Systematic design of hybrid separation processes · 2019. 1. 31. · Identifying hybrid separation...

21
Systematic design of hybrid separation processes PI &PSE Meeting Twente University Enschede 13.04.2017 Mirko Skiborowski

Transcript of Systematic design of hybrid separation processes · 2019. 1. 31. · Identifying hybrid separation...

  • Systematic design of hybrid separation processes

    PI &PSE

    Meeting

    Twente University

    Enschede

    13.04.2017

    Mirko Skiborowski

  • Mirko Skiborowski | Twente | 13.04.2017

    Conceptual design of separation processes

    Process synthesis

    Distillation as default choice

    ~ 95% of all fluid separations

    > 40.000 columns in the US

    > 10% of the energy demand in the

    US (3% worldwide)

    Humphry and Siebert, 1992, Chem. Eng. Progr., 88, 32-41

    Wankat 2012, 3rd edition, Prentice Halll

    Koeijer & Kjelstrup, 2010, Int. J. of Therm., 3, 105-110

    2

  • Mirko Skiborowski | Twente | 13.04.2017

    Why to look for alternative/hybrid separation

    processes?

    High energy requirements

    Low energy efficiency

    thermodynamic efficiency of distillation is

    in the range of 5-20%

    Distillation boundaries

    caused by azeotropes

    Unfavorable operating conditions

    Boiling temperatures vs. temperature stability

    Koeijer & Kjelstrup, 2010, Int. J. of Therm.,

    3, 105-110

    Sholl & Lively, 2016, Nature, 532, 435–437

    3

  • Mirko Skiborowski | Twente | 13.04.2017

    Thermodynamic efficiency

    Definition thermodynamic efficiency 𝜂 =Δ𝐺 𝑢𝑛𝑚𝑖𝑥𝑖𝑛𝑔

    𝑊+𝑄

    E.g. seawater desalination with reverse osmosis

    Thermodynmically reversible process = negative free energy of mixing

    −𝑑 Δ𝐺𝑚𝑖𝑥 = −𝑅𝑇 ln 𝑎𝑤 𝑑𝑛𝑤 + ln 𝑎𝑠 𝑑𝑛𝑠 ⇒ 𝑊𝑟𝑒𝑣 = 1.15𝑘𝑊ℎ

    𝑚3

    Ideal RO process (𝑥𝑃,𝑊 = 1) at the pinch: 𝑊 = Δ𝑃 ⋅ 𝑄𝑃 ≡ ΔΠR c, T, Y ⋅ 𝑄𝑃

    𝐹 38,000 ppm

    𝑅 = 0.5𝐹

    𝑃 = 0.5𝐹

    In Anlehnung an: Semiat, 2008, Env. Sci. & Tech., 42 (22), 8193-9201

    4

    F

    R

    P

    𝑊 = 1.69𝑘𝑊ℎ

    𝑚3

    𝜂 = 68%

    F

    R

    P

    𝑊 = 1.39𝑘𝑊ℎ

    𝑚3

    𝜂 = 83%

  • Mirko Skiborowski | Twente | 13.04.2017

    Thermodynamic efficiency

    E.g. seawater desalination with reverse osmosis

    Ideal separation includes 100% energy recovery

    from the retentate (ERI systems >96%)

    real energy demand 𝑊 ≈ 4.0𝑘𝑊ℎ

    𝑚3 (incl. pretreatment)

    MED plant (GOR=16) required 𝑊 ≈ 40𝑘𝑊ℎ

    𝑚3

    BUT: Transferability generally stands to question!

    Elimelech & Philipp, SCIENCE, 333, 2011 Al-Karaghouni et al. Renewable and Sustainable Energy Reviews 24 (2013) 343–356

    Utilize different separation techniques such that they

    operate within the ranges they are most efficient.

    • efficiency drops rapidly with recovery R

    (𝑅 = 75% → 𝜂 ≈ 50%) • osmotic pressure limits recovery R

    (𝑅 = 75% → Π ≈ 125 𝑏𝑎𝑟)

    Cussler & Dutta, AIChE J., 2012, 58, 12, 3825-3831

    5

  • Mirko Skiborowski | Twente | 13.04.2017

    How to design alternative/hybrid separation

    processes?

    Process synthesis

    separation

    process

    A

    B

    C

    A

    B

    C

    Dis

    tilla

    tio

    n c

    olu

    mn

    Decanter

    Adsorption

    GP/VP RO/NF/UF PV

    Crystallization

    LL-E

    xtr

    actio

    n

    Hybrid processes

    ?

    6

  • Mirko Skiborowski | Twente | 13.04.2017

    Identify potentially suitable separation

    techniques.

    Identification based on a thermodynamic analysis

    Selection on the basis of limit values for binary system ratios

    Separation technique is potentially suitable if 𝑟𝑗𝐴𝐵 =

    𝑝𝑖𝐴

    𝑝𝑗𝐵 ≥ 𝑟𝑗,𝑚𝑖𝑛

    Selection of one or more techniques for a binary separation

    Jaksland et al., Chem. Eng. Sci., 1995, 50 (3). 511-530

    Separation Separation technique Chracteristic physical properties

    Gas separation Absorption solubility

    Gas membrane critical temperature, van der Waals volume

    Liquid separation Micro/Ultrafiltration kinetic diameter, molecular volume

    Nanofiltration solubility, molecular weight

    Liquid-liquid

    separation

    LL-Extraction solubility

    SC-Extraction solubility, critical temperature and pressure

    Vapor-liquid

    separation

    Distillation Vapor pressure, heat of evaporation, boiling temperature

    Pervaporation molecular volume, solubility, dipole moment

    Solid-liquid

    separation

    Crystallization melting temperature and heat of fusion

    Adsorption Solubility, kinetic diameter

    7

  • Mirko Skiborowski | Twente | 13.04.2017

    Identifying hybrid separation processes

    Hybrid separation process

    are a “combination of at least two different unit operations in two different

    apparatus, which contribute to the same separation task“.

    an consequently be generated as combination of potentially suitable techniques.

    E.g. ethanol/water separation

    Franke, et al. Chem. Ing. Techn., 2004, 76, 199–210,.

    Roth et al., Chem. Eng. Res. Des., 2013, 91, 1171–1185.

    ethanol water

    𝑀𝑊 (𝑔/𝑚𝑜𝑙) 46 18

    𝑇𝐵(°𝐶) 78 100

    𝑇𝑀(°𝐶) -114 0

    𝜇 (𝐷) 1.69 1.85

    𝜎 (𝑀𝑃𝑎12)

    26.5 48

    𝑑𝑘𝑖𝑛(Å) 4.46 2.25

    distillation, PV/VP, … ,

    crystallization, adsorption

    > < >

    <

    >

    8

    - 30% energy duty

  • Mirko Skiborowski | Twente | 13.04.2017

    Determine suitable combinations

    Driving force analysis in dependence of concentration ranges

    Definition of a “general“ driving force 𝐷𝐹𝐴𝐵 = 𝑦𝐴/𝐵 − 𝑥𝐴/𝐵

    E.g. ethanol/water separation

    Alternatively: Analysis of the real driving force/thermodynamic efficiency!

    Analysis of idealized separation processes without a specific model.

    identify the maximal potential & according operating ranges

    E.g. ethanol/water separation by ideal RO membrane

    pmax = 200bar → 𝑥𝐸𝑡𝑂ℎ = 1 − exp −𝑉𝐻2𝑂Δ𝑝

    𝑅𝑇 ≈ 0,135 → wEtOh = 0,286

    Gani & Bek-Pedersen, AIChE J., 2000,46 (6), 1271-1274 & Bek-Pedersen et al., Comp. Chem. Eng., 2000, 24, 253–259, Chem. Eng. & Proc.: Proc. Int., 2004, 43, 251–262

    𝐷𝐹

    𝐸𝑊

    𝑥𝑊

    9

  • Mirko Skiborowski | Twente | 13.04.2017

    Multicomponent systems

    Graphical or geometric methods

    allows for the consideration of separating boundaries

    Specifically important for the selection of suitable additives/MSA

    ethanol 78°C

    water

    100°C

    cyclohexane

    81°C AZVLLE 69°C

    AZVLLE 65°C

    AZVLLE 62°C

    𝑥𝐼

    𝑥𝐼𝐼

    D1

    EW

    E W

    C

    𝑥𝐼𝐼

    𝑥𝐼 D1

    10

  • Mirko Skiborowski | Twente | 13.04.2017

    Evaluation of process variants

    Hybrid separation processes are characterized by

    a high degree of integration (recycle streams are almost always included)

    a high number of design degrees of freedom

    Optimization-based process design

    EW

    E W

    C

    min𝑥,𝑦

    𝑇𝐴𝐶

    𝑠. 𝑡. ℎ 𝑥, 𝑦 = 0 𝑔 𝑥, 𝑦 ≤ 0

    ETHANOL

    WATERCYCLOHEX

    VLE-azeotrope:78.15C

    VLE-azeotrope:64.92C

    VLLE-azeotrope:69.49C

    VLLE-azeotrope:62.39C

    78.31C

    100.02C 80.78C

    D1

    B1

    D2

    B2

    𝑥𝐶𝑜𝑙1

    𝑥𝐶𝑜𝑙2

    11

  • Mirko Skiborowski | Twente | 13.04.2017

    Design of solvent-based separation

    processes

    Selection of potentially suitable solvents (MSA)

    Use of databases/expert knowledge or Computer Aided Molecular Design

    taking into account thermodynamic constraints (𝑇𝐵 , 𝑇𝑀, 𝛾∞, 𝐾, … )

    in combination with applied graphical/geometric analysis

    Evaluation based on optimization-based process design

    E.g. separation of acetone & methanol by extractive distillation

    acetone

    methanol

    𝑝1 = 1atm 𝑝2 = 1atm

    solvent

    acetone

    (methanol)

    methanol

    (acetone)

    annualized capital cost 10𝑘€

    𝑎

    an

    nu

    al op

    era

    ting c

    ost

    10

    𝑘€

    𝑎

    5 6 7 8 9 1012

    14

    16

    18

    20

    22

    24

    26

    cinv

    co

    p

    CAMD

    1 2 3 4 5 615

    20

    25

    30

    35

    40

    45

    50

    generation

    CT

    A

    chlorobenzene

    DMSO

    ethanol

    mesitylene

    water

    p-xylene

    Skiborowski et al., Ind. Eng. Chem. Res. 2015, 54, 10054−10072

    12

  • Mirko Skiborowski | Twente | 13.04.2017

    Potential suitable model reductions

    Use of thermodynamically sound shortcut methods

    Limitations of each separation technique have to be depicted “accurately“

    E.g.: thermodynamically sound pinch-based shortcut methods

    Analysis of ideal separation techniques to identify

    the maximum potential Would a detailed analysis be worth the effort?

    min. requirements Define targets for experimental investigations.

    model-based

    evaluation

    of more than 1400

    potential solvents

    Scheffcyk et al., Chem. Eng. Res. Des., 2016, 115 (B), 433–442

    13

  • Mirko Skiborowski | Twente | 13.04.2017

    Analysis of the potential impact

    Simplified analysis of a membrane separation processes by

    estimating expected costs based on

    variable permeability

    variable selectivity/rejection

    Bsp.: analysis of the potential impact of an OSN-assisted distillation

    14

    𝑃, 𝑅, 𝛼 =? A,Q,P

    TAC

    𝑀𝑊 (𝑔/𝑚𝑜𝑙)

    𝑇𝐵 (°𝐶)

    𝐷𝑒𝑐𝑎𝑛 142 174

    𝐷𝑜𝑑𝑒𝑐𝑎𝑛𝑎𝑙 198 250

    𝐻𝑒𝑥𝑎𝑐𝑜𝑠𝑎𝑛𝑒 367 412

    𝛼𝐷𝑒𝑐𝑎𝑛/𝐷𝑜𝑑𝑒𝑐𝑎𝑛 = 1.1

    𝛼𝐷𝑒𝑐𝑎𝑛/𝐷𝑜𝑑𝑒𝑐𝑎𝑛 = 10

    𝛼𝐷𝑒𝑐𝑎𝑛/𝐻𝑒𝑥𝑎𝑐𝑜𝑠𝑎𝑛 𝛼𝐷𝑒𝑐𝑎𝑛/𝐻𝑒𝑥𝑎𝑐𝑜𝑠𝑎𝑛

    𝛼𝐷𝑒𝑐𝑎𝑛/𝐷𝑜𝑑𝑒𝑐𝑎𝑛 = 1.1

    𝛼𝐷𝑒𝑐𝑎𝑛/𝐷𝑜𝑑𝑒𝑐𝑎𝑛 = 10

    Micovic et al., Chem. Eng. Res. Des., 2014, 92 (11), 2131–2147

  • Mirko Skiborowski | Twente | 13.04.2017

    Final summarizing example (1)

    Separation of mixture of acetone, isopropanol & water

    thermodynamic analysis

    Graphical analysis

    acetone isopropanol water

    𝑀𝑊 (𝑔/𝑚𝑜𝑙) 58 60 18

    𝑇𝐵(°𝐶) 56 82 100

    𝑇𝑀(°𝐶) -95 -89 0

    𝜇 (𝐷) 2.9 1.7 1.85

    𝜎 (𝑀𝑃𝑎12)

    19.7 11.5 48

    𝑑𝑘𝑖𝑛(Å) 4.6 4.7 2.25

    < <

    <

    >

    <

    >

    acetone (56°C)

    isopropanol (82°C) azeotrope (80°C) water (100°C)

    RC DB

    sequential hybrid

    15

  • Mirko Skiborowski | Twente | 13.04.2017

    Final summarizing example (2)

    Solvent-based process option

    isopropanol + water

    simple minimum boiling azeotrope

    completely miscible

    Variant screening

    extractive distillation

    AzIW

    I

    W

    LM = ethylene glycole

    1

    2

    3

    1

    2

    3

    4

    1

    2

    3

    4

    1

    2

    4

    3

    1

    43

    2

    Feed

    Feed

    Feed

    Feed

    Ac

    Ac

    AcAc

    IPA

    IPA

    IPA

    IPA

    EG

    EGEG

    EG

    H2O

    H2O

    H2O

    H2O

    H2O

    H2O

    H2O

    - 684 kW

    - 188 kW

    - 424 kW

    695 kW

    175 kW

    455 kW

    67 kW

    40 kW140 kW

    695 kW

    - 684 kW

    - 122 kW

    - 76 kW

    - 26 kW

    555 kW

    689 kW

    117 kW

    57 kW

    - 40 kW

    - 134 kW

    - 690 kW

    - 525 kW

    555 kW

    - 525 kW

    - 554 kW

    - 630 kW

    523 kW

    630 kW

    - 48 kW

    77 kW

    1

    2

    3

    1

    2

    3

    4

    1

    2

    3

    4

    1

    2

    4

    3

    1

    43

    2

    Feed

    Feed

    Feed

    Feed

    Ac

    Ac

    AcAc

    IPA

    IPA

    IPA

    IPA

    EG

    EGEG

    EG

    H2O

    H2O

    H2O

    H2O

    H2O

    H2O

    H2O

    Minimum heat duty

    determined with RBM*

    ∑𝑸𝑩 [𝒌𝑾] ∑𝑸𝑪 [𝒌𝑾]

    Nr. 1 1325 -1296

    Nr. 2 942 -908

    Nr. 3 1418 -1389

    Nr. 4 1786 -1757

    Skiborowski et al., 2011, EPIC 2011, IChemE, pp. 37-45.

    Bausa, et al., AIChE J., 1998, 44(10), 21812198.

    Brüggemann et al., AIChE J., 2004, 50(6), 11291149.

    Berg et al., US-Patent, 1992, Nr. 5,085,739

    16

  • Mirko Skiborowski | Twente | 13.04.2017

    Final summarizing example (3)

    Ideal PV identifikation of max. benefit and operating conditions

    experimental identification/characterization of a suitable membrane

    selective separation of water in the side stream and recycle of

    the retentate 𝑄𝐵𝑐𝑜𝑙 = 630𝑘𝑊

    heat of evaporation (water) 𝑄𝑣𝑎𝑝𝐻2𝑂 = 426𝑘𝑊

    permeate pressure: 𝑝𝑃 [𝑚𝑏𝑎𝑟] 10 30 50 100

    𝑇𝐵 𝑝𝑝 [°𝐶] 7 24 33 46

    1056𝑘𝑊 > 940𝑘𝑊

    Koch & Górak, Chem. Eng. Sci., 2014, 115, 95–114

    17

  • Mirko Skiborowski | Twente | 13.04.2017

    Final summarizing example (4)

    Optimization-based design

    Extractive distillation process

    > 695kW

    VRC 130kW

    col. 1 col. 2 col. 3 col. 4 process

    invest [k€/a] 59.8 10.7 15.8 5.5 91.8

    heating [k€/a] 148.8 22.3 29.7 14.4 214.8

    cooling [k€/a] 15.8 2.1 2.7 0.6 21.2

    solvent [k€/a] 0.7 0.7

    TAC [k€/a] 224.0 35.1 48.9 20.5 328.5

    18

  • Mirko Skiborowski | Twente | 13.04.2017

    Membrane-assisted distilaltion

    Final summarizing example (4)

    Optimization-based design

    Extractive distillation process

    > 695kW

    VRC 130kW

    col. 1 col. 2 col. 3 col. 4 process

    invest [k€/a] 59.8 10.7 15.8 5.5 91.8

    heating [k€/a] 148.8 22.3 29.7 14.4 214.8

    cooling [k€/a] 15.8 2.1 2.7 0.6 21.2

    solvent [k€/a] 0.7 0.7

    TAC [k€/a] 224.0 35.1 48.9 20.5 328.5

    𝑝𝑃=30mbar

    3-stage

    invest [k€/a] 124

    heating [k€/a] 216

    cooling [k€/a] 732

    solvent [k€/a] 53

    TAC [k€/a] 1125

    𝑝𝑃=50mbar

    3-stage 4-stage 5-stage

    130 125 123

    219 218 217

    38 38 38

    73 53 43

    460 434 420

    19

  • Mirko Skiborowski | Twente | 13.04.2017

    Summary & Conclusions

    Alternative/hybrid separation process

    can provide significant improvements by exploiting synergies.

    result automatically from (limited) suitability of different separation techniques

    Process systems engineering provides the means

    to determine suitable configurations by graphical/geometrical analysis

    determine the max. potential benefit by evaluation of ideal separations

    determine necessary efficiency material screening/optimization

    determine a suitable range of operation reducing experimental effort

    perform a comparison of competing process concepts

    efficiently handling the high degree of integration and complexity

    Nevertheless, the identification of “optimal” solutions still require that

    systems engineering methods are based on appropriate process insight,

    taking into account experimental validation and verification.

    20

  • Mirko Skiborowski | Twente | 13.04.2017

    Thank you for your attention!

    21