Surface plasmon polaritons (SPP): an alternative to cavity QEDSPP d Beyond the diffraction limit p...

61
Surface plasmon polaritons (SPP): Surface plasmon polaritons (SPP): an alternative to cavity QED Strong coupling to excitons & Intermediary for quantum entanglement Intermediary for quantum entanglement A Gonzalez Tudela D Martin Cano P A Huidobro A. Gonzalez-Tudela, D. Martin-Cano, P . A. Huidobro, E. Moreno, F.J. Garcia-Vidal, C.Tejedor Universidad Autonoma de Madrid Universidad Autonoma de Madrid LM i M L. Martin-Moreno Instituto de Ciencia de Materiales de Aragon CSIC

Transcript of Surface plasmon polaritons (SPP): an alternative to cavity QEDSPP d Beyond the diffraction limit p...

  • Surface plasmon polaritons (SPP):Surface plasmon polaritons (SPP): an alternative to cavity QED

    Strong coupling to excitons & Intermediary for quantum entanglementIntermediary for quantum entanglement

    • A Gonzalez Tudela D Martin Cano P A Huidobro• A. Gonzalez-Tudela, D. Martin-Cano, P. A. Huidobro, E. Moreno, F.J. Garcia-Vidal, C.TejedorUniversidad Autonoma de MadridUniversidad Autonoma de Madrid

    L M i M• L. Martin-MorenoInstituto de Ciencia de Materiales de AragonCSIC

  • SPPSPPStrongStrong couplingcoupling toto excitonsexcitons & & IntermediaryIntermediary forfor quantum quantum entanglemententanglement

    Outline• Introduction to surface plasmon polaritons (SPP)• Coupling of 1 quantum emitter (QE) to SPP• Collective mode (excitons) strongly coupled to SPP• Coupling & entanglement of 2 QE mediated by SPP• ConclusionConclusion

  • Intro: Surface plasmon polaritons

    p

    Dielectric response of a metal is governed by free electron plasma:

    i

    p

    2: : plasma frequency

    d i f tBelow its plasma frequency Below its plasma frequency (()) is negativeis negative......

    ßß

    i : : damping factor

    ck :wavevector purely purely imaginary           photonic insulatorimaginary           photonic insulator

    What is a surface plasmon polariton ?p p

  • Intro: Surface plasmon polaritons

    p

    Dielectric response of a metal is governed by free electron plasma:Dielectric response of a metal is governed by free electron plasma:

    i

    p

    2: plasma frequency

    d i f tBelow its plasma frequency Below its plasma frequency (()) is negativeis negative......

    ßß

    i : damping factor

    ck :wavevector purely purely imaginary           photonic insulatorimaginary           photonic insulator

    What is a surface plasmon polariton ?p p

  • Intro: Surface plasmon polaritonsElectromagnetic radiation in dielectric Å Localized Plasmons in a metal surface

    ßSURFACE PLASMON POLARITONS

    200nm  500nm

  • Intro: Surface plasmon polaritonsSPP Length Scales span photonics and nano

    P t ti d thPenetration depth into metal

    Penetration depth into dielectric

    SPP wavelengthSPP propagation

    length

    δm δd λSPP δSPPNon-local

    effects

    SPP LRSPP

    10 nm1 nm 100 nm 1 cm1 mm1 μm 100 μm10 μm 10 cm

    Length scales span 7 orders of magnitude!

  • Intro: Surface plasmon polaritons

  • Intro: Surface plasmon polaritons

    •Propagation length: 50-100 mm (Ag or Au) Û lifetime £ 1 psInterestingInteresting featuresfeatures of of SPPsSPPs forfor photonicphotonic circuitscircuits:

    p g g m ( g ) p•Two-dimensional character of EM-fields•Optical and electrical signals carried without interference

  • Intro: Surface plasmon polaritons

    •Propagation length: 50-100 mm (Ag or Au) Û lifetime £ 1 psInterestingInteresting featuresfeatures of of SPPsSPPs forfor photonicphotonic circuitscircuits:

    p g g m ( g ) p•Two-dimensional character of EM-fields•Optical and electrical signals carried without interference

    1( 10 100 ) /SPP dk m c Beyond the diffraction limit

    p 1 d

  • Intro: Surface plasmon polaritons

    •Propagation length: 50-100 mm (Ag or Au) Û lifetime £ 1 psInterestingInteresting featuresfeatures of of SPPsSPPs forfor photonicphotonic circuitscircuits:

    p g g m ( g ) p•Two-dimensional character of EM-fields•Optical and electrical signals carried without interference

    1( 10 100 ) /SPP dk m c Beyond the diffraction limit

    p

    One problem: coupling in and out to SPPs

    1 d

    coupling in and out to SPPs

    k k Ph t l k it ti i id th li ht3D dk k c Photons can only make excitations inside the light cone

    While SPP are outside the light cone

  • One problem: coupling light to SPPs

  • SPPSPPStrongStrong couplingcoupling toto excitonsexcitons & & IntermediaryIntermediary forfor quantum quantum entanglemententanglement

    Outline• Introduction to surface plasmon polaritons (SPP)• Coupling of 1 quantum emitter (QE) to SPP• Collective mode (excitons) strongly coupled to SPP• Coupling & entanglement of 2 QE mediated by SPP• ConclusionConclusion

  • Quantization of plasmons (without losses)Q p ( )

    Q ti ti f l t i fi ld( · )(( ) ( ))

    2z

    ki k k z

    k k

    kE r u z e aA

    Quantization of an electric field 0( ) ( )

    2( , )

    kk kAr z

    1 | |ˆ ˆ( )( )

    ( )zk z zkz

    k

    ku z e u uikL k

    i h( )

    ( ) ( )( ) ( ) 1( )m d mdL

    with

    ( ) ( ) 12 ( ) | ( ) |

    ( )m dd m

    Ldk

    ff ti l th t li th f h d

    †( )EMH k a a effective length to normalize the energy of each mode,

    ( )EM k k kH k a a

  • Interaction of 1 quantum emitter (QE) with SPP†

    0QEH

    z( )· ( )U dr r E r

    Interaction with a dipole

    ( )· ( )U dr r E r

    0 0( · ( ) ) † ( · ( ) ) †( ; )

    ( ) ( )( )k

    i t i ti k r k t i k r k tint k k

    g k zH t a e a e e e

    A

    A

    ( ) | |ˆ ˆ( ; ) · ( ) ·( )2 ( )

    zk zzkk k

    k kg k z E u z e u ukL k

    2 3 30 0 03 /c

    02 ( )zkk k

    zkL k decay rate

    of bare QE

  • Interaction of 1 quantum emitter (QE) with SPP†

    0QEH

    z( )· ( )U dr r E r

    Interaction with a dipole

    ( )· ( )U dr r E r

    0 0( · ( ) ) † ( · ( ) ) †( ; )

    ( ) ( )( )k

    i t i ti k r k t i k r k tint k k

    g k zH t a e a e e e

    A

    A

    ( ) | |ˆ ˆ( ; ) · ( ) ·( )2 ( )

    zk zzkk k

    k kg k z E u z e u ukL k

    2 3 30 0 03 /c

    02 ( )zkk k

    zkL k

    I RWA † · † ·( ; ) ( )ik r ik rg k zH decay rateof bare QE

    In RWA † †( ; ) ( )ik r ik rint k k k

    gH a e a e

    A

  • Interaction of 1 quantum emitter (QE) with SPP† , 0 One QE with w0 only couples to a

    bright SPP º symmetric linear

    z

    bright SPP º symmetric linear comb. (J0 Bessel funct.) of all themodes with

    0; SPPk k

    The higher coupling does notcoincide with the higher b-factor

    plradiation to plasmonstotal radiation

  • Scheme of the quantum dynamics of an open system

    gm

    Solving TOT TOT TOTi Ht

    is complicated and unnecessaryt

  • Scheme of the quantum dynamics of an open system

    γQEgm gm

    γSPP=vg/LSPP

    Solving TOT TOT TOTi Ht

    is complicated and unnecessary

    Tracing out the reservoir’s

    t

    degrees of freedom

  • Dynamics of the QE population: Weisskopf-Wigner

    [ ( )] ( )2

    0

    ( ; ) ( ) ( ) / 2( )

    ci k i

    t

    K t z c d c tc t

    With dissipation0 0[ ( )] ( )2

    0

    2

    ( ; ) | ( ; ) | ( ; )

    1 ˆ( ; ) Im[ ( )][ ]

    ci k iSPP

    k

    K z g k z e d J z e

    J z G r r

    With dissipationWithout dissipation

    SPP 0 020

    0 0

    ( ; ) Im[ ( , , )]

    ˆ( ; ) ... ( , , )...

    [ ]SPPT

    J z G r rc

    J z G r r

    0 0 0( ) 2 [ ( ; ) (PT

    SPJz J z 0 0; )]z

  • Dynamics of the QE population: Weisskopf-Wigner

    [ ( )] ( )2

    0

    ( ; ) ( ) ( ) / 2( )

    ci k i

    t

    K t z c d c tc t

    With dissipation0 0[ ( )] ( )2

    0

    2

    ( ; ) | ( ; ) | ( ; )

    1 ˆ( ; ) Im[ ( )][ ]

    ci k iSPP

    k

    K z g k z e d J z e

    J z G r r

    With dissipationWithout dissipation

    SPP 0 020

    0 0

    ( ; ) Im[ ( , , )]

    ˆ( ; ) ... ( , , )...

    [ ]SPPT

    J z G r rc

    J z G r r

    0 0 0( ) 2 [ ( ; ) (PT

    SPJz J z 0 0; )]z

    •For a single QE, the SPP spectral densityJSPP governs the dynamics !•Non lorentzian shape of JSPPÞ differentp SPP dynamics that a pseudomode (cavity QED) !•Height/width ratio of JSPP determines thepossible reversibility !possible reversibility ! •g0

  • SPPSPPStrongStrong couplingcoupling toto excitonsexcitons & & IntermediaryIntermediary forfor quantum quantum entanglemententanglementgg p gp g yy qq gg

    Outline• Introduction to surface plasmon polaritons (SPP)• Coupling of 1 quantum emitter (QE) to SPP• Collective mode (excitons) strongly coupled to SPP• Coupling & entanglement of 2 QE mediated by SPP• ConclusionConclusion

  • Exciton collective mode of emitters in a plane

    More complicated system:

    †,ij ij

    emitters in a plane Dynamics described bymaster eq. for density matrix

    & quantum regression th

    zj0

    ,ij ij

    † †(k)sN

    H a aH

    & quantum regression th.

    † †, ,0

    10 (k) N i jpl k ki j

    i k

    H a aH

    · ·† †( ; )( )NNs ik r ik rj i iH

    g k za e a e

    † †, ,

    1( )Nint i iH i j i jk k

    ika e a e

    A

    ( ) | |ˆ( ; ) ·2 ( )

    ( )z jk zj zkk kg k z e u u

    kL k

    0

    ( )2 ( )

    ( )j zkz

    gkL k

    No fitting !!!

  • Exciton collective mode of emitters in a plane

    More complicated system:

    †,ij ij

    emitters in a plane Dynamics described bymaster eq. for density matrix

    & quantum regression th

    zj0

    ,ij ij

    † †(k)sN

    H a aH

    & quantum regression th.

    † †, ,0

    10 (k) N i jpl k ki j

    i k

    H a aH

    · ·† †( ; )( )NNs ik r ik rj i iH

    g k za e a e

    † †, ,

    1( )Nint i iH i j i jk k

    ika e a e

    A

    Collective mode ( ) | |ˆ( ; ) ·2 ( )

    ( )z jk zj zkk kg k z e u u

    kL k

    Holstein-Primakoff transf.(low excitation Þ no saturation)

    ß

    0

    ( )2 ( )

    ( )j zkz

    gkL k

    No fitting !!!

    ·† †,

    1

    1( )

    1

    si

    Niq r

    j i jis

    D q eN

    † * †

    1,

    ( ; )( )· ( ) ( )· ( )

    1

    ( )sN

    j sint i j i jk k

    ik q s

    N

    g k z nH S k q ra D q S k q ra D q

    N

    ·† †,

    1 ( ) iiq ri j jqs

    D q eN

    ·1

    1( )s

    i

    Nik r

    is

    S k eN

    Structure factor

  • Experimental evidence of t li fstrong coupling of SPP & excitonsQE are not just in a plane

    Ensembles of organic molecules• J. Bellessa, et al, Phys. Rev. Lett. 93, 036404 (2004).• J. Dintinger, et al, Phys. Rev. B 71, 035424 (2005).

    k l l h ( )• T. K. Hakala, et al, Phys. Rev. Lett. 103, 053602 (2009).• P. Vasa, et al, Nano Lett. 12, 7559 (2010).• T. Schwartz, et al, Phys. Rev. Lett. 106, 196405 (2011).

    Semicond. nanocrystals & Quantum wells  • P. Vasa, et al., Phys. Rev. Lett. 101, 116801 (2008).

    ll l h 8 (2008)D=110meV

    • J. Bellessa, et al, Phys. Rev. B 78 (2008).• D. E. Gomez, et al, Nano Lett. 10, 274 (2010).• M. Geiser, et al, Phys. Rev. Lett. 108, 106402 (2012).

  • (Semi)-classical description

    20

    2 20

    1 2 / 3/ ;1 1/ 3

    Nf e mi N

    Polarizability of 1 emitter

    Eff. dielectricfunct of emitters 0 1 1/ 3i N 1 emitter funct. of emitters

    e5 =1T@0 3

    20 00 02 2 2

    2 23m cmf

    Oscillator strength

    e t l

    e(w)e3 =1

    SPP

    Absorbances

    W

    d

    0 02 2 203e e from microsocpic info.

    emetale1 1 R

    AbsorbanceA=1-R-T

    d

    k

    e1=3; d=50nm; s=1nm; W=500nm

    ω0=2eV; N=106 μm-3

    γ =γ0 +γdeph ; γ 0 =0.1meV; γdeph=40meV

  • Excitonic collective modein the volume of width W

    ( ; )jg k z

    Coupling depends on distance zj

    More complicated collective mode

    Average of randomorientations

    For many QE with disorder momentum is conserved,0( ) kS k q

    † †( ; ) ( ) ( )( )LN

    H g k z n a D k a D k

    int1

    †† †

    ( ; ) ( ) ( )

    ; [ ( ), ( )]1( ) ( ; ) ( )

    ( )L

    j s j jk kjk

    i j ij

    N

    j jND k g k z D k

    H g k z n a D k a D k

    D k D k

    2 2

    1; [ ( ), ( )]

    ( ) | ( , ) | d | ( , ) |

    ( ) ( ; ) ( )( )

    L

    i j ij

    N sNj

    j jNj

    g

    g k g k z n z g k z

    g k

    No fitting !1

    † †0

    ( ) | ( , ) | | ( , ) |

    ( ) ( ) ( ) ( ) ( )

    j sj

    N Nk k

    g g g

    H D k D k a k a k g k

    † †( ( ) ( ) ( ) ( ))a k D k a k D k

    g

    Decay of the collective mode 22 d ( ) | ( , ) || ( ) |ks N

    D N s

    n z z g k zg k

  • Dynamics under coherenti f S ipumping of a SPP with k-vector

    Average of random orientations

    CoherentCoherentpumping

    (classical field) Reservoirs

  • Dynamics under coherenti f S ipumping of a SPP with k-vector

    † † † †0

    ( ) ( ) ( ) ( ) ( )( ( ) ( ) ( ) ( ))

    ( ) ( )L L

    N Nk k

    i t i tL

    H D k D k a k a k g k a k D k a k D k

    H t

    [ ]

    ( ) ( )

    k

    L

    k

    L

    D aN L

    i t i tLk k k kH t a e a e

    i H H

    †[ , ] 2 2 2k kk kD ak k k k D Di H H

    Excitondecay

    Plasmondecay

    Pure dephasing(vibro-rotation)

    † † †(2 )c c c c c c c decay decay (vibro rotation)

  • Dynamics under coherenti f S ipumping of a SPP with k-vector

    † † † †0

    ( ) ( ) ( ) ( ) ( )( ( ) ( ) ( ) ( ))

    ( ) ( )L L

    N Nk k

    i t i tL

    H D k D k a k a k g k a k D k a k D k

    H t

    [ ]

    ( ) ( )

    k

    L

    k

    L

    D aN L

    i t i tLk k k kH t a e a e

    i H H

    †[ , ] 2 2 2k kk kD ak k k k D Di H H

    Excitondecay

    Plasmondecay

    Pure dephasing(vibro-rotation)

    At the crossing (k0) between exciton and SPP,† † †(2 )c c c c c c c

    decay decay (vibro rotation)

    Rabi splitting is analytical

    22 2[ ( )] ( ) / [ ( )]4N NR k i h k

    0 0

    220 0

    2[ ( )] ( ) / [ ( )]4k k

    ND a

    NR g k with g k n

  • Strong coupling betweenSPP & excitons

    0 0.1meV

    N d d W•gN depends on W with saturationdue to SPP z-decay

    •gN practically independ. on sg p y p

    gs i (s=1)

    0 1 Ng

    gs,iso(s=1)

    gspp

    6 3

    0.1

    10k g

    n m

    0 2eV

  • Strong coupling betweenSPP & i

    1 ; 500N

    s nm W nm SPP & excitons

    0

    0

    (40 )2 ; 0.1

    0.1 ; 0.1 ( )

    Nk

    N

    meVeV g

    meV g RT

    Polariton populations µ absorption spect.

    6 310 6 310n m

  • Strong coupling betweenSPP & i

    1 ; 500N

    s nm W nm SPP & excitons

    0

    0

    (40 )2 ; 0.1

    0.1 ; 0.1 ( )

    Nk

    N

    meVeV g

    meV g RT

    Rabi splitting (at k0)

    220

    20 ;[ ( )] ( [ ( )]) / 4

    ND

    Ng kR k ng

    Polariton populations µ absorption spect.0 0

    00 ;[ ( )] ( [ ( )]) / 4k kD a g kR k ng

    Weak Strong6 310 coupling coupling6 310n m

    At RT, the incoherent processes (gf ) determine a critical density for observing strong coupling

  • SPPSPPStrongStrong couplingcoupling toto excitonsexcitons & & IntermediaryIntermediary forfor quantum quantum entanglemententanglement

    Outline• Introduction to surface plasmon polaritons (SPP)• Coupling of 1 quantum emitter (QE) to SPP• Collective mode (excitons) strongly coupled to SPP• Coupling & entanglement of 2 QE mediated by SPP• ConclusionConclusion

  • QE-QE coupling mediated by plasmonic waveguidesQ Q p g y p g

    Cilindrical wire WaveguideV-Channel W vegu deto reinforce

    QE-QE effects

    Fields are stronger in the channelthan in the cilinderthan in the cilinder

  • 1QE: b and Purcell factors

    Metallic nanostructures increase the emission from a QE (Purcell) but,

    I i l h i i f SPP’ ??? (b)

    ; pltotal radiation radiation to plasmonsPurcell factor factorQ d l d

    Is it always a coherent emission of SPP’s??? (b)

    0

    ;f fQE radiation to vacuum total radiation

    The channel is more convenient than the cilinder

  • b and Purcell factorsh=20nm

    b- factor is very stable in a broad range of dipoleorientations while Purcellf t d i ifi tl

    h=150nmfactor decreases significantlywhen the dipole is notproperly orientedproperly oriented

  • Dispersion & b factor for V-channel

    h=140nmV‐angle= 20 degrees

    b factorb-factor

  • Two QE’s dynamicsyAll the degrees of freedom (SPP, dissipation, radiation) can be traced outproducing effective coherent & incoherent interactions between the twoproducing effective coherent & incoherent interactions between the twoQE’s that can be computed from the classical Green’s function:

    3 † †ˆ ˆ ˆˆ ˆ( ) ( ) [ ( ) ]H d d d h

    d E 3 † 00 01 2 1 2

    , ,

    ˆ ˆ( , ) ( , ) [ ( , ) . .]i i i ii i

    H d d a d ha c

    r r r ω d E r 2

    3ˆ ( ) ( ) ( ) ( )i d E G 3

    20

    ( , ) ( , ) ( , , ) ( , )ii d ac

    E r r r G r r ω r

    † † †ˆ 1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ[ ] ( 2 )i H H σ σ σ σ σ σ,

    [ , ] ( 2 )2s ij i j i j jL ii j

    H Ht

    σ σ σ σ σ σ

    0† †ˆ ˆ ˆ ˆ ˆ( )s i i i ij i jH g † .ˆ .1ˆ Li i i tL e h cH 0( )s i i i ij i j

    i i j

    g

    2 i iiL 2

    *00

    2 ( )Im d G r r d2

    *00( )g Re

    d G r r d 020

    ( , , )ij i i j jImc

    d G r r d

    020( , , )ij i i j jg Rec

    d G r r d

  • Scheme of levelse

    gQE

    1 2 1 2 1 2 1 213 0 ( )e e g g g e e g

    g

    1 2 1 2 1 2 1 23 0 ( )2e e g g g e e g

    Modulation of g12 would allow to swicth on/off red and blue paths

  • Two QE’s dynamicsIt is possible to identify the effects of SPP & dissipationSPP Green’s function t t t t( ) ( )i E r E r

    y

    SPP Green s functionß

    Effective interactionsCoherent

    ( )t *t

    0

    ( ) ( )( , )2 ( )

    ik zS

    zP

    zP

    S

    i edS

    E r E rG r ru E H

    CoherentIncoherent

    /2,pl r

    /2

    sin( )2

    cos( )

    dij ij

    d

    g g e k d

    e k d

    ,pl rcos( )ij ij e k d

    p/2 shift allows switching on/off •Coherent versus incoherent interactions•Control of different decay paths

  • Two QE’s dynamicsIt is possible to identify the effects of SPP & dissipationSPP Green’s function t t t t( ) ( )i E r E r

    y

    SPP Green s functionß

    Effective interactionsCoherent

    ( )t *t

    0

    ( ) ( )( , )2 ( )

    ik zS

    zP

    zP

    S

    i edS

    E r E rG r ru E H

    CoherentIncoherent

    ˆ ˆ ˆ ˆ[ ]i H H

    /2,pl r

    /2

    sin( )2

    cos( )

    dij ij

    d

    g g e k d

    e k d

    † † †

    [ , ]

    1 ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( 2 )2

    s L

    ij i j i j j ii j

    H Ht

    σ σ σ σ σ σ ,pl r

    cos( )ij ij e k d

    p/2 shift allows switching on/off ,2 i j

    0† †ˆ ˆ ˆ ˆ ˆ( )s i i i ij i j

    i i j

    H g

    •Coherent versus incoherent interactions•Control of different decay paths

    † .ˆ .1ˆ2

    Li i

    i

    i tL e h cH

    /2,pl rcos( )

    dij ii jj i j e k d

    For inequivalent dipoles

  • Coherent (gij) & incoherent (gij) ff ti li b t QE’effective couplings between QE’s

    Incoherent coupling much more important than the coherent onepbecause it switchs on/off each decaypath with respect to the other

    12

  • Entanglement measureg

    ConcurrenceComplex definitionComplex definition….

    What we need to know:

    Separable states(i.e ) =>

    Entangled states(i. e. ) =>

  • Spontaneous decay of a single excitationConcurrence becomes:

    pl /(2 )2 2( ) [ ( ) ( )] 4 [ ( )] i h[ ]tC I 1 2

    1( 0) 1 ( )2

    t e g

    pl /(2 )2 2( ) [ ( ) ( )] 4 [ ( )] sinh[ ]tC t t t Im t e e t

    C

    C

  • Stationary entanglementy g(in the previous viewgraph) Spontaneous decay mediated by plasmonsproduces finite-time entanglement starting from an unentangled stateproduces finite-time entanglement starting from an unentangled state

    1 21( 0) 1 ( )2

    t e g

    But one wants both to obtain and manipulatestationary entanglement.stationary entanglement. This can be done by means of lasers:

    In the coherent part of theIn the coherent part of themaster equation

  • Stationary entanglementy g

    2 d 12 cos 2

    pl

    d 12 sin 2

    pl

    dg

  • Stationary entanglementy g

    12 cos 2

    pl

    d

    12 sin 2pl

    dg

  • Stationary entanglementy g

    12 cos 2pl

    d

    d p 12 sin 2

    pl

    dg

  • How is stationary entanglement generated?

    y g g

    12 cos 2pl

    d

    12 12 12

    12 12

  • How is stationary entanglement generated?

    y g g

    12 cos 2pl

    d

    12 12 12

    12 12

  • How is stationary entanglement generated?

    y g g

    12 cos 2pl

    d

    12

    12

    12 12

  • Stationary state concurrence

    Stationary state tomographyStationary state tomographyStationary

    density matrixdensity matrix

    1 20.15 , 0

  • How to measure stationary concurrence: QE QE l tiQE-QE correlation

    1 2 0.1

    Second order cross-coherence

    † †(2) 1 2 2 1g

    between the two QE’s

    12 † †1 1 2 2

    g

    1 2 0.1

    1 20.15 , 0 1 2,

    b=1 V‐channel b=0.9

    Cylinder b=0.6

  • Effect of pure dephasing

    [ ] † †

    deph ˆ ˆˆ ˆ ˆ ˆ[ ] [ , ],2[ ]i i i i

    i

    Pure dephasing reduces, but not critically, bothcorrelations & concurrence

  • PurityConcurrence - Linear entropy diagram 24 13LS Tr

    Ûmaximally entangledmixed states

    Still room fori !

    b=0.94L=2mmd/lSPP=0.5-1.5improvement! SPPW1=0.15g ; W2=0W1=W2=0.1gW1=-W2=0.1gW1 W2 0.1g

  • SPPSPPStrongStrong couplingcoupling toto excitonsexcitons & & IntermediaryIntermediary forfor quantum quantum entanglemententanglement

    Outline• Introduction to surface plasmon polaritons (SPP)• Coupling of 1 quantum emitter (QE) to SPP• Collective mode (excitons) strongly coupled to SPP• Coupling & entanglement of 2 QE mediated by SPP• ConclusionConclusion

  • ConclusionConclusion:: Plasmon-polaritons share many properties& capabilities with cavity exciton polaritons& capabilities with cavity exciton-polaritons.

  • ConclusionConclusion: : Plasmon-polaritons share many properties& capabilities with cavity exciton polaritons

    SPP

    & capabilities with cavity exciton-polaritons.

    Strong coupling to excitons & Intermediary for quantum entanglement

    A. Gonzalez‐Tudela et al,  Phys. Rev. L 106 020501(2011)

    A. Gonzalez‐Tudela et al, Xi 1205 3938 Lett.  106 , 020501(2011)

    D. Martin‐Cano, et al, Phys. Rev. B 84, 235306 (2011)

    arXiv:1205.3938 

  • ConclusionConclusion:: Plasmon-polaritons share many properties& capabilities with cavity exciton polaritons

    SPP

    & capabilities with cavity exciton-polaritons.

    Strong coupling to excitons & Intermediary for quantum entanglement

    A. Gonzalez‐Tudela et al,  Phys. Rev. L 106 020501(2011)

    A. Gonzalez‐Tudela et al, Xi 1205 3938 Lett.  106 , 020501(2011)

    D. Martin‐Cano, et al, Phys. Rev. B 84, 235306 (2011)

    arXiv:1205.3938 

    Thanks for your attentionСпасибо за ваше вниманиеСпасибо за ваше внимание

  • (Semi)-classical description

    20

    2 20

    1 2 / 3/ ;1 1/ 3

    Nf e mi N

    Polarizability of 1 emitter

    Eff. dielectricfunct of emitters 0 1 1/ 3i N 1 emitter funct. of emitters

    e5 =1T@0 3

    20 00 02 2 2

    2 23m cmf

    Oscillator strength

    e t l

    e(w)e3 =1

    SPPs

    W

    d

    0 02 2 203e e from microsocpic info.

    Absorbanceemetale1 1 R

    d

    kA=1-R-T

    e1=2.25; d=30nm; s=1nm; W=500nm

    ω0=2eV; N=106 μm-3 0 μ

    γ =γ0 +γdeph ; γ 0 =0.1meV; γdeph=40meV

    Red: light line ω = c kRed: light line ω c k

    Red thin: light line ω = c k / Ö(ϵ1)

    Green: SPP dispersion relation ω = c k/ Ö(ϵ1 ϵm/(ϵ1+ ϵm))

  • Dispersion relation for condensationp2a d Chain of silver spheres

    a=25nm PRB 70 125429 (’04)d=75nm PRB, 70, 125429 ( 04)

    Exp : PRB 65 193408 (’02)Exp.: PRB, 65, 193408 ( 02)