Stress-dependent acoustic propagation and dissipation in granular materials Dr. David Johnson,...

29
ess-dependent acoustic propagat dissipation in granular mater Dr. David Johnson, Schlumberger Dr. Jian Hsu, Schlumberger Prof. Hernan Makse, CCNY Ping Wang, CCNY Chaoming Song, CCNY Dr. Nicolas Gland, CCNY IFP Collaborations: Prof. Jim Jenkins, Cornell Prof. Luigi Laragione, Bari, Italy Computational Geosciences Symposiu DOE-BES Geosciences Program
  • date post

    15-Jan-2016
  • Category

    Documents

  • view

    219
  • download

    0

Transcript of Stress-dependent acoustic propagation and dissipation in granular materials Dr. David Johnson,...

Page 1: Stress-dependent acoustic propagation and dissipation in granular materials Dr. David Johnson, Schlumberger Dr. Jian Hsu, Schlumberger Prof. Hernan Makse,

Stress-dependent acoustic propagation and dissipation in granular materials

Dr. David Johnson, SchlumbergerDr. Jian Hsu, SchlumbergerProf. Hernan Makse, CCNY Ping Wang, CCNYChaoming Song, CCNYDr. Nicolas Gland, CCNY IFPCollaborations:Prof. Jim Jenkins, CornellProf. Luigi Laragione, Bari, Italy

Computational Geosciences Symposium, DOE-BES Geosciences Program

Page 2: Stress-dependent acoustic propagation and dissipation in granular materials Dr. David Johnson, Schlumberger Dr. Jian Hsu, Schlumberger Prof. Hernan Makse,

Outline1. Motivation: Sonic logging application Fundamental understanding of mechanics of unconsolidated granular materials

2. Non-linear elasticity of unconsolidated granular materials: pressure dependence of sound speeds

3. Failure of Effective Medium Theory 4. Molecular Dynamics Simulations or Discrete Elements Methods Two limits: low and large volume fraction: RLP-RCP Large and small coordination number.

5. Beyond Effective Medium Theory

Page 3: Stress-dependent acoustic propagation and dissipation in granular materials Dr. David Johnson, Schlumberger Dr. Jian Hsu, Schlumberger Prof. Hernan Makse,

Motivation

2. Application: Sonic logging. Acoustic measurements of shear and compressional sound speeds in hard and unconsolidated formations. Sonic tools provides the axial, azimuthal, and radial formation sound speed information for near-field and far-field surrounding the wellbore.

Determine the stress distribution from field accousticmeassurements.

1. A fundamental understanding of micromechanics of granular materials

Page 4: Stress-dependent acoustic propagation and dissipation in granular materials Dr. David Johnson, Schlumberger Dr. Jian Hsu, Schlumberger Prof. Hernan Makse,

Sound speeds in unconsolidatedgranular materials

GK

vp

3/4

Gvs

Compressional sound speed Shear sound speed

K: bulk modulusG: shear modulus

pressure Experiments at SchlumbergerDomenico, 1977

Page 5: Stress-dependent acoustic propagation and dissipation in granular materials Dr. David Johnson, Schlumberger Dr. Jian Hsu, Schlumberger Prof. Hernan Makse,

Comparison with Effective Medium Theory

3/1pG

3/1pK

Data contradicts EMT predictions:

Experiments seem to beconsistent with:

2/1pGK

Domenico, 1977Walton, 1987Goddard, 1990Norris and Johnson, 1997

Page 6: Stress-dependent acoustic propagation and dissipation in granular materials Dr. David Johnson, Schlumberger Dr. Jian Hsu, Schlumberger Prof. Hernan Makse,

Hertz-Mindlin theory of contact mechanics

2/32/1

3

2wRCF nn

)mod(29 ulusshearGPaGg

Normal force (Hertz)

)1/(4 ggn GC

Tangential force (Mindlin)

w: normal displacement

s: shear displacement

The shear force depends on the path taken in {w,s}:If C = 0 then Path independent modelsIf C = 0 then Path dependent models

tt

sRwCF tt 2/1

)2/(8 ggt GC

)'(2.0 ratiosPoissong

Glass beads

3/12/1

2/3

~~/~

~~)(

ppK

pwstrain

Scaling argument (de Gennes)

Page 7: Stress-dependent acoustic propagation and dissipation in granular materials Dr. David Johnson, Schlumberger Dr. Jian Hsu, Schlumberger Prof. Hernan Makse,

Effective Medium TheoryOf Contact Elasticity

1. Assumes the existence of an Energy density function U depending on the current reference state of strain { For an isotropic system:

2. Two approximations: a) Affine approximation: the grains move according to the macroscopic strain tensor:

b) Statistically all the grains are the same:

)()3/2(2

1)( 322

0 ijijiiiiij OGGKpUU

jiji Xu

)(11

uWNZduFV

WV

U ccontactscontacts

c

Average are taken over uniform distribution of contacts

singlegrain

EM

Page 8: Stress-dependent acoustic propagation and dissipation in granular materials Dr. David Johnson, Schlumberger Dr. Jian Hsu, Schlumberger Prof. Hernan Makse,

Effective Medium Theorypredictions

3/1

3/23/2 6

12

n

n

C

pZ

CK

3/1

3/23/2 6

20

3/2

n

tn

C

pZ

CCG

P = pressureZ = average coordination number (number of contacts per grain)solid volume fraction

grain properties reference state pressure dependence

Page 9: Stress-dependent acoustic propagation and dissipation in granular materials Dr. David Johnson, Schlumberger Dr. Jian Hsu, Schlumberger Prof. Hernan Makse,

Effective Medium Theorypredictions

The Poisson ratio of a granular assembly:

2/11

K=0 G=0, K

According to Experiments: (K/G~1.1)

According to EMT (K/G~0.7 if v = 0.2)

18.015.0

!!!02.0)35(2

g

g

For glass beads

Equivalently, assuming v=0.15

11

22

g

3/42

G

K

v

v

s

p

)3/1/(2

3/2/

22

11

GK

GK

!!2/179.0 g

Page 10: Stress-dependent acoustic propagation and dissipation in granular materials Dr. David Johnson, Schlumberger Dr. Jian Hsu, Schlumberger Prof. Hernan Makse,

Why Effective Medium TheoryFails?

1. EMT assumes homogeneous distribution of forces on the grains: Role of disorder and force chains

2. EMT predicts well K but not G: Role of transverse forces

3. EMT assumes affine motion of the grains according to the macroscopic deformation: Role of relaxation and non-affine motion of grains

4. Going beyond EMT: relaxation dynamics

Page 11: Stress-dependent acoustic propagation and dissipation in granular materials Dr. David Johnson, Schlumberger Dr. Jian Hsu, Schlumberger Prof. Hernan Makse,

Molecular Dynamics simulationsof granular matter

Hertz-Mindlin contact forcesCoulomb friction and dissipative forces

Makse, Gland, Johnson, Schwartz, PRL (1999)Makse, Johnson, Schwartz, PRL (2000)Johnson et al, Physica B (2000)Makse, Gland, Johnson, Phys Chem Earth (2001)Jenkins, et al, J. Mech. Phys. Sol (2004)Makse, et al. PRE (2004)Zhang, Makse, PRE (2005)Brujic, Wang, Johnson, Sindt, Makse, PRL (2005)Gland, Wang, Makse Eur. Phys. J (2006)J. Hsu, Johnson, Gland, Makse, PRL (submitted)Magnanimo, Laragione, Jenkins, Makse, PRL (sub)

Page 12: Stress-dependent acoustic propagation and dissipation in granular materials Dr. David Johnson, Schlumberger Dr. Jian Hsu, Schlumberger Prof. Hernan Makse,

Preparation protocol

Start with a gas of spheres and compress anduncompress isotropically until a desired pressure andcoordination number

3D10,000 to 100,000 grains

Bernal packings of steel balls fixedby wax (Nature, 1960)

Z~6

First focus on reference states with large Z~6 and RCPRandom close packing

Page 13: Stress-dependent acoustic propagation and dissipation in granular materials Dr. David Johnson, Schlumberger Dr. Jian Hsu, Schlumberger Prof. Hernan Makse,

Mea

n co

ordi

nati

on n

umbe

r

Pressure [Mpa]

Frictionless packs

Frictional packs

to RLP Z=4

to RCP Z=6

Constraint argumentsfor rigid grainsEdwards, Grinev, PRLIsostatic conditionof force balance

Dense packingsZ = 6 (frictionless) RCP

Loose packingsZ= 4 (frictional) RLP

RCP limit

Soft grain limit

The reference state

Random close packing

Random loose packing

RLP limit

Page 14: Stress-dependent acoustic propagation and dissipation in granular materials Dr. David Johnson, Schlumberger Dr. Jian Hsu, Schlumberger Prof. Hernan Makse,

Calculation of K and G

ijllijijllij GK

3

12

From linear elasticity theory:

Stress tensor

1. Uniaxial compression:

2. Pure shear deformation:

0011 ij

11

113/4

GK

012

12

12

2

1

G

3. Biaxial shear deformation:

0332211

2211

2211

2

1

G

Page 15: Stress-dependent acoustic propagation and dissipation in granular materials Dr. David Johnson, Schlumberger Dr. Jian Hsu, Schlumberger Prof. Hernan Makse,

Numerical results for K and G

Crossover behavior:Not a well-defined power law for theentire range of pressures

3/13/23/2 )()( ppZpGK

The reference state is changing with pressure. Incorporate the behaviorof Z(p) and (p)

Page 16: Stress-dependent acoustic propagation and dissipation in granular materials Dr. David Johnson, Schlumberger Dr. Jian Hsu, Schlumberger Prof. Hernan Makse,

Numerical results for K and G

3/13/23/2 )()( ppZpGK

Corrected EMT:

RCP

GPa

pp

isostaticZ

MPa

pZpZ

c

c

c

c

64.0

14)(

6

10)(

3/2

3/2

Page 17: Stress-dependent acoustic propagation and dissipation in granular materials Dr. David Johnson, Schlumberger Dr. Jian Hsu, Schlumberger Prof. Hernan Makse,

Numerical results for K/G

3/13/23/2 )()( ppZpGK

Corrected EMT captures the trend,but the ratio K/G is still not predicted

71.0)45(3

)2(5

g

g

G

K

Page 18: Stress-dependent acoustic propagation and dissipation in granular materials Dr. David Johnson, Schlumberger Dr. Jian Hsu, Schlumberger Prof. Hernan Makse,

Role of tangential forces

sRwCFF ttt 2/1'

1. K is captured by EMT

2. EMT drastically fails for G, specially for low friction systems with perfect slip

Redefine the transversal force:

10

Perfect slip

3/1

3/23/2 6

20

3/2

n

tn

C

pZ

CCG

3/1

3/23/2 6

12

n

n

C

pZ

CK

Page 19: Stress-dependent acoustic propagation and dissipation in granular materials Dr. David Johnson, Schlumberger Dr. Jian Hsu, Schlumberger Prof. Hernan Makse,

Role of relaxation of grainsIs the affine approximation correct? NO!

Non-affine relaxation

B

C

Page 20: Stress-dependent acoustic propagation and dissipation in granular materials Dr. David Johnson, Schlumberger Dr. Jian Hsu, Schlumberger Prof. Hernan Makse,

Role of disorder and force chains

B

C

Uniaxial compression of granular materials

Page 21: Stress-dependent acoustic propagation and dissipation in granular materials Dr. David Johnson, Schlumberger Dr. Jian Hsu, Schlumberger Prof. Hernan Makse,

Reference states with low Z~4 and low density

Preparation protocol for loose packings

coor

dina

tion

num

ber

Pressure [Mpa]

Frictional packs

to RLP Z=4

Constraint argumentsfor rigid grainsEdwards, Grinev, PRL.Isostatic limit forfrictional grains:

Z= D+1 = 4 (frictional)

Page 22: Stress-dependent acoustic propagation and dissipation in granular materials Dr. David Johnson, Schlumberger Dr. Jian Hsu, Schlumberger Prof. Hernan Makse,

EMT

Z

G/K

Jamming transition at Z=4. =4. EMT completelly fails. No perturbative analysis possible. Collective relaxation ensuesEMT completelly fails. No perturbative analysis possible. Collective relaxation ensues

In “agreement” with EMT

For low Z~4, there isa jamming transitionwith critical behavior:

2/1)(/ cZZKG

4cZ

For large Z>6

constKG /

Reference states with low Z~4 and low density

Page 23: Stress-dependent acoustic propagation and dissipation in granular materials Dr. David Johnson, Schlumberger Dr. Jian Hsu, Schlumberger Prof. Hernan Makse,

Going beyond EMT

EMT

Z

G/K

Jamming transition at Z=4. =4. EMT completelly fails. No perturbative analysis possible. Collective relaxation ensuesEMT completelly fails. No perturbative analysis possible. Collective relaxation ensues

Perform a perturbation around the EMT solution for high coordination numberPair fluctuation theory of Jenkins, Laragione et al. (submitted)

EMT

Pair relaxationin an effectivemedium

Page 24: Stress-dependent acoustic propagation and dissipation in granular materials Dr. David Johnson, Schlumberger Dr. Jian Hsu, Schlumberger Prof. Hernan Makse,

Summary

1. EMT captures approximately the behavior of the bulk modulus

2. EMT fails drastically for the shear modulus

3. The elastic moduli depends critically on the reference state.

4. For low coordination number near RLP there is a jamming critical transition

5. No hope for EMT near the jamming point.

6. Perturbative analysis may provide corrections to EMT for high coordination numbers.

7. Future work involves going beyond the EMT.

Page 25: Stress-dependent acoustic propagation and dissipation in granular materials Dr. David Johnson, Schlumberger Dr. Jian Hsu, Schlumberger Prof. Hernan Makse,

Search for force chains

Emulsion Data (Expt.) vs. Hertzian Balls (Simulation)

Under isotropic compression

No force chains, yet exponential

Page 26: Stress-dependent acoustic propagation and dissipation in granular materials Dr. David Johnson, Schlumberger Dr. Jian Hsu, Schlumberger Prof. Hernan Makse,

2D or 3D under Uniaxial Stress

Behringer’s exp. Hertzian Frictional Spheres

Page 27: Stress-dependent acoustic propagation and dissipation in granular materials Dr. David Johnson, Schlumberger Dr. Jian Hsu, Schlumberger Prof. Hernan Makse,

(b) Hertz spheres under isotropic compression

(a) Droplets under isotropic compression

Page 28: Stress-dependent acoustic propagation and dissipation in granular materials Dr. David Johnson, Schlumberger Dr. Jian Hsu, Schlumberger Prof. Hernan Makse,

(d) Hertz spheres under uniaxial compression in 3D

(c) Hertz spheres under isotropic compression in 2D

Page 29: Stress-dependent acoustic propagation and dissipation in granular materials Dr. David Johnson, Schlumberger Dr. Jian Hsu, Schlumberger Prof. Hernan Makse,

JAMMED MATTER

Granular Matter

Compressed emulsionsColloidal glasses

Molecular GlassesJamming “phase diagram”Liu and Nagel, Nature (1998)

Jamming oil droplets (10 m) by increasing osmotic pressure. Brujic, Edwards, Hopkinson, Makse, Physica A (2003)

Jamming grains (1mm) in a periodic box:Molecular dynamics simulations of sheared granular matter. Makse, and Kurchan, Nature (2002).

Jamming PMMA colloidal particles (3 m) by increasing density.

Glass transition: cooling a viscousliquid fast enough. Debenedetti and Stillinger Nature(2001)

Thermal systemsAthermal systems