Sulfur in Brassica oleracea

31
Sulfur in Brassica oleracea Gracie Gordon Michael Lorentsen James Helzberg http://upload.wikimedia.org/wikipedia/commons/0/03/ Broccoli_and_cross_section_edit.jpg http://upload.wikimedia.org/wikipedia/commons/4/44/Sulfur- sample.jpg

description

Sulfur in Brassica oleracea. Gracie Gordon Michael Lorentsen James Helzberg. http://upload.wikimedia.org/wikipedia/commons/0/03/Broccoli_and_cross_section_edit.jpg. http://upload.wikimedia.org/wikipedia/commons/4/44/Sulfur-sample.jpg. Why is Sulfur Important for Human Nutrition?. - PowerPoint PPT Presentation

Transcript of Sulfur in Brassica oleracea

Page 1: Sulfur in  Brassica oleracea

Sulfur in Brassica oleracea

Gracie GordonMichael Lorentsen

James Helzberg

http://upload.wikimedia.org/wikipedia/commons/0/03/Broccoli_and_cross_section_edit.jpghttp://upload.wikimedia.org/wikipedia/commons/4/44/Sulfur-sample.jpg

Page 2: Sulfur in  Brassica oleracea

Why is Sulfur Important for Human Nutrition?

• Necessary for synthesis of the amino acids – Cystine – Methionine

• Detox functions – Toxic compounds– Free radicals– Reactive oxygen species (ROS)

• Glutathione (GSH)– Sulfur storage in the liver– Too little: impairs antioxidant functions– Too much: inhibits prostaglandin production (inflammation)

• Glucosinolates may help inhibit carcinogenesis

Cystine (above) Methionine (below)

Page 3: Sulfur in  Brassica oleracea

SO42- in Soil

H+/SO42- co-

transporterSULTR1;_ Genes (12)

SO42- in root cells

SULTR2;_ Transporters distribute SO4

2-(Also SULTR1;3)

SO42- in stem/leaves/etc.

H+ gradient established by PM proton ATPase

Also named AST## or AT## genes. ie AST68

Uptake and Distribution of SO42-

Storage in vacuoleAssimilation

Page 4: Sulfur in  Brassica oleracea

Sultr TransportersGroup number General function Associated Genes

Group 1 Primary uptake of sulfate by the root

Sultr1;1, Sultr1;2 - initial uptake Sultr1;3 - mediates redistribution of sulfate

Group 2 Mediates transport of sulfate within vascular tissues (xylem and phloem)

Sultr2;1 - stem and leaf expressionSultr2;2 - root expression

Group 3 Not well characterized Sultr3;1, Sultr3;4 - stem expressionSultr3;2, Sultr3;5 -root expressionSultr3;3 - leaf and root expression, uptake into non vascular tissue

Group 4 May be responsible for sulfate efflux from vacuole

Sultr4;1Sultr4;2

Page 5: Sulfur in  Brassica oleracea

Control of Sulfate Uptake in A. thaliana

● Sulfate uptake and sulfate accumulation are NOT coupled (Koprivova, et al.)

● Sulfate uptake is downregulated by sulfur containing compounds2

○ Glutathione, Methionine

● Sulfate uptake is upregulated when Sulfur compounds are low in leaves2

○ Sulfate in vacuole sequestered so cannot contribute to signaling○ Sulfate uptake is upregulated when levels of OAS are high

Page 6: Sulfur in  Brassica oleracea

Organic Incorporation of Sulfur (assimilation)

● Reduction occurs in the plastids○ Two types of transporters

have been identified■ SULTR4;1 ● Uses H+ gradient

■ Homologs of bacterial CysA/CysT genes● ATPase

● ABC Transporter Family Proteins

Page 7: Sulfur in  Brassica oleracea
Page 8: Sulfur in  Brassica oleracea

Sulfur Related Pathway Genes ArabidopsisGene ID Function

AT1G75270 GSH-dependent dehydroascorbate reductase

AT1G19570 GSH-dependent dehydroascorbate reductase

AT2G25080 Glutathione peroxidase

AT3G24170 Glutathione reductase, cytosolic

AT1G02920 Glutathione transferase

AT3G43800 Glutathione transferase-like protein

AT3G09270 Putative glutathione transferase

AT3G13110 Serine acetyltransferase (Sat-1)

AT3G59760 Cysteine synthase oasC

AT3G03630 O-acetylserine (thiol) lyase; cysteine synthase

AT1G36370 Putative serine hydroxymethyltransferase

AT3G17390 S-adenosylmethionine synthetase like

AT4G01850 S-adenosylmethionine synthetase 2

AT3G02470 S-adenosylmethionine decarboxylase

AT4G13940 Adenosylhomocysteinase

AT4G23100 Gamma-glutamylcysteine synthetase

AT5G13550 Sulfate transporter AST68 (Sultr2;1)

Sulfate transporter Sultr4;1

Page 9: Sulfur in  Brassica oleracea

SULTR Genes (A. thaliana)

Page 10: Sulfur in  Brassica oleracea

Our QTLs

C09 19,664,943

C02 46,217,719

C01 33,168,082

A01 21-23 MBP

A02 20-22 MBP

A09 or A10 could be near the end of 9 or the beginning of 10, possibly 2 copies?

Page 11: Sulfur in  Brassica oleracea

BLAST Method

1. Found aa sequences from A. thaliana for all sulfur related genes presented

2. For each gene found, we ran a tBLASTn against B. oleracea and B. rapa genome using aa sequence from A. thaliana

3. Any hits with E≤10-6 that were located within 10 Mbp of one of our 3 QTLs were recordeda. Exact confidence interval for QTLs unknown

Page 12: Sulfur in  Brassica oleracea

BLAST Results—B. Oleracea Chromosome 1Ad

enos

ylho

moc

yste

inas

e

S-ad

enos

ylm

ethi

onin

e de

carb

oxyl

ase

Sulfa

te tr

ansp

orte

r Sul

tr4;

1

Sultr

4;2

Sultr

3;4

Sultr

1;3

Sulfa

te tr

ansp

orte

r AST

68 (S

ultr

2;1)

Sultr

1;1

Sultr

1;2

Sultr

2;2

Sultr

3;2

Sultr

3;5

Sultr

3;1

Sultr

3;3

Puta

tive

glut

athi

one

tran

sfer

ase

Glut

athi

one

tran

sfer

ase-

like

prot

ein

O-a

cety

lserin

e (th

iol)

lyas

e; cy

stei

ne sy

ntha

se

Cyst

eine

synt

hase

oas

C

S-ad

enos

ylm

ethi

onin

e de

carb

oxyl

ase

-4,000,000

-2,000,000

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

Sulfur genes near QTL on Chromosome 1 in B. oleracea

Gene Name or ID

Dist

ance

from

QTL

(Nuc

leoti

de #

-QTL

#) (b

p)

Page 13: Sulfur in  Brassica oleracea

BLAST Results—B. Oleracea Chromosome 2

O-acetylserine (thiol) lyase; cysteine synthase Cysteine synthase oasC1,850,700

1,850,800

1,850,900

1,851,000

1,851,100

1,851,200

1,851,300

Gene Name

Dist

ance

from

QTL

(Nuc

leoti

de #

-QTL

#) (b

p)

Page 14: Sulfur in  Brassica oleracea

BLAST Results—B. Oleracea Chromosome 9

Glut

athi

one

pero

xida

se

Puta

tive

glut

athi

one

tran

sfer

ase

Glut

athi

one

tran

sfer

ase-

like

prot

ein

O-a

cety

lserin

e (th

iol)

lyas

e; cy

stei

ne sy

ntha

se

APS

Redu

ctas

e

Glut

athi

one

pero

xida

se

Sultr

2;1

-15,000,000

-10,000,000

-5,000,000

0

5,000,000

10,000,000

15,000,000

Sulfur genes near QTL on Chromosome 9 in B. oleracea

Gene Name

Dist

ance

from

QTL

(Nuc

leoti

de #

-QTL

#) (b

p)

Page 15: Sulfur in  Brassica oleracea

BLAST Results—B. rapaChromosome 1

APS

Redu

ctas

e

Glut

athi

one

redu

ctas

e, cy

toso

lic

Aden

osyl

hom

ocys

tein

ase

Serin

e ac

etyl

tran

sfer

ase

S-ad

enos

ylm

ethi

onin

e de

carb

oxyl

ase

S-ad

enos

ylm

ethi

onin

e sy

nthe

tase

like

S-ad

enos

ylm

ethi

onin

e sy

nthe

tase

2

Sultr

4;1

Sultr

3;4

Sultr

4;2

Sultr

1;3

Sultr

2;2

Sultr

2;1

Sultr

1;1

Sultr

1;2

Sultr

3;1

Sultr

3;2

Sultr

3;5

Sultr

3;3

Sulfi

te R

educ

tase

Puta

tive

glut

athi

one

tran

sfer

ase

Glut

athi

one

tran

sfer

ase-

like

prot

ein

O-a

cety

lserin

e (th

iol)

lyas

e

Cyst

eine

synt

hase

oas

C

GSH-

dep.

deh

ydro

asco

rbat

e re

duct

ase

GSH-

dep.

deh

ydro

asco

rbat

e re

duct

ase

-8,000,000

-6,000,000

-4,000,000

-2,000,000

0

2,000,000

4,000,000

6,000,000

Sulfur associated genes near give QTL on Chromosome 1 in B. rapa

Gene Name/ID

Dist

ance

from

QTL

(bp)

Sul-

tr2;1

Page 16: Sulfur in  Brassica oleracea

BLAST Results—B. rapaChromosome 2

GSH-

dep.

deh

ydro

asco

rbat

e re

duct

ase

GSH-

dep.

deh

ydro

asco

rbat

e re

duct

ase

Sultr

3;1

Sultr

3;4

Sultr

3;2

Sultr

3;5

Sultr

3;3

Sultr

4;1

Sultr

1;1

Sultr

1;2

Sultr

2;2

Sultr

2;1

Glut

athi

one

tran

sfer

ase-

like

prot

ein

Puta

tive

glut

athi

one

tran

sfer

ase

Glut

athi

one

tran

sfer

ase

APS

Redu

ctas

e

Glut

athi

one

pero

xida

se

S-ad

enos

ylm

ethi

onin

e de

carb

oxyl

ase

Sultr

4;2

O-a

cety

lserin

e (th

iol)

lyas

e

Cyst

eine

synt

hase

oas

C

-10000000

-8000000

-6000000

-4000000

-2000000

0

2000000

4000000

Sulfur associated genes near give QTL on Chromosome 2 in B. rapa

Gene Name/ID

Dist

ance

from

QTL

(bp) Su

l-tr

2;1

Glua

tath

ion

pero

xida

se

Page 17: Sulfur in  Brassica oleracea

IGB Methods

• Searched IGB +/- 1,000,000bp from each QTL– Clicked on each gene to see details– Looked in the literature to see if these genes had

any connection to Sulfur, Glucosinolates, or Glutothione (GSH)• Blasted using IGB to verify IGB annotations

Page 18: Sulfur in  Brassica oleracea

IGB Results—B. oleracea Chromosome 1

1 2 3

-600,000

-500,000

-400,000

-300,000

-200,000

-100,000

0

100,000

Annotated Protein (see key)

Dist

. Fro

m Q

TL (N

uc#-

QTL

#) (b

p)

Page 19: Sulfur in  Brassica oleracea

IGB Results—B. oleracea Chromosome 2

Glutathione transferase-like protein Phosphate transporter PHO1-like protein Glutaredoxin family protein-100000

-50000

0

50000

100000

150000

200000

Gene Function

Dist

ance

from

QTL

(bp)

Page 20: Sulfur in  Brassica oleracea

Glutaredoxin

• Redox enzymes using Glutathione as a cofactor

• Reduced by oxidation of glutathione • Part of the glutathione system

Page 21: Sulfur in  Brassica oleracea

Phosphate Transporter like Protein

• Phosphate Transporter very similar to Sulfate Transporter

• Sulfate Transporters (SULTR) transport Sulfate throughout the plant

Page 22: Sulfur in  Brassica oleracea

IGB Results—B. oleracea Chromosome 9

1 2 3 4

-1000000

-800000

-600000

-400000

-200000

0

200000

Annotated Protein (see legend)

Dist

. fro

m Q

TL (N

uc#-

QTL

#) (b

p)

Legend:

1 Glutathione S-transferase T3

2 Protein disulfide isomerase like protein

3

S-adenosyl-L-methionine-dependent methyltransferases superfamily protein

4 hypothetical protein

Page 23: Sulfur in  Brassica oleracea

• Glutathione transferases:– RX + glutathione HX + R-S-glutathione– detoxification role

• Protein disulfide isomerases– Controls apoptosis of the endothelial cells by

inhibiting cysteine proteases in vacuole trafficking. (http://www.uniprot.org/uniprot/Q9XI01)

• methionine-dependent methyltransferases – play major role in sulfate phloem transport

Page 24: Sulfur in  Brassica oleracea

Conclusions

• We were able to identify important genes near our given sulfur QTLs using both BLAST and IGB

• Further study should be done on selected genes found very close to our QTLs

Page 25: Sulfur in  Brassica oleracea

Identification of an non-annotated geneAPS Reductase

tBLASTn vs. B. oleracea genome yields match near QTL on chromosome 9

-See next slide

Page 26: Sulfur in  Brassica oleracea

Results of tBLASTn

• On Chromosome 9

Page 27: Sulfur in  Brassica oleracea

However, on IGB, no gene shows up in defined area….

Page 28: Sulfur in  Brassica oleracea

Genome sequence and translated in all reading frames

Page 29: Sulfur in  Brassica oleracea

BLASTp of both sequences against one another yields

Page 30: Sulfur in  Brassica oleracea

BLAST vs. IGB

• Both methods yielded useful results that did not necessarily correspond– IGB annotations did not accurately identify some

genes found by BLAST method– BLAST results could be used to better annotate IGB

• Methods complement each other well, more powerful when used together vs. alone

• Very little correspondence between BLAST and IGB results

Page 31: Sulfur in  Brassica oleracea

ReferencesNimni, M., Han, B., and Cordoba F. 2007. Are we getting enough sulfur in our diet? Nutrition & Metabolism 4:24.

Bourgis, F., Roje, S., Nuccio, M.L. Fisher, D.B., Tarczynski, M.C., Li, C., Herschbach, C., Rennenberg, H., Pementa, M.J., Shen, T.L., Gage, D.A., Hanson, A.D., 1999. S-methylmethionine plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase. Plant Cell 11:1485-98.

Buchner, P., Stuiver, C., Westerman, S., Wirtz., Hell, R., Hawkesford, M., and De Kok, L. 2004. Regulation of Sulfate Uptake and Expression ofSulfate Transporter Genes in Brassica oleracea as Affected by Atmospheric H2S and Pedospheric Sulfate Nutrition. Plant Physiology136:3396-3408.

Nikiforova, V., Freitag, J., Kempa, S., Adamik, M., Hesse, H., and Hoefgen, R. 2003. Transcriptome analysis of sulfur depletion in arabidopsis thaliana: interlacing of biosyntheic pathways provides response specificity. The Plant Journal 33:633-650.

Smith, F.W., Rae, A.L., and Hawkesford, M.J. 2000. Molecular mechanisms of phosphate and sulphate transport in plants. Biochimica et Biophysica Acta 1465:236-245.

Grossman, A., and Takahashi, H. 2001. Macronutrient utilization by photosynthetic eukaryotes and the fabric of interactions. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:163-210.

Hawkesford, M. J. 2000. Plant responses to sulphur deficiency and the genetic manipulation of sulphate transporters to improve S-utilization efficiency. Journal of Experimental Botany. 51:131-138.

Hayes, J.D., Pulford, D.J. 1995. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer and chemoprotection and drug resistance. Crit. Rev. Biochem. Mol. Bio. 30:445-600

Leustek, T., Martin, M.N., Bick, J., and Davies, J.P. 2000. Pathways and Regulation of Sulfur Metabolism Revealed through Molecular andGenetic Studies. Annual Review of Plant Physiology and Plant Molecular Biology 51:141-165.

Leustek, T. 2002. Sulfate Metabolism. The Arabidopsis Book.

Koprivova, A., Giovannetti, M., Baraniecka, P., Lee, B., Grondin, C., Loudet, O., and Kopriva, S. 2013. Natural Variation in the ATPS1 Isoform ofATP Sulfurylase Contributes to the Control of Sulfate Levels in Arabidopsis. Plant Physiology 163:1133-1141.

Takahashi, H., Yamizaki, M., Sasakuru, N., Watanabe, A., Leustek, T., Engler, J., Engler, G., Montagu, M.V., Saito, K. 1997. Regulation of sulfurassimilation in higher plants; a sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana. PlantBiology 94:11102-11107.

Maruyama-Nakashita, A., Nakamura, Y., Yamaya, T., Takahashi, H. 2004. A novel regulatory pathway of sulfate uptake in Arabidopsis roots:implication of CRE1/WOL/AHK4-mediated cytokinin-dependent regulation. The Plant Journal 38:779-789

Note: also consulted http://www.uniprot.org while TAIR website was down as it provides very similar information.