Technologies and Applications of Solar Process Heat · Database for applications of solar heat...

38
Technologies and Applications of Solar Process Heat Potential in Mexico Theda Zoschke 14.11.2017 CDMX, Mexico

Transcript of Technologies and Applications of Solar Process Heat · Database for applications of solar heat...

Technologies and Applications of

Solar Process Heat Potential in Mexico

Theda Zoschke

14.11.2017

CDMX,

Mexico

Motivation

14.11.2017 | Seite 2

• Thermally driven processes present largest share of final energy use

• Worldwide, 45% of heat is used in industry [1]

[1] Energy Technology Perspectives 2012 - Pathways to a Clean Energy System, Int. Energy Agency (2012)

Technologies and Applications of Solar Process Heat

14.11.2017 | Seite 3

• Solar Thermal Technologies

• Solar Resource

• Heat for Industrial Processes

• Design Procedures

• Profitability

• Existing Projects

Technologies and Applications of Solar Process Heat

14.11.2017 | Seite 4

• Solar Thermal Technologies

• Solar Resource

• Heat for Industrial Processes

• Design Procedures

• Profitability

• Existing Projects

Solar Thermal TechnologiesStationary Collectors: Flat-plate

• Lower O&M and system costs

• Limited to low temperature applications (T < 150 °C) (range: 30 °C – 100 °C)

• Usual heat transfer fluid: Water/Glycol

• Little maintenance

[2] gef, UNEP, ome; Technical Study report on SHIP, State of the art in the Mediterranean region

[3] AEE-INTEC, 2013. Database for applications of solar heat integration in industrial processes. http://ship-plants.info/ (2013-2016).

[2]

GAMESA-QUAKER PEPSICO MEXICO

Mexico

© Modulo Solar

[3]

14.11.2017 | Seite 5

Solar Thermal TechnologiesStationary Collectors: Evacuated Tube

• Lower O&M and system costs

• Limited to low temperature applications (T < 150 °C) (range: 50 °C – 130 °C)

• Usual heat transfer fluid: Water/Glycol

• Vacuum to reduce convection losses

[4] gef, UNEP, ome; Technical Study report on SHIP, State of the art in the Mediterranean region

[5] AEE-INTEC, 2013. Database for applications of solar heat integration in industrial processes. http://ship-plants.info/ (2013-2016).

[4]

Harita Seatings Systems Limited

India

© @aspirationenergy

[5]

14.11.2017 | Seite 6

Solar Thermal TechnologiesTracking Collectors: Parabolic Trough

• Suitable for medium temperature applications (T < 400 °C) (range 150 °C –

400 °C)

• More demanding in terms of O&M and costs

• Line-focusing / One axis tracking

• Usual heat transfer fluid: Water/Steam or thermal oil

v

Lesa Dairy

Switzerland

© ezw

[7]

[6]

[6] Adapted from SolarPaces.org, 2016), http://www.solarpaces.org/csp-technology/csp-technology-general-information

[7] AEE-INTEC, 2013. Database for applications of solar heat integration in industrial processes. http://ship-plants.info/ (2013-2016).

14.11.2017 | Seite 7

Solar Thermal TechnologiesTracking Collectors: Linear Fresnel

• Suitable for medium temperature applications (T < 400 °C) (range 150 °C –

400 °C)

• More demanding in terms of O&M and costs

• Line-focusing / One axis tracking

• Usual heat transfer fluid: Water/Steam or thermal oil

• Approx. parabolic trough by segmented

mirrors: Principle of Fresnel

[8] Adapted from SolarPaces.org, 2016), http://www.solarpaces.org/csp-technology/csp-technology-general-information

RAM Pharmaceuticals

Jordan

© Industrial Solar

[8]

14.11.2017 | Seite 8

Solar Thermal TechnologiesTracking Collectors: Parabolic Dish

• Suitable for medium temperature applications (T < 400 °C) (range 250 °C –

400 °C)

• More demanding in terms of O&M and costs

• Point-focusing system / 2-axis tracking

• Moving (modular) receiver

[9] Adapted from SolarPaces.org, 2016), http://www.solarpaces.org/csp-technology/csp-technology-general-information

[9]

Tirumala Tirupati Devasthanams

India

© Gadhia Solar Energy Systems

14.11.2017 | Seite 9

Solar Thermal TechnologiesEfficiency and Temperature

• Efficiency depends on:

• Optical losses depending on incidence angle

• Thermal losses depending on operating temperature

h

T

Low temperature / Stationary collectors:• Higher optical efficiency• Higher thermal losses

Medium temperature / Tracking collectors:• Lower optical efficiency• Lower thermal losses

14.11.2017 | Seite 10

Technologies and Applications of Solar Process Heat

• Solar Thermal Technologies

• Solar Resource

• Heat for Industrial Processes

• Design Procedures

• Profitability

• Existing Projects

14.11.2017 | Seite 11

Solar ResourcePotential for Stationary Technologies in Mexico

• Very favourable solar resource conditions, depending on location

• Stationary technologies (T < 100 °C)

➢ Global Horizontal Irradiation (GHI)

• 1800 – 2300 kWh/m2

[10] solargis. http://solargis.com/

[10]

14.11.2017 | Seite 12

Solar ResourcePotential for Tracking Technologies in Mexico

• Favourable solar resource conditions, especially in North-West

• Tracking technologies (100 °C < T < 250 °C)

➢ Direct Normal Irradiation (DNI)

• 1500 – 3000 kWh/m2

[10]

[10] solargis. http://solargis.com/

14.11.2017 | Seite 13

Technologies and Applications of Solar Process Heat

• Solar Thermal Technologies

• Solar Resource

• Heat for Industrial Processes

• Design Procedures

• Profitability

• Existing Projects

14.11.2017 | Seite 14

Heat for Industrial ProcessesSectors and Temperature Levels

• Temperature levels in different sectors [12]: ~ 50% HT; ~ 50% MT + LT

[12] International Renewable Energy Agency (IRENA), calculations by Deger Saygin based on IEA source [2] (2014)

EI sectorsHT (>400°C)

42,5 EJ

MT (150°c-400°C)

18,1 EJ

LT (<150°C)

24,5 EJ

EI

Non-EI

14.11.2017 | Seite 15

Heat for Industrial Processes

Suitable Processes

• Suitable industrial processes

• Drying and dehydration

• Preheating (input or raw material)

• Pasteurization and Sterilization

• Washing and cleaning

• Chemical reactions

• Surface treatment

• Space heating

• Supply of hot water or steam

• Main industrial sectors

• Chemicals

• Textiles

• Food & Beverages

• Paper

• Fabricated metal

• Rubber & Plastic

• Machinery & Equipment

• Wood

14.11.2017 | Seite 16

Heat for Industrial ProcessesCollector Technology vs. Process Temperature

14.11.2017 | Seite 17

Heat for Industrial ProcessesEnergy consumption in Mexico

• Energy consumption in Mexico [13]:

• Industrial sector: 1601 PJ

• Solar thermal technologies:

• Share: < 1 %

• Flat plate collectors dominating technology

• Mostly residential / commerical sector

• Fuels used in the Mexican industrial sector [1]:

[13] SENER, CONUEE, GIZ “Energía solar térmica para procesos industriales en México - Estudio base de mercado”, not yet published

14.11.2017 | Seite 18

Heat for Industrial ProcessesSuitable processes in Mexico

• Energy consumption in Mexican industry [13]:

• 14 % Iron and Steel industry

• 11 % Cement indusrty

• 6 % Chemical industry

• 6 % Petrochemical industry

• 6 % Mining industry

• 47 % Others…

➢ Textile, food and chemical industry (low temperature)

➢ Manufacuring of chemical processes (medium temperature)

[13] SENER, CONUEE, GIZ “Energía solar térmica para procesos industriales en México - Estudio base de mercado”, not yet published

High temperature thermal power

→ not very suitable for solar thermal

technologies

14.11.2017 | Seite 19

Technologies and Applications of Solar Process Heat

• Solar Thermal Technologies

• Solar Resource

• Heat for Industrial Processes

• Design Procedures

• Profitability

• Existing Projects

14.11.2017 | Seite 20

Design Procedures

14.11.2017 | Seite 21

Solar Thermal

System

storage

Solar

Buffer

Storage

Tank

Process Hot Water

Network

Hot Water

Boiler

Process

Water 160 °C

Return flow 100 °C

Integration

point

Process return 110 °C

Exhaust

160 °C - 200 °C

Conden-

sate

Solar thermal

System

Steam

Boiler

Feed Water

Feed Water

Tank 103°C

Make-up-

Water 30°C

Condensate

TankConcentrating-Collector

Circulation Pump

Process Steam 250 °C 36 barProcess Steam

Network

Integration

point

Evaporator

Water

preheating

Steam

generation

Design ProceduresSolar Integration of Stationary Technologies

• Dilemma: Less resistance to integration at supply level vs. lower

temperatures in integration at process level

80°C-120°C

15°C-30°C

P1

160°C

P2

80°C

P3

50°C

50°C-90°C

160°C-180°C

11

C-1

30°

C

14.11.2017 | Seite 22

Design ProceduresSolar Integration of Tracking Technologies

• Dilemma: Less resistance to integration at supply level vs. lower

temperatures in integration at process level

80°C-120°C

15°C-30°C

P1

160°C

P2

80°C

P3

50°C

50°C-90°C

160°C-180°C

11

C-1

30°

C

14.11.2017 | Seite 23

Design ProceduresPotential to Increase Energy Efficiency in Industry

• Energy efficiency significantly reduces energy intensity:

• Implementing best practice technologies (BPT) could reduce total final industrial energy demand by more than 25% [14]

• Pinch analysis [15]

• Cross-process heat exchange possibilities

• Optimizing heat recovery and effective heating and cooling processes

[14] Saygin, D., Patel, M.K. and Gielen, D.J. (2010). Global Industrial Energy Efficiency Benchmarking: An Energy Policy Tool, Working

Paper, November 2010. United Nations Industrial Development Organization (UNIDO), Vienna.

[15] Muster, Bettina et al., 2015. Guideline for solar planners, energy consultants and process engineers giving a general procedure to

integrate solar heat into industrial processes by identifying and ranking suitable integration points and solar thermal system concepts.

IEA/SHC Task 49/IV, Subtask B, Deliverable B2

14.11.2017 | Seite 24

Design ProceduresPre- and feasibility studies

• Pre-analysis: Boundary conditions

• Basic technical plant description

• Motivation

• Analysis of process characteristics

• Site visit to get information on:

• Temperature levels, heat network, operation details, energy costs

• Process optimization and energy efficiency

measures [17]

• Heat exchanger optimization (pinch analysis)

• Processes state-of-the-art?

• Future plans?

[16]

[16] www.solar-process-heat.eu/checklist

[17] C. Brunner et al. 2010: IEE-Project Einstein: www.iee-einstein.org

14.11.2017 | Seite 25

Technologies and Applications of Solar Process Heat

• Solar Thermal Technologies

• Solar Resource

• Heat for Industrial Processes

• Design Procedures

• Profitability

• Existing Projects

14.11.2017 | Seite 26

Technologies and Applications of Solar Process Heat

14.11.2017 | Seite 27

• Annuity factor with interest rate 𝑖 and lifetime T:

ANF =1 + 𝑖 𝑇 ⋅ 𝑖

1 + 𝑖 𝑇 − 1−

• Levelized Cost of Heat (LCoH) with :

LCoH =𝐶capex ⋅ ANF + 𝐶opex

𝐴𝑛𝑛𝑢𝑎𝑙 𝑌𝑖𝑒𝑙𝑑• Investment costs: 𝐶capex €

• Operation and maintenance costs:

𝐶opex €/𝑎

• Annual yield: AY [𝑀𝑊ℎ/𝑎]

Technology vs. Energy CostsPotential for Mexico

• Current technology costs:

• 220 – 620 €/m2

• For average system cost

450 €/m2 (10.000 MXN/m²)

• Critical LCOH (Levelized Cost of Heat) → 0,03 €/kWh (0,67 MXN/kWh)

[18]

[18] adapted from Database for applications of solar heat integration in industrial processes. http://ship-plants.info/ (2013-2016).[19] Muster, Bettina et al., 2015. Guideline for solar planners, energy consultants and process engineers giving a general procedure to integrate solar heat into industrial processes by identifying and ranking suitable integration points and solar thermal system concepts. IEA/SHC Task 49/IV, Subtask B, Deliverable B2

[19]

h = 50%

GHI, DNI = 2000 kWh/m2

14.11.2017 | Seite 28

Technologies and Applications of Solar Process Heat

• Solar Thermal Technologies

• Solar Resource

• Heat for Industrial Processes

• Design Procedures

• Profitability

• Existing Projects

14.11.2017 | Seite 29

Existing Projects Market Penetration

• SHIP systems database [20]:

• 213 projects listed

• 129 MWth installed capacity (0.18 million m2)

• Recent survey points out [21]:

• > 500 SHIP systems with

• > 280 MWth total installed capacity (0.4 million m²)

[20] AEE-INTEC, 2013. Database for applications of solar heat integration in industrial processes. http://ship-plants.info/ (2013-2016).

Accessed February 2017

[21] SOLRICO, Bärbel Epp, 2017. Solar Process Heat: Surprisingly popular. Sun&Wind Energy. http://www.sunwindenergy.com/topic-of-the-

month/solar-process-heat-surprisingly-popular (online 14.02.2017)

[20]

14.11.2017 | Seite 30

Existing Projects Mexico

• SHIP systems database [20]:

• 59 projects listed

• Most solar fields 50 to 300 m²

[20] AEE-INTEC, 2013. Database for applications of solar heat integration in industrial processes. http://ship-plants.info/ (2013-2016).

Accessed November 2017

[20]

[20]

14.11.2017 | Seite 31

Existing Projects Common Technologies

• Mostly small/medium size systems (<500 m2)

• Largest capacity in large systems (>1000 m2)

• Stationary technologies are dominating technology

[20] AEE-INTEC, 2013. Database for applications of solar heat integration in industrial processes. http://ship-plants.info/ (2013-2016). Accessed February 2017

[20]

14.11.2017 | Seite 32

Existing Projects Examples of Stationary Technologies

[22] Arcon-Sunmark, 2015. http://arcon-sunmark.com/cases/codelco-minera-gaby-chile

[23] http://ship-plants.info/solar-thermal-plants/140-jiangsu-printing-and-dyeing-china?collector_type=4&country=China

Textile Jiangsu Yitong, ChinaEvacuated TubeAperture: 9,000 m2

Application: process pre-heatingOper. Temp.: 50 °CCommissioning : 2011

© Sunrain Co. Ltd [23]

Copper mine “Gabriela Mistral”, ChileFlat PlateAperture: 43,920 m2

Application/End Use: Process water and electrolyte heatingOper. Temp.: 50 °CCommissioning: 2015

© Arcon-Sunmark [22]

[5]

Currently largest plant in the world

14.11.2017 | Seite 33

Existing Projects Examples of Tracking Technologies

[24] http://www.industrial-solar.de/content/en/referenzen/fresnel-kollektor/

[25] http://ship-plants.info/solar-thermal-plants/155-dairy-plant-el-indio-mexico?collector_type=5

Dairy El Indio, MexicoParabolic TroughAperture: 132 m2

Application: Make-up water pre-heatingOper. Temp.: 95 °CCommissioning : 2012

© Inventive Power S.A. de C.V. [25]

Services MTN Johannesburg, South AfricaLinear FresnelAperture: 396 m2

Application/End Use: Air conditioningOper. Temp.: 180 °CCommissioning : 2014

© Industrial Solar [24]

14.11.2017 | Seite 34

Existing Projects

La Parrena copper mine, Mexico [25]Flat Plate CollectorSolar Field: 6270 m²Thermal Power: 4.4 MWthSolar Field covers 58% of annual heat demand

[25] http://ship-plants.info/solar-thermal-plants/155-dairy-plant-el-indio-mexico?collector_type=5

[26] http://arcon-sunmark.com

[27]

[26]

14.11.2017 | Seite 35

Upcoming Projects Examples

Amal Solar EOR Pilot Project, OmanParabolic Trough in greenhouseThermal Power: 1 GWthProduction (pilot): 6 ton steam / day

[26] MIT, 2016. Technology Review, Arab Edition. http://technologyreview.me/en/energy/oman-explores-solar-powered-oil-recovery/

© Petroleum Development Oman. [26]

14.11.2017 | Seite 36

Technologies and Applications of Solar Process HeatSummary

• Available technologies

• Stationary technologies (T<100°C), Global Horizontal Irradiation (GHI)

• Tracking technologies (100°C<T<400°C), Direct Normal Irradiation (DNI)

• Suitable sectors

• Food and beverage, textile and chemical industry… etc.

• Potential for Mexico

• Very favourable solar resource of GHI 1800 – 2300 and DNI 1500– 3000 kWh/m2

• Great potential for industry sectors that require heat at low and medium temperature level

• LCOH of < 0,03 €/kWh (0,67 MXN/kWh) can be reached

14.11.2017 | Seite 37

Thank you for your attention!

Theda Zoschke

Dr. Pedro Horta

Annie Zirkel-Hofer

Fraunhofer ISE

[email protected]