Supersonic Transportation

16
1 Matthew Cerutti UP 487: Transportation Planning Dr. Zeenat KotvalK December 11 th , 2014 Aviation Planning for Future Systems

Transcript of Supersonic Transportation

Page 1: Supersonic Transportation

  1  

           

Matthew  Cerutti  UP  487:    Transportation  Planning  

Dr.  Zeenat  Kotval-­‐K  December  11th,  2014  

Aviation  Planning  for  Future  Systems      

Page 2: Supersonic Transportation

  2  

Introduction:    

While  many  with  or  without  experience  in  planning  or  community  development  

would  not  consider  airport  design,  and  civil  aircraft  a  catalyst  for  imploring  land  use  

doctrine  within  their  mater  plan,  I  do  believe  this  will  be  the  future  of  transportation  

planning.    As  cities  and  nations  become  part  of  a  “globalized”  world,  and  time,  or  the  

perception  thereof,  becomes  an  ever-­‐increasing  commodity  people  will  desire  swift  

transport  from  intercontinental  destinations.    Airport  and  aircraft  design  was  predicted  

to  be  one  of  the  fastest  growing  industries’  before  the  economic  collapse  in  2008.    Many  

scholars  were  predicting  civil  supersonic  aircraft  travel  and  capacity  to  be  present  in  the  

current  decade.    Though  this  is  not  a  reality,  we  have  seen  aviation  industry  giants  like  

Boeing,  and  General  Electric  (GE)  begin  to  implement  new  designs,  such  as  the  787  

Dreamliner  recently  released  by  Boeing.  

More  relevant  and  more  thorough  research  may  be  found,  particularly  in  recent  

years,  on  interconnectivity  between  regional  and  national  airports.    After  talking  to  Dr.  

Mark  Wilson,  my  suspicions  were  confirmed,  in  that  this  is  a  very  possible  reality  in  the  

future  of  land  use  planning  easements  and  accusations.    Many  have  been  delighted  in  

key  word  like  “light  and  Passenger  rail,”  but  yet  these  phenomena  are  eluding  planners  

and  communities  they  serve.    In  Dr.  Wilson’s  opinion  this  may  be  a  good  topic  for  further  

exploration,  even  among  the  already  highly  published  documentations.    My  initial  

impressions  have  always  been  that  even  if  passenger  rail  becomes  available  to  

communities,  the  system  remains  rather  inefficient  due  to  stops  and  speed  issues  

surrounding  the  current  rail  initiatives.    With  the  implementation  of  “elevated  rail,”  

airports  may  become  hubs  for  reaching  other  forms  of  public  transit  systems  present  in  

larger  cities  to  date.    For  example,  if  we  had  an  elevated  rail  connecting  

Chicago/Rockford  International  airport  to  O’Hare  in  Chicago,  the  proposed  system  

would  be  able  reach  much  faster  speeds  without  stopping  amid  linear  connected  

suburban  cities.    Dr.  Wilson  took  the  approach  based  on  his  experience  with  similar  land  

use  transit  systems  already  in  existence  in  other  European  countries  and  cities.    After  

speaking  with  a  representative  from  Mead  &  Hunt,  an  established  independent  

consulting  firm  for  consulting  and  designing  airports,  I  came  away  from  the  

Page 3: Supersonic Transportation

  3  

conversation  at  ends.    For  her  opinion  was  that  we  have  failed  to  expand  passenger  rail  

between  major  origins  like  Detroit  and  Chicago,  the  efforts  would  probably  be  

unrecognizable  in  the  near  future.    She  also  was  under  the  impression  that  many  

regional  hubs  would  be  against  the  implementation  of  an  elevated,  high-­‐speed  rail  

movement,  because  airport  executives  for  these  establishments  fear  this  would  

eliminate  their  already  challenging  proposition  for  attracting  more  passenger  service  

directed  towards  regional  airports.  

 

Body:  

I  began  to  look  at  literature  based  on  my  initial  thoughts  that  supersonic  civil  

aircraft  was  to  be  the  future  of  aviation,  both  in  research  and  development  as  well  as  

implementation  within  the  next  decade  or  so.    My  knowledge  base  on  this  field  has  

grown  exponentially;  much  has  been  related  to  the  design  features  needed  for  such  

specific  aircraft,  and  less  about  airport  planning.    Many  look  at  the  main  reason  for  the  

lack  of  development  and  state  that  the  noise  is  the  most  detrimental  concern  for  

implementing  supersonic  travel  into  mainstream  society.    Once  again,  after  my  talks  

with  planners  both  with  and  without  specific  airport  functions,  all  started  the  

conversation  with  the  problem  of  breaking  the  speed  of  750  mph,  causing  a  “sonic  

boom.”    As  this  phenomenon  has  been  most  relevant  to  the  field  as  a  whole  not  only  in  

civilian  aircraft,  but  military  purposes  as  well.    Currently  in  the  United  States,  even  

military  jets  are  discouraged  from  making  the  transition  to  the  speed  of  sound  from  

locations  relevant  too  coastal  barriers.    The  current  ordinance  or  standardized  rule  for  

implementing  the  shift  in  speed  is  delegated  as  being  at  least  fifteen  miles  from  

shorelines  towards  either  the  Atlantic  or  Pacific  Oceans.  

As  I  looked  at  a  report  coming  from  a  panel  discussion  within  the  Federal  

Aviation  Administration  (FAA)  on  civil  supersonic  aircraft,  the  fourth  of  which  has  been  

released  to  the  public,  the  goal  was  to  raise  public  awareness  in  continuing  technological  

advancements  in  the  field.    More  specifically  to  address  the  issue  of  reducing  the  

intensity  of  the  sonic  boom,  and  get  feedback  from  industry,  the  National  Aeronautics  

and  Space  Administration  (NASA),  and  other  interested  parties.    One  manufacture  has  

been  leading  the  way  for  support  to  the  FAA  on  this  program,  namely  the  Gulfstream  

Page 4: Supersonic Transportation

  4  

Aerospace  Corporation,  by  developing  the  second  Supersonic  Acoustic  Signature  

Simulator  (SASSII).    This  device  is  a  mobile  unit  designed  as  an  audio  booth  to  

demonstrate  what  they  are  calling,  the  “Gulfstream  Whisper.”    In  which  the  main  

purpose  is  to  provide  alternative  solutions  for  the  “traditional  sonic  boom.”  

In  their  initial  findings  they  looked  at  the  one  and  only  somewhat  successful  

Concorde,  a  British  Airways  jet  that  operated  more  for  “national  pride,”  and  publicity  

than  anything  else.    However,  it  was  a  successful  aircraft  at  the  core  level,  but  ultimately  

abandoned  in  2003  due  to  operating  costs,  fuel  efficiency,  and  noise.    The  cruising  

speeds  of  that  jet  produced  sound  waves  in  the  form  of  a  jagged  “N-­‐wave”  sonic  boom  

wave,  that  resulted  a  double  jarring  loud  boom  at  sea  level,  or  ground  as  it  passed  by.    

Gulfstream  has  produced  a  patented  spike  that  reduces  the  noise  emission  by  

transforming  the  sound  waves  into  a  smoother  more  rounded  sine  wave  termed  as  the  

“S.”    This  has  reduced  the  “sonic  boom  factor”  from  the  Concorde  by  10,000  percent,  and  

has  been  revealed  in  the  mobile  SASSII  for  others  to  experience,  allowing  other  to  

witness  the  difference  in  the  reverberation  and  intensity  of  noise  levels.    As  stated  

previously,  the  most  important  aspect  in  changing  any  transportation  system  starts  with  

increasing  the  public’s  involvement  in  the  ever-­‐changing  technological  sector  involved  

with  transit  planning.  

Now  as  the  issue  of  breaking  the  sound  barrier  over  landlocked  surfaces  

continues  to  be  addressed,  the  function  of  the  United  States  Air  Force  has  had  a  

significant  contribution  as  well.    They  have  developed  a  new  breed  of  fighter  jets,  one  for  

air-­‐to-­‐air  combat  and  long  distance  strikes,  and  the  other  is  used  by  the  other  three  

braches  of  the  military.    These  jets  are  the  F-­‐22  Raptor,  and  the  F-­‐35,  with  the  new,  very  

similar  design  implementation,  the  production  of  all  other  manually  occupied  military  

aircraft  will  come  to  a  halt  (for  now).    These  jets  have  the  carrying  capabilities  of  the  

predecessors,  like  F-­‐16  and  the  F-­‐15,  for  firepower  and  ammunition  storage  and  use.    

While  also  incorporating  spy  and  reconnaissance  technologies  from  planes  such  as  the  

Stealth  Skyhawk  the  new  breed  of  fighter  jets  are  more  versatile  in  use  than  ever  before.    

The  difference  between  the  two  is  mainly  the  engine  capabilities  and  formations,  while  

the  F-­‐22  is  dual  engine  aircraft  making  it  faster  and  more  maneuverable  in  the  open  sky,  

the  F-­‐35  is  a  single  engine  jet  used  by  the  Navy,  Army,  and  Marines  for  functions  like  

Page 5: Supersonic Transportation

  5  

aircraft  carrier  deployment.    Both  have  been  highly  sought  and  copied  by  other  

countries  such  as  Russia,  as  well  as  others.    Most  would  agree  that  the  main  advantage  

the  U.S.  armed  forces  have  had  and  still  most  important  would  be  the  aspect  of  “air-­‐

superiority.”    This  is  probably  the  biggest  advantage  we  have  in  global  warfare,  and  is  

not  taken  lightly.    One  feature  used  by  these  recent  developments  is  a  special  coating  on  

the  entire  plane  to  server  two  purposes:  1)  quite  flight,  and  2)  radar  detection.  

 

 

 

    http://cache.gawkerassets.com/assets/images/4/2010/05/pak-­‐fa_diagram.jpg  

 

Page 6: Supersonic Transportation

  6  

I  believe  if  these  technological  inventions  can  be  applied  to  civil  aircraft  we  will  

be  able  to  develop  a  new  breed  of  transports  capable  of  speeds  greater  than  that  of  

sound.    Another  surprising  factor  that  was  realized  upon  my  research  is  that  the  USAF  

does  have  “target  zones”  indicated  for  the  initial  sonic  boom  after  breaking  the  barrier.    

As  civilian  jets  become  more  and  more  aerodynamic  in  design  for  increased  

maneuverability  and  stabilization  for  the  ease  of  flight,  they  also  become  more  appealing  

to  those  who  might  not  otherwise  consider  this  form  of  transportation.    The  industry  has  

also  been  involved  in  designing  windowless  aircraft  for  civil  use  in  order  to  make  flying  

less  stressful  for  the  demographic  of  people  not  particularly  fond  of  leaving  the  ground  

to  altitudes  above  40,000  feet.    We  probably  all  know  one  person  or  another  who  is  

“terrified  of  flying.”    So  as  we  consider  offering  other  options  to  riders,  the  perception  of  

many  could  change.    As  most  transportation  planners  realize  this  aspect  in  surface  

modes  of  transportation  like  biking,  walking,  rapid-­‐bus  lanes,  and  high-­‐speed  rail.    We  

must  also  consider  providing  international  transit  options  as  well.    In  fact  as  we  explore  

ideas  like  transit-­‐oriented-­‐development  (TOD),  one  of  the  biggest  setbacks  in  my  

opinion  is  the  lack  of  access  to  destinations  “off  the  grid.”    As  we  explore  mobilizing  

people  within  in  and  around  central  cities,  we  also  need  to  consider  not  only  options  

viable  for  transition  form  state-­‐to-­‐state,  or  metropolis-­‐to-­‐metropolis,  but  throughout  the  

globe  as  well.  

Like  it  or  not,  we  are  now  in  a  period  of  globalization,  not  only  thru  economic  

markets,  but  service  and  tourism  industries  alike.    I  for  one  am  not  as  optimistic  about  

this  proposition  as  others,  as  we  enter  this  new  phase  of  development  the  balance  

between  labor  and  machine  productivity  will  be  increasingly  unstable.    So  the  movement  

of  not  only  goods  and  services,  but  for  people  as  well  will  become  an  asset  in-­‐and-­‐of  

itself.    Time  now  has  become  a  more  important  asset  than  ever  before,  especially  among  

the  elitist  class,  the  inventors,  and  the  early-­‐adapters,  between  whom  will  be  the  initially  

targeted  demographic  of  people  that  would  use  or  need  High  Speed  Civil  Transport  

(HSTC).    This  includes  supersonic  travel  as  well.  According  to  (Henne  2005):  

 

“Continued  advancements  in  aerodynamics,  structures,  materials,  avionics,  and  

engine  technology  have  provided  the  technical  basis  for  the  development  of  many  

Page 7: Supersonic Transportation

  7  

different  predominantly  jet-­‐powered  civil  aircraft  models.    These  aircraft  range  

from  the  very  large  transports  used  by  scheduled  air  carriers  to  the  very  small  

personal  jets  emerging.”  

 

Along  with  innovation  and  the  economic  growth  seen  at  the  time  of  publication  of  this  

article  the  author  along  with  other  academics  predicted  that  there  would  be  

approximately  fifteen  to  twenty  such  aircraft  by  today’s  date.    In  wake  of  the  “Great  

Recession,”  like  many  external  novelties  this  prediction  has  fallen  short.    As  the  

American  economy  begins  the  long  road  to  recovery,  the  stock  market  is  now  at  an  all-­‐

time  high,  which  may  be  an  indicator  of  a  shift  in  spending  towards  service  industries  

that  encompass  air  travel  and  transportation  as  a  whole.  

  But  in  all  actuality  most  of  the  articles  examined  to  this  point  to  significant  

increase  in  smaller  civic  travel  including:    business,  corporate,  regional,  and  personal  

jets.    It  seems  our  fascination  with  supersonic  travel  is  just  as  intense  as  those  interested  

in  space  travel  and  exploration.    Ever  since  the  sound  barrier  was  broken  for  the  first  

time  in  1947,  man  has  been  trying  to  perfect  travel  in  the  air.    Increasing  Mach  levels  in  

intercontinental  flights  has  been  going  on  since  the  early  60’s,  when  a  B58  set  a  record  

by  traveling  from  NYC  to  London  in  four  hours  at  Mach  2.    Many  of  the  early  of  the  

earlier  attempts  after  that  were  abandoned  to  the  economic  and  environmental  

concerns  that  the  flights  of  the  Concorde  produced.    It  has  become  rather  clear  that  in  

order  to  start  a  program  that  could  address  these  issues,  the  development  would  be  in  

smaller  less  invasive  vehicles  that  might  have  the  capacity  of  50  people  as  opposed  to  

300.    Since  2003  there  have  been  no  other  attempts  at  providing  a  secure  system  for  

transit  at  this  level,  mostly  due  to  the  initial  risk  that  would  be  involved.    Chances  are  

that  you  would  have  a  hard  time  convincing  a  group  of  millionaires  or  billionaires  to  risk  

their  lives  in  the  days  since  9/11  and  other  incidents  have  been  observed  around  the  

world.    Most  pictures  or  silhouettes  I  have  seen  have  been  very  similar  to  Gulfstream’s  

patented  drawing  shown  below:  

Page 8: Supersonic Transportation

  8  

   

http://blogs.crikey.com.au/planetalking/files/2012/12/patent-­‐drawing-­‐Gulfstream-­‐SSBJ.jpg  

   

http://mobbit.info/media/3/Aerion_8.jpg  

Page 9: Supersonic Transportation

  9  

    As  my  study  progressed  I  found  myself  reading  more  about  mechanical  

engineering  and  design  factors  that  would  have  to  be  overcome  first  in  order  to  start  

planning  airports  and  transit  systems  based  on  HSCT.    In  all  actuality  terms  like:    

fuselage  design,  optimal  trajectories,  speed  variations,  payload  capacity,  fuel  

consumption,  sonic  boom  strengths  measured  in  overpressure,  and  exhaust  emissions  

must  be  tackled  by  the  hard  sciences.    As  design  factors  must  take  precedence  before  we  

can  accurately  predict  their  relationship  to  the  social  or  existing  travel  networks  

throughout  the  U.S.  and  abroad.    As  mentioned,  planners  will  have  to  consider  differing  

systems  around  the  world  as  a  whole.    As  we  approach  planning  methods  at  the  regional  

level  now,  more  than  ever  before,  it  is  hard  to  negotiate  territorial  systems  from  

different  cities  within  a  given  country  much  less  in  global  market.    As  the  strategies  for  

designs  occur,  much  like  the  space  efforts  done  successfully,  we  will  have  to  collaborate  

with  other  nations  and  individuals  at  a  much  larger  scale.  

  As  this  market  continues  to  progress,  so  will  civil  air  travel  as  whole.    As  

commercial  jets  evolve  so  does  the  need  for  added  capacities  at  airports  and  terminals.    

Some  airports  seem  like  small  micro-­‐cities  at  this  point,  places  like  O’Hare  International  

in  Chicago  have  just  about  every  amenity  one  can  think  of.    Just  approaching  such  a  place  

on  a  vehicular  street  level  is  intimating  in  and  of  itself.    Parking  as  discussed  in  class  is  a  

growing  concern  that  goes  relatively  unnoticed  by  the  average  American,  until  you  have  

to  pay  $20/day  for  storing  your  car  as  you  travel  national  or  overseas.    Airport,  and  

terminal  expansion  are  now  on  the  priority  list  for  planning,  as  they  are  an  integral  part  

of  any  transit  system.    Just  like  in  other  transportation  driven  city  plans,  Europe  and  Asia  

have  become  more  progressive  because  of  their  history  and  the  densely  populated  areas  

that  most  live  in.    There  connectivity  is  greater  in  almost  every  aspect  including  airport  

function  and  design.    The  FAA  has  determined  four  classifications  for  airports:    national,  

regional,  local,  and  basic.    If  supersonic  aircraft  were  a  reality  they  would  most  likely  

take  shape  along  the  regional  level  of  airport  planning.    National  airports  such  as  JFK  in  

New  York  have  a  great  deal  of  existing  demands  on  their  facilities,  which  may  prevent  

hem  from  adapting  to  the  technology  as  fast  as  those  based  in  smaller  communities.    

Regional  airports  often  have  the  capabilities  of  landing  more  types  of  aircraft  then  the  

Page 10: Supersonic Transportation

  10  

predominantly  larger  national  ones  we  might  often  think  of.    From  my  own  personal  

experience  working  at  a  regional  hub,  the  facilities  may  be  better  than  those  huge  

constructs  we  regard  is  primary  facilities.    They  often  cater  to  the  cargo  industry  that  

thrives  on  larger  aircraft  traveling  with  higher  payloads  for  longer  distances,  therefore  

translating  into  longer  more  sophisticated  runways  and  tarmacs.    Most  airshows,  

popular  today  take  place  in  smaller  hubs  that  can  not  only  cater  themselves  to  specific  

events  or  aircraft,  but  also  maintain  a  higher  level  of  infrastructure.    Along  with  the  

cargo  industry,  they  act  as  emergency  venues  for  landing  commercial  aircraft  in  climatic  

weather  or  unsafe  conditions.    All  airports  have  to  maintain  noise  studies  that  are  

updated  approximately  every  five  years  or  so.    The  FAA  has  added  4th  stage  to  the  level  

of  acoustic  performance  being  measured  with  decibel  readings  at  <  -­‐10dB  is  achieved  by  

the  jets  already  being  manufactured  (Henne  p.  771).  

  Not  only  is  there  competition  for  supersonic  travel  moving  from  the  private  to  

public  sector,  but  the  demand  also  needs  to  be  great  enough.    This  does  not  appear  to  be  

the  case  in  our  current  state  of  affairs.    But,  there  are  other  initiatives  yet  to  take  hold  of  

the  aviation  industry  as  well.    One  of  those  being  the  “greener”  movement  in  civil  

aviation  using  air-­‐to-­‐air  (AAR)  refueling  that  is  also  presently  being  used  in  frequency  at  

the  military  level  of  avionics.    As  there  is  a  difference  in  the  nomination  of  regional  

airports  as  well,  the  distinction  of  whether  they  act  as  a  hub  for  transporting  goods  at  a  

high  rate  influences  runway  lengths  and  takeoff  capacities  of  all  jets.    As  we  discussed  

individually  Lansing/Capital  City  Airport  has  had  a  problem  with  weight  and  take  off  

distances.    Often  cargo  jets  leave  the  capital  city  of  Michigan,  fly  into  Detroit  Metro,  get  a  

full  tank  of  fuel  and  then  proceed  to  their  origin  of  destination.    This  system  is  very  

costly  and  inefficient  for  both  producers  and  consumers  in  this  region,  putting  a  strain  

another  strain  on  manufacturing  during  in  a  harsh  and  competitive  economy.    The  

maximum  takeoff  weight  (MTOW)  has  to  be  precisely  measured  to  the  capacity  of  

structural  limitations,  mainly  for  the  wing  and  landing  gear  (Nangia  p.706).    The  

argument  exists  that  AAR  would  provide  a  fuel-­‐savings  of  30-­‐40%,  and  would  allow  for  

smaller  aircraft  designed  for  shorter  distances  traveled  to  be  increased  from  3,000nm  

(nautical  miles)  to  access  capacities  along  the  lines  of  9,000nm.  This  endeavor  is  also  

sought  for  support  from  our  friend  in  the  United  Kingdom  or  other  European  countries.  

Page 11: Supersonic Transportation

  11  

  As  you  can  probably  tell  there  are  many  opinions  on  how  the  future  of  aviation  

will  unfold.    But  the  more  I  have  experienced  and  learned  about  transportation,  the  less  

confident  I  am  in  a  Amtrak  oriented  development  of  rail-­‐to-­‐air  passenger  hubs.    

America’s  lack  of  investment  in  rail  throughout  the  decades  has  led  to  unmaintained  

infrastructure  that  mat  not  be  worth  salvaging  at  this  point.    At  a  time  when  we  now  see  

the  rail  system  as  a  valuable  commodity  in  the  U.S.  the  amount  of  funding  and  effort  

needed  to  bring  these  existing  lines  to  the  point  of  service  that  will  be  needed  in  the  

future  shall  probably  exceed  the  cost  of  new  development.    As  many  planners  hope  for  

the  comeback  of  this  proportion,  many  of  their  efforts  have  been  overlooked  or  clash  

with  already  transit  oriented  programs.  How  are  we  to  update  a  rail  system  with  federal  

initiatives  such  as  rails-­‐to-­‐trails,  seems  rather  paradoxical.    So  when  approaching  the  

topic  of  “intermodal  transportation”  we  might  want  to  take  a  second  look  at  or  inventory  

before  proceeding  to  build  upon  it.  

  The  approach  for  implementing  HSTC  is  almost  sure  to  have  a  lasting  effect,  so  

instead  of  moving  towards  improving  an  outdated  system,  the  nation  as  a  whole  should  

look  at  other  alternatives  as  well.    Maybe  the  best  we  can  hope  for  in  connecting  high-­‐

speed  rail  is  to  take  advantage  of  the  federal  easements  that  they  are  built  within,  if  even  

that.    High  speed  ratios  cannot  be  achieved  thru  movement  from  destination  points  less  

than  30  miles  apart.    The  reason  that  higher  speeds  would  be  needed  in  the  first  place  is  

to  increase  accessibility  and  enhance  movement  from  distant  points  of  service.    So,  in  

regards  to  supersonic  travel  this  argument  would  make  perfect  sense.  

Conclusion:  

  As  one  might  expect,  moving  forward  with  research  in  this  topic  is  essential  in  

the  engineering,  research,  and  development  fields  of  aviation.    HSCT,  including  

supersonic  air  travel  sometimes  seems  as  though  it  is  an  arms  length,  and  at  other  times  

seems  like  it  might  be  light  years  away.    Since  the  beginning  of  civilization,  or  recorder  

history,  man  has  been  fascinated  with  flight.    Birds  have  been  gods  and  examples  among  

us  of  the  freedom  one  might  be  able  to  obtain  without  the  restrictions  of  topography.    

When  we  landed  on  the  moon,  “people  would  not  believe  it,”  and  today  some  conspiracy  

theories  maintain  that  this  event  in  history  is  nothing  more  than  a  hoax,  recoded  in  a  

studio  somewhere  in  Hollywood.    Even  now,  for  some  reason  NASA  and  private  

Page 12: Supersonic Transportation

  12  

billionaires  such  as  Richard  Branson  are  more  interested  in  taking  civilians  to  mars  than  

connecting  the  planet  we  live  in.    The  world  is  a  large  place,  but  the  resources  it  provides  

human  civilizations  are  diminishing,  or  at  least  that’s  what  everyone’s  perception  seems  

to  be.    Maybe  the  intent  of  focusing  on  distant  planets  is  to  evade  reality,  as  they  say,  “the  

grass  is  always  greener!”    We  might  soon  be  able  to  live  in  remote  part  of  the  galaxies  

before  the  common  man  can  experience  the  inside  of  the  Sistine  Chapel,  the  segregation  

now  has  become,  and  will  continue  to  be  along  economic  fronts  instead  of  racial  divides.    

The  gap  between  the  wealthy  and  the  poor  is  ever  increasing,  but  this  should  come  as  no  

surprise  when  we  look  at  social-­‐capitalism  on  every  continent.  

  My  fear  is  not  a  sustainable  environment,  but  a  stable  economic  balance,  one  

where  I  can  afford  some  of  the  same  luxuries  as  those  who  have  built  empires  upon  the  

wealth  of  the  family  name.    We  often  look  at  things  we  cannot  control  to  blame  our  

problems  on.    Instead  of  looking  at  the  beggar  playing  the  violin  at  the  corner,  we  tell  our  

children,  “Eat  your  food,  there  are  people  starving  in  China!”    Instead  of  looking  at  how  

to  connect  the  world  thru  place,  values,  and  community,  we  would  rather  leave  it!  

 

References:    

Nangia,  R.  (2006).  Operations  and  aircraft  design  towards  greener  civil  aviation  using  air-­‐to-­‐air  refueling.  AERONAUTICAL  JOURNAL,  110(1113),  705  –  721.  

Robert  Windhorst,  M.  E.  in  the  S.  of  E.  (n.d.).  Optimization  of  fixed-­‐range  trajectories  for  supersonic  transport  aircraft.pdf.  

Henne,  P.  (2005).  Case  for  small  supersonic  civil  aircraft.  JOURNAL  OF  AIRCRAFT,  42(3),  765  –  774.  

Civil  Supersonic  Aircraft  Panel  Discussion.  (n.d.).  Retrieved  December  11,  2014,  from  http://www.faa.gov/news/conferences_events/supersonic_panel_discussion/  

Part  II:    Continued…          

Page 13: Supersonic Transportation

  13  

Submitted  by:    Matthew  Cerutti  UP  892:    Research  Seminar  

Dr.  Sinem  Mollaoglu  (Korkmaz)  December  9th,  2014  

   

Assignment-­‐c:    Critical  Analysis  of  Doctoral  Dissertation  Pertaining  to  Optimal  Supersonic  Trajectories…  

     

Page 14: Supersonic Transportation

  14  

This  assignment  was  to  get  familiar  with  and  become  adaptive  in  critically  evaluating  

and  composing  a  successful  dissertation  through  analysis  of  a  previously  submitted  

thesis.    The  author,  Robert  Windhorst,  explores  the  possibilities  of  civil  supersonic  

aircraft  and  transit  in  his  work  submitted  on  March  8th,  1999  for  the  Department  of  

Mechanical  Engineering  at  Santa  Clara  University.    The  research  objective  is  to  find  

optimal  routes  by  using  recent  technological  advancements  in  the  “airline  market”  to  

minimize  fuel  consumption,  time,  and  operating  costs  in  supersonic  travel.  Study  goals  

are  to:  1)  develop  an  algorithm  to  generate  optimal  trajectories  within  a  combination  of  

synthesis  code;  and  2)  define  a  dynamic  model  for  High  Speed  Civil  Transport  (HSCT)  for  

inner  and  outer  routes.    Study  variables  are:    time,  fuel  efficiency,  payload  capacity,  

noise,  supersonic  and  subsonic  flight  patterns,  finding  the  appropriate  Mach  number,  

range  curves,  and  “chattering  cruise”  speeds.    The  models  used  for  generating  “the  

results  presented  in  this  thesis  was  created  by  the  Aircraft  Systems  Analysis  Branch  at  

NASA  Ames  Research  Center.    And  was  created  in  support  of  the  High  Speed  Research  

Program,  a  program  jointly  funded  by  NASA  and  Boeing.”  

In  the  thesis  reviewed,  the  above  mentioned  objective  is  achieved  by  assessing  existing  

aerodynamic  models  for  weaknesses  in  previous  constraints  and  parameters  that  

produced  “singularly  perturbed”  models.    Using  archival  records  and  previous  

equations,  quantitative  analysis,  and  singular  perturbation  methods  (SPM)  the  

researcher  begins  to  develop  “a  single  state  equation  with  a  scalar  control.”    The  five  

constraints  to  be  addressed  are:    1)  terrain  limits,  2)  loft  ceiling,  3)  cruising  conditions,  

4)  lift  coefficient,  and  5)  ascending  and  descending  conditions.    Using  “guidance  

algorithms”  then  solves  these  problems.    Three  optimum  cruising  points,  one  at  higher  

subsonic  speeds  of  650-­‐600  mph.,  Mach  1.7,  and  Mach  2.4  are  identified,  with  the  former  

being  optimum  travel  speed  for  supersonic  transports.    Theoretical  models  are  

presented  and  then  manipulated  into  Figures  relating  to  ascending  and  descending  

trajectories  represented  by  the  y-­‐axis.    While  the  x-­‐axis  in  the  charts  define  time,  fuel,  

and  operating  costs.    The  main  goal  is  to  show  the  relationship  of  these  factors  to  the  

ratio  of  altitudes  at  different  Mach  speeds.    The  equations  for  the  inner  and  outer  

maximum  trajectory  levels  are  expanded  at  great  length.    In  order  to  achieve  a  “zero  

order  energy  dynamics  solution”  four  factors  are  defined:    minimum  time  ascent,  

Page 15: Supersonic Transportation

  15  

minimum  fuel  ascent,  minimum  time  descent,  and  minimum  fuel  descent.    The  functions  

are  optimized  for  energy,  and  weight/range  dynamics  found  in  the  field  of  physics.  Their  

“corresponding  cost”  is  then  given  in  the  form  of  linear  multiplication  equations:  

 

25,000  lb.*  0.105  $/lb.=  $  2,625  (relative  savings,  minimum  fuel  trajectory)  

 

15  min  *  60  sec/min  *  0.94  $/sec  =  $846  (relative  savings,  minimum  time  trajectory)  

 

Presented  on  Pg.  84  

 

Moving  to  Chapter  5,  we  find  that  HSCT  is  explained  thru  flight  performance  

metrics.    Where  illustrations  are  used  for  graphical  representation  to  show  the  ratio  of  

increasing  speed  to  distance,  time,  and  weight.    The  research  presented  uses  exploratory  

equations  from  previous  work  in  the  industry.    Simulation  data  is  used  for  defining  

methods,  results,  and  alterative  motives  for  constructing  evidence  of  applied  

technologies  needed  for  further  advancements  in  supersonic  civil  transportation  

systems.    Yielding  results  that  may  prove  to  be  most  beneficial  to  the  science  of  HSCT.    In  

the  conclusion  the  author  indicates  that  further  work  is  needed  in  “energy  consumption  

required  aerodynamic  and  propulsive  models  that  support  the  calculation  of  smooth  

first  and  second  order  partial  derivatives.”  

From  other  preliminary  research  I  have  done  into  the  field  of  supersonic  air  

travel,  most  argue  that  the  noise,  (i.e.  sonic  boom)  is  the  most  detrimental  aspect  in  the  

development.    Although  this  dissertation  was  a  little  over  my  head  in  terms  of  the  

mathematical  models  used  for  optimum  trajectory,  I  do  believe  that  routes  and  design  of  

the  specific  aircraft  are  more  important  than  the  sound  omitted.    The  United  States  Air  

Force  (USAF)  does  have  “target  zones”  over  land  to  be  used  for  breaking  the  “speed  of  

sound.”    As  the  technology  has  progressed  even  further  since  the  time  of  the  thesis  

proposal.    The  world  of  academics  should  re-­‐enter  the  exploration  of  physical  

limitations,  and  how  these  could  be  addressed  in  HSTC.    The  design  of  the  fuselage  is  

also  a  problematic  task.    As  the  jets  become  more  aerodynamic  the  smaller  the  plane  

becomes.    The  research  also  addresses  the  key  elements  of  cost,  which  would  be  

Page 16: Supersonic Transportation

  16  

targeting  a  small  demographic  of  people  with  large  incomes  in  the  initial  stages.    Not  to  

mention  the  environmental  impacts  both  in  regard  to  exhaust  emissions  and  fuel  

consumption.    To  be  sure,  this  is  an  undertaking  that  would  have  too  incorporate  risk  as  

well  as  opportunity.    

   

References:    Robert  Windhorst,  “Optimization  of  Fixed-­‐Range  Trajectories  for  Supersonic  Transport  

Aircraft.”  (1999).  Doctorate  of  Philosophy  Dissertation,  Mechanical  Engineering  in  the  School  of  Engineering  at  Santa  Clara  University.  Santa  Clara,  CA.