HMBSP: Application of hybrid based separation processes for … · 2019. 11. 5. · HMBSP:...

25
HMBSP: Application of hybrid membrane based separation processes for treatment of industrial wastewater TEAM MEMBERS:Prof. Sirshendu De, IIT Kharagpur , India Prof. J. Coronas, Univ of Zaragosa, Spain Prof. C. Janiak, Univ. of Dusseldorf, Germany

Transcript of HMBSP: Application of hybrid based separation processes for … · 2019. 11. 5. · HMBSP:...

  • HMBSP: Application of hybrid membrane based separation processes for treatment of industrial wastewater

    TEAM MEMBERS:Prof. Sirshendu De, IIT Kharagpur , IndiaProf. J. Coronas, Univ of Zaragosa, SpainProf. C. Janiak, Univ. of Dusseldorf, Germany

  • Fluoride removal using Cellulose Acetate-Alumina mixed matrix membrane

    Sirshendu DeDepartment of Chemical Engineering, Indian Institute of Technology

    Kharagpur, Kharagpur 721302, [email protected]

  • Hazards of fluoride contamination in drinking water

    Effects on the human body

    Neurotoxic agent Changes Bone Structure and Strength

    Impairs Immune SystemCauses Initial Stages of Skeletal Fluorosis

    Contributes to the Development of Repetitive Stress Injury

    Allowable limit in drinking water:-1.5 ppm

  • Fluoride Presence Within India

  • PrecipitationAdsorption on promising adsorbents like Alum,charcoal ,ash ,Alumina Reverse osmosis

    Conventional remedial measures adopted

  • Membrane preparation

  • Membrane characterization Pure Water Flux -The linear permeability decreases from 1.82x10-11-9.79x10-12m/ Pa.s

    for Alumina wt. % from 0 %-35 %. Molecular Weight Cut Off (MWCO) -The MWCO decreases from 63 K-12.86 K for

    Alumina wt. % from 0 %-35 %. %Porosity-The % porosity variation is from 41%-9% for Alumina wt. % From 0-35%. Pore radius variation- The pore radius variation is from 79 Å-35 Å for Alumina wt. % From

    0-35%. Maximum stress-The maximum withstand able stress that the membrane can support varies

    from 20 N/mm²-1.92 N/mm², for Alumina wt. % From 0-35%. FTIR analysis- The FTIR analysis of the membrane samples (35% Al & 20% CA) has been

    done before and after batch cell run with fluoride solution. Morphology- Analysis has been done with scanning electron micrographs, revealing the

    presence of depressions made by granular Alumina particles, in which the fluoride ions gets clogged.

  • Variation of different characterization properties

    PWF (linear permeability) MWCO (molecular weight cut off)

  • Variation of different characterization properties

    porosity Pore radius

  • Variation of different characterization properties

    FTIRMaximum stress

  • Morphology Top/Cross sectional view

    0% Al 35% Al20% Al

    0% Al 35% Al

  • Fluoride Rejection and Flux decline (For a 35 wt.% Alumina and 20 wt.% CA membrane)

    Flux decline w.r.t time

    Permeate concentration variation w.r.t time

    12 ppm 8 ppm

  • Membrane resistances

  • Conclusions  CA-alumina mixed matrix membrane is able to

    remove fluoride from water.Alumina above 35 w/w % with CA 20 w/w % leads

    to casting problems, so this composition isrecommended.

    The recommended membrane gives satisfactorypermeate concentration at comparatively lowpressure.

    Membrane hydraulic resistance and fouling resistanceare comparable.

  • Nanocomposites, mixed‐matrix membranes for gas separation

    PSF-MIL-101mixed-matrix membrane MMM,

    ▬ 20-60 µm

    C O SO

    CH3

    CH3

    O

    O

    Polysulfone (PSF) repeating unit

    Chem. Commun. 2012, 48, 2140.MIL-101

    3.4nm

  • zeolitesactivecarbon

    metal-organic frameworks, MOFs orporous coordination polymers, PCPs

    Kitagawa, Matsuda, Coord. Chem. Rev.2007, 251, 2490–2509.

    Nanopores in Metal‐Organic Frameworks (MOFs)

  • metal-atom/cluster

    organicligand

    Metal‐Organic Frameworks (MOFs) – construction principle

    Yaghi et al, Nature 1999, 402, 276.

    O

    OO

    O

    benzene-1,4-dicarboxylate,terephthalate, bdc

    {Zn4(µ4-O)} +

  • Yaghi et al, Nature 1999, 402, 276.

    Metal‐Organic Frameworks (MOFs) – construction principle

    MOF-5inner surface~2900 m2/g

  • poreMOF-5inner surface~2900 m2/g

    Yaghi et al, Nature 1999, 402, 276.

    Metal‐Organic Frameworks (MOFs) – construction principle

  • H2 O2 N2 CO2 CH4

    Kineticdiameter (Å)

    2.9 3.46 3.64 3.3 3.8

    Polymer phase

    Porous inorganic particle phase,e.g. MOF

    Chung et al., Prog. Polym. Sci., 2007, 32, 483.Li et al., Coord. Chem. Rev., 2011, 255, 1791.

    Dalton Trans. 2012, 41, in press. http://dx.doi.org/10.1039/C2DT31550E

    Mixed‐matrix membranes (MMMs) for gas separation– Polymer‐MOF membranes

  • Chem. Commun. 2012, 48, 2140.

    Mixed‐matrix membranes with MOFs for gas separation– PSF‐MIL‐101 membrane

    O2/N2 separation

  • .

    7.5 wt%MIL load

    14 wt%MIL load

    19 wt%MIL load Chem. Commun. 2012, 48, 2140.

    a = Cu-bpy-hfs,b = MOF-5,c = HKUST-1, Cu-btc,d = Mn(HCOO)2

    O2/N2 separation

    PSF‐MIL‐101 MMM for gas separation– comparative studies

  • CO2 / N2

    CO2 / CH4

    Membranes 2012, 2 , 727.

    PSF‐MIL‐101 membrane – CO2 separation from N2 or CH4

  • Mixed-matrix membranes with MOFs for gas separation– the goal

    Dalton Trans. 2012, 41, in press. http://dx.doi.org/10.1039/C2DT31550E

  • Acknowledgements

    Claudia Staudt, GMM/MBASF SE [email protected]

    Janina DechnikSubarna DeyDr. Harold Tanh