Takaaki Kajita (ICRR, U.of Tokyo)

58
Takaaki Kajita (ICRR, U.of Tokyo) Production of atmospheric neutrinos Some early history (Discovery of atmospheric neutrinos, Atmospheric neutrino anomaly) Discovery of neutrino oscillations Studies of atmospheric neutrino oscillations Sub-dominant oscillations –present and future-

description

Production of atmospheric neutrinos Some early history (Discovery of atmospheric neutrinos, Atmospheric neutrino anomaly) Discovery of neutrino oscillations Studies of atmospheric neutrino oscillations Sub-dominant oscillations –present and future-. Atmospheric neutrinos. - PowerPoint PPT Presentation

Transcript of Takaaki Kajita (ICRR, U.of Tokyo)

Page 1: Takaaki Kajita (ICRR, U.of Tokyo)

Takaaki Kajita (ICRR, U.of Tokyo)

• Production of atmospheric neutrinos• Some early history (Discovery of atmospheric

neutrinos, Atmospheric neutrino anomaly)• Discovery of neutrino oscillations• Studies of atmospheric neutrino oscillations• Sub-dominant oscillations –present and future-

Page 2: Takaaki Kajita (ICRR, U.of Tokyo)

Atmosphere

Page 3: Takaaki Kajita (ICRR, U.of Tokyo)
Page 4: Takaaki Kajita (ICRR, U.of Tokyo)

Calculating the atmospheric neutrino Calculating the atmospheric neutrino beambeam

Flu

x ×

E2

E(GeV)

Measured cosmic ray proton flux

Total flux+ geomagnetic field

+ (p+Nucleon) int.

+ decay of or K

+ ……

Page 5: Takaaki Kajita (ICRR, U.of Tokyo)

Some features of the beam (1)Some features of the beam (1)

(+ )/(e+ e)(+ )/(e+ e)

/e ratio is calculated to an accuracy of better than 3% below ~ 5GeV.

/e ratio is calculated to an accuracy of better than 3% below ~ 5GeV.

Page 6: Takaaki Kajita (ICRR, U.of Tokyo)

Some features of the beam (2)Some features of the beam (2)

Zenith angleZenith angle

Up-going Downcoszenith

Up/down ratio very close to 1.0 and accurately calculated (1% or better) ab

ove a few GeV.

Up/down ratio very close to 1.0 and accurately calculated (1% or better) ab

ove a few GeV.

@ Kamioka (Japan)

Page 7: Takaaki Kajita (ICRR, U.of Tokyo)

Comment: Geomagnetic field and the fluxComment: Geomagnetic field and the flux

Assume a detector in Kamioka (Japan)

Calculate the minimum momentum of a cosmic ray proton directing to Kamioka arriving at the atmosphere.

Do

wn

-goi

ng

Up

-goi

ng

For this location, flux(up) > flux(down) in the low-energy rangeFor this location, flux(up) > flux(down) in the low-energy range

GeV/c

Page 8: Takaaki Kajita (ICRR, U.of Tokyo)

Comment: Flux in the horizontal directionComment: Flux in the horizontal directionnow 10 years ago…

3D calculation 1D calculation

Page 9: Takaaki Kajita (ICRR, U.of Tokyo)

Horizontal enhancementHorizontal enhancement

νC.R.(1D)

Target area(1D, 3D)

C.R.(3D)

3D1D

G. Battistoni et al., Astropart. Phys. 12, 315 (2000)

Page 10: Takaaki Kajita (ICRR, U.of Tokyo)

Syst error better than 5%

Below 10GeV, the flux is predicted to better than 10%. Above 10GeV the flux calculation must be improved.

(This statement is for Honda04 flux.)

Below 10GeV, the flux is predicted to better than 10%. Above 10GeV the flux calculation must be improved.

(This statement is for Honda04 flux.)

How accurate is the absolute normalization How accurate is the absolute normalization of the flux ?of the flux ?

Page 11: Takaaki Kajita (ICRR, U.of Tokyo)

Neutrino interactionsNeutrino interactions

Eν(GeV)

E/Quasi-elastic

1 productionDeep inelastic

CC total

lepton

N N’

Quasi-elastic

lepton

N N*

N’

1 production

lepton

N N’

Deep inelastic

Page 12: Takaaki Kajita (ICRR, U.of Tokyo)

Event classificationEvent classification

Fully Contained (FC) (E ~1GeV)

Partially Contained (PC) (E ~10GeV)

Through-going (E~100GeV)

Stopping (E~10GeV)

Page 13: Takaaki Kajita (ICRR, U.of Tokyo)

Comment: upward-going muons Comment: upward-going muons

∝E

Range∝∝

Wide energy range

Page 14: Takaaki Kajita (ICRR, U.of Tokyo)
Page 15: Takaaki Kajita (ICRR, U.of Tokyo)

Discovery of atmospheric neutrinos Discovery of atmospheric neutrinos

(NX)(NX)

At the depth of 3200 meters (8800 meters water equivalent) in South Africa First observed on Feb. 23, 1965By F.Reines et al.

At the depth of 2400 meters (7500 meters water equivalent) in India (Kolar Gold Field)First published on Aug. 15, 1965By C.V. Achar et al.

photo of the South Africa experiment

Detector for the KGF experiment

Page 16: Takaaki Kajita (ICRR, U.of Tokyo)

Zenith angle distribution Zenith angle distribution (updated data from the South Africa experiment)(updated data from the South Africa experiment)

Vertical (going up or

down)

Horizontal going

Neutrino induced

muons

Neutrino induced

muons

Cosmic ray muonsCosmic r

ay muons

PRD18, 2239 (1978)

Page 17: Takaaki Kajita (ICRR, U.of Tokyo)
Page 18: Takaaki Kajita (ICRR, U.of Tokyo)

The first hint ? The first hint ? (South Africa experiment, 1978)(South Africa experiment, 1978)

Vertical Horizontal

Neutrino induced

muons

Neutrino induced

muons

Cosmic ray muons

Cosmic ray muons

4.06.1

Data

CarloMonte Deficit of muon dataDeficit of muon data

PRD18, 2239 (1978)

“We conclude that there is fair agreement between the total observed and expected neutrino induced muon flux …”

Page 19: Takaaki Kajita (ICRR, U.of Tokyo)

Proton decay experimentsProton decay experimentsGrand Unified Theories p=1030±2 years

NUSEX (130ton)

Frejus (700ton)

Kamiokande (1000ton)

IMB (3300ton)

These experiments observed many contained atmospheric neutrino events (background for proton decay).

These experiments observed many contained atmospheric neutrino events (background for proton decay).

Page 20: Takaaki Kajita (ICRR, U.of Tokyo)

Selection of atmospheric neutrinos Selection of atmospheric neutrinos Example: Kamiokande

At 1000m underground,

cosmic ray : 0.3/sec/detector

Atmospheric : 0.3/day/1000ton

Fiducial region

n

2.7m

3.5m

anti-counteranti-

counter

Page 21: Takaaki Kajita (ICRR, U.of Tokyo)

ν

Charged particle

Photomultiplier tube (PMT)

50cm φ   (Super-K)

20cm φ   

n

1cos

n (refractive index)=1.34 in water

θ=42deg. for β=1

Number of Ch. photons with λ=300-600 nm emitted by a relativistic particle per cm = 340.

Need an efficient detection of the photons. Large PMTs

Detecting Cherenkov photonsDetecting Cherenkov photons

Page 22: Takaaki Kajita (ICRR, U.of Tokyo)

Charged particle PMT

Detecting Cherenkov photons and event reconstrDetecting Cherenkov photons and event reconstructionuction

Time: vertex position

direction

Pulse height (number of pe’s): energy

Color: timing

Size: pulse height

Super-K

Page 23: Takaaki Kajita (ICRR, U.of Tokyo)

Too few muon decaysToo few muon decays

Kamiokande: J.Phys.Soc.Jpn 55, 711 (1986)

IMB: PRL57, 1986 (1986)

Proton decay background papers:Proton decay background papers:

vNX, =2.2sec)e

or

Nlepton+++X, ++, +e+

Page 24: Takaaki Kajita (ICRR, U.of Tokyo)

On the other hand,… On the other hand,… several “no evidence” for atmospheric several “no evidence” for atmospheric

neutrino oscillation papersneutrino oscillation papers

Boiliev et al, (Baksan), Sov J. Nucl. Phys. 34, 787 (1981)

J.M. LoSecco et al. (IMB), PRL 54, 2299 (1985)

R.M. Bionta et al., (IMB), PRD 38, 768 (1988)

Page 25: Takaaki Kajita (ICRR, U.of Tokyo)

/e ratio measurement in Ka/e ratio measurement in Kamiokandemiokande

1983 (Kamiokande construction)

electronics

Water system

Page 26: Takaaki Kajita (ICRR, U.of Tokyo)

Electrons and muonsElectrons and muons

muon-like events

electron-like events

KamiokandeKamiokande

Super-KSuper-K

Page 27: Takaaki Kajita (ICRR, U.of Tokyo)

Particle identificationParticle identificationelectron-like event

muon-like event

2

deg70 ..

2 )(..)'.(.

ep

ore expectedepdobsepParticle ID

e: electromagnetic shower, multiple Coulomb scattering

: propagate almost straightly, loose energy by ionization loss

Difference in the event patternDifference in the event pattern

Page 28: Takaaki Kajita (ICRR, U.of Tokyo)

Particle ID performanceParticle ID performance

Cosmic ray μ e from μ decay

ε=99%@Super-K (98% @Kamiokande)

(figures from Super-K)

Page 29: Takaaki Kajita (ICRR, U.of Tokyo)

First result on the First result on the /e ratio /e ratio (1988)(1988)

Kamiokande(3000ton Water Ch.       

    ~ 1000ton fid. Vol.)

2.87 kton ・ year

Data MC prediction

e-like ( ~ CC e)

93 88.5

-like ( ~ CC )

85 144.0

“We are unable to explain the data as the result of systematic detector effects or uncertainties in the atmospheric neutrino fluxes. Some as-yet-unaccoundted-for physics such as neutrino oscillations might explain the da

ta.”

K. Hirata et al (Kamiokande ) Phys.Lett.B 205 (1988) 416.

Page 30: Takaaki Kajita (ICRR, U.of Tokyo)

However, …However, …Let’s write the atmospheric deficit by (/e)data/(/e)MCLet’s write the atmospheric deficit by (/e)data/(/e)MC

Page 31: Takaaki Kajita (ICRR, U.of Tokyo)

First supporting evidence for small First supporting evidence for small /e/e

IMB experiment also observed smaller (/e) in 1991 and 1992.

Page 32: Takaaki Kajita (ICRR, U.of Tokyo)

However, …However, …Let’s write the atmospheric deficit by (/e)data/(/e)MCLet’s write the atmospheric deficit by (/e)data/(/e)MC

Page 33: Takaaki Kajita (ICRR, U.of Tokyo)

Atmospheric Atmospheric neutrinos and neutrinos and

neutrino neutrino oscillations oscillations

Cosmic ray p, He, ……

Cosmic ray p, He, ……

Detector

  osci

llation

Detect down-going and up-going

Atmosphere

Down-going

Up-going

Page 34: Takaaki Kajita (ICRR, U.of Tokyo)

Zenith angle distributionsZenith angle distributions

Consistent with no zenith angle dependence...

Kamiokande (Evis <1.3 GeV) IMB (<1.5GeV)

Page 35: Takaaki Kajita (ICRR, U.of Tokyo)

Angular correlation Angular correlation

(CC e samples)

(CC sample)

Lepton momentum (MeV/c)

leptonNucleon(MN= 1GeV/c2)

Page 36: Takaaki Kajita (ICRR, U.of Tokyo)

Next: zenith angleNext: zenith angle…(Kamiokande,1994)…(Kamiokande,1994)

multi-GeV -like

events

multi-GeV -like

events

Deficit of upward-going -like events

m2=1.6 ・ 10-2eV2

Up/Down=0.58 (2.9 σ)+0.13 -0.11

Up-going Down-going

No oscillation

Page 37: Takaaki Kajita (ICRR, U.of Tokyo)
Page 38: Takaaki Kajita (ICRR, U.of Tokyo)

Super-Kamiokade detectorSuper-Kamiokade detector50,000 ton water Cherenkov detector (22,500 ton fiducial volume)

1000m underground

11200 PMT(Inner detector)

1900 PMT(Outer detector)

Exit

39m

42

Page 39: Takaaki Kajita (ICRR, U.of Tokyo)

Around Super-K

Entrance to the mine

Page 40: Takaaki Kajita (ICRR, U.of Tokyo)

Super-Kamiokande Super-Kamiokande (under construction, Dec. 1994)(under construction, Dec. 1994)

Page 41: Takaaki Kajita (ICRR, U.of Tokyo)

Super-Kamiokande detector under constructionSuper-Kamiokande detector under construction

Early summer 1995

Page 42: Takaaki Kajita (ICRR, U.of Tokyo)

Water filling in Super-Kamiokande Water filling in Super-Kamiokande

Jan. 1996

Kamiokande

Page 43: Takaaki Kajita (ICRR, U.of Tokyo)

Event type and neutrino energyEvent type and neutrino energy

Fully Contained (FC)

Partially Contained (PC)

Through-going

Stopping

Page 44: Takaaki Kajita (ICRR, U.of Tokyo)

Various types of atmospheric neutrino events (1)Various types of atmospheric neutrino events (1)

FC (fully contained)

・ Both CC e and (+NC)

・ Need particle identification to separate e and

Single Cherenkov ring electron-like event

Single Cherenkov ring muon-like event

Color: timing

Size: pulse height

Outer detector (no signal)

Page 45: Takaaki Kajita (ICRR, U.of Tokyo)

Various types of atmospheric neutrino events (2)Various types of atmospheric neutrino events (2)

PC (partially contained)

・ 97% CC

Signal in the outer detector

Page 46: Takaaki Kajita (ICRR, U.of Tokyo)

Various types of atmospheric neutrino events (3)Various types of atmospheric neutrino events (3)

Upward going muon

ν

・ almost pure CC

Upward stopping muon

Upward through-going muon

Page 47: Takaaki Kajita (ICRR, U.of Tokyo)

Atmospheric Atmospheric neutrinos and neutrinos and

neutrino neutrino oscillations oscillations

Cosmic ray p, He, ……

Cosmic ray p, He, ……

Detector

  osci

llation

Detect down-going and up-going

Atmosphere

Down-going

Up-going

Page 48: Takaaki Kajita (ICRR, U.of Tokyo)

Super-Kamiokande Super-Kamiokande @Neutrino98@Neutrino98

SK concluded that the observed zenith angle dependent deficit (and the other supporting data) gave evidence for neutrino oscillations.

Fully contained, 1-ring events

with Evis > 1.33GeV

plus partially contained events

Page 49: Takaaki Kajita (ICRR, U.of Tokyo)

Super-Kamiokande data nowSuper-Kamiokande data now@Neutrino98

(535 day)@Neutrino98

(535 day)

Now (2293 day)

Now (2293 day)

No oscillation

oscillation

Up-going Down-going

Page 50: Takaaki Kajita (ICRR, U.of Tokyo)

Results from the other atmospheric Results from the other atmospheric neutrino experimentsneutrino experiments

Soudan-2MACRO

MINOS(first data in 2005)

Page 51: Takaaki Kajita (ICRR, U.of Tokyo)

Soudan2Soudan2

CC quasi-elastic

e CC CC deep inelastic

Page 52: Takaaki Kajita (ICRR, U.of Tokyo)

Soudan2Soudan2

Reconstructed Lν/ Eν dist.

No osc. osc.

Phys.Rev. D68 (2003) 113004

• 5.9 kton ・ yr exposure

• Partially contained events included.

• L/E analysis with the “high resolution” sample• Upward stopping muons included. hep-ex/0507068

Zenith angle

e

μ

e μ

Up-going

Down-going

Upward stopping muons

Page 53: Takaaki Kajita (ICRR, U.of Tokyo)

MACROMACROUpward

through-going

Upward through-going

Upward-going PC

Upward-going PC

Upward stopping + down-

going PC

Upward stopping + down-

going PC

Down-going cosmic ray Upward

through-going

Upward through-going

Page 54: Takaaki Kajita (ICRR, U.of Tokyo)

or

MACROMACRO

Upward horizontal

PLB 566 (2003) 35 EPJ C36(2004)323

OscillationΔm2 =2.5×10-3

No osc.

Osc.

No osc.

Page 55: Takaaki Kajita (ICRR, U.of Tokyo)

MINOSMINOSPRD73, 072002 (2006) 6.18 kton ・ yr (418d

ays)

zenith-angle

L/E

Separation of and anti-

Page 56: Takaaki Kajita (ICRR, U.of Tokyo)

oscillation parametersoscillation parameters

Soudan-2

MACRO

Super-K

90%CL

MIN

OS

(a

tmo

sph

eric

)

Also, consistent results from long baseline experiments (K2K & MINOS) D.Harris’s lecture

Page 57: Takaaki Kajita (ICRR, U.of Tokyo)

Summary of Atmospheric Neutrino-1Summary of Atmospheric Neutrino-1

• Experimental studies of atmospheric neutrinos started in the mid. 1960’s.

• Different type of atmospheric neutrino experiments started in the 1980’s (proton decay experiments).

• Study of the background for proton decay found unexpected atmospheric deficit.

• In 1998, the deficit was concluded as evidence for neutrino oscillations.

Page 58: Takaaki Kajita (ICRR, U.of Tokyo)

End