Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

34
Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON

Transcript of Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

Page 1: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

Spectral modeling of cosmic atomic plasmas

Jelle S. Kaastra

SRON

Page 2: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

Topics covered in this talk

• Fe XVII

• Collisional onisation & recombination rates

• Inner shell transitions

• Interstellar absorption

2

Page 3: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

Fe XVII

The importance of accurate atomic data

3

Page 4: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

The importance of Fe XVII

• Stable ion (Ne-like)

• Coldest Fe ion emitting in Fe-L band (cool core clusters)

• Has handful of strong lines consistency checks

• Strongest resonance line has large f resonance scattering effects useful diagnostic!

4

Page 5: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

Resonance scattering & turbulence

5

Page 6: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

Resonance scattering(NGC 5813, de Plaa et al. 2012)

6

Page 7: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

Measured and predicted line ratios(de Plaa et al. 2012)

7

Page 8: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

Results

• NGC 5813:

vturb = 140-540 km/s (15-45% of pressure)

• NGC 5044:

vturb >320 km/s (> 40% turbulence)

8

Page 9: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

Fe XVII spectrum Capella(Bernitt et al. 2012)

9

15.01 Å

15.27 Å

16.78,17.06,17.10 Å

Page 10: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

3C/3D lines(Bernitt et al. 2012)

• 3C: 2p6 1S0 – 2p53d 1P1 (resonane)

• 3D: 2p6 1S0 – 2p53d 3D1 (forbidden)

• Forbidden line occurs due to mixing

• Excite Fe XVII using laser• Allows to measure

individual oscillator strengths

10

Page 11: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

Resulting oscillator strength

• Observed ratio of oscillator strengths 71% smaller than e.g. NIST value and others

• If due to 3C line, than also in emission lower fluxes!

11

Page 12: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

Groups revisited

• Implications Bernitt et al.: model X/3C 40% higher

• Resonance scattering makes observed X/3C higher

• Source like NGC 5044 would fall below line!

• Should full effect be attributed to 3C alone? Or also to 3D?

12

Page 13: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

Ionisation & recombination

13

Page 14: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

Ionisation balance Bryans et al. 2009

example: Fe @ 1 keV

Page 15: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

Bryans et al. in NEIwork done with Makoto Sawada(T= 2 keV, compared to AR92)

15

Page 16: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

Larger differences for Ni(T = 2 keV)

16

Page 17: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

Recombining plasma(Fe; T=2 keV T = 0.6 keV)

17

Page 18: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

Non-thermal electrons(2 keV + 10% 20 keV)

18

Page 19: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

Effects of DR on photoionised plasmas

• Kraemer et al. (2004): calculations for Fe with & without low-T DR

• Compare to O ions:– Differences up to

factor 2– May explain

“mismatch” in Seyfert galaxy fits

19

Page 20: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

Different versions of Cloudythe effects of dielectronic recombination updates

• Chakravorty et al. 2008:

• Same ionising continuum (Γ=1.8)

• Differences in number & location stable branches

• Due to updated DR rates

20

Page 21: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

Differences photo-ionisation models

21

Page 22: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

Inner-shell transitions

22

Page 23: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

• UTA = Unresolved Transition Array, blend of narrow features

• Due to inner-shell transitions

• Almost no accurate atomic data available before Sako et al. (2001)

The Fe UTA

23

Page 24: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

Calculations & Lab measurements of inner-shell transitions

• Example: oxygen K-shell transitions (Gu et al. 2005)

• Lab measurements: EBIT

• Calculations: FAC accurate λ for

O V 1s-2p main line: uncertainty only 3 mÅ (50 km/s)

24

Page 25: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

Sample spectraRGS 600 ks, Detmers et al. 2011 (paper III)

25

Page 26: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

Example: AGN outflow Mrk 509 (Detmers et al. 2011)

26

Page 27: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

X-ray absorption

Nasty correction factors are interesting!

27

Page 28: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

Interstellar X-ray absorption

• High-quality RGS spectrum X-ray binary GS1826-238 (Pinto et al. 2010)

• ISM modeled here with pure cold gas

• Poor fit

28

Page 29: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

Adding warm+hot gas, dust

29

Adding warm & hot gas

Adding dust

Page 30: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

Oxygen complexity

30

Page 31: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

Interstellar dust

• SPEX (www.sron.nl/spex)

currently has 51 molecules with fine structure near K- & L-edges

• Database still growing (literature, experiments; Costantini & De Vries)

• Example: near O-edge (Costantini et al. 2012)

3122 Ang 23.7 Ang

Tra

nsm

issi

on

Page 32: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

Absorption edges: more on dust• optimal view O & Fe• Fe 90%, O 20% in dust

(Mg-rich silicates rather than Fe-rich: Mg:Fe 2:1 in silicates)

• Metallic iron + traces oxydes

• Shown: 4U1820-30, (Costantini et al. 2012)

Page 33: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

Are we detecting GEMS?GEMS= glass with embedded metal & sulphides

(e.g. Bradley et al. 2004)

interplanetary origin, but some have ISM origin

invoked as prototype of a classical silicate

Mg silicate Metallic iron

FeS

Crystal olivine, pyroxeneWith Mg

Glassy structure +FeS

Cosmic rays+radiation

Sulfur evaporation GEMS

Page 34: Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.

Final remarks

• We showed examples of different & challenging astrophysical modeling

• All depend on availability reliable atomic data

• The SPEX code (www.sron.nl/spex) allows to do this spectral modeling & fitting

• Code & its applications continuing development (since start 1972 by Mewe)

34