Supplementary Information - rsc.org · S1 Supplementary Information Armored Cobalt-Citrate...

12
S1 Supplementary Information Armored Cobalt-Citrate Framework with Graphene Oxide Exhibiting Improved Thermal Stability and Selectivity for Biogas Decarburization Yangcan Shen, 1,2 Ziyin Li, 1 Lihua Wang, 1 Yingxiang Ye, 1 Qing Liu, 1 Xiuling Ma, 1 Qianhou Chen, 1 Zhangjing Zhang 1,* and Shengchang Xiang 1,3,* 1 Fujian Provincial Key Laboratory of Polymer Materials, College of Material Sciences and Engineering, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007,China 2 State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China 3 College of Life and Environmental Sciences, Minzu University of China, 27 South Zhongguancun Boulevard, Haidian District, Beijing 100081, China * To whom correspondence should be addressed. Email addresses: Z.-J. Zhang ([email protected] ) and S.-C. Xiang ([email protected] ) Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Transcript of Supplementary Information - rsc.org · S1 Supplementary Information Armored Cobalt-Citrate...

S1

Supplementary Information

Armored Cobalt-Citrate Framework with Graphene Oxide Exhibiting Improved

Thermal Stability and Selectivity for Biogas Decarburization

Yangcan Shen,1,2 Ziyin Li,1 Lihua Wang,1 Yingxiang Ye,1 Qing Liu,1 Xiuling Ma,1 Qianhou Chen,1

Zhangjing Zhang1,* and Shengchang Xiang1,3,*

1 Fujian Provincial Key Laboratory of Polymer Materials, College of Material Sciences and Engineering, Fujian

Normal University, 32 Shangsan Road, Fuzhou 350007,China 2 State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese

Academy of Sciences, Fuzhou, Fujian 350002, PR China

3 College of Life and Environmental Sciences, Minzu University of China, 27 South Zhongguancun Boulevard,

Haidian District, Beijing 100081, China

* To whom correspondence should be addressed.

Email addresses: Z.-J. Zhang ([email protected]) and S.-C. Xiang ([email protected])

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.This journal is © The Royal Society of Chemistry 2014

S2

Contents

Table S1 | Summary of the parameters and the enthalpies of gas adsorption on UTSA-16-GO

composites at 296 and 273 K obtained from the virial equation…………………….S3

Table S2 | Adsorption selectivities for equimolar CO2/CH4 mixture at 200 kPa and 296 K by IAST

on different MOFs …………………………………………………………………….S4

Figure S1 | FTIR spectra of as-synthesized GO, UTSA-16 and composites………………………S5

Figure S2 | SEM images for the composites……………………………..………………………S6

Figure S3 | TEM images for UTSA-16…………………………………………………………...S6

Figure S4 | TEM images for the composites……………………………………………………...S6

Figure S5 | (a) Cumulative pore volume and (b) pore-size distribution for UTSA-16 and its

composites……………………………………………………………………………S7

Figure S6 | The virial graphs for adsorption of CO2 on UTSA-16-GO9.5………………………..S8

Figure S7 | The virial graphs for adsorption of CH4 on UTSA-16-GO9.5………………………...S8

Figure S8 | The virial graphs for adsorption of CO2 on UTSA-16-GO19………………….…....S8

Figure S9 | The virial graphs for adsorption of CH4 on UTSA-16-GO19…………………...…….S9

Figure S10 | The virial graphs for adsorption of CO2 on UTSA-16-GO28.5……………....……...S9

Figure S11 | The virial graphs for adsorption of CH4 on UTSA-16-GO28.5…………...…………S9

Figure S12 | Comparison of the enthalpies for gas adsorption of CO2, CH4 on UTSA-16-GO9.5

from two methods: virial equation (solid) and linear extrapolation (open) ………….S10

Figure S13 | Comparison of the enthalpies for gas adsorption of CO2, CH4 on UTSA-16-GO19

from two methods: virial equation (solid) and linear extrapolation (open) …….……S10

Figure S14 | Comparison of the enthalpies for gas adsorption of CO2, CH4 on UTSA-16-GO28.5

from two methods: virial equation (solid) and linear extrapolation (open) ………….S10

Figure S15 | The graphs of the Single-site Langmuir-Freundlich equations fit for adsorption of CO2

(left) and CH4 (right) on UTSA-16-GO9.5 at 296K…………………………….……S11

Figure S16 | The graphs of the Single-site Langmuir-Freundlich equations fit for adsorption of CO2

(left) and CH4 (right) on UTSA-16-GO19 at 296K……………..……………………S11

Figure S17 | The graphs of the Single-site Langmuir-Freundlich equations fit for adsorption of CO2

(left) and CH4 (right) on UTSA-16-GO28.5 at 296K…………………………….….S11

Supplementary References……………………………………………………………………….S12

S3

Table S1 | Summary of the parameters and the enthalpies of gas adsorption on UTSA-16-GO composites at 296 and 273 K obtained from the virial equation, as shown in Figures S6~S11.

Sample adsorbate T/

K

A0/

ln(mol g-1 Pa-1)

A1/

g mol-1

R2 ∆H/

kJ mol-1

UTSA-16-GO9.5

UTSA-16-GO19

UTSA-16-GO28.5

CO2

CH4

CO2

CH4

CO2

CH4

296

273

296

273

296

273

296

273

296

273

296

273

-12.780±0.112

-11.544±0.141

-19.471±0.001

-19.097±0.001

-12.059±0.092

-10.616±0.119

-19.038±0.002

-18.646±3.946E-4

-12.021±0.075

-10.650±0.113

-19.176±6.443E-4

-18.800±0.002

-1684.456±27.666

-2002.903±41.121

-420.455±4.349

-324.566±12.874

-1405.067±29.558

-1653.615±37.188

-296.732±7.023

-251.911±1.888

-1943.720±56.301

-2285.230±70.018

-407.189±8.954

-402.117±11.438

0.998

0.998

0.999

0.994

0.996

0.998

0.996

0.999

0.994

0.996

0.996

0.996

36.1

10.9

42.1

11.7

40.0

11.4

S4

Table S2 | Adsorption selectivities for equimolar CO2/CH4 mixture at 200 kPa and 296 K by IAST on different MOFs.

MOFs T / K Sads (CO2/CH4) Supplementary

References

polyamine incorporated

amine-MIL-101 (Cr) (c)

298 931 1

polyamine incorporated

amine-MIL-101 (Cr) (b)

298 278 1

UTSA-16-GO19 296 114.4 This work

MgMOF-74 296 105 2

UTSA-16-GO9.5 296 98.7 This work

UTSA-16-GO28.5 296 89.4 This work

[Cd2L1(H2O)]2·5H2O 298 66 3

UTSA-16 296 29.8 2

polyamine incorporated

amine-MIL-101 (Cr) (a)

298 21 1

Fe2(dobdc) 298 20.2 4

UiO-66(Zr)-CO2H 298 19.2 5

MOF-5 (IRMOF-1) 298 15.5 6

UTSA-15a 296 14.2 2

Cu-TDPAT 296 13.8 2

bio-MOF-11 298 ~12 7

Cu(bpy-1)2(SiF6) 298 ~11 8

Zn5(BTA)6(TDA)2 296 10.8 2

ZIF-78 296 10.4 2

MIL-101 296 9.6 9

UTSA-72a 293 9.6 10

UTSA-25a 296 9.4 2

UTSA-20a 296 8.3 2

Fe2(O2)( dobdc ) 298 7.8 4

CuBTC 296 7.4 9

UTSA-33a 296 7.0 2

MIL-53 298 7 11

UTSA-34b 296 5.1 2

MOF-177 298 4.4 6

S5

4000 3500 3000 2500 2000 1500 1000 500

UTSA-16-GO28.5 UTSA-16-GO19 UTSA-16-GO9.5 UTSA-16 GO

% T

rans

mitt

ance

(a.u

)

Wavenumbers(cm-1)

Figure S1 | FTIR spectra of as-synthesized GO, UTSA-16 and composites.

S6

Figure S2 | SEM images for UTSA-16-GO9.5 (a) and UTSA-16-GO28.5 (b).

Figure S3 | TEM images for UTSA-16.

Figure S4 | TEM images for UTSA-16-GO9.5 (a, b), UTSA-16-GO28.5 (c, d).

S7

4 5 6 7 8 9 10 11

0.00

0.05

0.10

0.15

0.20

0.25

UTSA-16 UTSA-16-GO9.5 UTSA-16-GO19 UTSA-16-GO28.5

Cum

ula

tive

Pore

Volu

me (cm

3/g

)

Pore Width (Å)

(a)

4 5 6 7 8 9 10 11

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Diffe

rential

Pore

Volu

me

(cm

3/g

)

Pore Width (Å)

(b) UTSA-16 UTSA-16-GO9.5 UTSA-16-GO19 UTSA-16-GO28.5

Figure S5 | (a) Cumulative pore volume and (b) pore-size distribution for UTSA-16 and its composites from CO2 adsorption at 273 K (calculated by using a slit pore NLDFT model).

S8

0.0018 0.0020 0.0022

-17.0

-16.8

-16.6

-16.4

-16.2

-16.0

ln(n/p

) (l

n(m

ol

g-1 P

a-1))

n (mol/g)

Equation y = a + b*x

Adj. R-Squar 0.99416

Value Standard Erro

ln(n/p) Intercept -12.77953 0.11172

ln(n/p) Slope -1943.7198 56.30142

0.0018 0.0019 0.0020 0.0021 0.0022-16.6

-16.4

-16.2

-16.0

-15.8

-15.6

Equat ion y = a + b*x

Adj. R-Square 0.99626

Value Standard Error

ln(n/p) Intercept -11.54447 0.14117

ln(n/p) Slope -2285.23021 70.01763

ln(n/p

) (l

n(m

ol

g-1 P

a-1))

n (mol/g)

Figure S6 | The virial graphs for adsorption of CO2 on UTSA-16-GO9.5 at 296 K (left) and 273 K (right).

0.00004 0.00008 0.00012 0.00016 0.00020

-19.55

-19.54

-19.53

-19.52

-19.51

-19.50

-19.49

-19.48

Equation y = a + b*x

Adj. R-Square 0.99567

Value Standard Error

ln(n/p) Intercept -19.47072 0.00114

ln(n/p) Slope -407.18866 8.9536

ln(n/p

) (l

n(m

ol g

-1 P

a-1))

n (mol/g)

0.00004 0.00008 0.00012 0.00016 0.00020-19.18

-19.17

-19.16

-19.15

-19.14

-19.13

-19.12

Equation y = a + b*x

Adj. R-Squar 0.99597

Value Standard Er ro

ln(n/p) Intercept -19.09704 0.00145

ln(n/p) Slope -402.1173 11.43756

ln(n/p

) (l

n(m

ol g

-1 P

a-1))

n (mol/g)

Figure S7 | The virial graphs for adsorption of CH4 on UTSA-16-GO9.5 at 296 K (left) and 273 K (right).

0.0028 0.0030 0.0032 0.0034-17.0

-16.8

-16.6

-16.4

-16.2

-16.0

-15.8

Equation y = a + b*x

Adj. R-Square 0.99603

Value Standard Error

ln(n/p) Intercept -12.05852 0.09227

ln(n/p) Slope -1405.06666 29.55846

ln(n/p

) (l

n(m

ol

g-1 P

a-1))

n (mol/g)

0.0029 0.0030 0.0031 0.0032 0.0033 0.0034-16.3

-16.2

-16.1

-16.0

-15.9

-15.8

-15.7

-15.6

-15.5

Equation y = a + b*x

Adj. R-Square 0.99798

Value Standard Error

ln(n/p) Intercept -10.61635 0.11927

ln(n/p) Slope -1653.61509 37.18781

ln(n/p

) (l

n(m

ol

g-1 P

a-1))

n (mol/g)

Figure S8 | The virial graphs for adsorption of CO2 on UTSA-16-GO19 at 296 K (left) and 273 K (right).

S9

0.0001 0.0002 0.0003-19.14

-19.13

-19.12

-19.11

-19.10

-19.09

-19.08

-19.07

Equation y = a + b*x

Adj. R-Square 0.99554

Value Standard Erro

ln(n/p) Intercept -19.03791 0.00158

ln(n/p) Slope -296.7318 7.02312

ln(n/p

) (l

n(m

ol g

-1 P

a-1))

n (mol/g)

0.00012 0.00016 0.00020 0.00024 0.00028-18.72

-18.71

-18.70

-18.69

-18.68

-18.67

Equation y = a + b*x

Adj. R-Square 0.99978

Value Standard Error

ln(n/p) Intercept -18.64601 3.94592E-4

ln(n/p) Slope -251.91073 1.88763

ln(n/p

) (l

n(m

ol g

-1 P

a-1))

n (mol/g)

Figure S9 | The virial graphs for adsorption of CH4 on UTSA-16-GO19 at 296 K (left) and 273 K (right).

0.0024 0.0026 0.0028 0.0030

-17.0

-16.8

-16.6

-16.4

-16.2

-16.0

Equation y = a + b*x

Adj. R-Square 0.99758

Value Standard Error

ln(n/p) Intercept -12.02134 0.07499

ln(n/p) Slope -1684.45581 27.66591

ln(n/p

) (l

n(m

ol

g-1 P

a-1))

n (mol/g)

0.0025 0.0026 0.0027 0.0028 0.0029-16.6

-16.4

-16.2

-16.0

-15.8

Equation y = a + b*x

Adj. R-Square 0.9979

Value Standard Error

ln(n/p) Intercept -10.65043 0.11315

ln(n/p) Slope -2002.90285 41.12092

ln(n/p

) (l

n(m

ol

g-1 P

a-1))

n (mol/g)

Figure S10 | The virial graphs for adsorption of CO2 on UTSA-16-GO28.5 at 296 K (left) and 273 K (right).

0.00008 0.00012 0.00016 0.00020-19.27

-19.26

-19.25

-19.24

-19.23

-19.22

-19.21

-19.20

Equation y = a + b*x

Adj. R-Square 0.99936

Value Standard Error

ln(n/p) Intercept -19.17624 6.44267E-4

ln(n/p) Slope -420.45468 4.34893

ln(n/p

) (l

n(m

ol g

-1 P

a-1))

n (mol/g)

0.00012 0.00016 0.00020 0.00024

-18.88

-18.87

-18.86

-18.85

-18.84

-18.83

Equation y = a + b*x

Adj. R-Square 0.99374

Value Standard Error

ln(n/p) Intercept -18.79991 0.00229

ln(n/p) Slope -324.56583 12.87415

ln(n/p

) (l

n(m

ol g

-1 P

a-1))

n (mol/g)

Figure S11 | The virial graphs for adsorption of CH4 on UTSA-16-GO28.5 at 296 K (left) and 273 K (right).

S10

1.7 1.8 1.9 2.0 2.1 2.20

5

10

15

20

25

30

Qst (

kJ/m

ol)

virial equation linear extrapolation

n (mmol/g)

CO2

0.04 0.08 0.12 0.16 0.200

2

4

6

8

10

12

14

16

18

20

CH4

Qst (

kJ/

mo

l)

virial equation linear extrapolation

n (mmol/g)

Figure S12 | Comparison of the enthalpies for gas adsorption of CO2 (left), CH4 (right) on UTSA-16-GO9.5 from two methods: virial equation (solid) and linear extrapolation (open).

2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.40

5

10

15

20

25

30

35

40

CO2

Qst (

kJ/

mo

l)

virial equation linear extrapolation

n (mmol/g)0.10 0.15 0.20 0.25 0.30 0.35

2

4

6

8

10

12

14

16

18

20

Qst (

kJ/

mo

l)CH

4

virial equation linear extrapolation

n (mmol/g)

Figure S13 | Comparison of the enthalpies for gas adsorption of CO2 (left), CH4 (right) on UTSA-16-GO19 (magenta) from two methods: virial equation (solid) and linear extrapolation (open).

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.00

5

10

15

20

25

30

virial equation linear extrapolation

Qst (

kJ/m

ol)

n (mmol/g)

CO2

0.05 0.10 0.15 0.20 0.250

5

10

15

20

25

Qst (

kJ/m

ol)

virial equation linear extrapolation

n (mmol/g)

CH4

Figure S14 | Comparison of the enthalpies for gas adsorption of CO2 (left), CH4 (right) on UTSA-16-GO28.5 (olive) from two methods: virial equation (solid) and linear extrapolation (open).

S11

0 20 40 60 80 100 120

0.0

0.5

1.0

1.5

2.0

2.5

n (

mm

ol/g

)

P (kPa)

Model LFINST (User)Equation

A1*b1*x c1/(1+b1*x c1)

Adj. R-Square 0.99894Value Standard Error

G A1 2.5627 0.02819

G b1 0.1044 0.00624

G c1 1.01874 0.03181

0 20 40 60 80 100 1200.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Model LFINST (User)Equation

A1*b1*x^c1/(1+b1*x c1)

Adj. R-Square 0.99999

Value Standard Error

G A1 2.23666 0.10508

G b1 0.00153 5.16172E-5

G c1 1.00894 0.00467

n (

mm

ol/g

)

P (kPa)

Figure S15 | The graphs of the Single-site Langmuir-Freundlich equations fit for adsorption of CO2 (left) and CH4 (right) on UTSA-16-GO9.5 at 296K.

0 20 40 60 80 100 120

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

n (

mm

ol/

g)

P (kPa)

Model LFINST (User)Equation

A1*b1*x^c1/(1+b1*x c1)

Adj. R-Square 0.99912

Value Standard Error

G A1 3.8233 0.03742

G b1 0.09555 0.00545

G c1 1.04687 0.02966

0 20 40 60 80 100 120

0.0

0.1

0.2

0.3

0.4

0.5

Model LFINST (User)EquationA1*b1*x c1/(1+b1*x c1)

Adj. R-Square 1

Value Standard Error

G A1 3.00401 0.05687

G b1 0.00173 2.24113E-5

G c1 1.01243 0.00216

n (

mm

ol/

g)

P (kPa)

Figure S16 | The graphs of the Single-site Langmuir-Freundlich equations fit for adsorption of CO2 (left) and CH4 (right) on UTSA-16-GO19 at 296K.

0 20 40 60 80 100 120

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

n (

mm

ol/g

)

P (kPa)

Model LFINST (User)Equat ion

A1*b1*x c1/(1+b1*x c1)

Adj. R-Square 0.99886

Value Standard Error

n A1 3.32428 0.03778

n b1 0.10662 0.00659

n c1 1.01625 0.03301

0 20 40 60 80 100 120

0.0

0.1

0.2

0.3

0.4

0.5

n (

mm

ol/

g)

P (kPa)

Model LFINST (User)Equation

A1*b1*x^c1/(1+b1*x^c1)

Adj. R-Square 0.99999Value Standard Error

n A1 3.14229 0.15237

n b1 0.00152 5.5175E-5

n c1 0.99127 0.00433

Figure S17 | The graphs of the Single-site Langmuir-Freundlich equations fit for adsorption of CO2 (left) and CH4 (right) on UTSA-16-GO28.5 at 296K.

S12

Supplementary References

(1) Q. Yan, Y. Lin, C. Kong and L. Chen, Chem. Commun., 2013, 49, 6 873.

(2) S. –C. Xiang, Y. -B. He, Z. -J. Zhang, H. Wu, W. Zhou, R. Krishna and B. –L. Chen, Nature Commun., 2012,

3, 954. (3) L. Hou, W. -J. Shi, Y. -Y. Wang, Y. Guo, C. Jin and Q. -Z. Shi, Chem. Commun., 2011, 47, 5464. (4) W. Lou, J. Yang, L. Li and J. Li. J. Solid State Chem., 2014, 213, 224. (5) Q. Yang, A. D. Wiersum, P. L. Llewellyn, V. Guillerm, C. Serre and G. Maurin, Chem. Commun., 2011, 47,

9603. (6) D. Saha, Z. Bao, F. Jia and S. Deng, Environ. Sci. Technol., 2010, 44, 1820. (7) E. Atci, I. Erucar and S. Keskin, J. Phys. Chem. C, 2011, 115, 6833. (8) S. D. Burd, S. Ma, J. A. Perman, B. J. Sikora, R. Q. Snurr, P. K. Thallapally, J. Tian, L. Wojtas and M. J.

Zaworotko, J. Am. Chem. Soc., 2012, 134, 3663.

(9) P. Chowdhury, S. Mekala, F. Dreisbach and S. Gumma, Microporous Mesoporous Mater., 2012, 152, 246.

(10) H. Alawisi, B. Li, Y. He, H. D. Arman, A. M. Asiri, H. Wang and B. Chen, Cryst. Growth Des., 2014, 14,

2522.

(11) V. Finsy, L. Ma, L. Alaerts, D. E. D. Vos, G. V. Baron and J. F. M. Denayer, Microporous Mesoporous Mater.,

2009, 120, 221.