T f Jn ntff tune NINE T -...

5
Recap of semiconductor undoped n p Nc 1.5 10 N type CAS P n No p n p small p type B f NA n _nina small Driftcurrent Jp P Gop Pfllp E 1 T f Jn ntff tune NINE T

Transcript of T f Jn ntff tune NINE T -...

Recap of semiconductorundoped n p Nc 1.5 10

N type CAS P n No p npsmall

p type B f NA n_nina smallDriftcurrentJp PGop Pfllp E1

T

f Jn ntff tune NINET

17

Current in Semiconductor (2):Diffusion Current - Holes

• If hole distribution is non-uniform, holes will move from high to low concentration areas

• Flux ∝ - [conc. gradient]

• Current flows since holes carry charge:

"#$%&'' = )*# −,- .,.*#: hole diffusion coef. [cm2/s]

• Note: since hole carries positive charge, hole diffusion and hole current are in the same direction

Hole Diffusion

O 0

adPd

Handp

0 high

i tx

lowslopfo n tO

18

Current in Semiconductor (2):Diffusion Current - Electrons

• Similarly, electron diffusion also causes current to flow, but in opposite direction since electron carries negative charge

!"#$%&& = (−*)," −-. /-/

= *,"-. /-/

,": electron diffusion coef. [cm2/s]

!"#$%&& : [A/cm2]

• In Si, – Dn = 35 cm2/s – Dp = 12 cm2/s

Electron Diffusion

O Oa

oE

f Jndiff Un 3Up12 3Dp

D

19

Einstein Relationship

Dn

µn

=Dn

µn

=VT =kTq

VT : Thermal voltageAt room temperature, VT = 26 mV

Proof: Total electron current:

Jn = Jn−drift + Jn−diff = qn(x)µnE + qDndn(x)dx

E = − dφdx

, φ : potential

n(x) = n0e−

(−qφ )kT = n0e

φVT : Boltzmann distribution

In equilibrium, no net current flow

⇒ qn(x)µnE + qDndn(x)dx

= 0

n(x)µnE +Dndn(x)dφ

dφdx

= 0

n(x)µnE +Dn1VTn(x)

#

$%

&

'( −E( ) = 0

Dn

µn

=VT

OO 6mVat F 300K

Assume MX

Jn nlnHln Et Dnddn

p0Eddx 0 potentialequilibrium

n noeta.rs LnoTBoltzmann's dist

naDUntd tDn qo

Eine

n

fhkisl

nyxjlln Dn.nl fTp 0

I

Dn TMn on_Un E

DµIn kBqI V CmsEtan

off a

Eres11

Yy as