndash201 doi101636ST06-181

Molecular phylogeny of Laniatores Invertebrate Systematics 135

Kocher T D Thoma W K Meyer A Edwards S V Paumlaumlbo SVillablanca F X and Wilson A C (1989) Dynamics ofmitochondrial DNA evolution in animals amplification andsequencing with conserved primers Proceedings of the NationalAcademy of Sciences of the United States of America 86 6196ndash6200doi101073pnas86166196

Kury A B (1993) Anaacutelise filogeneacutetica de Gonyleptoidea (ArachnidaOpiliones Laniatores) PhD Thesis Universidade de Satildeo Paulo SatildeoPaulo Brazil

Kury A B (2003) Annotated catalogue of the Laniatores of the NewWorld (Arachnida Opiliones) Revista Ibeacuterica de AracnologiacuteaVolumen Especial Monograacutefico 1 1ndash337

Kury A B (2006) Checklist of valid genera of Opiliones of theWorld Museu NacionalUFRJ Available from httpwwwmuseunacionalufrjbrmndiAracnologiachecklaniatorhtm [Accessed1 February 2011]

Kury A B (2007) Podoctidae Roewer 1912 In lsquoHarvestmen The Biologyof Opilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 221ndash224 (Harvard University Press Cambridge MA USA)

Kury A B and Cokendolpher J C (2000) Opiliones In lsquoBiodiversidadTaxonomiacutea y Biogeografiacutea de Artoacutepodos de Meacutexico Hacia una Sintesisde su Conocimientorsquo vol 2 (Eds J E Llorente E Gonzaacutelez andN Papavero) pp 137ndash157 (Universidad Nacional Autoacutenoma deMexico Meacutexico DF Mexico)

Kury A B and Machado G (2009) Notes on Santobius from Vanuatu andFiji and the status of the eastern Melanesian Ibalonius (ArachnidaOpiliones Podoctidae) Zoological Studies 48 524ndash538

Kury A B and Peacuterez G A (2002) A new family of Laniatores fromnorthwestern South America (Arachnida Opiliones) Revista Ibeacuterica deAracnologiacutea 6 3ndash11

Labandeira C C and Sepkoski J J (1993) Insect diversity in the fossilrecord Science 261 310ndash315 doi101126science11536548

Lanyon S M (1988) The stochastic mode of molecular evolutionwhat consequences for systematic investigations The Auk 105565ndash573

Lian W-G Zhu M-S and Kury A B (2008) A new species of the genusTithaeus from China (Arachnida Laniatores Epedanidae) Zootaxa1841 53ndash60

Machado G Requena G S Buzatto B A Osses F and Rossetto L M(2004) Five new cases of paternal care in harvestmen (ArachnidaOpiliones) implications for the evolution of male guarding in theNeotropical family Gonyleptidae Sociobiology 44 577ndash598

Martens J (1976) Genitalmorphologie System und Phylogenie derWeberknechte (Arachnida Opiliones) Entomologica GermanicaZeitschrift fuumlr das Gesamtgebiet der Wissenschaftlichen Entomologie3 51ndash68

Martens J (1980) Versuch eines phylogenetischen Systems der OpilionesIn lsquoProceedings 8th International Congress of Arachnology ViennaVerhandlungenrsquo (Ed J Gruber) pp 355ndash360 (Vienna Austria)

Martens J (1986) Die Grossgliederung der Opiliones und die Evolutionder Ordnung (Arachnida) Actas del X Congreso Internacional deAracnologiacutea Jaca 1 289ndash310

Martens J (1993) Further cases of paternal care in Opiliones (Arachnida)Tropical Zoology 6 97ndash107

Martens J and Schwendinger P S (1998) A taxonomic revision ofthe family Oncopodidae I New genera and new species of GnomulusThorell (Opiliones Laniatores) Revue Suisse de Zoologie 105 499ndash555

Martens J Hoheisel U and Goumltze M (1981) Vergleichende Anatomieder Legeroumlhren der Opiliones als Beitrag zur Phylogenie der Ordnung(Arachnida) Zoologische Jahrbucher Abteilung fur Anatomie undOntogenie der Tiere 105 13ndash76

Mello-Leitatildeo C F (1949) Famiacutelias subfamiacutelia espeacutecies e gecircneros novos deopiliotildees e notas de sinoniacutemia Boletim do Museu Nacional Nova SeacuterieZoologia Rio de Janeiro 94 1ndash33

Mendes A C and Kury A B (2007) Stygnopsidae Soslashrensen 1932 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 232ndash234 (Harvard University PressCambridge MA USA)

Mendes A C and Kury A B (2008) Intercontinental Triaenonychidae ndashthe case of Ceratomontia (Opiliones Insidiatores) The Journal ofArachnology 36 273ndash279 doi101636CH07-931

Murphree C S (1988) Morphology of the dorsal integument of tenopilionid species (Arachnida Opiliones) The Journal of Arachnology16 237ndash252

Park J K andOacuteFoighilD (2000) Sphaeriid and corbiculid clams representseparate heterodont bivalve radiations into freshwater environmentsMolecular Phylogenetics and Evolution 14 75ndash88 doi101006mpev19990691

Peacuterez Gonzaacutelez A (2006) lsquoRevisatildeo Sistemaacutetica e Anaacutelise Filogeneacutetica deStygnommatidae (Arachnida Opiliones Laniatores)rsquo (Museu NacionalUniversidade Federal de Rio de Janeiro Rio de Janeiro Brazil)

Peacuterez Gonzaacutelez A (2007) Stygnommatidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 229ndash232 (Harvard University PressCambridge MA USA)

Peacuterez Gonzaacutelez A (2011) New familial assignment for two harvestmanspecies of the infraorder Grassatores (Arachnida Opiliones Laniatores)Zootaxa 2757 24ndash28

Peacuterez Gonzaacutelez A and Kury A B (2007) Samoidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 224ndash226 (Harvard University PressCambridge MA USA)

Pineau P Henry M Suspegravene R Marchio A Dettai A Debruyne RPetit T Leacutecu A Moisson P Dejean A Wain-Hobson S andVartanian J-P (2005) A universal primer set for PCR amplificationof nuclear histone H4 genes from all animal species Molecular Biologyand Evolution 22 582ndash588 doi101093molbevmsi053

Pinto-da-Rocha R (1997) Systematic review of the Neotropical familyStygnidae (Opiliones Laniatores Gonyleptoidea) Arquivos deZoologia 33 163ndash342

Pinto-da-Rocha R and Kury A B (2003a) Phylogenetic analysis ofSantinezia with description of five new species (Opiliones LaniatoresCranaidae) The Journal of Arachnology 31 173ndash208 doi1016360161-8202(2003)031[0173PAOSWD]20CO2

Pinto-da-Rocha R and Kury A B (2003b) Third species of Guasiniidae(Opiliones Laniatores) with comments on familial relationships TheJournal of Arachnology 31 394ndash399 doi101636H02-59

Pinto-da-Rocha R and Kury A B (2007) Agoristenidae Silhavy 1973 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 171ndash173 (Harvard University PressCambridge MA USA)

Posada D (2005) Modeltest 37 Program and documentation available athttpdarwinuvigoes [Accessed 28 May 2011]

Posada D and Buckley T (2004) Model selection and model averaging inphylogenetics advantages of Akaike information criterion and Bayesianapproaches over likelihood ratio tests Systematic Biology 53 793ndash808doi10108010635150490522304

Posada D and Crandall K A (1998) Modeltest testing the model ofDNA substitution Bioinformatics (Oxford England) 14 817ndash818doi101093bioinformatics149817

Prendini L Weygoldt P and Wheeler W C (2005) Systematics of theDamon variegates group of African whip spiders (ChelicerataAmblypygi) evidence from behaviour morphology and DNAOrganisms Diversity amp Evolution 5 203ndash236 doi101016jode200412004

Rambaut A E (1996) Se-Al sequence alignment editor University ofOxford UK Program and documentation available at httptreebioedacuksoftwarefigtree [Accessed 21 December 2009]

136 Invertebrate Systematics P P Sharma and G Giribet

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 30: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

Acknowledgements

Weare indebted toPeter J Schwendingerwho collected andprovidedmost ofthe material for study from South-east Asia Some Thai and most of theNeotropical Laniatores were obtained from the TIGER (Thailand InventoryGroup for Entomological Research) and LLAMA (Leaf Litter Arthropods ofMeso-America) projects toC Lienhard and J Longino respectivelyMaterialfrom Madagascar was generously contributed by Charles Griswold and theCalifornia Academy of Sciences Jesse Czekanski-Moir in conjunction withthe Belau NationalMuseum contributed elusive specimens from Palau AbelPeacuterezGonzaacutelez identifiedmanyNeotropical species included in the study andcontributed specimens fromCubaRicardoPinto-da-Rocha identified someofthe live photographed animals from the Neotropics Discussions with RonaldMClouseAbelPeacuterezGonzaacutelezAdrianoBKury andCarlosEPrieto refinedmanyof the ideas presentedhereTwoanonymous reviewers and the associateeditor provided comments that helped to improve an earlier version ofthis manuscript Laura Leibensperger sorted and accessioned TIGER andLLAMA material as well as MCZ type material Adam Graham and theCenter forNanoscaleStudies atHarvardUniversityprovided support forSEMwork Collecting efforts in New Caledonia were greatly facilitated by theguidance of Herveacute Jourdan (Institut de rechercheacute pour de developpementNoumea) and his teammembers Collecting efforts in Fiji weremade possibleby Marika Tuiwawa (University of the South Pacific Suva) and his teammembers Hilda Waqa and Tokasaya lsquoToxrsquo Cakacaka we are especiallygrateful to Tox for his good company during fieldwork and to his familyfor graciously enabling a visit toOvalau SuzieYee Shawprovided invaluablelogistical support in Fiji and her sons Colin and Joshua Yee Shaw assistedwith sorting Fijian material Fieldwork in Indonesia and West Africa wassupported by two MCZ Putnam Expedition Grants awarded to RonaldM Clouse and G G (2006) and to G G (2009) respectively Fieldworkin New Caledonia was supported by the Goelet award the Kalathia FamilyTrust and the Explorers Club awarded to P P S in 2006 Fieldwork in Fijiand in Palauwas supported by twoMCZPutnamExpeditionGrants awardedto P P S (2008) and to Ronald M Clouse and P P S (2010) respectivelyP P S was supported by a Faculty of Arts and Sciences Graduate Fellowshipfrom Harvard University

References

Castresana J (2000) Selectionof conservedblocks frommultiple alignmentsfor their use in phylogenetic analysis Molecular Biology and Evolution17 540ndash552

Colgan D J McLauchlan A Wislon G D F Livingston S MacaranasJ Edgecombe G D Cassis G and Gray M R (1998) Molecularphylogenetics of the Arthropoda relationships based on histone H3and U2 snRNA DNA sequences Australian Journal of Zoology 46419ndash437 doi101071ZO98048

DaSilva M B and Gnaspini P (2009) A systematic revision ofGoniosomatinae (Arachnida Opiliones Gonyleptidae) with a cladisticanalysis and biogeographical notes Invertebrate Systematics 23530ndash624 doi101071IS09022

DaSilva M B and Pinto-da-Rocha R (2010) Systematic review andcladistic analysis of the Hernandariinae (Opiliones Gonyleptidae)Zoologia 27 577ndash642

Derkarabetian S Steinmann D B and Hedin M (2010) Repeatedand time-correlated morphological convergence in cave-dwellingharvestmen (Opiliones Laniatores) from montane western NorthAmerica PLoS ONE 5 e10388 doi101371journalpone0010388

Drummond A J and Rambaut A (2007) BEAST Bayesian evolutionaryanalysis by sampling trees BMC Evolutionary Biology 7 214doi1011861471-2148-7-214

Drummond A J Ho S Y W Phillips M J and Rambaut A (2006)Relaxed phylogenetics and dating with confidence PLoS Biology 4 e88doi101371journalpbio0040088

Dunlop J A (2007) Paleontology In lsquoHarvestmen The Biology ofOpilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 247ndash265 (Harvard University Press Cambridge MA USA)

Dunlop J A and Anderson L I (2005) A fossil harvestman (ArachnidaOpiliones) from theMississippian of East Kirkton Scotland The Journalof Arachnology 33 482ndash489 doi10163604-791

Dunlop JAAndersonL IKerpH andHassH (2003)Preservedorgansof Devonian harvestmen Nature 425 916 doi101038425916a

Dunlop J A Anderson L I Kerp H and Hass H (2004) A harvestman(Arachnida Opiliones) from the Early Devonian Rhynie chertsAberdeenshire Scotland Transactions of the Royal Society ofEdinburgh Earth Sciences 94 341ndash354

Edgar R C (2004) MUSCLE multiple sequence alignment with highaccuracy and high throughput Nucleic Acids Research 32 1792ndash1797doi101093nargkh340

Edgecombe G D and Giribet G (2006) A century laterndash a total evidencere-evaluation of scutigeromorph centipedes (Myriapoda Chilopoda)Invertebrate Systematics 20 503ndash525 doi101071IS05044

Edgecombe G D Giribet G and Wheeler W C (2002) Phylogeny ofHenicopidae (Chilopoda Lithobiomorpha) a combined analysis ofmorphology and five molecular loci Systematic Entomology 2731ndash64 doi101046j0307-6970200100163x

FolmerOBlackMHoehWLutzR andVrijenhoekRC (1994)DNAprimers for amplification ofmitochondrial cytochrome c oxidase subunit Ifrom diverse metazoan invertebrates Molecular Marine Biology andBiotechnology 3 294ndash299

Forster R R (1954) The New Zealand harvestmen (sub-order Laniatores)Canterbury Museum Bulletin 2 1ndash329

Giribet G and Kury A B (2007) Phylogeny and biogeography InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 62ndash87 (Harvard University PressCambridge MA USA)

Giribet G Carranza S Baguntildeagrave J Riutort M and Ribera C (1996) Firstmolecular evidence for the existence of a Tardigrada +Arthropoda cladeMolecular Biology and Evolution 13 76ndash84

Giribet G Rambla M Carranza S Baguntildeagrave J Riutort M and Ribera C(1999) Phylogeny of the arachnid order Opiliones (Arthropoda)inferred from a combined approach of complete 18S and partial 28Sribosomal DNA sequences and morphology Molecular Phylogeneticsand Evolution 11 296ndash307 doi101006mpev19980583

Giribet G Edgecombe G D Wheeler W C and Babbitt C (2002)Phylogeny and systematic position of Opiliones a combined analysis ofchelicerate relationships using morphological and molecular dataCladistics 18 5ndash70

Giribet G Vogt L PeacuterezGonzaacutelez A Sharma P andKury A B (2010)A multilocus approach to harvestman (Arachnida Opiliones) phylogenywith emphasis on biogeography and the systematics of LaniatoresCladistics 26 408ndash437

Hara M R Gnaspini P and Machado G (2003) Male egg guardingbehavior in the Neotropical harvestman Ampheres leucopheus (Mello-Leitatildeo 1922) (Opiliones Gonyleptidae) The Journal of Arachnology 31441ndash444 doi101636S02-32

Hedin M Derkarabetian S McCormack M and Richart C (2010) Thephylogenetic utility of the nuclear protein-encoding gene EF-1a forresolving recent divergences in Opiliones emphasizing intronevolution The Journal of Arachnology 38 9ndash20 doi101636HA09-491

Huelsenbeck J P and Ronquist F (2005) Bayesian analyses of molecularevolution using MrBayes In lsquoStatistical Methods in MolecularEvolutionrsquo (Ed R Nielsen) (Springer New York)

HunterRK ProundDNBurns JA Tibbetts JA andTownsendVR(2007) Parental care in the Neotropical harvestman Phareicranauscalcariferus (Opiliones Cranaidae) The Journal of Arachnology 35199ndash201 doi101636ST06-181

Molecular phylogeny of Laniatores Invertebrate Systematics 135

Kocher T D Thoma W K Meyer A Edwards S V Paumlaumlbo SVillablanca F X and Wilson A C (1989) Dynamics ofmitochondrial DNA evolution in animals amplification andsequencing with conserved primers Proceedings of the NationalAcademy of Sciences of the United States of America 86 6196ndash6200doi101073pnas86166196

Kury A B (1993) Anaacutelise filogeneacutetica de Gonyleptoidea (ArachnidaOpiliones Laniatores) PhD Thesis Universidade de Satildeo Paulo SatildeoPaulo Brazil

Kury A B (2003) Annotated catalogue of the Laniatores of the NewWorld (Arachnida Opiliones) Revista Ibeacuterica de AracnologiacuteaVolumen Especial Monograacutefico 1 1ndash337

Kury A B (2006) Checklist of valid genera of Opiliones of theWorld Museu NacionalUFRJ Available from httpwwwmuseunacionalufrjbrmndiAracnologiachecklaniatorhtm [Accessed1 February 2011]

Kury A B (2007) Podoctidae Roewer 1912 In lsquoHarvestmen The Biologyof Opilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 221ndash224 (Harvard University Press Cambridge MA USA)

Kury A B and Cokendolpher J C (2000) Opiliones In lsquoBiodiversidadTaxonomiacutea y Biogeografiacutea de Artoacutepodos de Meacutexico Hacia una Sintesisde su Conocimientorsquo vol 2 (Eds J E Llorente E Gonzaacutelez andN Papavero) pp 137ndash157 (Universidad Nacional Autoacutenoma deMexico Meacutexico DF Mexico)

Kury A B and Machado G (2009) Notes on Santobius from Vanuatu andFiji and the status of the eastern Melanesian Ibalonius (ArachnidaOpiliones Podoctidae) Zoological Studies 48 524ndash538

Kury A B and Peacuterez G A (2002) A new family of Laniatores fromnorthwestern South America (Arachnida Opiliones) Revista Ibeacuterica deAracnologiacutea 6 3ndash11

Labandeira C C and Sepkoski J J (1993) Insect diversity in the fossilrecord Science 261 310ndash315 doi101126science11536548

Lanyon S M (1988) The stochastic mode of molecular evolutionwhat consequences for systematic investigations The Auk 105565ndash573

Lian W-G Zhu M-S and Kury A B (2008) A new species of the genusTithaeus from China (Arachnida Laniatores Epedanidae) Zootaxa1841 53ndash60

Machado G Requena G S Buzatto B A Osses F and Rossetto L M(2004) Five new cases of paternal care in harvestmen (ArachnidaOpiliones) implications for the evolution of male guarding in theNeotropical family Gonyleptidae Sociobiology 44 577ndash598

Martens J (1976) Genitalmorphologie System und Phylogenie derWeberknechte (Arachnida Opiliones) Entomologica GermanicaZeitschrift fuumlr das Gesamtgebiet der Wissenschaftlichen Entomologie3 51ndash68

Martens J (1980) Versuch eines phylogenetischen Systems der OpilionesIn lsquoProceedings 8th International Congress of Arachnology ViennaVerhandlungenrsquo (Ed J Gruber) pp 355ndash360 (Vienna Austria)

Martens J (1986) Die Grossgliederung der Opiliones und die Evolutionder Ordnung (Arachnida) Actas del X Congreso Internacional deAracnologiacutea Jaca 1 289ndash310

Martens J (1993) Further cases of paternal care in Opiliones (Arachnida)Tropical Zoology 6 97ndash107

Martens J and Schwendinger P S (1998) A taxonomic revision ofthe family Oncopodidae I New genera and new species of GnomulusThorell (Opiliones Laniatores) Revue Suisse de Zoologie 105 499ndash555

Martens J Hoheisel U and Goumltze M (1981) Vergleichende Anatomieder Legeroumlhren der Opiliones als Beitrag zur Phylogenie der Ordnung(Arachnida) Zoologische Jahrbucher Abteilung fur Anatomie undOntogenie der Tiere 105 13ndash76

Mello-Leitatildeo C F (1949) Famiacutelias subfamiacutelia espeacutecies e gecircneros novos deopiliotildees e notas de sinoniacutemia Boletim do Museu Nacional Nova SeacuterieZoologia Rio de Janeiro 94 1ndash33

Mendes A C and Kury A B (2007) Stygnopsidae Soslashrensen 1932 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 232ndash234 (Harvard University PressCambridge MA USA)

Mendes A C and Kury A B (2008) Intercontinental Triaenonychidae ndashthe case of Ceratomontia (Opiliones Insidiatores) The Journal ofArachnology 36 273ndash279 doi101636CH07-931

Murphree C S (1988) Morphology of the dorsal integument of tenopilionid species (Arachnida Opiliones) The Journal of Arachnology16 237ndash252

Park J K andOacuteFoighilD (2000) Sphaeriid and corbiculid clams representseparate heterodont bivalve radiations into freshwater environmentsMolecular Phylogenetics and Evolution 14 75ndash88 doi101006mpev19990691

Peacuterez Gonzaacutelez A (2006) lsquoRevisatildeo Sistemaacutetica e Anaacutelise Filogeneacutetica deStygnommatidae (Arachnida Opiliones Laniatores)rsquo (Museu NacionalUniversidade Federal de Rio de Janeiro Rio de Janeiro Brazil)

Peacuterez Gonzaacutelez A (2007) Stygnommatidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 229ndash232 (Harvard University PressCambridge MA USA)

Peacuterez Gonzaacutelez A (2011) New familial assignment for two harvestmanspecies of the infraorder Grassatores (Arachnida Opiliones Laniatores)Zootaxa 2757 24ndash28

Peacuterez Gonzaacutelez A and Kury A B (2007) Samoidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 224ndash226 (Harvard University PressCambridge MA USA)

Pineau P Henry M Suspegravene R Marchio A Dettai A Debruyne RPetit T Leacutecu A Moisson P Dejean A Wain-Hobson S andVartanian J-P (2005) A universal primer set for PCR amplificationof nuclear histone H4 genes from all animal species Molecular Biologyand Evolution 22 582ndash588 doi101093molbevmsi053

Pinto-da-Rocha R (1997) Systematic review of the Neotropical familyStygnidae (Opiliones Laniatores Gonyleptoidea) Arquivos deZoologia 33 163ndash342

Pinto-da-Rocha R and Kury A B (2003a) Phylogenetic analysis ofSantinezia with description of five new species (Opiliones LaniatoresCranaidae) The Journal of Arachnology 31 173ndash208 doi1016360161-8202(2003)031[0173PAOSWD]20CO2

Pinto-da-Rocha R and Kury A B (2003b) Third species of Guasiniidae(Opiliones Laniatores) with comments on familial relationships TheJournal of Arachnology 31 394ndash399 doi101636H02-59

Pinto-da-Rocha R and Kury A B (2007) Agoristenidae Silhavy 1973 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 171ndash173 (Harvard University PressCambridge MA USA)

Posada D (2005) Modeltest 37 Program and documentation available athttpdarwinuvigoes [Accessed 28 May 2011]

Posada D and Buckley T (2004) Model selection and model averaging inphylogenetics advantages of Akaike information criterion and Bayesianapproaches over likelihood ratio tests Systematic Biology 53 793ndash808doi10108010635150490522304

Posada D and Crandall K A (1998) Modeltest testing the model ofDNA substitution Bioinformatics (Oxford England) 14 817ndash818doi101093bioinformatics149817

Prendini L Weygoldt P and Wheeler W C (2005) Systematics of theDamon variegates group of African whip spiders (ChelicerataAmblypygi) evidence from behaviour morphology and DNAOrganisms Diversity amp Evolution 5 203ndash236 doi101016jode200412004

Rambaut A E (1996) Se-Al sequence alignment editor University ofOxford UK Program and documentation available at httptreebioedacuksoftwarefigtree [Accessed 21 December 2009]

136 Invertebrate Systematics P P Sharma and G Giribet

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 31: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

Kocher T D Thoma W K Meyer A Edwards S V Paumlaumlbo SVillablanca F X and Wilson A C (1989) Dynamics ofmitochondrial DNA evolution in animals amplification andsequencing with conserved primers Proceedings of the NationalAcademy of Sciences of the United States of America 86 6196ndash6200doi101073pnas86166196

Kury A B (1993) Anaacutelise filogeneacutetica de Gonyleptoidea (ArachnidaOpiliones Laniatores) PhD Thesis Universidade de Satildeo Paulo SatildeoPaulo Brazil

Kury A B (2003) Annotated catalogue of the Laniatores of the NewWorld (Arachnida Opiliones) Revista Ibeacuterica de AracnologiacuteaVolumen Especial Monograacutefico 1 1ndash337

Kury A B (2006) Checklist of valid genera of Opiliones of theWorld Museu NacionalUFRJ Available from httpwwwmuseunacionalufrjbrmndiAracnologiachecklaniatorhtm [Accessed1 February 2011]

Kury A B (2007) Podoctidae Roewer 1912 In lsquoHarvestmen The Biologyof Opilionesrsquo (Eds R Pinto-da-Rocha G Machado and G Giribet)pp 221ndash224 (Harvard University Press Cambridge MA USA)

Kury A B and Cokendolpher J C (2000) Opiliones In lsquoBiodiversidadTaxonomiacutea y Biogeografiacutea de Artoacutepodos de Meacutexico Hacia una Sintesisde su Conocimientorsquo vol 2 (Eds J E Llorente E Gonzaacutelez andN Papavero) pp 137ndash157 (Universidad Nacional Autoacutenoma deMexico Meacutexico DF Mexico)

Kury A B and Machado G (2009) Notes on Santobius from Vanuatu andFiji and the status of the eastern Melanesian Ibalonius (ArachnidaOpiliones Podoctidae) Zoological Studies 48 524ndash538

Kury A B and Peacuterez G A (2002) A new family of Laniatores fromnorthwestern South America (Arachnida Opiliones) Revista Ibeacuterica deAracnologiacutea 6 3ndash11

Labandeira C C and Sepkoski J J (1993) Insect diversity in the fossilrecord Science 261 310ndash315 doi101126science11536548

Lanyon S M (1988) The stochastic mode of molecular evolutionwhat consequences for systematic investigations The Auk 105565ndash573

Lian W-G Zhu M-S and Kury A B (2008) A new species of the genusTithaeus from China (Arachnida Laniatores Epedanidae) Zootaxa1841 53ndash60

Machado G Requena G S Buzatto B A Osses F and Rossetto L M(2004) Five new cases of paternal care in harvestmen (ArachnidaOpiliones) implications for the evolution of male guarding in theNeotropical family Gonyleptidae Sociobiology 44 577ndash598

Martens J (1976) Genitalmorphologie System und Phylogenie derWeberknechte (Arachnida Opiliones) Entomologica GermanicaZeitschrift fuumlr das Gesamtgebiet der Wissenschaftlichen Entomologie3 51ndash68

Martens J (1980) Versuch eines phylogenetischen Systems der OpilionesIn lsquoProceedings 8th International Congress of Arachnology ViennaVerhandlungenrsquo (Ed J Gruber) pp 355ndash360 (Vienna Austria)

Martens J (1986) Die Grossgliederung der Opiliones und die Evolutionder Ordnung (Arachnida) Actas del X Congreso Internacional deAracnologiacutea Jaca 1 289ndash310

Martens J (1993) Further cases of paternal care in Opiliones (Arachnida)Tropical Zoology 6 97ndash107

Martens J and Schwendinger P S (1998) A taxonomic revision ofthe family Oncopodidae I New genera and new species of GnomulusThorell (Opiliones Laniatores) Revue Suisse de Zoologie 105 499ndash555

Martens J Hoheisel U and Goumltze M (1981) Vergleichende Anatomieder Legeroumlhren der Opiliones als Beitrag zur Phylogenie der Ordnung(Arachnida) Zoologische Jahrbucher Abteilung fur Anatomie undOntogenie der Tiere 105 13ndash76

Mello-Leitatildeo C F (1949) Famiacutelias subfamiacutelia espeacutecies e gecircneros novos deopiliotildees e notas de sinoniacutemia Boletim do Museu Nacional Nova SeacuterieZoologia Rio de Janeiro 94 1ndash33

Mendes A C and Kury A B (2007) Stygnopsidae Soslashrensen 1932 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 232ndash234 (Harvard University PressCambridge MA USA)

Mendes A C and Kury A B (2008) Intercontinental Triaenonychidae ndashthe case of Ceratomontia (Opiliones Insidiatores) The Journal ofArachnology 36 273ndash279 doi101636CH07-931

Murphree C S (1988) Morphology of the dorsal integument of tenopilionid species (Arachnida Opiliones) The Journal of Arachnology16 237ndash252

Park J K andOacuteFoighilD (2000) Sphaeriid and corbiculid clams representseparate heterodont bivalve radiations into freshwater environmentsMolecular Phylogenetics and Evolution 14 75ndash88 doi101006mpev19990691

Peacuterez Gonzaacutelez A (2006) lsquoRevisatildeo Sistemaacutetica e Anaacutelise Filogeneacutetica deStygnommatidae (Arachnida Opiliones Laniatores)rsquo (Museu NacionalUniversidade Federal de Rio de Janeiro Rio de Janeiro Brazil)

Peacuterez Gonzaacutelez A (2007) Stygnommatidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 229ndash232 (Harvard University PressCambridge MA USA)

Peacuterez Gonzaacutelez A (2011) New familial assignment for two harvestmanspecies of the infraorder Grassatores (Arachnida Opiliones Laniatores)Zootaxa 2757 24ndash28

Peacuterez Gonzaacutelez A and Kury A B (2007) Samoidae Soslashrensen 1886 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 224ndash226 (Harvard University PressCambridge MA USA)

Pineau P Henry M Suspegravene R Marchio A Dettai A Debruyne RPetit T Leacutecu A Moisson P Dejean A Wain-Hobson S andVartanian J-P (2005) A universal primer set for PCR amplificationof nuclear histone H4 genes from all animal species Molecular Biologyand Evolution 22 582ndash588 doi101093molbevmsi053

Pinto-da-Rocha R (1997) Systematic review of the Neotropical familyStygnidae (Opiliones Laniatores Gonyleptoidea) Arquivos deZoologia 33 163ndash342

Pinto-da-Rocha R and Kury A B (2003a) Phylogenetic analysis ofSantinezia with description of five new species (Opiliones LaniatoresCranaidae) The Journal of Arachnology 31 173ndash208 doi1016360161-8202(2003)031[0173PAOSWD]20CO2

Pinto-da-Rocha R and Kury A B (2003b) Third species of Guasiniidae(Opiliones Laniatores) with comments on familial relationships TheJournal of Arachnology 31 394ndash399 doi101636H02-59

Pinto-da-Rocha R and Kury A B (2007) Agoristenidae Silhavy 1973 InlsquoHarvestmen The Biology of Opilionesrsquo (Eds R Pinto-da-RochaG Machado and G Giribet) pp 171ndash173 (Harvard University PressCambridge MA USA)

Posada D (2005) Modeltest 37 Program and documentation available athttpdarwinuvigoes [Accessed 28 May 2011]

Posada D and Buckley T (2004) Model selection and model averaging inphylogenetics advantages of Akaike information criterion and Bayesianapproaches over likelihood ratio tests Systematic Biology 53 793ndash808doi10108010635150490522304

Posada D and Crandall K A (1998) Modeltest testing the model ofDNA substitution Bioinformatics (Oxford England) 14 817ndash818doi101093bioinformatics149817

Prendini L Weygoldt P and Wheeler W C (2005) Systematics of theDamon variegates group of African whip spiders (ChelicerataAmblypygi) evidence from behaviour morphology and DNAOrganisms Diversity amp Evolution 5 203ndash236 doi101016jode200412004

Rambaut A E (1996) Se-Al sequence alignment editor University ofOxford UK Program and documentation available at httptreebioedacuksoftwarefigtree [Accessed 21 December 2009]

136 Invertebrate Systematics P P Sharma and G Giribet

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 32: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

Rambaut A and Drummond A J (2009) Tracer v 15 Program anddocumentation available at httpbeastbioedacukTracer [VerifiedAugust 2011]

Ree R H and Smith S A (2008) Maximum likelihood inferenceof geographic range evolution by dispersal local extinction andcladogenesis Systematic Biology 57 4ndash14 doi10108010635150701883881

Ree R H Moore B R Webb C O and Donoghue M J (2005)A likelihood framework for inferring the evolution of geographic rangeon phylogenetic trees Evolution 59 2299ndash2311

Roewer C F (1912) Die Familien der Assamiiden und Phalangodiden derOpiliones-Laniatores (Assamiden Dampetriden PhalangodidenEpedaniden Biantiden Zalmoxiden Samoiden Palpidediden andererAutoren) Archiv fuumlr Naturgeschichte Berlin Abteilung A 78(3) 1ndash242

Roewer C F (1923) Die Weberknechte der Erde In lsquoSystematischeBearbeitung der bisher bekannten Opilionesrsquo (Ed G Fischer)pp 64ndash120 (Gustav Fischer Jena Germany)

Roewer C F (1949) Uumlber Phalangodiden I Subfam PhalangodinaeTricommatinae Samoinae weitere Weberknechte XIIISenckenbergiana 30(1) 11ndash61

Rokas A and Carroll S B (2006) Bushes in the tree of life PLOS Biology4 1899ndash1904

Sahney S and BentonM J (2008) Recovery from themost profoundmassextinction of all time Proceedings of the Royal Society Series B 275759ndash765 doi101098rspb20071370

Sanmartiacuten I and Ronquist F (2004) Southern hemisphere biogeographyinferred by event-based models plant versus animal patterns SystematicBiology 53 216ndash243 doi10108010635150490423430

Schoumlnhofer A L and Martens J (2008) Revision of the genus TrogulusLatreille the Trogulus coriziformis species-group of the westernMediterranean (Opiliones Trogulidae) Invertebrate Systematics 22523ndash554 doi101071IS08013

Schwendinger P J and Giribet G (2005) The systematics of the south-east Asian genus Fangensis Rambla (Opiliones CyphophthalmiStylocellidae) Invertebrate Systematics 19 297ndash323 doi101071IS05023

Sharma P and Giribet G (2009) Sandokanid phylogeny based on eightmolecular markers ndash the evolution of a southeast Asian endemic family ofLaniatores (Arachnida Opiliones) Molecular Phylogenetics andEvolution 52 432ndash447 doi101016jympev200903013

SharmaP P PrietoCE andGiribetG (2011)Anewfamily ofLaniatoresfrom theAfrotropics (ArachnidaOpiliones) InvertebrateSystematics25143ndash154 doi101071IS11003

Shultz J W and Regier J C (2001) Phylogenetic analysis of Phalangida(Arachnida Opiliones) using two nuclear protein-encoding genessupports monophyly of Palpatores The Journal of Arachnology 29189ndash200 doi1016360161-8202(2001)029[0189PAOPAO]20CO2

Stamatakis A (2006) RAxML-VI-HPC maximum likelihood-basedphylogenetic analyses with thousands of taxa and mixed modelsBioinformatics (Oxford England) 22 2688ndash2690 doi101093bioinformaticsbtl446

Stamatakis A Hoover P and Rougemont J (2008) A rapid bootstrapalgorithm for the RAxML web servers Systematic Biology 57 758ndash771doi10108010635150802429642

Starega W (1989) Harvestmen (Opiliones) from the Mascarene Islands andthe resurrection of the family Zalmoxidae Annals of the Natal Museum30 1ndash8

Starega W (1992) An annotated check-list of Afrotropical harvestmenexcluding the Phalangiidae (Opiliones) Annals of the Natal Museum33 271ndash336

Suzuki S (1964) A remarkable new phalangodid Dongmoa oshimensisfrom Japan Annotationes Zoologicae Japonenses 37 163ndash167

Suzuki S (1969) On a collection ofOpilionids fromSoutheast Asia Journalof Science of the Hiroshima University B 22 11ndash77

Suzuki S (1976) Report on a collection of Opilionids from Pasoh ForestReserve west Malaysia Nature and Life in Southeast Asia 7 9ndash38

Suzuki S (1977) Report on a collection of opilionids from the PhilippinesJournal of Science of the Hiroshima University B 27 1ndash120

Suzuki S (1985) A synopsis of the Opiliones of Thailand (Arachnida)I Cyphopthalmi andLaniatores Steenstrupia (Copenhagen) 11 69ndash110

Tavareacute S (1986) Some probabilistic and statistical problems in the analysisof DNA sequences Lectures on Mathematics in the Life Sciences 1757ndash86

Thomas S M and Hedin M (2008) Multigenic phylogeographicdivergence in the paleoendemic southern Appalachian opilionidFumontana deprehendor Shear (Opiliones LaniatoresTriaenonychidae) Molecular Phylogenetics and Evolution 46645ndash658 doi101016jympev200710013

Townsend V R Rana N J Proud D N Moore M K Rock P andFelgenhauer B E (2009)Morphological changes during postembryonicdevelopment in two species of Neotropical harvestmen (OpilionesLaniatores Cranaidae) Journal of Morphology 270 1055ndash1068doi101002jmor10742

Ubick D and Dunlop J (2005) On the placement of the Baltic amberharvestman Gonyleptes nemastomoides Koch and Berendt 1854 withnotes on the phylogeny of Cladonychiidae (Opiliones LaniatoresTrvunioidea) Mitteilungen aus dem Museum fuumlr Naturkunde in Berlin ndash

Geowissenschaftliche Reihe 8 75ndash82 doi101002mmng200410005Whitfield J B and Lockhart P J (2007) Deciphering ancient rapid

radiations Trends in Ecology and Evolution 22 258ndash265WhitingM F Carpenter J MWheeler Q D andWheelerW C (1997)

The Strepsiptera problem phylogeny of the holometabolous insect ordersinferred from 18S and 28S ribosomal DNA sequences and morphologySystematic Biology 46 1ndash68

Willemart R H Osses F Chelini M C Macias-Ordonez R andMachado G (2009) Sexually dimorphic legs in a Neotropicalharvestman (Arachnida Opiliones) ornament or weapon BehaviouralProcesses 80 51ndash59 doi101016jbeproc200809006

Willemart R H Peacuterez Gonzaacutelez A Farine J P and Gnaspini P (2010)Sexually dimorphic tegumental gland openings in Laniatores (ArachnidaOpiliones) with new data on 23 species Journal of Morphology 271641ndash653

Xiong B and Kocher T D (1991) Comparison of mitochondrial DNAsequences of seven morphospecies of black flies (Diptera Simuliidae)Genome 34 306ndash311 doi101139g91-050

Yamaguti H Y and Pinto-da-Rocha R (2009) Taxonomic review ofBourguyiinae cladistic analysis and a new hypothesis ofbiogeographic relationships of the Brazilian Atlantic Rainforest(Arachnida Opiliones Gonyleptidae) Zoological Journal of theLinnean Society 156 319ndash362 doi101111j1096-3642200800484x

Yang Z (1996) Among-site rate variation and its impact on phylogeneticanalysesTrends inEcologyampEvolution11 367ndash372 doi1010160169-5347(96)10041-0

Zatz C Werneck R M Maciacuteas-Ordoacutentildeez R and Machado G (2011)Alternative mating tactics in dimorphic males of the harvestmanLongiperna concolor (Arachnida Opiliones) Behavioral Ecology andSociobiology 65 995ndash1005 doi101007s00265-010-1103-0

Manuscript received 11 January 2011 accepted 20 June 2011

Molecular phylogeny of Laniatores Invertebrate Systematics 137

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 33: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

App

endix1

Listof

speciesan

dgene

frag

mentsinclud

edin

phylogenetican

alysesw

ithcorrespo

ndingtaxono

my

vouchernu

mbers

andGenBan

kaccessionnu

mbers

Asterisks

indicatesequ

encesup

datedin

GenBank

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

CYPHOPHTHALMI

Troglosirourbanus

Sharm

aamp

Giribet

2009

Troglosiron

idae

MCZDNA101710

EU887073

EU8871

05EU8871192

EU887044

JF786340

Yahoueacute

Province

Sud

New

Caledonia

221945S

1665017

EGM

onteith

EUPNOI

Caddo

agilisBanks

1892

Caddidae

MCZDNA100308

U91487

U91502

AF240838

E

Couderspo

rt

Potter

County

PennsylvaniaUSA

WA

Shear

Pantopsalissp

Monoscutid

aeMCZDNA100703

GQ912838

GQ912707

GQ912756

GQ912861

GQ912902

Otari-W

ilton

rsquosBush

Wellin

gton

North

IslandN

ewZealand

na

JDerraik

Protolophus

singularis

Banks1893

Sclerosom

atidae

MCZDNA101033

EF108581

EF028095

EU0280962

EF108586

EF108592

GQ488027

Eastbase

ofGuatayMountain

San

Diego

County

CaliforniaUSA

3283327

N

11654624W

DP

almerD

Stokes

DYSP

NOI

Dendrolasmaparvulum

(Suzuki1963)

Nem

astomatidae

MCZDNA100318

EF108584

EF108574

EF1085782

EF108589

Kyobashira

Pass

Tokushima

PrefectureShikoku

Japan

na

NT

surusaki

Hesperonemastoma

modestum

(Banks

1894)

Ceratolasmatidae

MCZDNA100312

EF108583

AF124942

GQ9127652

EF108588

AF240869

EF108594

Oregon

USA

na

na

Troglus

nepaeformis

(Scopoli1

763)

Trogulid

aeMCZDNA100325

GQ912848

AF124949

AF124976

GQ466263

GQ466263

AF240880

Belgium

Europe

na

JWS

hultz

LANIA

TORES

Insidiatores

Synthetonychia

sp

Synthetonychiidae

MCZDNA100796

GQ912849

GQ912720

GQ912787

GQ912875

GQ912910

NearHoropito

North

IslandNew

Zealand

39 220S

17523

0 EDepartm

entof

Conservation(pitfalltraps)

Briggsusflavescens

(Briggs1971)

Briggsidae

OP1052

HM056643

HM056726

South-w

esto

fClatskanieColum

bia

County

Oregon

43 3

0 4750

0 N

12316

0 30

00 WSD

erkarabetianetal

Holoscotelemon

jaqueti

(Corti

1905)

Cladonychiid

aeMCZDNA101037

FR870469

GQ912717

GQ91278232

GQ912873

GQ912907

FR850202

Zlatib

orMountains

Sargan

Yugoslavia

na

IKaram

an

Theromasterbrunnea

(Banks1902)

Cladonychiid

aeMCZDNA100701

GQ912718

GQ912784

GQ912908

FR850263

Rich

Mtn

Lookout

Madison

County

North

CarolinaUSA

35 558750N

82 482600W

MH

edinM

Low

der

Erebomasterflavencens

flavescens

Cope

1872

Cladonychiid

aeMCZDNA101444

GQ912716

GQ912781

FR850256

PattonCaveDeamWild

ernessArea

IndianaUSA

na

JLew

isS

Rafail

HH

uffm

an

Trojanella

serbica

Karam

an2005

incertae

sedis

MCZDNA100911

GQ912719

GQ912786

GQ912874

GQ912909

Vladikina

PlocaMtStara

Planina

Serbia

na

IKaram

an

Zum

aacutaGoodnight

ampGoodnight1942

Sclerobunidae

OP750

AF124951

AF124978

HM056734

HM056692

Hadzianaclavigera

(Sim

on1

879)

Travuniidae

MCZDNA101459

FJ796479

GQ9127852

FJ796491

JF786557

FJ796498

FJ475954

FJ475967

IbarraTolasaGuipuacutezcoaSpain

na

CP

rieto

Fum

ontana

deprehendorShear

1977

Triaenony

chidae

MCZDNA100700

GQ912721

GQ91279012

GQ912911

FR850258

FR850193

Eof

SpiveyGapNorth

Carolina

USA

36 020540N

82 242570W

MH

edinM

Low

der

Larifu

gacapensis

Law

rence1931

Triaenony

chidae

MCZDNA100727

GQ912722

GQ9127922

GQ912876

GQ912912

FR850223

FR850175

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

GG

iribetLP

rendini

Equitius

doriae

Sim

on

1880

Triaenony

chidae

MCZDNA100607

U37003

GQ9127882

EF108590

JF786570

EF108595

FJ475955

FJ475968

New

South

WalesA

ustralia

na

GSH

unt

Rostrom

ontia

capensis

Law

rence1931

Triaenony

chidae

MCZDNA100724

GQ912723

GQ912793

GQ912913

FR850262

New

landsForestTable

Mountain

CapeProvinceSouth

Africa

na

GG

iribetLP

rendini

Triaenobunus

armstrongiForster

1955

Triaenony

chidae

MCZDNA100328

GQ912724

GQ912794

2GQ912878

JF786373

GQ912915

FR850243

FR850190

Mt

Hyland

NatureReserveNew

South

WalesA

ustralia

30 08051

00 S

15226

0 3800 E

GDE

dgecom

be

Y-y

Zhen

Triaenobunussp

Triaenony

chidae

MCZDNA100617

AF124950

GQ9127952

GQ912877

GQ912914

FR850264

New

South

WalesA

ustralia

Grassatores

Bishopella

laciniosa

(Crosbyamp

Bishop

1924)

Phalangod

idae

MCZDNA100324

JF786515

GQ912850

AF124952

GQ9127982

GQ912880

GQ872185

FR850168

SittonsC

aveDadeCountyGeorgia

USA

na

na

(contin

uednextpage

)

138 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 34: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Rem

yussp

Phalangod

idae

MCZDNA102660

JF786545

JF786470

JF786608

JF786431

JF786341

FR850255

Toliara

Province

Parc

National

drsquoAndohahela

Foret

drsquoAmbohiboryMadagascar

24 55048

00 S

46 38044

00 EBLF

isher

Scotolem

onlespesi

Lucas1860

Phalangod

idae

MCZDNA100326

GQ912851

U37005

GQ912799

AF240878

GQ912916

LaFagedadrsquoEnJordaGironaSpain

na

na

Scotolem

onsp

Phalangod

idae

MCZDNA101042

JF786530

GQ912852

GQ912725

GQ9128002

GQ912881

JF786374

JF786569

GQ912917

FR850204

FR850186

Barranco

deAtamaria

Murcia

Spain

41 11057

00 N2

14042

00 EMAArnedo

Ed

eMas

Mintildeano

Caenoncopus

sp

Sandokanidae

MCZDNA102593

FJ475842

FJ475853

FJ475879

FJ4759032

FJ475917

JF786383

FJ475931

FJ475945

FJ475981

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Gnomulus

latoperculum

Schwendinger

amp

Martens2002

Sandokanidae

MCZDNA102029

FJ475836

FJ475858

FJ475871

FJ4758902

FJ475913

JF786384

JF786552

FJ475924

FJ475962

FJ475975

GunungTongaraN

orth

Sulaw

esi

032

0 290

0 N

12414

0 5400 E

RC

louseGG

iribet

CR

ahmadi

Martensiellus

sp

Sandokanidae

MCZDNA102597

JF786525

FJ475856

FJ475885

FJ4759002

FJ475919

FJ475937

FJ475950

AoLuk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Palaeoncopusgunung

Martens

amp

Schwendinger

1998

Sandokanidae

MCZDNA102596

FJ475846

FJ475866

FJ475883

FJ4758982

FJ475909

FJ475935

FJ475966

FJ475983

MtMerapiWestSum

atra

023

0 320

0 S

10026

0 5400 E

PJS

chwendinger

Sandokan

malayanus

(Pocock

1897)

Sandokanidae

MCZDNA100321

FJ475832

EF108585

EF108575

GQ912796

EF108591

EF108596

FJ475958

FJ475973

BukitLarutT

aipingMalaysia

na

PJS

chwendinger

Metatith

aeus

cfrubidus

Suzuki1969

Tith

aeidae

MCZDNA104066

ndash1

JF786540

JF786471

JF786606

JF786438

JF786387

JF786344

FR850251

South

Kalim

antanProvince

Pagat

Gunung

Batu

Benaw

aBorneo

Indonesia

238

0 400

0 S

11524

0 4600 E

PJS

chwendinger

Tith

aeus

cfkokutnus

Suzuki1985

Tith

aeidae

MCZDNA104072

JF786535

JF786459

JF786472

JF786578

JF786436

JF786381

JF786342

FR850242

FR850189

TerengganuStatePulau

Perhentian

Kecil

Kam

pung

Pasir

Hantu

Malaysia

553

0 520

0 N102

440200 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104062

ndash1

JF786539

JF786473

JF786590

JF786437

JF786386

JF786343

FR850250

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Tith

aeus

sp

Tith

aeidae

MCZDNA104068

ndash1

JF786541

JF786474

JF786591

JF786439

JF786388

JF786345

EastKalim

antan

Province

Berau

north

ofTanjungredeb

Borneo

Indonesia

229

0 330

0 S

11728

0 4600 E

PJS

chwendinger

Dongm

oasp

Podoctid

aeMCZDNA101100

JF786518

FJ796471

FJ796477

FJ7964892

FJ475905

JF786376

FJ796500

FJ475952

FJ475971

Cat

Tien

NPDong

Nai

Prov

Vietnam

11 350223

00 N

10725

0 42500 E

PJS

chwendinger

Lom

aniussp

Podoctid

aeMCZDNA104934

FR870470

JF786475

JF786574

JF786346

FR850224

FR850176

NgarchorIslandNgarchelong

State

Palau

745226

0 N

13437244

0 EJCzekanski-M

oir

Lom

aniuslongipalpu

s

longipalpu

s

Goodnight

amp

Goodnight1

957

Podoctid

aeMCZDNA104935

JF786524

JF786476

JF786597

JF786432

JF786347

FR850261

FR850177

Babeldaob

IslandNgatpangState

Palau

727083

0 N

13431950

0 EJCzekanski-M

oir

Santobiussp

Podoctid

aeMCZDNA104930

JF786460

JF786477

JF786575

JF786559

SavuraPark

Viti

Levu

Fiji

18 040150

00 S

17826

0 39900 E

PPS

harm

aTC

akacaka

JMurienne

Santobiussp

Podoctid

aeMCZDNA104931

JF786529

JF786461

JF786478

JF786576

JF786433

JF786561

FR850234

FR850185

Viro

Ovalau

Fiji

17 390496

00 S

17845

0 33300 E

PPS

harm

aTC

akacaka

JMurienne

Allo

epedanus

sp

Epedanidae

MCZDNA104862

JF786519

JF786480

JF786572

JF786549

JF786349

FR850210

ChaingMaiDoi

Inthanon

National

Park

Kew

MaiPanT

hailand

18 3316

0 N

98 2880

0 EYA

reeluck

Euepedanussp

Epedanidae

MCZDNA104861

JF786546

JF786479

JF786571

JF786348

FR850209

PhitsunulokThung

Salaeng

Luang

NationalPark

Thailand

16 5056

0 N

10051750E

PongpitakP

raneeSathit

Pseudoepeda

nus

doiensisSuzuki

1969

Epedanidae

MCZDNA101438

JF786528

GQ912731

GQ9128072

JF786558

GQ912922

FR850232

HuayKhokMaDoiSuthepChiang

MaiT

hailand

na

PJS

chwendinger

Petrobunus

schw

endingerisp

nov

Petrobunidae

MCZDNA103572

JF786481

JF786611

JF786353

FR850254

PanayS

ibaliwP

hilip

pines

na

EC

urio

Petrobunussp

Petrobunidae

MCZDNA102668

JF786482

JF786582

JF786350

FR850216

TaltungR

oadNo20beforeLidau

Taiwan

na

SV

it

Petrobunussp

Petrobunidae

MCZDNA102669

JF786483

JF786593

JF786351

FR850217

TaltungR

oadNo

20b

eforeWulu

Taiwan

na

SV

it

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA103729

JF786484

JF786595

FR850219

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidagibbera

Suzuki1970

Petrobunidae

MCZDNA104071

JF786463

JF786485

JF786596

FR850221

Krabi

ProvinceAoLuk

DistrictAo

Luk

TaiT

hailand

822

0 200 N

9844

0 1700 E

PJS

chwendinger

Zalmoxidasp

Petrobunidae

MCZDNA104070

JF786462

JF786486

JF786583

JF786435

FR850220

Krabi

Province

Ban

KhlongJilat

Thailand

805

0 180

0 N

98 52056

00 EPJS

chwendinger

(contin

uednextpage

)

Molecular phylogeny of Laniatores Invertebrate Systematics 139

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 35: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Zalmoxidasp

Petrobunidae

MCZDNA102677

JF786487

JF786594

JF786434

JF786352

FR850218

North

Sum

atra

Province

Sikulilk

ap

Waterfall

Brastagi

Sum

atra

Indonesia

314

0 380

0 N

98 32011

00 EPJS

chwendinger

Torreanaspinata

Avram

1977

Agoristenidae

MCZDNA105839

JF786544

JF786488

JF786607

JF786440

JF786563

JF786354

Santiago

deCubaProvinceSantiago

deCubaGranPiedra

AP

eacuterez

Gonzaacutelez

NP

latnick

Cynortula

granulata

Roewer1

912

Cosmetidae

MCZDNA100332

JF786517

JF786464

FJ796480

GQ9128092

FJ796492

JF786375

FJ796499

FJ475956

FJ475969

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Metalibitia

paraguayensis

(Soslashrensen

1884)

Cosmetidae

MCZDNA100476

JF786527

GQ912733

GQ9128102

GQ912924

FR850227

FR850180

Roadto

TafiacutedelValleTucum

aacuten

Argentin

a

27 05001

00 S

65 39056

00 WGG

iribet

Vonones

ornata

(Say

1821)

Cosmetidae

Novoucher

AF062984

AF062984

U90060

Heterocrana

ussp

Cranaidae

MCZDNA101443

FR870472

GQ912734

GQ9128112

GQ912885

JF786553

GQ912925

FR850200

FR850172

Laguna

Grande

deMojanda

OtavaloE

cuador

007

0 590

0 N

78 16030

00 WRV

ila

Santinezia

serratotibialis

Roewer1

932

Cranaidae

MCZDNA100426

GQ912735

GQ91281232

GQ912886

GQ912926

FR850233

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Acutisom

alongipes

Roewer1

913

Gonyleptidae

MCZDNA101112

JF786521

GQ912736

GQ9128152

JF786441

JF786564

JF786355

FR850213

FR850171

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Glysterus

sp

Gonyleptidae

MCZDNA101422

FJ475831

FJ796472

FJ796481

GQ9128142

FJ796493

JF786378

JF786551

FJ796502

FJ475957

FJ475970

SiquirresProvinciade

Lim

oacutenC

osta

Rica

na

AP

eacuterez-G

onzaacutelez

CV

iacutequez

Megapachylusgrandis

Roewer1

913

Gonyleptidae

MCZDNA101113

JF786526

GQ912737

GQ9128162

JF786442

JF786379

JF786554

JF786356

FR850203

FR850178

Cachoeira

doSaltatildeo

Brotas

Satildeo

PauloB

razil

22 23035

00 S

47 53011

00 WGG

iribet

Zygopachylussp

Manaosbiidae

MCZDNA101425

JF786538

GQ912855

GQ912739

GQ9128182

GQ912889

JF786560

JF786357

FR850246

FR850192

Honecreek

Finca

Alberto

Moo

re

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

Stygnoplus

clavotibialis

(Goodnight

amp

Goodnight1

947)

Stygnidae

MCZDNA100331

JF786533

GQ912740

GQ9128192

JF786377

GQ912927

FR850240

MtStBenedictTrinidad

10 39049

00 N

61 23056

00 WLP

rendini

Hoplobunussp

Stygnopsidae

MCZDNA100327

JF786522

GQ912856

AF124953

GQ91282012

GQ912890

GQ912928

FR850173

HeadquartersCave

Bexar

County

TexasU

SA

na

Karos

rugosus

Goodnight

amp

Goodnight1

971

Stygnopsidae

MCZDNA101419

JF786523

GQ912741

GQ9128222

GQ912891

GQ912929

FR850222

Grutasde

AtoyacVeracruzMexico

18 553730N

96 458850W

OF

rancke

EG

onzaacutelez

JPonceL

Prendini

Stygnopsissp

Stygnopsidae

MCZDNA103882

JF786543

JF786489

JF786612

JF786443

JF786358

FR850253

Huitepec

San

CristobalChiapas

Mexico

16 450650

0 N

92 400576

00 WLLAMA

Wm-A

-05ndash

2-all

Stygnopsissp

Stygnopsidae

MCZDNA104855

JF786534

JF786490

JF786577

JF786444

JF786562

JF786359

FR850165

ElMusunRio

Blanco

Matagalpa

Nicaragua

12 5880N8

5139

0 WLLAMA

MGB1176

Stygnopsissp

Stygnopsidae

MCZDNA104856

JF786491

JF786605

JF786445

JF786568

JF786360

FR850241

FR850166

Cerro

Pinalon

El

Progreso

Guatemala

15 050270

0 N

89 560437

00 WLLAMA

Wa-B-01ndash

1-all

Bandona

sp

Assam

iidae

MCZDNA104857

JF786465

JF786492

JF786586

JF786361

FR850205

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

cfA

rulla

sp

Assam

iidae

MCZDNA102666

JF786493

JF786584

JF786446

JF786363

FR850247

Gua

Musang

Kelantan

Malaysia

452

0 3130

0 N

10158

0 65

00 EPJS

chwendinger

Chilonrobustus

Soslashrensen

1896

Assam

iidae

MCZDNA100766

GQ912727

GQ91280232

GQ912919

FR850208

Bicurga

Regioacuten

Contin

ental

EquatorialGuinea

122

0 490

0 N

10 28000

00 ECP

rieto

Mysorea

thaiensis

Suzuki1985

Assam

iidae

MCZDNA104859

JF786466

JF786495

JF786588

JF786547

JF786362

FR850206

Phu

Phan

NationalPark

Sakon

Nakhon

Thailand

16 4863

0 N

10353590E

WinlonKongnara

Neopygoplus

siam

ensis

Suzuki1985

Assam

iidae

MCZDNA104858

JF786514

JF786494

JF786587

KhueanSrinagarindraNationalPark

KanchanaburiThailand

14 3814

0 N

98 5984

0 EChatchawan

Bookham

Paktongiussp

Assam

iidae

MCZDNA101416

GQ912854

GQ912728

GQ9128042

JF786447

JF786555

FR850230

Kanchanaburi

Thong

Pha

Phum

DistrictMae

KongStatio

nThailand

14 344490N

98 509210E

DL

ohman

Seuthesinermis

Assam

iidae

MCZDNA100765

GQ912729

GQ9128052

GQ912920

FR850231

FR850195

Monte

Sabio

Cogo

Bioko

EquatorialGuinea

105

0 N9

420E

CP

rieto

Tarnuspulcher

Assam

iidae

MCZDNA104069

JF786496

JF786585

FR850248

Langkaw

iIslandK

edanMalaysia

622

0 510

0 N9940

0 3500 E

AS

chultz

Trionyella

sp

Assam

iidae

MCZDNA101430

JF786536

JF786467

GQ912730

GQ9128062

GQ912883

GQ912921

FR850244

Peradeniya

Central

Province

Sri

Lanka

716

0 560

0 N8035

0 5800 E

SB

oyerG

Giribet

IKarunarathnaPPS

harm

a

Conom

maoedipus

Roewer1

949

Pyram

idopsgroup

MCZDNA101051

JF786516

GQ912853

GQ912726

GQ9128012

GQ912882

JF786548

GQ912918

FR850201

FR850169

MusolaBiokoE

quatorialG

uinea

325

0 530

0 N8

37008

00 EMF

ero

GG

iribetCP

rieto

cfP

yram

idopssp

Pyram

idopsgroup

MCZDNA101432

JF786468

JF786497

JF786599

FR850229

FR850182

Montana

Chocolate

Niefang

DistrictEquatorialGuinea

145

0 250

0 N1017

0 0300 E

GG

iribetCP

rieto

Lacurbs

sp

Biantidae

MCZDNA105668

JF786498

JF786589

JF786448

JF786364

FR850249

KribiCam

poReserveCam

eroon

244470N9

5291

0 ELRBenavidesGChassant

Jouolieu

GG

iribet

(contin

uednextpage

)

140 Invertebrate Systematics P P Sharma and G Giribet

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 36: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

App

endix1

(con

tinued)

Taxonom

yVoucher

12SrRNA

16SrRNA

18SrRNA

28SrRNA

COI

CytB

EF-1a

H3

H4

U2snRNA

Locality

Coordinates

Collector

Metabiantes

sp

Biantidae

MCZDNA100335

JF786499

JF786598

JF786449

FR850225

FR850179

WeenenNatureReserveKwazulu-

NatalS

outh

Africa

na

LP

rendiniLS

cott

Metabiantes

sp

Biantidae

MCZDNA100703

GQ912743

GQ9128242

GQ912892

GQ912931

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Metabiantes

sp

Biantidae

MCZDNA100704

GQ912744

GQ9128252

JF786450

GQ912932

FR850226

Sarah

campsiteMlawulaReserve

Swaziland

26 11044

00 S

31 59024

00 ERB

oycott

GG

iribet

LP

rendini

Badessa

sp

Sam

oidae

MCZDNA104600

JF786500

JF786609

JF786451

JF786365

FR850257

Viro

Ovalau

Fiji

17 400159

00 S

17845

0 39800 E

PPS

harm

aTC

akacaka

JMurienne

Pellobunusinsularis

Banks1905

Sam

oidae

MCZDNA101421

JF786469

GQ912748

GQ9128292

GQ912894

JF786556

GQ912935

FR850197

FR850183

Honecreek

Finca

Alberto

Moore

Provincia

deLim

oacutenC

ostaRica

na

CV

iacutequez

gen

sp

Sam

oidae

MCZDNA101116

GQ912749

GQ9128302

GQ912936

FR850198

FR850184

Pico

Basileacute

Bioko

Equatorial

Guinea

340

0 150

0 N8

50052

00 EGG

iribetCP

rieto

Stygnommasp

Stygnom

matidae

MCZDNA101415

JF786501

GQ9128312

GQ912895

GQ912937

FR850239

Track

headingWestofK

m135Nof

LeticiaAmazonasC

olom

bia

407

0 130

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Stygnommabispinatum

Goodnight

amp

Goodnight1

953

Stygnom

matidae

MCZDNA105636

JF786542

JF786502

JF786604

FR850252

SierraMorenaChiapasM

exico

16 090123

00 N

93 360280

0 WLLAMA

Wa-A-01ndash

2-all

Stygnommateapense

Goodnight

amp

Goodnight1

951

Stygnom

matidae

MCZDNA104849

JF786505

JF786602

JF786454

FR850237

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104847

JF786531

JF786503

JF786600

JF786452

FR850235

FR850187

NW

MoralesIzabalGuatemala

15 300385

00 N

88 510394

00 WLLAMA

Wa-B-04ndash

1-all

Stygnommasp

Stygnom

matidae

MCZDNA104848

JF786504

JF786601

JF786453

FR850236

FR850188

MataquescuintiaJalapaGuatemala

14 310372

00 N

90 090910

0 WLLAMA

Wa-B-07ndash

2-all

Stygnommasp

Stygnom

matidae

MCZDNA104850

JF786532

JF786506

JF786603

JF786455

JF786385

FR850238

Biotopo

Quetzal

Baja

Verapaz

Guatemala

15 120475

00 N

90 130920

0 WLLAMA

Wa-B-02ndash

2-all

Baculigerus

sp

Escadabiidae

MCZDNA100640

GQ912857

GQ912745

GQ9128262

GQ912893

GQ912933

FR850207

FR850167

FolhicoP

arqueEcoloacutegico

deCocoacute

FortalezaBrazil

na

ABK

ury

IKury

MK

ury

Baculigerus

sp

Escadabiidae

MCZDNA104054

ndash3

JF786507

JF786573

JF786366

FR850211

LeticiaAmazonasColom

bia

407

0 190

0 S

69 58031

00 WLRB

enavidesGG

iribet

RM

esa

Fisiphallius

chicoi

Tourinh

oamp

Peacuterez

Gonzaacutelez2006

Fissiphalliidae

MCZDNA101551

GQ912750

GQ9128322

GQ912939

FR850196

FR850170

Satildeo

Joseacute

commun

ity

Gurupaacute

municipality

ParaacuteBrazil

1197S5

1783W

CA

Rheim

sFR

ego

Fisiphallius

sp

Fissiphalliidae

MCZDNA104055

ndash1

JF786508

JF786579

JF786367

FR850212

Santuario

defaunayfloraIguaque

BoyacaColom

bia

542

0 360

0 S

73 27050

00 WLRB

enavidesCam

pos

CF

loacuterezGG

iribet

Fisiphallius

sp

Fissiphalliidae

MCZDNA104057

JF786520

JF786509

JF786592

JF786368

Guasiniasp

Guasiniidae

MCZDNA105838

JF786510

JF786610

JF786456

JF786565

JF786369

FR850259

Santiago

deCubaProvinceSantiago

deCubaRio

laMulaCuba

APeacuterez

GonzaacutelezNPlatnick

Icaleptessp

Icaleptid

aeMCZDNA101420

GQ912751

GQ9128332

JF786380

JF786566

GQ912940

FR850199

FR850174

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 060

0 N

78 04025

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104053

JF786511

JF786580

JF786370

FR850214

Reserva

Natura

Riacuteo

Ntildeam

biacute

Municipio

deBarbacoasNarintildeo

Colom

bia

117

0 110

0 N

78 04027

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Icaleptessp

Icaleptid

aeMCZDNA104056

ndash1

JF786512

JF786581

JF786457

JF786371

FR850215

Reserva

elCom

un

Chachagui

Narintildeo

Colom

bia

120

0 070

0 N

77 15043

00 WLRB

enavidesLC

abrera

GC

astilloC

Floacuterez

GG

iribetMR

omo

VS

olarte

Kimulagoodnightiorum

Silh

avy

1969

Kim

ulidae

MCZDNA105837

JF786513

JF786613

JF786458

JF786567

JF786372

FR850260

FR850194

Santiago

deCubaProvinceSantiago

deCubaGranPiedrakm

14C

uba

na

AP

eacuterez-G

onzaacutelez

NP

latnick

Minuella

sp

Kim

ulidae

MCZDNA101388

FR870471

GQ912747

GQ91282782

GQ912934

FR850228

FR850181

Colonia

TovarVenezuela

na

AP

eacuterez

Gonzaacutelez

AG

iupponiOV

illarreal

Manzanilla

Ethobunus

zalmoxiformis

(Roewer1

949)

Zalmoxidae

MCZDNA101424

FJ796478

FJ7964902

FJ796494

JF786550

FJ796501

FJ475953

FJ475972

VolcaacutenPoaacutesCostaRica

na

AP

eacuterez-G

onzaacutelez

Zalmoxissp

Zalmoxidae

MCZDNA100914

JF786537

GQ912858

GQ912754

GQ9128362

GQ912898

JF786382

GQ912942

FR850245

FR850191

NinguaResCam

pProvinceSud

New

Caledonia

na

GM

onteith

Molecular phylogeny of Laniatores Invertebrate Systematics 141

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis

Page 37: The evolutionary and biogeographic history of the armoured harvestmen … · 2019-12-06 · The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny

Appendix 2 Female genitalia of Petrobunidae (a) Ovipositor ofPetrobunus torosus ventral view (b) ovipositor of Zalmoxida gibbera

ventral view

142 Invertebrate Systematics P P Sharma and G Giribet

httpwwwpublishcsiroaujournalsis