Supersonic Flow Turning

17
7/24/2019 Supersonic Flow Turning http://slidepdf.com/reader/full/supersonic-flow-turning 1/17 AE3450  Prandtl Meyer -1 School of Aerospace Engineering Copyright © 2001 by Jerry M. Seitzman. All rights reserved. Previously, we examined supersonic flow over (sharp) concave corners/turns  – oblique shock allows flow to make this (compression) turn What happens if:  – turn is convex (expansion) · already shown expansion “shock” impossible (entropy would be destroyed)  – turn is gradual (concave or convex) M 1 >1 M 1 >1 M 1 >1 M 2 >M 1 M 1 >1 M 2 >M 1

Transcript of Supersonic Flow Turning

Page 1: Supersonic Flow Turning

7/24/2019 Supersonic Flow Turning

http://slidepdf.com/reader/full/supersonic-flow-turning 1/17

AE3450 Prandtl Meyer -1

School of Aerospace Engineering

Copyright © 2001 by Jerry M. Seitzman. All rights reserved.

• Previously, we examined

supersonic flow over (sharp)concave corners/turns

 – oblique shock allows flow to

make this (compression) turn• What happens if:

 – turn is convex (expansion)

· already shown expansion“shock” impossible (entropywould be destroyed)

 – turn is gradual

(concave or convex)

M1>1

M1>1

M1>1 M2>M1

M1>1M2>M1

Page 2: Supersonic Flow Turning

7/24/2019 Supersonic Flow Turning

http://slidepdf.com/reader/full/supersonic-flow-turning 2/17

AE3450 Prandtl Meyer -2

School of Aerospace Engineering

Copyright © 2001 by Jerry M. Seitzman. All rights reserved.

• Gradual turn is made up of

large number of infinitessimal

turns/corners

• Each turn has infinitessimal flowchange

 – each turn produced byinfinitessimal wave

• Flow is uniform and isentropic between

each turn/corner  – length between each is arbitrary

 – could be zero length (sharp turn)

and waves collapse to one point

M1>1M2>M1

δ

1

11 M

1sin−=µ

Ma M b

a

1a M

1sin−=µ

2

12 M

1sin−=µ

M1

M2

δ

1

11 M

1sin−=µ

2

12 M

1sin−=µM1

M2

δ

Mach wave

Page 3: Supersonic Flow Turning

7/24/2019 Supersonic Flow Turning

http://slidepdf.com/reader/full/supersonic-flow-turning 3/17

AE3450 Prandtl Meyer -3

School of Aerospace Engineering

Copyright © 2001 by Jerry M. Seitzman. All rights reserved.

• Problem

 – given upstream conditions (1)

and turning angle (δ) – find downstream conditions (2)

• Goal

 – Mach number relations (similar to shock relations)

• Equations

 – use mass, momentum, energy conservation, Machnumber def’n., state equations

• Assumptions

 – steady flow, quasi-1d, reversible+adiabatic (isentropic)

M1M2δ

Prandtl Meyer Fan

Page 4: Supersonic Flow Turning

7/24/2019 Supersonic Flow Turning

http://slidepdf.com/reader/full/supersonic-flow-turning 4/17AE3450 

Prandtl Meyer -4

School of Aerospace Engineering

Copyright © 2001 by Jerry M. Seitzman. All rights reserved.

• Approach

 – begin with single Mach wave that expands supersonic

flow through an infinitessimal (differential) angle of

magnitude d ν

• Mass/Momentum Conservation

 – using same type of approach as for 

oblique shocks (two momentum components: t, n)

d ν

µv

v+dv

µ

vnvt

µ+d ν

vn+dvnvt

 – find lack of pressure gradient tangent to wave gives

vt=constant across wave

 – essentially using differential

control volume

Page 5: Supersonic Flow Turning

7/24/2019 Supersonic Flow Turning

http://slidepdf.com/reader/full/supersonic-flow-turning 5/17AE3450 

Prandtl Meyer -5

School of Aerospace Engineering

Copyright © 2001 by Jerry M. Seitzman. All rights reserved.

• Use vt=constant

( ) ( )

( )( ) νµ− νµ+=

 ν+µ+=µ

=

dsinsindcoscosdvv

dcosdvvcosv

vv downstream,tupstream,t d νµv

v+dv

µ

vnvt

µ+d ν

vn+dvnvt

d ν→0   →1   →d ν µ ν−µ+µ ν−µ=µ sindvdcosdvsinvdcosvcosv

 ν

µ

µ= d

cos

sin

v

dv→0

sinµ=1/M

sin2µ+cos2µ=1  ν−

= dM/11

M/1

v

dv2

2

 ν−

= d1M

1

v

dv

2(VIII.1)

Page 6: Supersonic Flow Turning

7/24/2019 Supersonic Flow Turning

http://slidepdf.com/reader/full/supersonic-flow-turning 6/17AE3450 

Prandtl Meyer -6

School of Aerospace Engineering

Copyright © 2001 by Jerry M. Seitzman. All rights reserved.

 ν νν ν• Relate v and M

d νµv

v+dvtpg/cpg

a2=γ RT

v=Maada

MdM

vdv +=

T

dT

2

1

M

dM

T

Td

M

dM

v

dv+=+=

( )

M

dM

M

2

11

M1

T

dT

M2

11

M

2

11d

TdT0

TdT

.constM2

11TT

2

2

2

2

o

o

2o

 

 

 

    −γ +

−γ −=

 

  

    −γ +

 

 

 

    −γ +

+==

  

    −+=

( )

 

 

 

    −γ 

+

=

 

 

 

    −γ 

+

−γ 

−=22

2

M2

1

1

1

M

dM

M2

1

1

M2

1

1M

dM

v

dv

( )[ ]

M

dM

M

2

11

M21

M

dM

v

dv

2

2

 

 

 

    −γ +

−γ −=

Energy Conservation

Page 7: Supersonic Flow Turning

7/24/2019 Supersonic Flow Turning

http://slidepdf.com/reader/full/supersonic-flow-turning 7/17

AE3450 Prandtl Meyer -7

School of Aerospace Engineering

Copyright © 2001 by Jerry M. Seitzman. All rights reserved.

 ν νν ν• Relate VIII.1 and last eqn.

 

  

    −γ +

= ν−

=22

M2

11

1

M

dMd

1M

1

v

dv

(VIII.2)M

dM

M2

11

1Md

2

2

−γ +

−= ν dM is change in Mach number

associated with d ν turn angle

d νµM

M+dM

integrate     −γ 

+

−= ν= ν− ν

 ν

 ν

2

1

2

1

M

M2

2

12M

dM

M2

1

1

1Md

δ

M1

M2

• Need finite angle, δ= ν2- ν1 and finite ∆M

Page 8: Supersonic Flow Turning

7/24/2019 Supersonic Flow Turning

http://slidepdf.com/reader/full/supersonic-flow-turning 8/17

AE3450 Prandtl Meyer -8

School of Aerospace Engineering

Copyright © 2001 by Jerry M. Seitzman. All rights reserved.

 ν νν ν

    −γ +

= ν− ν

2

1

M

M2

2

12 M

dM

M2

11

1M   δ

M1

M2

(VIII.3)

( )

2

1

M

M

2121

121Mtan1M

1

1tan

1

1

−−−

+γ 

−γ 

−γ 

+γ = ν− ν   −−

• Perform Integration

• So, given δ (= ν2- ν1) and M1

 – could “solve” VIII.3 for M2

• Can not invert VIII.3 analytically (M2=f(M1, δ))

 – either use interative (e.g., numerical or guessing) method

 – or find ν  as a function of M and tabularize or graph solution

Page 9: Supersonic Flow Turning

7/24/2019 Supersonic Flow Turning

http://slidepdf.com/reader/full/supersonic-flow-turning 9/17

AE3450 Prandtl Meyer -9

School of Aerospace Engineering

Copyright © 2001 by Jerry M. Seitzman. All rights reserved.

( )2

1

M

M

212112 1Mtan1M

1

1tan

1

1

−−−

+γ 

−γ 

−γ 

+γ = ν− ν   −−

• Want to find ν= ν(M) [really ν2= ν2(M2)] for any M – need to choose (arbitrary) reference condition,

i.e., pick an M where  ν=0

 – let’s choose ν=0 at M=1

• analagous to table of h(T)

 – really h(T)-h(Tref )

 – just chosen h(Tref )=0

( ) 1Mtan1M1

1tan

1

1 2121 −−−+γ 

−γ 

−γ 

+γ = ν   −−

(VIII.4)

•   ν represents angle through which asonic flow wouldhave to turnto reach M

Appendix D (John)

for γ =1.4, M≤5

δ= ν2- ν1

M1

M2

M=1 ν1

 ν1 is turn angle for M=1 to M1

Page 10: Supersonic Flow Turning

7/24/2019 Supersonic Flow Turning

http://slidepdf.com/reader/full/supersonic-flow-turning 10/17

AE3450 Prandtl Meyer -10

School of Aerospace Engineering

Copyright © 2001 by Jerry M. Seitzman. All rights reserved.

• To find M2 given M1 and δ

 – find ν1 (for given M1) from table – get ν2 from δ= ν2- ν1

 – look up ν2 in table to find M2

• To find T2, p2, ....

 – use isentropic flow relations since expansion is

isentropic (no shock)

 – e.g.,

δ= ν2- ν1

M1

M2

2o M2

11

T

T   −+=

2

2

21

1

2

M2

11

M2

11

T

T

−γ +

−+

=

To=const

Page 11: Supersonic Flow Turning

7/24/2019 Supersonic Flow Turning

http://slidepdf.com/reader/full/supersonic-flow-turning 11/17

AE3450 Prandtl Meyer -11

School of Aerospace Engineering

Copyright © 2001 by Jerry M. Seitzman. All rights reserved.

• Given: Uniform Mach 2 flow of

nitrogen at 300 K flows over compoundwall corner: two turns, 20° and 6°

• Find:

M and T after final turn

• Assume: N2 is TPG/CPG with γ =1.4, steady, adiabatic, no

work, inviscid,….

20°

M1

Page 12: Supersonic Flow Turning

7/24/2019 Supersonic Flow Turning

http://slidepdf.com/reader/full/supersonic-flow-turning 12/17

AE3450 Prandtl Meyer -12

School of Aerospace Engineering

Copyright © 2001 by Jerry M. Seitzman. All rights reserved.

• Analysis: (class exercise)

20°

M2

M3

M1

M   ν νν ν   M   ν νν ν   M   ν νν ν   M   ν νν ν   M   ν νν ν

2.00   26.38   2.60   41.41   2.75   44.69   2.90   47.79   3.05   50.71

2.01   26.66   2.61   41.64   2.76   44.91   2.91   47.99   3.06   50.90

2.02   26.93   2.62   41.86   2.77   45.12   2.92   48.19   3.07   51.09

2.03   27.20   2.63   42.09   2.78   45.33   2.93   48.39   3.08   51.28

2.04   27.48   2.64   42.31   2.79   45.54   2.94   48.59   3.09   51.46

2.50   39.12   2.65   42.53   2.80   45.75   2.95   48.78   3.10   51.65

2.51   39.36   2.66   42.75   2.81   45.95   2.96   48.98   3.11   51.83

2.52   39.59   2.67   42.97   2.82   46.16   2.97   49.18   3.12   52.02

2.53   39.82   2.68   43.19   2.83   46.37   2.98   49.37   3.13   52.20

2.54   40.05   2.69   43.40   2.84   46.57   2.99   49.56   3.14   52.39

2.55   40.28   2.70   43.62   2.85   46.78   3.00   49.76   3.15   52.57

2.56   40.51   2.71   43.84   2.86   46.98   3.01   49.95   3.16   52.75

2.57   40.74   2.72   44.05   2.87   47.19   3.02   50.14   3.17   52.93

2.58   40.96   2.73   44.27   2.88   47.39   3.03   50.33   3.18   53.11

2.59   41.19   2.74   44.48   2.89   47.59   3.04   50.52   3.19   53.29

• To find M2

given M1 and δ1. find ν1 (for

given M1)

from table

2. get ν2 from

δ= ν2- ν1

3. look up ν2 in

table to findM2

Page 13: Supersonic Flow Turning

7/24/2019 Supersonic Flow Turning

http://slidepdf.com/reader/full/supersonic-flow-turning 13/17

AE3450 Prandtl Meyer -14

School of Aerospace Engineering

Copyright © 2001 by Jerry M. Seitzman. All rights reserved.

2

12 M

1sin−=µ

1

11 M

1sin−=µ

M1

M2

δ

Fan Angle• Fan angle

 – angle between first and last Machwave

 – useful to determine whenexpansion has ended in flowfieldfor a given distance away fromwall

• From geometry

µ2-δ

µ1

( )δ−µ−µ= 21AngleFan

( )   δ+µ−µ= 21

( ) ( )1221   ν− ν+µ−µ=

(VIII.5)

Page 14: Supersonic Flow Turning

7/24/2019 Supersonic Flow Turning

http://slidepdf.com/reader/full/supersonic-flow-turning 14/17

AE3450 Prandtl Meyer -15

School of Aerospace Engineering

Copyright © 2001 by Jerry M. Seitzman. All rights reserved.

• Examine plot of  ν νν ν as function of M

• As M increases, reachmaximum turn angle

( νmax~130.5° for γ =1.4)• So as M1 increases,

max. angle flow can

turn (δmax) decreases

δ= ν2- ν1

M1

M2

0

50

100

150

0 10 20 30

M

      ν      νν      ν

 νmax=130.45°

γ=1.4

( ) 1Mtan1M1

1tan

1

12121 −−−+γ 

−γ 

−γ 

+γ = ν   −−

5.4596.8445.1306M max1   =−=δ

=

• Example

1.10438.2645.1302M max1   =−=δ=

δmax

δ

M1=2

M2δPM<104.1°

p→→→→0

Page 15: Supersonic Flow Turning

7/24/2019 Supersonic Flow Turning

http://slidepdf.com/reader/full/supersonic-flow-turning 15/17

AE3450 Prandtl Meyer -16

School of Aerospace Engineering

Copyright © 2001 by Jerry M. Seitzman. All rights reserved.

• Analytic Expression

• As γ decreases (highertemperatures, biggermolecules), maximum turnangle increases

•   δmax smaller in real flows – T and p drop through turn

condensation of gas

nonequilibrium flow

( )   90Mtan;M:MFor  1 →→∞→   −

( ) 1Mtan1M11tan

11 2121 −−−

+γ −γ 

−γ +γ = ν   −−

=γ 

=γ 

=γ 

=γ 

= ν

2.15.208

3.1

4.1

2.159

45.130

3/590

max

9011

1max

  

   −

−γ +γ = ν

(VIII.6)

Page 16: Supersonic Flow Turning

7/24/2019 Supersonic Flow Turning

http://slidepdf.com/reader/full/supersonic-flow-turning 16/17

AE3450 Prandtl Meyer -17

School of Aerospace Engineering

Copyright © 2001 by Jerry M. Seitzman. All rights reserved.

• Already showed that it does

not matter if expansion turnis sharp or smooth

 – still get same solution,

P-M fan=infinite set of Mach waves

M1>1

M2>M1

δ

 – unless we exceed the maximum turning angle, final

 properties just function of total turn angle

 – smooth turn just means expansion process takes

 place over longer distance

Page 17: Supersonic Flow Turning

7/24/2019 Supersonic Flow Turning

http://slidepdf.com/reader/full/supersonic-flow-turning 17/17

AE3450 Prandtl Meyer -18

School of Aerospace Engineering

Copyright © 2001 by Jerry M. Seitzman. All rights reserved.

• What happens if we have a smooth

concave turn? – since flow direction change

is small, can still get set of 

weak Mach waves

M1>1

M2<M1

δ

 – however unlike expansions, compressions merge

 – together they coalesce to form oblique shock 

 – flow that went through PM compression is isentropic,

outer flow has entropy rise (po loss)

 – size of PM region depends on M1 and curvature

δδδδ=−−−−( ν νν ν2−ν−ν−ν−ν1), so  ν νν ν2−ν−ν−ν−ν1<0000Prandtl-Meyer compression: