Stirling Refrigeration

19
Stirling Refrigeration ME 498 - Senior Laboratory November 16, 2004 Nicholas Taylor

description

Stirling Refrigeration. ME 498 - Senior Laboratory November 16, 2004 Nicholas Taylor. Overview. Background and theory of the Stirling Cooler Experimental Set-up and Procedure Results. Objectives. Operate Global Cooling Model 100B Stirling Cooler - PowerPoint PPT Presentation

Transcript of Stirling Refrigeration

Page 1: Stirling Refrigeration

Stirling Refrigeration

ME 498 - Senior LaboratoryNovember 16, 2004

Nicholas Taylor

Page 2: Stirling Refrigeration

Overview

Background and theory of the Stirling Cooler

Experimental Set-up and Procedure

Results

Page 3: Stirling Refrigeration

Objectives

Operate Global Cooling Model 100B Stirling Cooler

Use thermodynamic principles to analyze the performance

Calculate COP, Qrejected, Qlifted

Page 4: Stirling Refrigeration

Background

Model 100B free piston Stirling Cooler

High conversion between mechanical and thermal energy

AC linear motor drives the piston

Working gas – helium

Page 5: Stirling Refrigeration

Background

Page 6: Stirling Refrigeration

Theory

Coefficient of Performance

Stirling

LiftedR

W

QCOP

dt

dTmcQ plifted

liftedrejectedstirling QQW

Page 7: Stirling Refrigeration

Theory

Finding Qrejected

)( inletoutletprejected TTcmQ

Vm water

Page 8: Stirling Refrigeration

Experimental Apparatus

Water ToSink

Water FromSink

DigitalPowerMeter

Wire Box

Variac Auto-Transformer

Variac Auto-Transformer

Fluke 77DMM

Fluke 87DMM

OmegaTemperature

Controller Omega TemperatureMeasurement Device

Model 100BStirlingCooler

Flowmeter

Thermocouple

ThermofoilHeater

Page 9: Stirling Refrigeration

Procedure

Measure flow rate Prepare data acquisition system Increase voltage to the stirling cooler, to

begin cooling Record data until the temperature

reaches -30°C, activate the heater and reach equilibrium at -20°C

Turn off equipment

Page 10: Stirling Refrigeration

Results

Temperature vs. Time

COPR for 5°C, 0°C, -10°C, and -23°C

Compare COP found to COP from Global Cooling

COPR, Wstirling, and Qrejected at equilibrium

Compare COP at equilibrium with COPcarnot

Uncertainty Analysis

Page 11: Stirling Refrigeration

Results

Temperature vs. Time

-40.00

-30.00

-20.00

-10.00

0.00

10.00

20.00

30.00

0 200 400 600 800 1000 1200 1400 1600 1800

Time (sec)

Tem

per

atu

re (

C)

Page 12: Stirling Refrigeration

Results

Temperature vs Time(during cooling)

y = 281.45e-0.0003x

0.00

100.00

200.00

300.00

400.00

0 100 200 300 400 500 600 700 800

Time (sec)

Tem

per

atu

re (

K)

Page 13: Stirling Refrigeration

Results

Global Cooling

Temp Time Cp m dT/dt Qlifted Wstirling COP Input COP % diff.

(deg C) (sec) (J/kJ*C) kg   (W) (W)   (W)    

5 79 380.23 0.27 -0.087 8.88 9.22 0.963 6 2.33 58.66

0 118 379 0.27 -0.088 8.954 9.2 0.973 5 2.06 52.75

-10 219 376.42 0.27 -0.090 9.167 9.11 1.006 3 1.06 5.07

-23 419 372.8 0.27 -0.096 9.633 9.68 0.995 4 1.18 15.67

Page 14: Stirling Refrigeration

Results

Equilibrium Test

Qreject 32.318

Qlifted 12.204

Wstirling 20.114

COP 0.607

COP carn. 2.809

% difference 78.398

Page 15: Stirling Refrigeration

Uncertainty

Uncertainty of COP

Uncertainty of Qlifted

Uncertainty of Qrejected

Uncertainty of Vdot

Page 16: Stirling Refrigeration

Uncertainty

% ωCOP = 1.2%

ωQrejected = 4.61 (32.318)

ωVdot = 2.85E-8

ωQlifted = 0.11 (12.204)

ωCOP = 6.18E-3 (.607)

Page 17: Stirling Refrigeration

Uncertainty

Qlifted

Component Value Uncertainty

V 10.8 0.01

I 1.13 0.01

Component Qlifted n (n+dn) Qlifted(n+dn) dQlifted/dn

V 12.204 10.8 10.8 12.204 1.13

I 12.204 1.13 1.13 12.204 10.80

ωQlifted 0.11

Page 18: Stirling Refrigeration

Conclusions

Learned a practical use of a Stirling Cooler

Found COP, Qrejected, and Qlifted

Found the uncertainty in measurements

Recommend comparing to a traditional refrigeration cycle

Page 19: Stirling Refrigeration

References

http://www.globalcooling.com

http://132.235.18.152/seniorlab