Superfluorescence in an Ultracold Thermal Vapor

22
Superfluorescence in an Ultracold Thermal Vapor Joel A. Greenberg and Daniel. J. Gauthier Duke University 7/15/2009 FIP

description

Superfluorescence in an Ultracold Thermal Vapor. FIP. Joel A. Greenberg and Daniel. J. Gauthier Duke University 7/15/2009. Superfluorescence (SF). Pump. W. N. L. W 2 /L l~1. ‘endfire’ modes. - PowerPoint PPT Presentation

Transcript of Superfluorescence in an Ultracold Thermal Vapor

Page 1: Superfluorescence in an Ultracold Thermal Vapor

Superfluorescence in an Ultracold Thermal Vapor

Joel A. Greenberg and Daniel. J. Gauthier

Duke University

7/15/2009

FIP

Page 2: Superfluorescence in an Ultracold Thermal Vapor

Superfluorescence (SF)Superfluorescence (SF)

L

Pump

Dicke, Phys. Rev. 93, 99 (1954); Bonifacio & Lugiato, Phys. Rev. A 11, 1507 (1975), Polder et al., Phys. Rev. A 19, 1192 (1979), Rehler & Eberly, Phys. Rev A 3, 1735 (1971)

WN

‘endfire’ modes

W2/L

Page 3: Superfluorescence in an Ultracold Thermal Vapor

SF ThresholdSF Threshold

time

Pow

er

SFsp/N

sp

• Cooperative emission produces short, intense pulse of light

• PpeakN2

• Delay time (D) before pulse occurs

• Threshold density/ pump power

D

Ppeak

1

Spontaneous Emission

Amplified Spontaneous Emission (ASE)

Superfluorescence (SF)

SF Thresh

Cooperativity

Malcuit, M., PhD Dissertation (1987); Svelto, Principles of Lasers, Plenum (1982)

Page 4: Superfluorescence in an Ultracold Thermal Vapor

New Regime: Thermal Free-space SFNew Regime: Thermal Free-space SF

10~

Pump (F)Cold atoms

Pump (B)

Detector (B)

Detector (F)- T=20 K

- L=3 cm, R=150 m - N~109 Rb atoms

- PF/B~4 mW - F2F’3=-5

F=R2/L~1

NO CAVITY!NOT BEC!

≠ Slama et al. ≠ Inouye et al.

Inouye et al. Science 285, 571 (1999); Slama et al. PRL 98, 053603 (2007)

* Counterpropagating,

* Large gain path length2

collinear pump beams1

1) Wang et al. PRA 72, 043804; 2) Yoshikawa PRL 94, 083602

Page 5: Superfluorescence in an Ultracold Thermal Vapor

Results - SFResults - SF

t (s)

Pow

er (W

)

Forward

Backward

F/B PumpsMOT beams

• SF light nearly degenerate with pump frequency

• Light persists until N falls below threshold

• F/B temporal correlations

• ~1 photon/atom large fraction of atoms participate

on

off

Page 6: Superfluorescence in an Ultracold Thermal Vapor

Dtime

Pow

erPpeak

PF/B (mW)

Pp

eak

(W

)

D (s

)

PF/B (mW)

2/1/

BFP

•Density/Pump power thresholds

•PpeakPF/B

• D (PF/B)-1/2

Results - SFResults - SF

Consistent with CARL superradiance*

*Piovella et al. Opt. Comm. 187, 165 (2001)

BFP /

Page 7: Superfluorescence in an Ultracold Thermal Vapor

What is the mechanism responsible for SF?

Probe SpectroscopyProbe Spectroscopy

Page 8: Superfluorescence in an Ultracold Thermal Vapor

Probe

Pump (F)Cold atoms

Pump (B)Detector (B)

- T=20 K - L=3 cm, R=150 m- N~109 Rb atoms

- PF/B~4 mW - F2F’3=5

10~

Detector (F)

(p =+)

What is the mechanism responsible for SF?

Probe SpectroscopyProbe Spectroscopy

Page 9: Superfluorescence in an Ultracold Thermal Vapor

Recoil-Induced ResonanceRecoil-Induced Resonance

E

p

atom atomp

• Atom-photon interaction modifies the energy and momentum of an atom

• Energy + momentum conservation result in resonance

atom

p2

Absorption:

Emission:

p2

atomp

mp 2/2

Page 10: Superfluorescence in an Ultracold Thermal Vapor

Probe SpectroscopyProbe Spectroscopy

Forward Detector Backward Detector (FWM)

(kHz)

RIR

Po

ut/P

in

Raman

SF

RIR

Raman

(kHz) SF

PC

R

Page 11: Superfluorescence in an Ultracold Thermal Vapor

Probe Gain Probe Gain

F/B Pump Power (mW)

PR

IR/P

pro

be

SF Threshold

Typical SF gain threshold are Pout/Pin~exp(10)=104

Page 12: Superfluorescence in an Ultracold Thermal Vapor

Self-Organization Self-Organization

RIR leads to spatial organization or atoms

Backaction between atoms and photons leads to runaway process Lower SF threshold

Scattering enhances grating Grating enhances scattering

Page 13: Superfluorescence in an Ultracold Thermal Vapor

• Observe free-space superfluorescence in a cold, thermal gas

• Temporal correlation between forward/backward radiation

• Spectroscopy and beatnote imply RIR scattering as source of SF

ConclusionsConclusions

• New insight into free electron laser dynamics• Possible source of correlated photon pairs• Optical/Quantum memory

ApplicationsApplications

Page 14: Superfluorescence in an Ultracold Thermal Vapor

Resonant ProcessesResonant Processes

E

p

E

Vibrational Raman Recoil-Induced Resonance (RIR)

atom

z

Initial state

Final state atom p

Page 15: Superfluorescence in an Ultracold Thermal Vapor

Probe SpectroscopyProbe Spectroscopy

0 100 200

Forward Detector

Backward Detector (FWM)

250 0 250

250 0 250 (kHz)

Rayleigh

SF signal

time (s)

Pro

be P

ower

P

robe

Pow

er

Rayleigh pump beam alignment

Raman pump beam alignment

SF

Pow

er

Raman

SF

Page 16: Superfluorescence in an Ultracold Thermal Vapor

700 500 300

BeatnoteBeatnote

(kHz)

Look at beatnote between probe beam and SF light as probe frequency is scanned

Pow

er (

F)

Page 17: Superfluorescence in an Ultracold Thermal Vapor

700 500 300

170 172 174 176

BeatnoteBeatnote

(kHz)

time (s)

1/f f~450kHz fSF~-50kHz

Look at beatnote between probe beam and SF light as probe frequency is scanned

Page 18: Superfluorescence in an Ultracold Thermal Vapor

Weak probeWeak probe

Probe (p=+)

Pumps ()

Forward

Backward

Backward

400 200 0 200 400 400 200 0 200 400

Forward

(kHz) (kHz)

Page 19: Superfluorescence in an Ultracold Thermal Vapor

Coherence TimeCoherence Time

0 1 2 3 4 5 60.00.20.40.60.81.0

time

Pow

er

F/B Pumpson

off

off

1

PR

PR

off

Page 20: Superfluorescence in an Ultracold Thermal Vapor

Lin || LinLin || Lin

100 200 300

Pow

er

time (s)

Pumps ()

Forward

Backward

Page 21: Superfluorescence in an Ultracold Thermal Vapor

Dtime

Pow

erPpeak

Pp

eak

(W

)Results - SFResults - SF

*Piovella et al. Opt. Comm. 187, 165 (2001)

0 5 10 15 20 250.000.050.100.150.20

OD N

)(NExp2)( tNN

Page 22: Superfluorescence in an Ultracold Thermal Vapor

CARL RegimesCARL Regimes

Slama Dissertation (2007)

Quantum CARL

Ultr

acol

d A

tom

s/B

EC

Good Cavity: <r Bad Cavity: >r

Quantum:

r>G

Semiclassical:

r<G

In resonator Free space

MIT (2003)

MIT (1999)

Tub (2006)

Tub (2003)

Tub (2006)

The

rmal