Strong Motion Observation - Data Analysis

37
Strong Motion Observation - Data Analysis - Toshihide Kashima IISEE, BRI

Transcript of Strong Motion Observation - Data Analysis

Page 1: Strong Motion Observation - Data Analysis

Strong Motion Observation- Data Analysis -

Toshihide KashimaIISEE, BRI

Page 2: Strong Motion Observation - Data Analysis

Contents

Intensity indexIntegrationFourier spectrumResponse spectrumApplication

Page 3: Strong Motion Observation - Data Analysis

Intensity indexes

Peak ground acceleration (PGA) and peak ground velocity (PGV)JMA seismic intensity (IJMA) scale (0 to 7)Housner’s spectrum intensity, SI

2.5

0.1( ) ( , )SI h pSv T h dT= ∫

Page 4: Strong Motion Observation - Data Analysis

Intensity indexesPeak values

Peak ground acceleration (PGA) and peak ground velocity (PGV)

2 2X Y

max( ) ( )PGA a t a t= +

2 2 2X Y Z

max( ) ( ) ( )PGA a t a t a t= + +

X max( )PGA a t=

Page 5: Strong Motion Observation - Data Analysis

Intensity indexesJMA seismic intensity scale

JMA seismic intensity (IJMA) scale (0 to 7)

Filtering 3-component accelerationCompute vectorial amplitude

Find a0 satisfies;

Compute IJMA

2 2 2( ) ( ) ( ) ( )v t x t y t z t′ ′ ′= + +

0( , ) 0.3

Tdw t a dt ≥∫ 0( , ) 0, ( )w t a v t a= <

0( , ) 1, ( )w t a v t a= ≥

JMA 02 log 0.94I a= +

Page 6: Strong Motion Observation - Data Analysis

Intensity indexesJMA seismic intensity scale

Filters1/ 2

T ( ) (1/ )w f f=2 4 6

H8 10 12 1/ 2

( ) (1 0.694 0.241 0.0557

0.009664 0.00134 0.000155 )

w f y y y

y y y −

= + + + +

+ +3 1/ 2

L ( ) (1 exp( ( / 0.5) ))w f f= − −

Page 7: Strong Motion Observation - Data Analysis

Intensity indexesJMA seismic intensity scale

Scale Explanation

7In most buildings, wall tiles and windowpanes are damaged and fall. In some cases, reinforced concrete-block walls collapse.

6+In many buildings, wall tiles and windowpanes are damaged and fall. Most unreinforced concrete-block walls collapse.

6- In some buildings, wall tiles and windowpanes are damaged and fall.

5+In many cases, unreinforced concrete-block walls collapse and tombstones overturn. Many automobiles stop due to difficulty to drive.

Page 8: Strong Motion Observation - Data Analysis

Intensity indexesJMA seismic intensity scale

Scale Explanation5- Most people try to escape from a danger. Some

people find it difficult to move4 Many people are frightened. Some people try to

escape from a danger. Most sleeping people awake.

3 Felt by most people in the building. Some people are frightened.

2 Felt by many people in the building. Some sleeping people awake.

1 Felt by only some people in the building.0 Imperceptible to people.

Page 9: Strong Motion Observation - Data Analysis

Intensity indexesHousner’s spectrum intensity

Housner’s spectrum intensity, SI2.5

0.1( ) ( , )SI h pSv T h dT= ∫

Page 10: Strong Motion Observation - Data Analysis

Intensity indexesRelation among indexes

391 records from K-NET during the 2007 Off Chuetsu Earthquake

(a) IJMA vs. PGA (b) IJMA vs. PGV

Page 11: Strong Motion Observation - Data Analysis

0.1

1

10

102

103

104

105

PGA*

PGV

(cm

2 /s3

)

0 1 2 3 4 5 6 7IJMA

Intensity indexesRelation among indexes

391 records from K-NET during the 2007 Off Chuetsu Earthquake

(c) IJMA vs. SI (d) IJMA vs. PGA*PGV

Page 12: Strong Motion Observation - Data Analysis

0.1

1

10

102

103

104

105

PGA*

PGV

(cm

2 /s3

)

1 10 100 1000PGA (cm/s2)

Intensity indexesRelation among indexes

Relation to PGA

(e) PGA vs. PGV (f) PGA vs. SI (g) PGA vs. PGA*PGV

Page 13: Strong Motion Observation - Data Analysis

Intensity indexesRelation among indexes

Relation to PGA

(h) PGV vs. SI (i) PGV vs. PGA*PGV (j) SI vs. PGA*PGV

Page 14: Strong Motion Observation - Data Analysis

Integration

Conversion from acceleration to velocity and displacement

Integration in time domain with baseline correction in velocity and/or displacementIntegration in frequency domain with high pass filterSimulation of seismograph using a SDOF model (pendulum)

Page 15: Strong Motion Observation - Data Analysis

IntegrationTime domain

Trapezoidal method (require baseline correction and/or low-cut filter)

1 1( ) 2j j j jv v a a t+ += + + Δ

Page 16: Strong Motion Observation - Data Analysis

IntegrationFrequency domain

FFT and invert FFT (with low-cut filter)Fourier transform

Integration in frequency domain

Low-cut filtering

Invert Fourier transform

( ) ( )a t A ω→

( ) ( ) /V A iω ω ω=

L( ) ( ) ( )V F Vω ω ω′ =

( ) ( )V v tω′ →

Page 17: Strong Motion Observation - Data Analysis

IntegrationSimulation of seismograph

Simulate simple seismograph

2 2g 0 0

12i

xx hω ω ω ω

= −− +&&

2 2g 0 0

i2i

xx h

ωω ω ω ω

= −− +&

2

2 2g 0 02ixx h

ωω ω ω ω

=− +

Page 18: Strong Motion Observation - Data Analysis

0.01

0.02

0.05

0.1

0.2

0.5

1

2

5

10

ampl

itude

0.05 0.1 0.2 0.5 1 2 5 10 20ω/ω0

0

90

180

phas

e (d

eg)

0.05 0.1 0.2 0.5 1 2 5 10 20ω/ω0

h=0.1h=0.3h=0.7h=1.0h=2.0h=5.0

x/xg..

IntegrationSimulation of seismograph

Acceleration

gx x&&

Page 19: Strong Motion Observation - Data Analysis

IntegrationSimulation of seismograph

Velocity

gx x&

Page 20: Strong Motion Observation - Data Analysis

0.01

0.02

0.05

0.1

0.2

0.5

1

2

5

10

ampl

itude

0.05 0.1 0.2 0.5 1 2 5 10 20ω/ω0

180

270

360

phas

e (d

eg)

0.05 0.1 0.2 0.5 1 2 5 10 20ω/ω0

h=0.1h=0.3h=0.7h=1.0h=2.0h=5.0

x/xg

IntegrationSimulation of seismograph

Displacement

gx x

Page 21: Strong Motion Observation - Data Analysis

IntegrationComparison among methods

GL at Kushiro Gov. Office Bldg., 2003 Acceleration

Integrated velocity

Page 22: Strong Motion Observation - Data Analysis

0

20

Dis

p. (c

m) 257-GL (peak: 11.049 cm)

-20

-50

0

50

Dis

p. (c

m) 257-GL (peak:- 24.548 cm)

-20

0

20

Dis

p. (c

m)

0 10 20 30 40 50 60 70 80Time (sec)

257-GL (peak:- 14.154 cm)

Trapezoidal

FFT

Seismograph

IntegrationComparison among methods

GL at Kushiro Gov. Office Bldg., 2003 Acceleration

Integrated displacement

Page 23: Strong Motion Observation - Data Analysis

Fourier analysis

Conversion from the time domain to the frequency domain

Conversion from the frequency domain to the time domain (inverse Fourier transform)

(2 )( ) ( ) i ftX f x t e dtπ∞ −

−∞= ∫

1(2 / )

0

Ni km N

k mm

TX x eN

π−

=

= ∑

(2 )( ) ( ) i ftx t X f e dfπ∞

−∞= ∫

1(2 / )

0

Ni km N

m kk

x X e π−

=

=∑

Page 24: Strong Motion Observation - Data Analysis

Fourier analysisFourier and power spectra

Fourier (amplitude) spectrum

Power spectrum

Smoothing by spectrum window

Parzen window

*1( ) ( ) ( )XXP f E X f X fT

⎡ ⎤= ⎣ ⎦

( ) ( ) ( )P f P f W f g dg∞

−∞= −∫

4

sin3 2( )4

2

uf

W f u uf

π

π

⎛ ⎞⎜ ⎟

= ⎜ ⎟⎜ ⎟⎝ ⎠

( ) ( )F f X f=

Page 25: Strong Motion Observation - Data Analysis

Fourier analysisSmoothing effect

Page 26: Strong Motion Observation - Data Analysis

Fourier analysisTransfer function

Fourier spectral ratio

Cross power spectrum

Transfer function

2( ) ( ) ( )YY YXH f P f P f=

0 ( ) ( ) / ( )H f Y f X f=

1( ) ( ) ( )XY XXH f P f P f=

*1( ) ( ) ( )XYP f E X f Y fT

⎡ ⎤= ⎣ ⎦

0 ( ) ( ) ( )H f Y f X f=

Page 27: Strong Motion Observation - Data Analysis

Fourier analysisExample

Site effect at Kushiro (GL/GL-34m)

Page 28: Strong Motion Observation - Data Analysis

Response spectrum

Relation between natural period and maximum response of Single-degree-of-freedom (SDOF) system

Displacement response spectrum (Sd)Velocity response spectrum (Sv)Acceleration response spectrum (Sa)Pseudo velocity response spectrum (pSv=ωSd or pSv=Sa/ω)

Page 29: Strong Motion Observation - Data Analysis

Response spectrumDefinition

Relative displacement

Relative velocity

Absolute acceleration

( )0 20

( ) ( ) cos ( ) sin ( )1

t h td d

hx t x e t t dh

ω ττ ω τ ω τ τ− − ⎡ ⎤= − − −⎢ ⎥

−⎣ ⎦∫& &&

( )00

1( ) ( ) sin ( )t h t

dd

x t x e t dω ττ ω τ τω

− −= −∫ &&

2( )

0 0 2 20

2( ) ( ) ( ) 1 sin ( ) cos ( )1 1

t h td d d

h hx t x t x e t t dh h

ω τω τ ω τ ω τ τ− − ⎡ ⎤⎛ ⎞+ = − − + −⎢ ⎥⎜ ⎟− −⎝ ⎠⎣ ⎦

∫&& && &&

2

2

1

2 1d h

h T

ω ω

π

= −

= −

Page 30: Strong Motion Observation - Data Analysis

Response spectrumDefinition

Response spectrum

Relation between T and Sd, Sv or Safor a certain hPseudo velocity response spectrum

vd

SSω

d max( , ) ( )S T h x t= v max

( , ) ( )S T h x t= &

a 0 max( , ) ( ) ( )S T h x t x t= +&& &&

a vS Sω≈

p v dS Sω=

ap v

SSω

=

Page 31: Strong Motion Observation - Data Analysis

Response spectrumExample

Sa

Sd Sv

Page 32: Strong Motion Observation - Data Analysis

Response spectrumTripartite plot

In full-log coordinates

Page 33: Strong Motion Observation - Data Analysis

Response spectrumRelation among Sa, Sv and Sd

Sv ~ pSv=Sa/ω ~ pSv=Sdω

Page 34: Strong Motion Observation - Data Analysis

Response spectrumDifference by damping

h=0%, 5%, 10% and 20%Fourier spectrum

Page 35: Strong Motion Observation - Data Analysis

Application

Attenuation formulas of seismic intensity indexes

Relation between (PGA, PGV, IJMA, etc) and (M, X, site condition, etc)

Discussion on effect of surface geologyInvestigation into shallow/deep geological structureEstimation of stronger ground motions

Page 36: Strong Motion Observation - Data Analysis

Application

Warranty for seismic codeImprovement of seismic codeVerification of structural designVerification of new technologyExamination of failure mechanism of structure

Page 37: Strong Motion Observation - Data Analysis

Application

Early warning systemEstimation seismic intensity before S-wave arrival

Structural health monitoring systemReal-time identification of structural damage