The Early Diagnosis of Alzheimer’s disease Imaging and CSF NICE... · 2017. 9. 12. · c. Below...

74
The Early Diagnosis of Alzheimer’s disease Imaging and CSF Biomarkers May 9, 2010 Nice France Mony de Leon Professor of Psychiatry NYU School of Medicine

Transcript of The Early Diagnosis of Alzheimer’s disease Imaging and CSF NICE... · 2017. 9. 12. · c. Below...

  • The Early Diagnosis of Alzheimer’s disease

    Imaging and CSF

    Biomarkers

    May 9, 2010

    Nice France

    Mony de Leon Professor of Psychiatry

    NYU School of Medicine

  • Alzheimer’s disease

    Familial < 5% Early Onset < 60 years

    Inherited abnormalities:

    presenilin 1 (PS1)- ch14

    presenilin 2 (PS2)- ch1

    amyloid precursor protein (APP)- ch21

    Sporadic 95%

    Late-Onset > 65 years

    Age

    High BP

    High cholesterol

    Diabetes

    Apolipoprotein-E e4

    Head Trauma

    Risk factors

  • DIAGNOSTIC CRITERIA FOR AD

    Clinical Diagnosis a. Deficit in two or more areas of cognition.

    b. Progressive and gradual impairment.

    c. Interference with ADL.

    d. Rule out other brain or systemic disease.

    Neuroimaging Diagnosis- Not available

    Biomarker Diagnosis- Not available

  • DIAGNOSTIC CRITERIA FOR MCI

    Clinical Diagnosis

    a. Complaints corroborated by informant. b. Not demented and no interference with ADL.

    c. Below normal performance on neuropsychological testing

    d. Rule out other brain or systemic disease.

  • Biomarker Objectives

    • Early detection (sensitivity)

    • Valid for AD pathology (specificity)

    • Sensitive to disease progression

    • Probe disease mechanisms

  • MRI structure and FDG-PET metabolism

    Oxidative stress and inflammation

    Cellular mechanism

    Primary etiology

    Aβ and Tau Sensitive

    Diagnostic

    Targets

  • MCI

    AD

    Preclinical

    Age

    Objective of Early Diagnosis

    Time

    Bra

    in H

    ea

    lth

  • 1976-1980 1981-1988

    Ventricle Enlargement in AD

    de Leon et al Lancet 1979

  • Cortical Atrophy in AD

    1976-1980 1981-1988

    de Leon et al Lancet 1979

  • CM Plane

    1984

    A P

  • Canthomeatal Plane Negative Angle

  • MRI Negative Angle- Hippocampal Atrophy

  • 391-2

    de Leon MJ, et al. Lancet. 1988

    .

    Perc

    en

    tag

    e C

    ases

    Age

    AD (n = 203)

    MCI (n = 72)

    NL (n = 130)

    0 1 2 3

  • Coronal

    Axial

    Hippocampal Fissures

  • Bobinski, de Leon, Wegiel and Wisniewski 2000

  • MCI

    AD

    Time

    Bra

    in H

    ea

    lth

    Preclinical

    Age

    Objective of Early Diagnosis

  • de Leon MJ, et al. Lancet. 1989;2:672-673.

    de Leon MJ, et al. AJNR Am J Neuroradiol. 1993;14:897-906.

    MRI Hippocampal Atrophy 4-year advance prediction of MCI

    to AD

    Accuracy

    SS/SP (n=23,9)

    90%

    91/89%

  • MCI

    AD

    Preclinical

    Age

    Objective of Early Diagnosis

    Time

    Bra

    in H

    ea

    lth

  • Automated MRI Regional Boundary

    Shift

    6-year prediction of Normal to MCI

    Prediction of MCI

    Accuracy

    SS/SP (n=13,32)

    89%

    91/85% Rusinek H, de Leon, MJ et al. Radiology. 2003;229:691-696.

  • MESH MODELING

    Thompson et al, Neuroimage 2004

  • 3-year MRI hippocampal atrophy rate

    superior inferior

    Ap

    os

    tolo

    va

    , M

    osc

    on

    i, d

    e L

    eo

    n e

    t a

    l, N

    eu

    ro B

    iol A

    gin

    g 2

    00

    9

    NL-NL

    n=10

    NL-decline

    n=7

    ANATOMY

    Annual tissue loss %

  • 0

    0.2

    0.4

    0.6

    0.8

    1

    0 20 40 60 80 100 120

    Cyclotron Radiotracer PET camera

    0.01

    0.1

    1

    0 20 40 60 80 100 120

    THE PET SCAN

    Input function

    1. Blood

    2. Simplified

    Tissue Uptake Image

    Acquisition

    Modeling

    Synthesis

    Analysis

    18F FDG 110 min 11C-PIB 20 min

    Labeling

    Simplification

  • MCI

    AD

    Preclinical

    Age

    Objective of Early Diagnosis

    Time

    Bra

    in H

    ea

    lth

  • Ferris, de Leon, Wolf et al Neuro Biol Aging 1980

    Normal AD

    FDG-PET

  • Temporo-parietal and posterior cingulate

    • R. Frackowiak 1981 15O2 PET

    • R. Friedland 1983 18FDG-PET

    • S. Minoshima 1997 18FDG-PET

    Minoshima et al Ann Neurol 1997

  • FDG-PET

    NYU-BNL

  • MCI

    AD

    Preclinical

    Age

    Objective of Early Diagnosis

    Time

    Bra

    in H

    ea

    lth

  • PET Prediction of Decline from MCI

    Minoshima Ann of Neurol 1997

    Herholz Dem Geri Cog Dis. 1999

    Drzezga et al EJNM 2003

    Chetelat et al Neurology 2003

    Mosconi et al Neurology 2004

  • MCI

    AD

    Time

    Bra

    in H

    ea

    lth

    Preclinical

    Age

    Objective of Early Diagnosis

  • NL MCI AD 1993 1997 2003

    E E E

    Atrophy and Metabolism 10-Year decline from NL to AD

    x H x x H H 4 V

    4

    4

    V V

    de Leon et al PNAS 2001

  • Entorhinal Cortex Glucose Metabolism

    4-year prediction of Normal to MCI

    Accuracy

    SS/SP (n=12,13)

    84%

    83/85% de Leon MJ, et al. PNAS, U S A. 2001;98:10966-10971.

  • Automated Hippocampus Sampling 7-year advanced prediction of Normal to MCI and AD

    Prediction of MCI

    Accuracy

    SS/SP (n=25,47)

    76%

    82/79% Mosconi L, de Leon MJ et al. Neurobiol Aging. 2008;29:676-692.

  • 26%

    (47)

    (19)

    4% /year

    X

    X

    Estimated Earliest

    Detection -11 yrs

    X

    X

    X

    LONGITUDINAL

    PREDICTION

    74%

    BASELINE

    PREDICTION

    76%

    2% /year

    1% /year

    (6) X -- NL-AD (6)

    Years from Baseline

    -- NL-NL (47)

    -- NL-MCI (19)

    0 5 -5

    FDG-PET for Prediction and Progression: NL Aging

    10 -10

  • NL-AD (1993-2003) Post-mortem validated AD

    NL

    MCI

    Mild AD

    Mod AD

    2003

    CERAD definite, Braak stage C-VI

    4

    0

    Z score

    Path: AD

    Mosconi, de Leon, et al Eur J Nuc Med 2009

  • Typical DB (n=55, top) and Robust DB (n=55, bottom)

    Z

    AD n=33 MCI n=37

    Eff

    ect

    Siz

    e

    Eff

    ect

    Siz

    e

    Typical DB Robust DB

    Typical vs. Robust Normal Reference Databases

    Mosconi, DeSanti, de Leon et al, J Nucl Med 2007

  • MRI and FDG-PET Imaging

    Aβ and Tau

    Oxidative stress and inflammation

    Cellular response

    Primary etiology

    Pathology

    Specific

    Targets

  • Secretase Cleavage of APP

  • Senile or Amyloid Plaque

  • Tangles drawn by Bonfiglio 1908

    From Robert Terry

  • Buerger K, et al. Arch Neurol. 2002;59:1267-1272.

    AD vs Other

    SS = 93, SP = 67

    AD vs FTD

    SS = 93, SP = 85

    P-tau231 Diagnostic Specificity for AD

    AD

    82

    FTD

    26

    VD

    20

    LBD

    17

    OND

    26

    HC

    21

    –20

    0

    20

    40

    60

    80

    100

    120

    140

    160

    CS

    F P

    -tau

    231,

    µL

    CS

    F E

    qu

    ivale

    nts

    Groups

  • Glodzik-Sobanska L, de Leon, MJ. et al. Neurobiol Aging. 2007

    CSF Analytes in Normal Aging n=78

    Z-S

    co

    re

    Age

    T-tau

    P-tau231

    IP

    Aβ42/40

  • MCI

    AD

    Preclinical

    Age

    Objective of Early Diagnosis

    Time

    Bra

    in H

    ea

    lth

  • 2-Year Prediction of MCI to AD

    CSF analyte Accuracy

    T-tau 83*

    P-tau231 83*

    A 42/40 69*

    Brys M, de Leon, MJ. et al. Neurobiol Aging. 2007.

    *p < .01

    MCI-MCI (n = 43) and MCI-AD (n = 22)

  • 2-Year Prediction of MCI to AD

    CSF analyte Accuracy

    T-tau 86*

    P-tau 84*

    A42 82*

    Mattson, N, de Leon, MJ, Blennow, K, et al. JAMA. 2009.

    *p < .01

    MCI-MCI (n = 258) and MCI-AD (n = 271)

  • MCI

    AD

    Time

    Bra

    in H

    ea

    lth

    Preclinical

    Age

    Objective of Early Diagnosis

  • CSF Biomarkers Predict CDR > 0 Biomarker Hazard Ratio (95%

    CI)

    P Value

    Aβ40

    1.00 (1.00-1.00) .92

    Aβ42 0.99 (0.99-1.00) .29

    Aβ40/Aβ42 1.06 (0.99-1.14) .10

    Tau 1.00 (1.00-1.01) .09

    Ptau181 1.02 (0.99-1.04) .21

    T-tau/Aβ42 ratio 2.42 (1.15-5.08) .02

    P-tau181/Aβ42 ratio 1.78 (1.00-3.16) .05

    Fagan AM, et al. Arch Neurol. 2007;64:343-349

  • Longitudinal memory by high and low P-tau231 in 57 NL

    P

  • Longitudinal MTL-GM by high and low P-tau231 in 57 NL

    Glo

    dzik

    , d

    e L

    eo

    n e

    t al N

    eu

    rob

    iol.

    Ag

    ing

    20

    10

    P

  • 2-Year Progression Effects in MCI

    60

    50

    40

    30

    20

    10

    P-t

    au

    231 [

    pg

    /mL

    ] ±

    SE

    M

    NL-NL MCI-MCI MCI-AD Diagnostic group

    900

    700

    500

    400

    300

    200

    T-t

    au

    [p

    g/m

    L] ±

    SE

    M

    NL-NL MCI-MCI MCI-AD Diagnostic group

    800

    600

    70

    50

    40

    30

    NL-NL MCI-MCI MCI-AD Diagnostic group

    60 IP

    [p

    g/m

    L] ±

    SE

    M

    0.14

    0.12

    0.10

    0.09

    0.08

    0.07

    NL-NL MCI-MCI MCI-AD Diagnostic group

    0.13

    0.11

    -42/Aβ

    -40 ±

    SE

    M

    P-tau231 T-tau

    A42/40 IsoP

    Baseline Follow-up Longitudinal effect p

  • Annual Isoprostane Changes NL n = 11, MCI n = 6

    de Leon MJ, and Pratico, D. et al. J Neurol. 2007;254:1666-1675

    Sensitivity 83 100 100

    Specificity 91 91 82

    Overall 88* 94* 88*

    Subjects

    = MCI - AD

    NL MCI NL MCI NL MCI 8,1

    2-i

    so

    -iP

    F2

    -V

    I (p

    g/m

    L) Baseline Year 1 Year 2

    20

    60

    80

    40 37

    = NL

    = MCI

    *P < .05

    = NL - MCI

  • PIB

    FDG

    AD

    Li ,

    Rin

    ne,

    de L

    eon

    Eur.

    J.N

    uc.M

    ed. 2008

    NL

  • 11C-PIB DVR Images

    Rowe et al Neurology 2007

  • MCI

    AD

    Time

    Bra

    in H

    ea

    lth

    Preclinical

    Age

    Objective of Early Diagnosis

  • AD vs NL MCI vs NL

    FDG Accuracy (%)

    92 85

    PIB Accuracy (%)

    96 75

    %

    Agreement 94 54 ?

    Dx Accuracy for FDG and PIB

    Li , Rinne, de Leon Eur.J.Nuc.Med. 2008

  • PIB

    FDG

    Follow-up Baseline

    2-year Amyloid Deposition and CMRglc in AD

    Engler, Nordberg et al Brain 2006

    ?

    ?

  • MRI structure and FDG-PET metabolism

    Oxidative stress and inflammation

    Cellular dysfunction

    Primary etiology

    Aβ and Tau Progression

    Mechanism

    Targets

    ?

  • Lisa Mosconi The maternal history of AD

  • • Among AD pts, affected mothers to fathers is 3:1

    • 25% of AD associated with maternal inheritance

    • Maternal AD - lower age of onset

    The Maternal Transmission of AD?

  • Maternal

    Paternal

    Maternal and Paternal

    Neither

    Other

    -

    Parental History of AD in NL n=733

    No Hx

    59%

    Normal cognition, MMSE 28-30 Age 48-80 yrs Education>11yrs

    Paternal 10%

    Maternal 27%

    M+P

    4%

  • FDG-PET in individual cases

    umol/100g/min

    60

    30

    0

    FH- FHp FHm

  • Mosconi, de Leon et al, Proc Natl Acad Sci USA 2007

    Reduced CMRglc in FHm re: FH- Reduced CMRglc in FHm re: FHp

    P

  • -10 Z

    Longitudinal change in NL with AD mothers

    FH- (n=37)

    FHp (n=9)

    FHm (n=20)

    +10 Z

    30

    35

    40

    45

    50

    55

    baseline 2-yrs

    CM

    Rglc

    -1%/yr -0.5%/yr

    -5%/yr

    30

    35

    40

    45

    50

    55

    baseline 2-yrs

    CM

    Rglc

    -0.5%

    -6.5%

    -1%

    Mosconi et al, Neurology 2008

  • CSF Biomarkers and AD Maternal History in NL

    Ab42/40 IsoP

    P-tau231 T-tau

    FH- FHp FHm FH- FHp FHm 22 14 23 22 14 23

    *

    *

  • FH- FHp FHm

    FH- FHp FHm

    Parietal PIB-PET Uptake in NL with Maternal History of AD

    Mosconi, de Leon et al PNAS et al 2010

  • Mosconi, de Leon et al. Unpub. 2010

    CMRglc Decreased and PIB Increased in FHm

    (ADNI MCI data)

    FDG-PET

    PIB-PET

  • Lidia Glodzik Henry Rusinek Vascular pathology in AD

  • 15H2O-PET EPI-ASL True-FISP-ASL

    PERFUSION IMAGING PET AND MRI

  • MRI with rebreathing apparatus

  • Vasoreactivity to CO2 challenge ~2% CBF change/mmHg change in CO2

  • *

    Plasma HIPPOCAMPUS

    A40 VR CO2

    * *

    NL MCI AD NL MCI AD

  • Plasma A40 and NL Aging

    r =.44, n=40, p

  • Plasma A40 and VR-CO2 in Elderly NL

    rho = -.61, n=11, p

  • Conclusions • PET and MR imaged hippocampal pathology

    appears early and is progression sensitive.

    • The pathology specific P-tau231 and Ab also

    appear early but are not progression sensitive.

    • Imaging and biomarkers may have a role in

    identifying mechanisms of AD-progression by

    considering energetics and vascular function.

  • Collaborating Scientists

    • NYU

    – Lidia Glodzik

    – Lisa Mosconi

    – Henry Rusinek

    – Susan De Santi

    – Wai Tsui

    – Elizabeth Pirraglia

    – Yi Li

    • Institute Basic Research

    – Pankaj Mehta

    • Temple University

    – Domenico Pratico

    • Einstein College of Medicine

    – Peter Davies

    • University of California L.A.

    – Liana Apostolova

    – Paul Thompson

    • Applied Neurosolutions

    – Ray Zinkowski

    • Turku U. Finland

    – Juha Rinne

    • Sahlgrenska U. Goteborg

    – Kaj Blennow

    – Henryk Zetterberg

    – Anders Wallin

    • Cornell University - Shankar Vallabhajosula

    - Stanley Goldsmith