Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion...

79
Surface Engineering Nanostructures Low energy Ion bombardment nanostructuring Process Fernando Alvarez Instituto de Física "Gleb Wataghin", Unicamp, 13083-970, Campinas, SP, Brazil

Transcript of Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion...

Page 1: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Surface Engineering Nanostructures

Low energy Ion bombardment nanostructuring Process

Fernando Alvarez

Instituto de Física "Gleb Wataghin", Unicamp, 13083-970, Campinas, SP, Brazil

Page 2: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

- Photo-lithography: Expensive, 100nm

- Scanning Beam Lithography: Low deposition rate, 10 nm

- Scanning Probe Lithography: Low deposition rate, 1 nm

Top Down: “Imposing” a pattern on the Substrate

Surface Engineering Nanostructures

1) Sculpted Substrate By Ion Beam Bombarding

2) Ni Self–organized Structures Obtained on the sculpted substrate

Ion BombardingTop–Down and Bottom-Up hybrid

- Resolution: 1nm

- One step process

- Large Areas

Bottom Up: Guiding the assembly of atoms or molecules

Page 3: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Bottom Up Fabrication: Mesoporous Patterned Silica (Sol Gel Technique)

J.J.S. Acuña, M.C. Marchi, F. Alvarez, Thin Solid Films 519 (2010) 214–217

• Silica Based Thin Film: cubic symmetry (polycondensation + evaporation+ self-organization )

• 7 nm cavities sizes separated by ~1.8 nm walls

• CVD Carbon Nanotubes Growth catalyzed by Ni

TEM-Cross Section SEM-Top View

Black dots: Ni catalytic decorated substrate

SEM-Top View

(b)

Page 4: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

1W. K. Burton, N. Cabrera and F. C. Frank, Royal Soc., 243, 1950; D. Walton in Nucleation, Edited by A. Z. Zettlemoyer, Marcel Dekker, INC. NY, 1969; W. K. Burton , N.

Cabrera. And F. C, Frank, Phil. Trans. Roy Soc., London, A243, 302, 1951

Surface Process: a brief introduction

• Atoms arrive from the vapor phase

• Self-Organizing: Mean Way between kinetic and thermodynamic phenomenon

• Surface diffusion on a flat surface (terrace): primary mechanism (activated process)

• Mean displacement adatom : distance before remains immobilized or detaching to the vapor1

=0exp [ (s-us)/2kT]

s : evaporation energies

us : activation energy

Jumping

Detaching

F

• D/F>>1 Process Governed by Thermodynamic

(Near Equilibrium)

• D/F<<1 Process Governed by Kinetic

D= Diffusion Coefficient, F= Particles Flux

4

Page 5: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Surfaces nano-structuration

Navez, et al., C.R. Acad. Sci., 254 (1962)

First Experiments by Ion Bombarding

Valbusa et al., J of Phys: Cond. Mat. 14 (2002)

Glass, Ionized air, 6 hs, 4 kV

30°

80°

5000 Å

5000 Å

5000 Å

Canhão

5

Page 6: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Campinas Sky, SP, Brazil

Snow Ripples Las Leñas, Argentina

Atacama Desert, Chile

6

Page 7: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Topography Accident: Sand and Snow

Sand(Snow) Dunes: At the hill or depression, Different Velocities

Clouds: ripples between the dry, cool air above and the moist, warm air

below

Small Velocity

WindHigh Velocity

Page 8: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Low energy Ion bombardment nano-structuring Process

Control Deposition Parameters

• Ion Species

• Ion Energy

• Impinging Angle

• Flux (Dose)

• Substrate Temperature

Page 9: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Noble gases Bombardment (NG +): Ar +, Kr, + Xe +

Experimental: Ion Beam

Energy

20 – 1200 eV

PO2 <10-8 mb

Current

~1mA/cm2

TARGET

SUBSTRATE

T Controlled

ION GUN 2

TURBO

PUMP

NG+

ION GUN 1

Ion gun

(Kaufman)

Ar, Xe+

In Situ

Photoelectron

Emission

Spectroscopy

TURBO

PUMP

Page 10: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

SEM-FEG images: AISI 316L (Room T, Xe+, 1 keV)

•10Cucatti, Alvarez., ,submitted, 2014

Crystalline grains

evidenced

Patterns within the

crystalline grains

15º

Pattern

10

Page 11: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Nano-Structures on Semiconductors

500nm

GaSb, Gallium Antimonide

Facsko et al., Science 285,1999, p1551

Hexagonal Symmetry

Ar+, 2 KeV, perpendicular

Xe+, Si (110), 1keV, 15°Morales, Merlo, Droppa, and Alvarez, 2014, J. of. Phys: D

<0

01

>

<001>

11

Page 12: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Semiconductors Nano-structuration

Substrate: Si, Ar+, Room TemperatureIon energy dependence

Ziberi et al., J. Phys: Condens. Mat. 21 (2009)

800 eV 1200 eV 2000 eV

An

gu

loi:

15°

An

gu

loi:

20° 800 eV1200 eV 500 eV

12

Page 13: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Ion patterning: Bradley & Harper Model

ConvexConcave

M. Bradley and J. M. E. Harper, J. Vac. Sci. Technol. A, 6,4, 1988Faster Erosion

13

Page 14: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

TiN + Ni Particles Ion Beam Deposition

Sputtering

gun

Turbo

pump

XPS

Carbon nanotubes grown by CVD, M. Morales,et al., JPhysD., 2013, 2013

Si

Nickel Particles

750°C

1.5 min deposition

5 min annealing

14

TARGET UHV

XPS

SUBSTRATE

T Controlled

ION GUN 2

TURBO

PUMP

NG+

ION GUN 1

Ion gun

(Kaufman)

Ar, Xe+

Page 15: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

15

Ni Atoms Flux

Morales, Merlo, Droppa, Alvarez, J. of. Phys: D, 2014014)

Ion Gun

Vacuum

XPS

Annealing

750°C, 1.5 min , deposition

5 min annealing

Ni Deposition + Annealing

Page 16: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Fourier Transform

Atomic Force Microscopy

16Morales, Merlo, Droppa, and Alvarez, 2014, J. of. Phys: D

Page 17: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Conclusions

• Different possibilities generating regular nanostructures by ion

bombarding

• Self-organized metallic nano-particles on sculpted patterned silicon

• Self-organization: Irregularities & defects still important

• Lack of general theoretical understanding

about the general patterning

and self-organization process

Page 18: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Nitriding

Put a three years old black goat in a locked room, without food;

after the four day, feed the animal only with fern during two

days. The following night, put the goat in a vat with holes in the

button to collect the urine's goat. Store the urine of two or

three nights and throw out the goat. Therefore, temper yours

instruments in the collected urine.

Iron instruments are also very well tempered in the urine of a

young red haired boy, giving more hardening that tempering

simply in water.

Theophilus Presbyter (Roger of Helmarshhausen, Germany)

(Monge Beneditino, 12th Century),Scheme of Various arts,

translated to English from Hendrich, 1847.

Page 19: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Equipamentos e ProcessosEquipamentos e Processos

Instituto de Física “Gleb Wataghin”UNICAMP, SP, Brazil

Supporting Agency: FAPESP

Daniel Wisnivesky

Fernando Alvarez

Plasma-LIITS

Surfaces Plasma Processing

Page 20: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Gear Box Manufacturing

2004

Industrial

ApplicationsPlasma Nitriding

Industry

Small Company

Equipment and Processes

Equipamentos e ProcessosEquipamentos e Processos

Page 21: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

• Metallic Surfaces treatments by plasma: R & D

• Equipment for nitriding and coatings: R & D

• Alternative to Salt Bath and Ammonia

• Interaction with the industry

PRIMARY COMPANY GOALS

Equipamentos e ProcessosEquipamentos e Processos

Page 22: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

COMPANY EVOLUTION

PRODUCTS IN 2014

• Nitriding Equipments

• Pulsed Power Supply

• Hard Coating Equipments

• R&D: Processes and Equipments

• Industrial Consulting

• HiPIMS Equipments (High Power Impulse

Magnetron Sputtering)

Page 23: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Nitriding Plant Fully Automatic

Vacuum

Furnace Pulsed

Power Supply

CLP

Heater Control

Automatic Gas Console

Page 24: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Roll - to - Roll Thin Film Deposition

Solar Absorber Panels

Page 25: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Plasma Immersion (PI3) Nitriding System (25 keV)

+

Remote Auxiliary RF Plasma

Cooling

System

RF Generator

Pulsed PI3 Power

Reactor

Page 26: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Molds for Plastic Injection+Oxidation(P20, P50, H13)

Equipamentos e ProcessosEquipamentos e Processos

High Speed Steel Cutting Tools( M2, M35, M42)

0 20 40 60 80 100 120

Horas de uso

Cortador "Caracol"

Horas de uso

Nitretada

Equipamentos e ProcessosEquipamentos e Processos

Cold Work( D2, D3, D6)

Page 27: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Thanks for your attention

谢谢

Page 28: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

32

Page 29: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

33

Page 30: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

34

Page 31: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

35

Page 32: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

36

Page 33: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

37

Page 34: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

38

Page 35: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

39

Page 36: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

40

Page 37: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

41

Page 38: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

42

Page 39: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

43

Page 40: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Thanks for your attention

Page 41: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

S. J. Liu et al. Appl. Phys. Lett., Vol. 80, No. 18, 6 May 2002

{111}{111}

Top View

Instability: Piling up along the terrace

Eb~ 0.45 eV

57

Page 42: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Ehrlich-Shhwoebel (E-S) barrier

Self - Organization

58

Page 43: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

L

L0

L

L0

-s +s

Implanted layer (~5-10 Ǻ)

Bulk

Modified region (~1)

x-ray

penetration

depth

(~980nm)

Stress

0 100 200 300-550

-50

0

50

100

150

200

Initial compressive stress

Xe+

Kr+

Ar+

Str

ess (

MP

a)

Implantation Energy (eV)

Steel100Cr6(AISI 52100)

X-Ray diffractionSeeman-Bohlin

Page 44: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Replacement Collision Sequence (RCS)Newton Cradle (Momentum Conservation)

Shortcut to pendlots.lnk

Account for defects <10 nm depth*

Highly anharmonic localized excitations (such as a DB) which propagate

distances well beyond the ion penetration depth can explain deeper deffects+

* P. Hansen, Phys. Metal., 2003; + G. Abrasonis & W. Moeller, PRL,2006

61

Page 45: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

1 m

1 Kv, X 25000

1.5 µm

1 Kv, X 25000

1 m

0.9 µm

SS316; T=390 0C, 4 hs

20 eV, Xe+ pre-bombardedSS316; T=390 0C, 4 hs

Without pre-bombardment

Nitrided Case : SS 316

62

Page 46: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

38 40 42 44 46 48

N(200)

(111)

N(111)

No Bombarded Nitrided 4 hs

Inte

nsid

ade

, u.a

.

2, Grauss

50 eV Xe+ Bombarded & Nitrided 4 hs

300 eV Xe+ Bombarded & Nitrided 4 hs

Grazing X-Ray Diffractograms

Pre-Bombarded and Nitrided SS316

X-Ray Penetration depth ~0.15-0.20 m

= 1.5 4056 Å

Bragg-Brentano

63

Page 47: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

35 40 45 50

0.0

0.5

1.0

T= 400 0C, 30

2(degree)

Inte

nsity (

arb

.units)

Xe++ Nitrided

Kr++ Nitrided

Ar++ Nitrided

Only Nitrided

+'(

´

=20 grazing angle

Grazing X-Ray Diffractograms

Pre-Bombarded and Nitrided AISI 4140

X-Ray Penetration depth ~0.15-0.20 µm

3 KV, Xe+

= 1,54056 Å

Bragg-Brentano

64

Page 48: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Difussion Coefficient

Polycrystalline multiphase system , `,

From the Phase diagram Fe-N: C´s

Diffusion

coefficient

I=Without

Pre-

treatment

II=With Pre-

treatment

Ratio

II/I

Dε (µm2/s) 0.88x10-4 3.7x10-44.6

D´ (µm2/s) 3.4x10-4 6.9x10-4

2

D (µm2/s) 0.32 0.32 1

Faster diffusion

Grain border, dislocations

Lower packing density

“Irrigation channel”

Adapted from

P. Hansen, Phys. Metal., 2003

Nitrogen Concentration

0 500 1000 1500

10

20

30

0 5 10 15 20 25 30

4

6

8

10

12

14

Ha

rdn

ess,

GP

a

Nitrogen content, at. %

Only nitriding (0.5 hr)

Xe+ pre-treatment (125 eV)

+ nitriding (0.5 hr)

Nitro

ge

n c

on

ten

t, a

t. %

Depth, nm

Sputtered Neutral Mass Spectroscopy

AISI 4140, 400 0C

65

Page 49: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Conclusions

•Implantation (knock-on) Xe+, Kr+, Ar+: stress

•Atomic Attrition: nanoscopic scale grain refining

Thanks for

your

attention

•Increasing Nitrogen Retention at Surface

•Improving Nitrogen Diffusion: thicker case

•Decreasing process time

•Thermal spike: relaxation

•Sequential Collision Effect

•Deeper changes due to other effects: e.g.: DB

•Increasing effective diffusion coefficient

•(–

66

Page 50: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

67

Page 51: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

ESTUDO DA NANOESTRUTURAÇÃO DE

SUBSTRATOS CRISTALINOS ATRAVÉS DO

BOMBARDEAMENTO COM FEIXE DE ÍONS A

BAIXA ENERGIA

Mónica Morales Corredor

Orientador: Prof. Dr. Fernando Alvarez

Exame de Qualificação de Doutorado

Campinas, abril de 201476

Page 52: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Sumário

77

Motivação

Métodos

Exemplos de Nano-estruturação de superfícies

Modelo do Bombardeamento com feixe de Íons

Experimento

Perspectivas

77

Page 53: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Sumário

78

Motivação

Métodos

Exemplos de Nano-estruturação de superfícies

Modelo do Bombardeamento com feixe de Íons

Experimento

Perspectivas

78

Page 54: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Parâmetros envolvidos

Temperatura

Substrato

Ângulo de

bombardeamento

Tipo de íons

Energia de

bombardeamento

Fluência

Interação de átomos

energéticos com a

superfície

Sputtering

79

Nano-estruturação de superfícies- BFI

Diversidade de nanoestruturas

formadas79

Page 55: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Nano-estruturação de Metais

Temperature Dependence

80

Ag (110), Ângulo: 0° t:15 min Gás: Ar Eí: 1 keV

160 K 230 K 270 K

290 K 320 K350 K

Rusponi S, et al. Phys. Rev. Lett. 78 (1997)

80

Page 56: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Nano - structuration of metals

81

Valbusa, J. of. Phys: Cond. Mat. 14,

(2003)

Substrates

180 K, 70°, 10 min, Ar+ , 1 keV

Ag(001) Cu(110) Ag(110)

81

Page 57: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Nano - structuration of metals

Bombarding Angle

Cucatti S, Alvarez F Mat. Chem. Phys (2014), Submitted

Policrystal

φ =15º φ = 45º

φ = 60º

0 15 30 45 600

5

10

15

20

25

Ru

go

sid

ad

e R

MS

(n

m)

ângulo de incidência (graus)

Amostra polida (<1.5 nm)

SS316L: Room Temperature, 15°, 30min, Xe+, 1keV

82

Page 58: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Nano-estruturação de

semicondutores

Fluência

83

Si

Ge

Cornejo, dissertation (2011)

Substrato: Si Gas: Kr

Ei: 2 keV Angulo

=3.4x1017íons cm-2 =1.1x1018íons cm-2

=6.7x1018íons cm-2 =1.3x1019íons cm-2

AFM

83

Page 59: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Sumário

84

Motivação

Métodos

Exemplos de Nano-estruturação em superfícies

Modelo do Bombardeamento com feixe de Íons

Experimento

Perspectivas

84

Page 60: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Bombardeamento com feixe de íons

85

Íon

incidente

migrante

sputtering

Implantação

fase

Amorfa

~2 nm

Sputtering (curvatura

Mecanismos de difusão

85

Page 61: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

86

Bombardeamento com feixe de íons

Sputtering Yield

Emm

mm

UY

ti

ti

2

0

2 )(

4

4

3

+

s(E)- stopping power~1 keV

i

t

m

moU Surface binding energy

Teoria de Sigmund Phys. Ver, 184 (1969)

86

Page 62: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

87

Bombardeamento com feixe de íons

Sputtering Yield

87

Page 63: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Bombardeamento com feixe de íons

Sputtering Yield

8888

Page 64: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Bombardeamento com feixe de íons

89

Modelo de Bradley and Harper – 2D

Rx > 0Rx < 0 Erosão mais rápidajDistribuição esférica

Rx

>> a

j=0 incidência

normala- Alcance médio de penetração dos

íons

J- Fluxo de íons incidentes

n-Densidade de átomos do substrato89

Page 65: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Modelo de Bradley & Harper- 3D

Bombardeamento com feixe de íons

90

Migração

dos

ripples

Difussão

superficial

adatomos

Taxa

erosão

superfície

plana

Sputtering

dependent

e da

cuvatura

Incidência não-normalz = h(x,y)

x

y

j

90

Page 66: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Longos tempos tem saturação e efeitos não lineares que não explica o modelo- Fluência.

Válido também para superfícies lisas.

Influência de impurezas

Outros modelos explicam os efeitos de ordem

maiores e não lineares.

91

Bombardeamento com feixe de íons

Falências do modelo B-H

91

Page 67: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Sumário

92

Motivação

Métodos

Exemplos de Nano-estruturação em superfícies

Modelo do Bombardeamento com feixe de Íons

Experimento

Perspectivas

92

Page 68: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Experimento

Motivação e Objetivo

AFM SEMSEM

Carpete de

nanotubos

alinhadosSubstrato nano-

estruturado

Barreira

Ilhas de níquel

9393

Page 69: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Experimento Resultados

94

Substrato: Si

Íons: Xe

Energia i: 500 eV

holes

Per. Ripp

SmoothHolesRipples Per.

Ziberi et al.

5° 10°

15° 20°

a b

c d<010>

<0

01

>

94

Page 70: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Experimento Rugosidade

95

5° 10°

15° 20°5 10 15 20

0,1

1

10

Ru

go

sid

ad

e R

MS

(n

m)

Ângulo de incidencia (°)

Si(100) polido

Xe+

Ziberi, 2009

0 10 20 30 40

0,1

1

10

Ru

go

sid

ad

e R

MS

(n

m)

Ângulo de incidencia (°)

Ar+

95

Page 71: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Experimento

9696

Page 72: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Sumário

97

Motivação

Métodos

Exemplos de Nano-estruturação em superfícies

Modelo do Bombardeamento com feixe de Íons

O experimento

Perspectivas

97

Page 73: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

98

Fluxo de átomos de Ni Perspectivas

M Morales et al., J. of. Phys: D

(2014)

Page 74: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

OBRIGADA!

99

Page 75: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Nano-Structures on Gallium Antimonide: Ar+ Ion Sputtering

Facsko et al., Science 285,1999, p1551

Hexagonal Symmetry

4x1017 cm-2, 40 s 2x1018 cm-2, 200 s 4x1018 cm-2, 200 s

500nm 500nm 500nm

GaSb

Fluences:5.2x1031/nm2;Tempo: 90 min and =37–43 nm

Au

~730Dual Ion Beam Sputtering, 2keV

101

Page 76: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

Xe+ Patterning: Experiment

108

•Substrate

•Ion gun

•Turbo

•pump

Material: SS 316, Policrystal (austenite)

XPS

Page 77: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

TiN + Ni Particles Ion Beam Deposition

Sputtering

gun

Turbo

pump

XPS

Carbon nanotubes grown by CVD, M. Morales,et al., JPhysD., Submitted, 2013

Si

Nickel Particles

750°C

1.5 min deposition

5 min annealing

132

Page 78: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

136

Ni Atoms Flux

M Morales et al., J. of. Phys: D

(2014)

Page 79: Surface Engineering Nanostructures · Noble gases Bombardment (NG +): Ar , Kr, Xe Experimental: Ion Beam Energy 20 –1200 eV PO 2

140

谢谢