Strategies and Technological Challenges For Realizing...

7
JISSE12 November 911, 2011 Tokyo Japan Tokyo, Japan Strategies and Technological Challenges For Realizing Lightweight Mass Production Automobile by using CFRTP Jun Takahashi The University of Tokyo, Japan What is the decisive factor to use CFRP in automobile ? Driving performance ? Fuel efficiency ? Yes, but… Of course yes, but… Not rust property ? Multifunction property ? Aesthetics ? Recyclability ? Maybe yes, but… …. (yawn) …. (zzz) You must be joking ! Recyclability ? Cost ? You must be joking ! Yes, cost is the first and absolute condition ! Others are later. 2008 Population Total Primary Energy Supply Total Final Energy Consumption OECD 1190 million 4.56 toe/capita 3.11 toe/capita NonOECD 5498 million 1.24 toe/capita 0.86 toe/capita ECD ta) 1.6 Conversion loss Sectional Energy Consumption of OECD and NonOECD countries C ti i th rgy Consumption of OE CD countries (toe/capit 0.6 0.8 1.0 1.2 1.4 Electricity Combustible Gas Oil Coal Power ation Self Consumption Kerosene for heating Raw materials for plastics Consumption in the engine combustion Sectional Ener and NonOEC 0.0 0.2 0.4 Electrical Genera Conversion Loss Industry Sector Transport Sector Other Sectors NonEnergy Use OECD Non OECD Non OECD Non OECD Non OECD Non Raw materials for plastics, Asphalt, Lubricant 4000 4500 transport sector (non-OECD) transport sector OECD) ons) Oil consumption of the world and transport sector 1/40 of the world (affordable) oil reserves 1500 2000 2500 3000 3500 bunker oil other sectors Consumption (Million t Just burned in transport sector 0 500 1000 1973 1980 1990 1995 2000 2005 World Oil Source: EDMC, Energy & Economic Statistics 2011 Raw material of plastics

Transcript of Strategies and Technological Challenges For Realizing...

Page 1: Strategies and Technological Challenges For Realizing ...j-t.o.oo7.jp/publications/20111109JISSE12-PPT.pdf · OECD 1190 million 4.56 toe/capita 3.11 toe/capita Non‐OECD 5498 million

JISSE12November 9‐11, 2011

Tokyo JapanTokyo, Japan

Strategies and Technological Challenges For Realizing Lightweight Mass Production 

Automobile by using CFRTPy g

Jun TakahashiThe University of Tokyo, Japan

What is the decisive factor to use CFRP in automobile ?

Driving performance ?

Fuel efficiency ?

Yes, but…

Of course yes, but…

Not rust property ?

Multifunction property ?

Aesthetics ?

Recyclability ?

Maybe yes, but…

…. (yawn)

…. (zzz)

You must be joking !Recyclability ?

Cost ?

You must be joking !

Yes, cost is the first and absolute condition ! Others are later.

2008 Population Total Primary Energy Supply  Total Final Energy Consumption

OECD 1190 million 4.56 toe/capita 3.11 toe/capita

Non‐OECD 5498 million 1.24 toe/capita 0.86 toe/capita

ECD 

ta) 1.6

Conversion loss

Sectional Energy Consumption of OECD and Non‐OECD countries

C ti i th

rgy Co

nsum

ption of OE

CD cou

ntrie

s (toe

/cap

it

0.6

0.8

1.0

1.2

1.4 ElectricityCombustibleGas OilCoal

Pow

er

atio

nSe

lf C

onsu

mpt

ion

Kerosene for heating

Raw materials for plastics

Consumption in the engine combustion

Sectiona

l Ene

ran

d Non

‐OEC

0.0

0.2

0.4

Elec

tric

al

Gen

era

ConversionLoss

IndustrySector

TransportSector

OtherSectors

Non‐EnergyUse

OECD   Non OECD   Non OECD   Non OECD   Non OECD   Non

Raw materials for plastics, Asphalt, Lubricant

4000

4500transport sector (non-OECD)transport sector (OECD)on

s)

Oil consumption of the world and transport sector

1/40 of the world (affordable) oil reserves

1500

2000

2500

3000

3500bunker oilother sectors

 Con

sumption(M

illion t

Just burned in transport

sector

0

500

1000

1973 1980 1990 1995 2000 2005

World Oil

Source: EDMC, Energy & Economic Statistics 2011

Raw materialof plastics

Page 2: Strategies and Technological Challenges For Realizing ...j-t.o.oo7.jp/publications/20111109JISSE12-PPT.pdf · OECD 1190 million 4.56 toe/capita 3.11 toe/capita Non‐OECD 5498 million

80

90

100car (private)car (commercial)bustruckair (domestic)

Energy Consumption Structure of Japanese Transport Sector

toe)

30

40

50

60

70air (domestic)ship (domestic)rail

ergy Con

sumption (M

t

0

10

20

1965  1970  1975  1980  1985  1990  1995  2000  2005 

Ene

Source: EDMC, Energy & Economic Statistics 2011

Transition of Passenger Automobile Type in Japan

50 

60 

mob

ile

×106

executive

DrivingPerformance

Lamborghini,

20 

30 

40 

k Num

ber o

f Autom

normalEco

TOYOTA “1/X” (HEV, 420kg)

g ,“Sesto Elemento” (999kg)

10 

1970 1980 1990 2000

Stock

mini Eco

JARI “C・ta” (EV, 300kg)

Problem is not only cost but also production cycle time and recyclability.

Material costHi CF volume fractionExpensive resin

Material costLower CF volume fraction Inexpensive resin

< Thermosetting CFRP > < Thermoplastic CFRP >

Cost reduction of CFRP products by using thermoplastics

Manufacturing costMachine → mass productionOperation → out of autoclaveEmployees → automation

Manufacturing costMachineOperationEmployees

Expensive resin Inefficient prepreg system Ineffective utilization ratio of CF

Inexpensive resinEfficient prepreg systemEffective utilization ratio of CF

Manufacturing cost  will be reduced by 

automated high cycle molding technologyp y

Toolsp y

Toolsg gy

Effective measures for cost reduction Develop higher cycle manufacturing method Achieve required properties by lower Vf Establish advanced 3R system of CF

Current ( ave.1380kg, 200,000cars/y *1)*1) 800/day = 50/hour = cycle time is 1minute

Lightweight  ◎Parts number ◎Cycle time ×Cost  ×

Concept car (weight is 1/3)integration structure by thermoset CFRP

Global energy saving ?

Concept of automobile lightening for mass production

CFRTPBy using CFRTP sheet and tape high cycle press molding expansion into non‐automotive field

Then, Lightweight ◎

Recycle  ×Safety ?

saving ?For EV ?

Project target (weight ▲30%, 200,000cars/y)Parts substitution by thermoplastic CFRP

Lightweight ◎ Cycle time  ○ ← project theme Cost ○ ← project theme Recycle ○ ← project theme Safety ○ ← project theme

Immediate effect for not only energy saving but also waste management laws It contributes cost reduction, early spread, saving rear metals of electric vehicles It will extend to 60% weight reduction for mass production automobile

Page 3: Strategies and Technological Challenges For Realizing ...j-t.o.oo7.jp/publications/20111109JISSE12-PPT.pdf · OECD 1190 million 4.56 toe/capita 3.11 toe/capita Non‐OECD 5498 million

AdviserParticipants

Development of Sustainable Hyper Composite Materials Technology (2008-12)

Project LeaderProf.  Jun TakahashiThe Univ. of Tokyo

Japanese National Program to Develop CFRTP for Mass Production Automobile

2008 – 2012fyTotal budget: 4 billion JPY (≒50 million US$)

1. CF/PP and CF/PA sheets surface treated CF and modified 

thermoplastics continuous and discontinuous CF 

reinforced sheets

2. High cycle molding technology press molding press molding  bladder molding 

3. Jointing technology between CFRTP with metal 

4. Repair and recycling

ThermoplasticsCarbon Fiber Press in 1 minPre heat

Discontinuous fiber reinforced sheet

Isotropic preform technology

Cut

High cycle press molding

Impregnation

Dispersion

Isotropic preform

High cycle press molding

Carbon fiber

Intermediate substrate

Primary parts

Final parts

Raw materials

Continuous CF reinforced UD-tape and its various application

Cross sheet

Thermoplastic

UD sheet

UD + random

Pipe made by welding

Impregnation

Plate with stiffeners

Braiding

High cycle bladder moldingPrepreg tape

Random sheetRandom

Seamless pipe

welding

Page 4: Strategies and Technological Challenges For Realizing ...j-t.o.oo7.jp/publications/20111109JISSE12-PPT.pdf · OECD 1190 million 4.56 toe/capita 3.11 toe/capita Non‐OECD 5498 million

SeatDoor FrameFender Support

Front CowlRR luggage Partition

Hood Roof◆ Conventional car and CFRP car

Weight Reduction Concept by using CFRTP

1,500

CFRP

Others

Standard sedanCFRP

CFRP : 17%(174 kg)

Continuous CFRTP:Structural member such as frame

Discontinuous isotropic CFRTP

FR Engine Cover

Under Cover

Radiator Core Support

Energy AbsorptionPipe

RR luggage space

FR Dash

Door inner

(kg)

Body weight can be reduced by 30% with CFRTP application

0

500

1,000

Conventional CFRP car

車体

重量

(kg

Others

AL

Steel

Body weight1380→970kg (▲30%)

Steel968kg Steel

385kg

Discontinuous isotropic CFRTP: Panels, complex parts

Vehicle weight (

Automotive Materials and Structures

panel88%

frame12%

panel57%

frame30%

casting13%

< Monocoque body >Better structure for lightweight

< Frame monocoque hybrid body >Better for safety and recyclability

Automobile parts are mostly composed of plates.  Flexural properties are dominant in the case of 

automotive materials and structures.

Steel plate CF/PP plate Ratio to Steel

Elastic Modulus (E) ES = 200GPa EC = 25GPa (Vf=0.3, ISO) 1/8

Thickness (t) t 2t 2

Mechanism of one‐third weight reduction

Volume         (V∝t) V 2V

2

Flexural stiffness(EI∝Et3) ES t3 EC (2t)3 1

Deformation (δ∝P/EI)

Load (P)

δ

Load (P)

δ

1same flexural performance

( )

=equalsSurface strain     (ε) ε 2ε 2

Surface stress (σ) σS = ES*ε σC = EC*2ε 1/4

Buckling strength PS=π2 ESIS/L2 PC=π2 ECIC/L2 1

Density (ρ) 7.8 1.3 1/6

Weight (W) 7.8V 1.3*2V 1/3

CF/EP

Compressive Side

CF/PP

① BucklingCompressive Side

Difference between CFRTS and CFRTP

① Fiber breaking at tensile side

② Local plasticdeformation

② Delamination

③ Fiber breaking without delamination

① ① ②

Fracture mechanism of CFRTP is ductile in comparison with that of CFRTS.

② P

δ

① ②③

Page 5: Strategies and Technological Challenges For Realizing ...j-t.o.oo7.jp/publications/20111109JISSE12-PPT.pdf · OECD 1190 million 4.56 toe/capita 3.11 toe/capita Non‐OECD 5498 million

Weak interface

Debonding

Difference in Fracture Process of Composite Materials

CF

Resin Load

Delamination= Reduction of sectional area (EI ∝Et3)

Strong interface (brittle resin)

Debonding

Load

Cleavage crackpropagation

CFComposites become easier to buckle by compressive load anddeform by flexural load

Strong interface (ductile resin)

propagation

Load

Load

DeformationShear fractureof resin

ー Steel Panelー CF/EP Panelー CF/PP Panel

Comparison of steel, CF/EP, and CF/PP panels

1. CFRP plate, which has the same flexural rigidity as steel plate, is 1/3 of the weight of the steel panel.

2 Elastic strain range of CFRP is larger thanCF/PP Panel

Flexural  Loa

d

2. Elastic strain range of CFRP is larger than steel, hence CFRP is less likely to dent.

3. However, stress concentration part of CF/EPshows sudden load fall (i.e. brittle fracture). Hence CF/EP is weak in hole, notch, and corner. They are caused by delamination.

4. Since delamination doesn’t occur, CF/PP not only shows high energy absorption capacity

Flexural Deformation

y g gy p p ybut is stronger in hole, notch, and corner.

5. Additionally, CF/PP can easily bond, repair and recycling by using thermoplasticity.

6. By using these features of CF/PP, various novel structures and manufacturing methods can be developed.

0 5

0.6 ISO plate UD plate

Weight Lightening Ratio of CF/PP Plate to Steel Plate

to Steel

2 5

3.0 

0 325

0.330 weight lightening ratiodensitytickness ratioGF/UP(Vf60‐iso) 0.58

Difference between isotropic and unidirectional CF/PP plate

Weight lightening ratio, density and thickness ratio of isotropic CF/PP plate 

0.2 

0.3 

0.4 

0.5 

tening

 Ratio of C

F/PP

 t

1.0 

1.5 

2.0 

2.5 

0.310 

0.315 

0.320 

0.325 

Magnesium 0.39

CF/EP(Vf60‐iso) 0.31

Aluminum 0.50

0.0 

0.1 

0.0  0.1  0.2  0.3  0.4  0.5  0.6 

Carbon Fiber Volume Fraction in CF/PP plate

Weight Light

0.0 

0.5 

0.300 

0.305 

0.0  0.1  0.2  0.3  0.4  0.5  0.6 

referenceCF/EP(Vf60‐iso)

■ 0.31● 1.5  ◆ 1.6  

Weight is the same or lighter than CF/EP

Inexpensive Impregnation becomes easier

Elastic strain range is not sufficient as a structural member

0 5

0.6 

Weight of CF in CF/PP Plate

e

■ ISO CF/PP plate■ UD CF/PP plate

CF i ISO CF/PP l t

Automobile parts are mostly composed of flexural member.

0.2 

0.3 

0.4 

0.5 

t of C

F an

d CF/PP plate

▲ CF in ISO CF/PP plate▲ CF in UD CF/PP plate In the case of flexural member, steel 

panel of 100 kg can be replaced by CF/PP panel (isotropic, Vf=0.2) of 32 kg in which just 10 kg of CF is used.

In the case of tensile/compressive member, the same weight lightening

0.0 

0.1 

0.0  0.1  0.2  0.3  0.4  0.5  0.6 

Carbon Fiber Volume Fraction

Weigh

member, the same weight lightening ratio and CF usage rate can be achieved by anisotropy and higher Vf.

Effective utilization of carbon fiber and efficient joint are indispensable to reduce both weight and cost.

Page 6: Strategies and Technological Challenges For Realizing ...j-t.o.oo7.jp/publications/20111109JISSE12-PPT.pdf · OECD 1190 million 4.56 toe/capita 3.11 toe/capita Non‐OECD 5498 million

Market50 – 70 %

Raw CF100 %

Industrial waste30 – 50 %

‐‐‐‐‐‐‐‐‐‐‐waste at trimming ‐‐‐‐‐‐‐‐‐‐‐

How to reduce or reuse the industrial waste of CFRP ?

Plate recycle(f d t t

‐‐ storage loss ‐‐

‐‐‐‐‐‐‐‐ NG parts ‐‐‐‐‐‐‐‐

(from edge waste to moldable plate or sheet)

In‐houseRepair

(by heating)

No storage loss

Shop repair(by heating)

‐‐‐‐‐ quality assurance inspection ‐‐‐‐‐

(by heating) loss

Crushed recycleto high performance secondary member(by using strong resin‐fiber adhesion)

NG‐Parts

RawMaterials

Intermediatematerial Parts Products EOL

vehicle

B

Life Cycle of CFRTP in Automobile and Possibility of 3R

CF

TP

CFRTP

HG‐waste

C DamagedA

D (Hybrid recycling)

reuse

reuse

LG‐wasteLG‐waste

A:  Plate recycling, Hybrid recyclingB:  In‐house repairC:  Shop repairD:  Reuse, Hybrid recycling

A

Schematics of CFRTP recycling

WithoutGlue

Panel with only recycled CF/PP

Panel with fresh CF/PP

Double Belt PressRecycledPlate Fresh Sheet

Hybrid Stamping

Injection Molding

1000

1200 0.80.91.0

The Amount of CF Usage and Automotive Lightening Ratio

Steel Car of 1380 kg is composed byweight fixed part  = 200 kgreplaceable part = 900 kgut

omob

ile

kg)

200 

400 

600 

800 

1000 

0.00.10.20.30.40.50.60.7

replaceable part  = 900 kgproportionally lightening = 280 kg

The amount of CF usage  = x kg→ CFRP  = 2x kg→ replaced steel  = 6x kg

where, 0≦6x≦900 kg

ht Lightening

 Ratio of A

u

Automotive weight (k

By usinganisotropic

0 20 40 60 80 100 120 140 Automotive weight after lightening= 1380‐1180*(4x/900)

Automotive weight lightening ratio = 1‐0.0038 x

Weigh

The Amount of CF Usage (kg)

Page 7: Strategies and Technological Challenges For Realizing ...j-t.o.oo7.jp/publications/20111109JISSE12-PPT.pdf · OECD 1190 million 4.56 toe/capita 3.11 toe/capita Non‐OECD 5498 million

Trade‐off between cycle time and weight lightening ratio

Flexural stiffness Torsional stiffness WeightIsotropic 152 210 151kg

Anisotropic 200 286 151kgAnisotropic 200 286 151kg

unit passengerautomobile truck wind turbine

bladecommercial airplane (L)

world stock 103700,000@2010

1,000,000@2030

1,300,000@2050

260,000@2010

380,000@2030

500,000@2050

120@2010

1,000@2030

1,500@2050

15@2010

30@2030

45@2050

53 000@2010 20 000@2010 25@2010 0 6@2010D ti i f b fib J N ti l

World carbon fiber Potential demand by application

world annualproduction 103

53,000@2010

75,000@2030

100,000@2050

20,000@2010

30,000@2030

40,000@2050

25@2010

50@2030

60@2050

0.6@2010

1.2@2030

1.8@2050

CF demandper product ton 0.1  0.4  4 25

world annualCF demand

103 tonsper year

5,300@2010

7,500@2030

10,000@2050

8,000@2010

12,000@2030

16,000@2050

100@2010

200@2030

240@2050

15@2010

30@2030

45@2050

200 000 50 000 5 000 300

Drastic increase of carbon fiber production capacity is necessary

Japanese National Project 2011‐2015

production volumeper plant

per year 200,000 50,000 5,000 300per day 800 200 20 1.2per hour 50 13 1.25 0.075

number of plants(Assuming an ideal production plant)

265@2010

375@2030

500@2050

400@2010

600@2030

800@2050

5@2010

10@2030

12@2050

2@2010

4@2030

6@2050

CF demandper plant

103 tonsper year 20 20 20 7.5

Drastic high cycle manufacturing technology of CFRP is necessary

Japanese National Project 2008‐2012

2008 Population Total Primary Energy Supply  Total Final Energy Consumption

OECD 1190 million 4.56 toe/capita 3.11 toe/capita

Non‐OECD 5498 million 1.24 toe/capita 0.86 toe/capita

ECD 

ta) 1.6

Conversion loss

Promising target for massive application of CFRPFossil resource reduction in 

power generation

Fossil resource reduction by 

weight reduction &EARLY SPREAD of EV

Extension of flight range

rgy Co

nsum

ption of OE

CD cou

ntrie

s (toe

/cap

it

0.6

0.8

1.0

1.2

1.4 ElectricityCombustibleGas OilCoal

Pow

er

atio

nSe

lf C

onsu

mpt

ion

Oil consumption for additional CF 

production is less than 0.01 toe/capita

Sectiona

l Ene

ran

d Non

‐OEC

0.0

0.2

0.4

Elec

tric

al

Gen

era

ConversionLoss

IndustrySector

TransportSector

OtherSectors

Non‐EnergyUse

OECD   Non OECD   Non OECD   Non OECD   Non OECD   Non

Thank you for your kind attentionThank you for your kind attention.