Hernan J. Cortes Hernan J. Cortes Consulting, LLC. Midland...

of 49 /49
Hernan J. Cortes. CPAC Summer Institute, 2011 Hernan J. Cortes Hernan J. Cortes Consulting, LLC. Midland, MI. USA University of Tasmania, Australia [email protected]

Embed Size (px)

Transcript of Hernan J. Cortes Hernan J. Cortes Consulting, LLC. Midland...

  • Hernan J. Cortes. CPAC Summer Institute, 2011

    Hernan J. Cortes Hernan J. Cortes Consulting, LLC.

    Midland, MI. USA University of Tasmania, Australia

    [email protected]

  • Synge, Nobel Lecture 12/12/1952 Hernan J. Cortes. CPAC Summer

    Institute, 2011

  • Synge, Nobel Lecture 12/12/1952 Hernan J. Cortes. CPAC Summer

    Institute, 2011

  • Synge, Nobel Lecture 12/12/1952 Hernan J. Cortes. CPAC Summer

    Institute, 2011

  • Synge, Nobel Lecture 12/12/1952 Hernan J. Cortes. CPAC Summer

    Institute, 2011

  • Synge, Nobel Lecture 12/12/1952 Hernan J. Cortes. CPAC Summer

    Institute, 2011

  • real-world samples are normally very complex mixtures, containing hundreds and sometimes thousands of components

    the total separation of such matrices on a single capillary column is a difficult, if not impossible, task

    a great increase in resolving power can be achieved through the coupling of two columns with different separation mechanisms through a specific transfer system Hernan J. Cortes. CPAC Summer

    Institute, 2011

  • Hernan J. Cortes. CPAC Summer Institute, 2011

    Peak Capacity

    n = 1 + N ½ ln 1 + k’

    r

    N = theoretical plates

    r = standard deviations equaling peak width (4)

    k’ = capacity factor of the last peak in a series

    J.C. Giddings, Anal. Chem. 53 (1983) 418

  • P= n α e-α Number of visible peaks P = 0.37 Number of single component peaks S = 0.19

    Hernan J. Cortes. CPAC Summer Institute, 2011

  • Hernan J. Cortes. CPAC Summer Institute, 2011

    Comprehensive Two Dimension Gas Chromatography

    vs traditional heartcutting

    Comprehensive First Dimension

    Transfer Device

    5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

    5.0

    4.5

    4.0

    3.5

    3.0

    2.5

    2.0

    1.5

    1.0

    0.5

    0.0

    1st Col (min)

    2nd Col(sec)

  • Constant temperature bath (GC) and valves Column arrangement inside bath (GC)

    Simmons and Snyder, Anal. Chem., Vol. 30, No. 1, January 1958, pp 32-35 Hernan J. Cortes. CPAC Summer

    Institute, 2011

  • Hernan J. Cortes. CPAC Summer Institute, 2011

    Key benefits: 1. Suitable for fast moving molecules 2. Doesn’t require cryogen 3. In-Oven with no moving parts

  • Hernan J. Cortes. CPAC Summer Institute, 2011

    Augsburg aerosol sample

    Vogt, L., Groeger, T., Zimmermann, R., J. Chromatogr. A 2007, 1150, 2 – 12.

  • Hernan J. Cortes. CPAC Summer Institute, 2011

    commercial perfume

    d'Acampora Zellner, B., Casilli, A., Dugo, P., Dugo, G., Mondello, L., J. Chromatogr. A 2007, 1141, 279 – 286

  • fast LC has become a major research area in academia and industry

    governed by progress in column design (sub 2 µm particles) and availability of higher pressure pumps (>> 400 bar)

    Analysis times for many applications could be reduced by factor 5-10

    Also, with the availability of longer columns packed with smaller diameter particles, it is possible to do high-resolution LC experiments

    More resolution is needed for very complex samples, such as oligomers or biological samples

    Hernan J. Cortes. CPAC Summer Institute, 2011

  • Hernan J. Cortes. CPAC Summer Institute, 2011

    Ddkf

    C p2)(

    =

    CuuBAH ++= /Sub-2 µm particle (dp)

    Fused core (dp)

    Monolith (C)

    Temperature (D)

  • Hernan J. Cortes. CPAC Summer Institute, 2011

    High-speed separation of inhibitors at 80C (ZorbaxTM C18 XDB, 50x4.6 µm 1.8 mm)

    First two peaks are broadened – solvent effect (injection of MeCN solution in MeCN/H2O 80/20 ZorbaxTM is a registered trademark of Agilent Technolgies

    min0 0.2 0.4 0.6 0.8 1

    OH

    OH

    CH3

    OH

    OH

    CH3

    O

    OH

    CH3O

    OH

    CH3

    OH

    OH

    OH

    OH

    OH

    R2

    R1

    OH

    R2

    R1

    NH

    S

    NH

    S

  • Hernan J. Cortes. CPAC Summer Institute, 2011

    min0.3 0.4 0.5 0.6 0.7 0.8 0.9

    1

    3

    4

    5

    6

    7

    8

    2

    9 10

    1112

    Resin 4Resin 3

    Resin 2

    Resin 1

    Separations executed on 1.8 µm silica column (ZorbaxTM Rx-Sil, 4.6x100 mm)

    Critical LC is powerful to monitor functionality type distribution (epoxy / epoxy-, epoxy / phenolic- end groups, branching, etc.)

    12 species separated in less than 1 min run time – ideal for LCxLC

    O O 3 O O 3

    O O H

    O H 12 O

    O H

    O H 12

    6 O

    O H

    6 O

    O H

    O

    O H

    • H. J. Cortes, L. Mondello, D. West, S. Maynard, et al. “Anal Chem. 81 (2009) 4271-4279

  • Hernan J. Cortes. CPAC Summer Institute, 2011

    Separation of NIST SRM 869a executed on 1.8 µm ZorbaxTM SB C18 (15 cm length)

    Good separation efficiency and peak shape

  • Sub-2 µm columns have received significant competition from other column manufacturers (partially porous silica, other 2-3 um columns with low backpressure)

    In few cases column plugging can be observed which results in an increase of column back-pressure

    Fused Core (partially porous) columns thus far have shown excellent performance

    Such columns are less susceptible to back-pressure increase/plugging

    Hernan J. Cortes. CPAC Summer Institute, 2011

  • Hernan J. Cortes. CPAC Summer Institute, 2011

    From Joseph J. Kirkland and Timothy J. Langlois, US patent 2007,0189944 A1

    2.7-µm fused-core

    1.8-µm totally porous

    2.7-µm fused-core

    1.8-µm totally porous

    Particle size 2.7 µm - 1.7 µm solid core- 0.5 µm porous layer

    Reduced mass transfer path length, reduced resistance of mass transfer

  • Hernan J. Cortes. CPAC Summer Institute, 2011

    min1 2 3 4 5 6 min1 2 3 4 5 6

    NH

    NH

    O

    O

    NH

    NH

    O

    O

    CH3CH3CH3CH3

    O

    O

    OH

    OH

    O

    O

    OH

    OH

    N CH3CH3

    N CH3CH3

    SRM870 separation on Ascentis ExpressTM C18 (4.6 x 150 mm)

    very low metal content, very low silanol activity

    good retention properties (T/EB) Ascentis ExpressTM is a registered trademark from Supelco

  • Hernan J. Cortes. CPAC Summer Institute, 2011

    min 0 2 4 6 8 10 12 14

    mAU

    0

    10

    20

    30

    40

    50

    60

    70

    Ascentis ExpressTM C18 2.7 µm (4.6x150 mm)

    p = 180 bar (starting), 60C

    ZorbaxTM C18-SB 1.8 µm (4.6x100+50mm)

    p = 250 bar (starting), 80C

    n = 0

    n = 1

    n = 2

    O O O

    OOO

    n

    p,p o,p

    o,o

    flow= 1.4 ml/min

  • Hernan J. Cortes. CPAC Summer Institute, 2011

    min 0 2 4 6 8 10

    2

    1

    4

    3 5

    6 7 8

    9

    10 11 12

    13 14 15

    N/m = 150000

    33 minutes 12 minutes 33 minutes 12 minutes

    Ascentis ExpressTM C18 (4.6 x 100 mm)

  • Hernan J. Cortes. CPAC Summer Institute, 2011

    Batch 49

    Batch 63

    Batch 52

    Batch 68

    min 0 2 4 6 8 10

    mAU

    0

    10

    20

    30

    40

    50

    DAD1 A, Sig=250,4 Ref=360,100 (N:\HPCHEM\1\DATA\JAN08\SPIN-C51.D)

    0.4

    01

    0.4

    55

    0.5

    44

    0.7

    08

    0.7

    77

    0.9

    60

    1.1

    59

    1.2

    13

    1.3

    13

    1.5

    12

    1.5

    90

    1.8

    20

    1.9

    32

    2.1

    29

    2.7

    81

    3.4

    35

    3.7

    10

    3.8

    26

    4.0

    08 4.3

    41

    5.1

    29

    5.3

    64

    7.3

    88

    10.

    076

    min 0 2 4 6 8 10

    mAU

    0

    10

    20

    30

    40

    50

    60

    70

    DAD1 A, Sig=250,4 Ref=360,100 (N:\HPCHEM\1\DATA\DEC07\SPIN-C41.D)

    0.3

    98

    0.4

    44

    0.5

    25

    0.7

    26

    0.7

    63

    0.8

    15

    0.9

    11

    1.0

    18

    1.0

    98

    1.1

    51

    1.1

    93

    1.2

    48

    1.3

    03

    1.3

    62

    1.4

    33

    1.5

    51

    1.6

    63

    1.8

    30

    2.2

    50

    2.9

    69

    3.4

    63

    3.7

    79

    3.8

    82

    4.1

    41

    4.6

    74

    5.2

    22

    5.3

    80

    7.7

    85

    10.

    726

    min 0 2 4 6 8 10

    mAU

    0

    20

    40

    60

    80

    100

    120

    140

    160

    DAD1 A, Sig=250,4 Ref=360,100 (N:\HPCHEM\1\DATA\OCT07\SPIN-C31.D)

    0.4

    09

    0.5

    35

    0.5

    87

    0.6

    45

    0.6

    89

    0.7

    78

    0.9

    26

    0.9

    96

    1.1

    17

    1.1

    67

    1.2

    57

    1.3

    20

    1.3

    81

    1.4

    49

    1.5

    40

    1.7

    39

    1.8

    50

    1.9

    77

    2.0

    61

    2.2

    62

    2.6

    93

    2.9

    62

    3.3

    18

    3.6

    12

    3.7

    06

    3.9

    40

    4.2

    89

    4.9

    57

    5.0

    88

    5.2

    96

    6.6

    81

    7.3

    10

    10.

    013

    min 0 2 4 6 8 10

    mAU

    0

    20

    40

    60

    80

    DAD1 A, Sig=250,4 Ref=360,100 (N:\HPCHEM\1\DATA\OCT07\SPREP313.D)

    0.3

    98

    0.5

    26

    0.6

    48

    0.7

    69

    0.9

    23

    0.9

    94

    1.1

    12

    1.1

    96

    1.2

    72

    1.3

    29

    1.3

    85

    1.4

    57

    1.5

    82

    1.7

    75

    1.8

    70

    2.0

    13

    2.1

    30

    2.8

    02

    3.4

    08

    3.7

    26

    3.8

    28

    4.1

    15

    4.5

    10

    5.1

    51

    5.3

    48

    5.5

    69

    7.7

    46

    10.

    680

    12+13

    3+4

    Batch 49

    Batch 63

    Batch 52

    Batch 68

    min 0 2 4 6 8 10

    mAU

    0

    10

    20

    30

    40

    50

    DAD1 A, Sig=250,4 Ref=360,100 (N:\HPCHEM\1\DATA\JAN08\SPIN-C51.D)

    0.4

    01

    0.4

    55

    0.5

    44

    0.7

    08

    0.7

    77

    0.9

    60

    1.1

    59

    1.2

    13

    1.3

    13

    1.5

    12

    1.5

    90

    1.8

    20

    1.9

    32

    2.1

    29

    2.7

    81

    3.4

    35

    3.7

    10

    3.8

    26

    4.0

    08 4.3

    41

    5.1

    29

    5.3

    64

    7.3

    88

    10.

    076

    min 0 2 4 6 8 10

    mAU

    0

    10

    20

    30

    40

    50

    60

    70

    DAD1 A, Sig=250,4 Ref=360,100 (N:\HPCHEM\1\DATA\DEC07\SPIN-C41.D)

    0.3

    98

    0.4

    44

    0.5

    25

    0.7

    26

    0.7

    63

    0.8

    15

    0.9

    11

    1.0

    18

    1.0

    98

    1.1

    51

    1.1

    93

    1.2

    48

    1.3

    03

    1.3

    62

    1.4

    33

    1.5

    51

    1.6

    63

    1.8

    30

    2.2

    50

    2.9

    69

    3.4

    63

    3.7

    79

    3.8

    82

    4.1

    41

    4.6

    74

    5.2

    22

    5.3

    80

    7.7

    85

    10.

    726

    min 0 2 4 6 8 10

    mAU

    0

    20

    40

    60

    80

    100

    120

    140

    160

    DAD1 A, Sig=250,4 Ref=360,100 (N:\HPCHEM\1\DATA\OCT07\SPIN-C31.D)

    0.4

    09

    0.5

    35

    0.5

    87

    0.6

    45

    0.6

    89

    0.7

    78

    0.9

    26

    0.9

    96

    1.1

    17

    1.1

    67

    1.2

    57

    1.3

    20

    1.3

    81

    1.4

    49

    1.5

    40

    1.7

    39

    1.8

    50

    1.9

    77

    2.0

    61

    2.2

    62

    2.6

    93

    2.9

    62

    3.3

    18

    3.6

    12

    3.7

    06

    3.9

    40

    4.2

    89

    4.9

    57

    5.0

    88

    5.2

    96

    6.6

    81

    7.3

    10

    10.

    013

    min 0 2 4 6 8 10

    mAU

    0

    20

    40

    60

    80

    DAD1 A, Sig=250,4 Ref=360,100 (N:\HPCHEM\1\DATA\OCT07\SPREP313.D)

    0.3

    98

    0.5

    26

    0.6

    48

    0.7

    69

    0.9

    23

    0.9

    94

    1.1

    12

    1.1

    96

    1.2

    72

    1.3

    29

    1.3

    85

    1.4

    57

    1.5

    82

    1.7

    75

    1.8

    70

    2.0

    13

    2.1

    30

    2.8

    02

    3.4

    08

    3.7

    26

    3.8

    28

    4.1

    15

    4.5

    10

    5.1

    51

    5.3

    48

    5.5

    69

    7.7

    46

    10.

    680

    12+13

    3+4

    min 0 2 4 6 8 10

    mAU

    0

    10

    20

    30

    40

    50

    DAD1 A, Sig=250,4 Ref=360,100 (N:\HPCHEM\1\DATA\JAN08\SPIN-C51.D)

    0.4

    01

    0.4

    55

    0.5

    44

    0.7

    08

    0.7

    77

    0.9

    60

    1.1

    59

    1.2

    13

    1.3

    13

    1.5

    12

    1.5

    90

    1.8

    20

    1.9

    32

    2.1

    29

    2.7

    81

    3.4

    35

    3.7

    10

    3.8

    26

    4.0

    08 4.3

    41

    5.1

    29

    5.3

    64

    7.3

    88

    10.

    076

    min 0 2 4 6 8 10

    mAU

    0

    10

    20

    30

    40

    50

    60

    70

    DAD1 A, Sig=250,4 Ref=360,100 (N:\HPCHEM\1\DATA\DEC07\SPIN-C41.D)

    0.3

    98

    0.4

    44

    0.5

    25

    0.7

    26

    0.7

    63

    0.8

    15

    0.9

    11

    1.0

    18

    1.0

    98

    1.1

    51

    1.1

    93

    1.2

    48

    1.3

    03

    1.3

    62

    1.4

    33

    1.5

    51

    1.6

    63

    1.8

    30

    2.2

    50

    2.9

    69

    3.4

    63

    3.7

    79

    3.8

    82

    4.1

    41

    4.6

    74

    5.2

    22

    5.3

    80

    7.7

    85

    10.

    726

    min 0 2 4 6 8 10

    mAU

    0

    20

    40

    60

    80

    100

    120

    140

    160

    DAD1 A, Sig=250,4 Ref=360,100 (N:\HPCHEM\1\DATA\OCT07\SPIN-C31.D)

    0.4

    09

    0.5

    35

    0.5

    87

    0.6

    45

    0.6

    89

    0.7

    78

    0.9

    26

    0.9

    96

    1.1

    17

    1.1

    67

    1.2

    57

    1.3

    20

    1.3

    81

    1.4

    49

    1.5

    40

    1.7

    39

    1.8

    50

    1.9

    77

    2.0

    61

    2.2

    62

    2.6

    93

    2.9

    62

    3.3

    18

    3.6

    12

    3.7

    06

    3.9

    40

    4.2

    89

    4.9

    57

    5.0

    88

    5.2

    96

    6.6

    81

    7.3

    10

    10.

    013

    min 0 2 4 6 8 10

    mAU

    0

    20

    40

    60

    80

    DAD1 A, Sig=250,4 Ref=360,100 (N:\HPCHEM\1\DATA\OCT07\SPREP313.D)

    0.3

    98

    0.5

    26

    0.6

    48

    0.7

    69

    0.9

    23

    0.9

    94

    1.1

    12

    1.1

    96

    1.2

    72

    1.3

    29

    1.3

    85

    1.4

    57

    1.5

    82

    1.7

    75

    1.8

    70

    2.0

    13

    2.1

    30

    2.8

    02

    3.4

    08

    3.7

    26

    3.8

    28

    4.1

    15

    4.5

    10

    5.1

    51

    5.3

    48

    5.5

    69

    7.7

    46

    10.

    680

    12+13

    3+4

  • With a few exceptions (high-throughput or 2nd dimension in 2D LC), the desired analysis times for LC for most applications are on the order of 3-5 min

    Introduction of new LC columns with reduced backpressure such as partially porous silica may delay the need for ultra-high pressure (1000+ bar) but column reproducibility still an issue.

    However, the trend toward higher pressure instrumentation will continue

    Hernan J. Cortes. CPAC Summer Institute, 2011

  • GC oven (massive) Resistive wire heating

    in a small “oven” which has very low thermal mass.

    Luong, J.; Gras, R.; Mustacich, R.; Cortes, H. J. Chromatogr. Sci. 2006, 44, 253-261.

    Hernan J. Cortes. CPAC Summer Institute, 2011

  • Ideal attributes for fast GC Low power consumption Rapid cooling Fast heating

    Hernan J. Cortes. CPAC Summer Institute, 2011

  • Fast temperature gradients (> 50°C/min) were never studied in LC

    Apply LTM concept to LC separations

    Requires use of capillary columns (e.g., i.d. of 200 – 300 um, compared to 2.1-4.6 mm for standard columns)

    Hernan J. Cortes. CPAC Summer Institute, 2011

  • Capillary column 0.25 mm vs 4.6 mm i.d. (300 time lower in mass)

    Housing and end-fittings

    LTM assembly

    Hernan J. Cortes. CPAC Summer Institute, 2011

    aluminum tube, i.d. of 0.50 mm, o.d. of 0.55 mm

    Resistive wire, RTD, insulation fiber, controlled by LTM A68

    B. Gu, H. J. Cortes, M. Pursch, J. Luong, P. Eckerle, R. Mustacich. Anal. Chem. 2009. 81 (4), 1488–1495

  • Hernan J. Cortes. CPAC Summer Institute, 2011

    Inlet frit

    Micro-column

    LTM assembly

    Ending frit

  • Hernan J. Cortes. CPAC Summer Institute, 2011

    heated tubing (~40 cm length)

    250 µm i.d. fused silica column

    from injector

    to DAD (300 mm x 50 µm)

  • Hernan J. Cortes. CPAC Summer Institute, 2011

    Wolcott et al. J. Chromatogr. A 2000, 869, 211-230.

  • Hernan J. Cortes. CPAC Summer Institute, 2011

    0 4 8 12 16 20

    400

    800

    1200

    1600Re

    spon

    se (m

    V)

    Retention time (min)

    A

    B

    C

    D

    E

    F

    25 oC

    150 oC

    125 oC

    100 oC

    75 oC

    50 oC

    Column: 250 um x 25 cm; Restek Pinnacle II C18, 5 um

    Mobile phase: 60% ACN/0.1% TFA

    Column flow rate: 3.0 uL/min

    UV: 220 nm

    Analytes: neutral and acidic

  • Hernan J. Cortes. CPAC Summer Institute, 2011

    Column efficiency (plates) with the same column flow rate (3 µL/min). 25 oC 50 oC 75 oC 100 oC 125 oC 150 oC

    Uracil 12300 13200 14900 12500 11500 9100

    Benzoic acid 9300 10000 11400 9800 8100 9200

    2,4-D 7800 9000 8900 8500 7000 6100

    4-phenylphenol 10000 9800 9100 9000 7700 6700

    Ethylbenzoate 11300 11500 10900 9700 7400 6300

    Benzophenone 11300 11700 10900 10000 7900 6300

    Naphthalene 9700 8800 7500 6600 4600 4000

    4-hexylbenzoic acid 8600 8300 7200 5300 3800 3500

  • Hernan J. Cortes. CPAC Summer Institute, 2011

    6 oC/min

    12 oC/min

    18 oC/min

    24 oC/min

    50 oC/min

    1800 oC/min

    100 oC/min

    0 4 8 12 16

    400

    800

    1200

    1600

    Resp

    onse

    (mV)

    Retention time (min)

    A

    B

    C

    D

    E

    F

    G 200 oC/min

    100 oC/min

    6 oC/min

    12 oC/min

    18 oC/min

    24 oC/min

    50 oC/min

    0 2 4 6 8 10200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    Resp

    onse

    (mV)

    Retention time (min)

    A

    B

    C

    D

    E

    F

    G

  • Hernan J. Cortes. CPAC Summer Institute, 2011

    0 4 8 12 16 20200

    300

    400

    500

    600Re

    spon

    se (m

    V)

    Retention time (min)

    A

    B

    C

    D

    1 2

    3+4 5

    6 7+8

    1 234 5

    6 7 8

    1234

    5

    67 8

    12

    3+4 5

    678

    Column: 250 um x 25 cm; Zorbax SB C18, 5 um

    Mobile phase: 45/55% v/v ACN/40 mM phosphate, pH (2.30)

    UV: 220 nm

    Analytes: neutral, acidic and basic

    100 oC

    75 oC

    50 oC

    25 oC

    uracil (1), diphenhydramine (2), benzoic acid (3), nortriptyline (4), dimethylphthalate (5), sulfinpyrazone (6), 4-phenylphenol (7), and terfenadine (8)

  • Hernan J. Cortes. CPAC Summer Institute, 2011

    50 oC for 4.5 min, then ramped to 100 oC at a rate of 12 oC/min, and hold at 100 oC for 3.5 min

    0 2 4 6 8 10 12

    240

    280

    320

    360

    400Re

    spon

    se (m

    V)

    Retention time (min)

    1 2

    3 45

    6 7 8

    1 23 4

    5

    6 7 8

    100 to 25 oC at a rate of 25 oC/min was used, followed by 1 min hold at 25 oC and then ramped to 100 oC at 25 oC/min

  • Hernan J. Cortes. CPAC Summer Institute, 2011

    0.0 0.5 1.0 1.5

    400

    500

    600

    700

    800

    Resp

    onse

    (mV)

    Retention time (min)

    A

    B

    C

    D

    E 100 oC/min

    75 oC/min

    40 oC/min

    20 oC/min

    25 oC isothermal

  • Hernan J. Cortes. CPAC Summer Institute, 2011

  • min 0 1 2 3 4 5 6 7

    mAU

    0

    100

    200

    300

    400

    500

    600

    700

    800

    Chromolith CapRod RP-18e HR (150 mm x 0.2 mm) from Merck (Darmstadt, Germany) was used

    Terphenyl Biphenyl

    Uracil

    Phthalates

    Data:

    2.75 uL/min, MeCN/H2O 65/35, 0.10 uL inj.

    N Terphenyl: ~25000 (160,000/m)

    Very competitive column performance - comparable to ~2.5 um silica particle column

    Hernan J. Cortes. CPAC Summer Institute, 2011

  • Optimum column efficiency is at lower temperature for non-polar compounds Application of fast temperature gradients (increasing & decreasing) should not affect

    efficiency dramatically

    Terphenyl

    0.00050

    0.00060

    0.00070

    0.00080

    0.00090

    0.00100

    0.00110

    0.00120

    0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

    Flow rate [uL/min]

    H [c

    m]

    25C

    50C

    70C

    Flow vs. pressure

    0.0

    20.0

    40.0

    60.0

    80.0

    100.0

    120.0

    140.0

    160.0

    180.0

    0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

    Flow rate [uL/min]pr

    essu

    re [b

    ar]

    25C50C70CLinear (25C)Linear (50C)Linear (70C)

    Hernan J. Cortes. CPAC Summer Institute, 2011

  • ambient

    50°C

    70°C

    70°C to ambient at -5°C/min

    • Complex sample mixture, containing more than 30 components • Selectivity & resolution needed – T gradients can provide this • Separation efficiency apparently better at higher T for current sample (relatively polar)

    • mobile phase gradient (MeCN/buffer) applied throughout all separations

    Hernan J. Cortes. CPAC Summer Institute, 2011

  • 25°C isothermal

    30°C - 100°C – 30°C at 200 °C/min

    • Application of two targeted heat pulses (200°C/min) during a gradient LC separation provides improved separation of selected components

    • Facilitates selectivity tuning Hernan J. Cortes. CPAC Summer

    Institute, 2011

  • • Series of four consecutive separations. Good reproducibility for retention times is observed.

    bar

    Hernan J. Cortes. CPAC Summer Institute, 2011

  • min 7 7.5 8 8.5 9 9.5 10 10.5

    100

    200

    300

    400

    500

    Norm.

    200°C/min (heating)

    ~ -60°C/min (passive air cooling)

    • Cooling rate lags the heating rate significantly

    • Still fairly rapid considering passive cooling with surrounding ambient temperature.

    Hernan J. Cortes. CPAC Summer Institute, 2011

  • LTMLC provides reliable heating and cooling capability. Very fast temperature gradients (both increasing and decreasing)

    can be applied. Resolution improvement via selected thermal pulses Use of monolithic columns Stationary phase stability LTMLC is a very powerful tool to provide additional selectivity &

    speed for LC separations Allows inclusion of ultra-fast temperature gradients for tailored

    separations of complex samples Use as second dimension in Comprehensive Multidimensional LC.

    Hernan J. Cortes. CPAC Summer Institute, 2011

  • Matthias Pursch, Patric Eckerle , Binghe Gu, and Jim Luong. TDCC

    Robert Shellie, Emily Hilder, Tim Causon. UTAS

    Hernan J. Cortes. CPAC Summer Institute, 2011

  • Hernan J. Cortes. CPAC Summer Institute, 2011

    Advances and New approaches in Modern Separation Science�Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6The Need for Multidimensionality�Slide Number 8P= Peak Number = Sum of mean number of singlets, doublets, etc…�Slide Number 10Evolution of Multi-dimensional Gas Chromatography�1958GCxGC �with Capillary Flow TechnologySlide Number 13Slide Number 14Trends in LC: speed and resolutionCurrent Trends in Liquid ChromatographyUltra-fast LC of additivesUltra-fast critical LCHigh-resolution LCFast LC columnsFused Core columnsFused Core columnsSub 2 mm and Fused Core columnsSeparation of natural product �(15 components)Fused Core lot-to-lot variabilityUltra-high pressure LCLow-thermal mass GCKey Features of LTMGCLTMLCLTMLCCurrent versionCooling fan versionThermal MismatchIsocratic and IsothermalColumn Efficiency vs. TemperatureTemperature ProgrammingSelectivity TuningOscillated Thermal GradientUltrafast LTMLCReproducibilityLTMLC with silica monolithLTMLC with silica monolithInsecticide separation – isothermal �and T gradientInsecticide separation – heat pulsesInsecticide separation – heat pulsesHeat pulses – heating/coolingConclusionsAcknowledgementsSlide Number 49