Source Models1

download Source Models1

of 20

Transcript of Source Models1

  • 8/2/2019 Source Models1

    1/20

    1/25/20

    SOURCEMODELS

    Source Models 1

    Mr.RogerDeo

    Source Models 2

    Source Models 3

  • 8/2/2019 Source Models1

    2/20

    1/25/20

    Source

    Model

    Dispersion

    Model

    Release

    Incident

    Source Models 4

    Fire and

    Explosion

    Model

    Effect

    Model

    Mitigation

    Risk

    Background

    Mosthazardousincidentsstartwithsomeformofdischargeof

    flammableortoxicmaterialoutofitsnormalcontainment.

    Dischargescanbeofliquid,gasesortwophasedischarge.

    Modelsareavailablethatprovideanestimationofthetotal

    quantityreleased,thedischargerate andthetimetakenfor

    discharge.

    Thisinformationisusedasessentialinputsintoothermodels.

    Source Models5

    Dispersion

    Model

    Discharge

    Rate Model

    Dispersion

    Model

    Source Models 6

    Flash and

    EvaporationFlash and

    Evaporation

    Discharge

    Rate Model

  • 8/2/2019 Source Models1

    3/20

    1/25/20

    Description Thefirststageistheidentificationofconceivable

    dischargescenarios withtheresultingeffectsonthematerialreleasephase.

    Severalimportantissueshastobeconsideredare

    theholesize,leakduration,releasephase,end

    point,thermodynamicpath etc.

    Source Models 7

    Topics

    Dischargeofaliquidoutofavessel/pipe

    Dischargeofagasoutofavessel/pipe

    Dischargeoccurringin2phases

    Dr. H. FarabiSource Models 8

    Source Models 9

  • 8/2/2019 Source Models1

    4/20

    1/25/20

    Scenarios

    Liquiddischarge

    Holeinatmosphericstoragetankat

    atmosphericpressure fromvesselorpipe

    underliquidhead

    Holeinvesselorpipecontaining

    pressurizedliquidbelowitsboilingpoint

    Source Models 10

    Scenarios

    Gasdischarges

    Holeinequipmentpipe/vesselcontaining

    gasunderpressure

    Reliefvalvedischargeofvaporonly

    o ngo evapora ono qu poo

    Reliefvalvedischargefromtopofpressurizedstoragetank

    Generationoftoxiccombustionproducts

    asaresultoffire

    Source Models 11

    Scenarios

    Twophasedischarges

    Holeinpressurizedstoragetank/pipe

    containingliquidaboveitsnormalboilingpoint

    Reliefvalvedischarge(e.g.,dueto

    foamingliquidorrunawayreaction)

    Source Models 12

  • 8/2/2019 Source Models1

    5/20

    1/25/20

    Source Models 13

    Thermodynamicpathandendpoint Thespecificationofathermodynamicpathand

    endpointisimportanttothedevelopmentofthe

    sourcemodel.

    T especi icationo w et ert epat is

    isenthalpic,isentropic,isothermalandadiabatic

    areimportantintheselectionofanappropriate

    modelandthecalculationofthatmodel.

    Source Models14

    Thermodynamicpath Forisentropicreleasestheequilibriumflashmodel

    canbeusedtodeterminethefinaltemperature,

    composition andphasesplitsatambient

    temperature.Ifaphasechangeisencounteredthen

    .

    willflashatitsboilingpointandamixturewillflash

    continuously.

    Forreleasesofgaseseitheradiabaticorisothermal

    modelsareavailable.

    Source Models 15

  • 8/2/2019 Source Models1

    6/20

    1/25/20

    LeakdurationandholesizesThereisnogeneralconsensusonthesize

    andlengthsofeitherofthese.Studies has

    expressedaleakdurationof3to10minutes

    andaholesizeofbetween 2inchesandthe

    sizeofthepipe(fullbreakage)

    Source Models 16

    FundamentalequationsFundamentalequationdischargescanbemodeledbythemechanicalenergyequation

    Where

    P ressure(force/area)

    ( ) ( ) 0m

    Wevv

    g2

    1zz

    g

    gdP sf

    21

    22

    c

    12

    c

    P

    P

    1

    1

    =++++ &

    (Equation 1)

    density(mass/volume)g accelerationduetogravity(length/time2)

    gc gravitationalconstant(force/massaccelaeration)

    z verticalheightfromsomedatum(length)

    v finalvelocity(length/time)

    Ws istheshaftwork(energy/time)m massflowrate(mass/time)Source Models 17

    EquationsThefrictionallosstermisgivenas

    =

    c

    2

    ffg2

    vKe

    fL4

    Equation 2

    Wheref fanningfrictionfactor

    L length

    d diameter

    Kf istheexcessheadlossduetopipeandfittings

    Source Models 18

    df = Equat on 3

  • 8/2/2019 Source Models1

    7/20

  • 8/2/2019 Source Models1

    8/20

    1/25/20

    LiquiddischargesThenormaldrivingforcefordischargeisnormally

    pressure,withthepressureenergybeingconvertedto

    kineticenergyduringthedischarge.Sincethedensity

    remainsconstantduringthedischargethenthe

    pressureintegralinthemechanicalenergybalancecan

    beintegratedtogivethefollowingsimplifiedformula

    (equation10)

    Source Models 22

    ( ) ( ) 0m

    Wevv

    g2

    1zz

    g

    gPP sf

    21

    22

    c

    12

    c

    12 =++++

    (Equation 10)

    Liquiddischargefromapipe

    P1 P2

    Source Models 23

    A

    v1

    PipeflowThemassfluxthroughthepipeisconstantand,for

    pipesofconstantcrosssectionalarea,theliquid

    velocityisconstantalongthepipe.

    Thefrictionlossesoccurduetotheliquidflow.If

    shaftwork:

    ( ) ( ) 0vvg2

    1zz

    g

    gPP 21

    22

    c

    12

    c

    12 =++

    Source Models 24

    (Equation 11)

    (Bernoulli equation)

  • 8/2/2019 Source Models1

    9/20

    1/25/20

    Dischargeofpurenonflashingliquidthroughasharporifice

    Themodelisdevelopedfromthemechanicalenergy

    balancebyassumingthatthefrictionallossisrepresentedbyadischargecoefficientCD

    (Equation12)

    Where

    Aisthearea(length2)

    P1 istheupstreampressure

    P2 isthedownstreampressure

    Source Models 25

    21cD PPg2ACm =&

    ThefollowingaresuggestedforthedischargecoefficientCD:

    ForsharpedgedorificesandReynoldsnumberin

    excessof30,000CD approaches0.61.

    ForawellroundedorificetheCD approachesunity

    notgreaterthan3,theCDapproaches0.81

    Wherethedischargecoefficientisunknownor

    uncertainaCD=1shouldbeusedtomaximize

    computedflowstoobtainaconservativevalue

    Source Models 26

    DischargecoefficientFromthe2KMethodthedischargecoefficientcan

    becalculatedasfollows

    Equation13

    Source Models 27

    +=

    f

    D

    K1

    1C

  • 8/2/2019 Source Models1

    10/20

    1/25/20

    Generalprocedurefordeterminingthemassdischargefromapipingsystem

    1.Given:length,diameter,typeofpipe,elevations changesandpressures;work

    inputoroutputtothefluidduetopumps

    turbinesetc.Numberoffittingsandthe

    propertiesofthefluid,includingdensity

    andviscosity.Source Models 28

    2. Specifytheinitialandfinalpoint,this

    mustbedonecarefullysincethe

    individualtermsintheequation(10)are

    highlydependentonthisspecification

    3. Determinethepressuresandelevation

    attheinitialpointanddeterminethe

    initialfluidvelocityatpoint1Source Models 29

    4. Guessavalueforthevelocityatpoint2.Ifafully

    developedturbulentflowisexpectedthenthis

    stepisnotrequired

    5. Determinethefrictionfactorofthepipeusing

    eitherequationsorthechart.

    Source Models 30

  • 8/2/2019 Source Models1

    11/20

    1/25/20

    6. Determinetheexcessheadlossinthepipeusing

    equation(3)andthefittings,usingequation4.Sumthe

    headlosstermsandcomputethenetfrictionlossterm

    usingequation(2). Usethevelocityatpoint2

    =c

    2

    ffg2

    vKe Equation 2

    7. Computethevaluesofallthetermsinequation(10).If

    itisnotequaltozerothengobacktothe4th step.

    8. DeterminethemassflowratevAm =&

    Source Models 31

    d

    fL4K f = Equation 3

    Dischargeofliquidfromatank

    Initial level V1

    Dr. H. FarabiSource Models 32

    hL

    AV2

    LiquidoutflowoutofatankForholesintanksthedischargeofmaterial

    throughaholeresultsinthelossofliquidand

    theloweringoftheliquidlevel.Forthiscase,

    equation(12)iscoupledwithamassbalanceontheliquidinthetanktoobtainthe

    followingexpressionforthetankdrainage

    time.

    Source Models 33

    =1

    2

    V

    VD h

    )h(dV

    g2AC

    1t (Equation 14)

  • 8/2/2019 Source Models1

    12/20

    1/25/20

    Where tisthetimetodrainthetankfrom

    =1

    2

    V

    VD h

    )h(dV

    g2AC

    1t (Equation 14)

    volumeV2 tovolumeV1 (time)

    Vistheliquidvolumeinthetankabove

    theleak(length3)

    histheheightoftheliquidabovetheleak

    (length)

    Source Models 34

    LiquidoutflowofatankThemassdischargerateisdeterminedbythe

    followingequation.Thefrictionisrepresentedbythe

    dischargecoefficientCDandaccountsforthe

    pressureduetotheliquidheadabovethehole

    Source Models 35

    +

    == L

    gc

    D ghPg

    2ACvAm&

    (Equation 15)

    Where

    visthefluidvelocity(length/time)

    Aistheareaofthehole(length2)

    CD

    isthemassdischargecoefficient(dimensionless)

    +

    == L

    gc

    D hgPg

    2ACvAm& (Equation 15)

    gc isthegravitationalconstant(force/massacceleration)

    Pg isthegaugepressure

    istheliquiddensity(mass/volume)

    gistheaccelerationduetogravity(length/time2)

    hL istheheightofliquidabovethehole

    Source Models 36

  • 8/2/2019 Source Models1

    13/20

    1/25/20

    GasdischargesGasdischargeoccursbyavarietyofmeans

    fromaholein avesseltoleaksonpipelines

    andtheopeningofreliefvalves.Thereare

    differentprocedurestodealwithallofthese.

    Themajorityofcasesthedischargeisinitially

    eithersonicorchoked.

    Source Models 37

    Gasdischarge Asthepressuredropsthegasexpands.The

    pressureintegralinthemechanicalenergybalance

    (equation1)wouldrequireanequationofstate

    an a ermo ynam cpa spec ca on o

    completetheintegration.

    Source Models 38

    ( ) ( ) 0m

    Wevv

    g2

    1zz

    g

    gdP sf

    21

    22

    c

    12

    c

    P

    P

    1

    1

    =++++ &

    (Equation 1)

    ForgasdischargethroughholesEquation(1)is

    integratedalonganisentropicpath

    Theequationassumesthatthegasis

    ideal,thereisnoshaftworkandthatthere

    isnoheattransfer.

    Thedischargerateisgivenbelow

    Source Models 39

    ( )

    =

    k

    1k

    1

    2k

    2

    1

    2

    1g

    c1D

    P

    P

    P

    P

    1k

    k

    TR

    Mg2APCm&

    (Equation 16)

  • 8/2/2019 Source Models1

    14/20

    1/25/20

    GasdischargeWhere

    m - mass flow rate of gas through the hole (mass/time)

    CD - mass discharge coefficient (dimensionless)

    A - area of the hole (length2)

    P1 - pressure upstream of the hole (force/area)

    Source Models 40

    gc - grav tat ona constant ( orce mass-acce erat on)

    M - molecular weight of the gas (mass/mole)

    k - heat capacity ratio, Cp/Cv (unitless)

    Rg - ideal gas constant (pressure-volume/mol-deg)

    T1 initial upstream temperature of the gas (deg)

    P2 downstream pressure (force/area)

    GasdischargeTheequationrepresentingthesonicorchockedflowis

    ( )( )1k

    1k

    1g

    c1D

    1k

    2

    TR

    MkgAPCm

    +

    +

    =& (Equation 17)

    Source Models 41

    The condition for a choked flow

    (i.e. the pressure ratio required to achieve choking)

    )1k(k

    1

    choked

    1k

    2

    P

    P

    +

    = (Equation 18)

    GasDischargeForgasreleasedthroughpipestheissueofwhether

    thereleaseisadiabaticorisothermalisimportant.

    Forbothcasesthevelocitywillincreaseduetothe

    dropinpressureofthegas.Foradiabaticflowsthe

    temperaturemayincreaseordecreasedependingon

    thetemperatureandthefrictionalforcesactingon

    it.

    Source Models 42

  • 8/2/2019 Source Models1

    15/20

    1/25/20

    Foradiabaticflowsthechokingpressureis

    lessthantheisothermalchokingpressure

    Forrealflows,theactualflowratewillbeless

    thantheadiabatic redictionbut reater

    thantheisothermalprediction.Thereisvery

    littledifferencebetweentheadiabaticand

    isothermalflows

    Source Models 43

    Whencompressiblefluidsdischargefromtheendofareasonablyshortpipe ofuniformcrosssectionareaintoanareaoflargercrosssectiontheflowisusuallyconsideredtobeadiabatic.Thisstatementissupportedby

    130and220pipediametersdischargingairintotheatmosphere.Therefore,theadiabaticflowmodel isusedforcompressiblegasdischargedthroughpipes.

    Source Models 44

    GasdischargeForidealgasflowthemassflowforboth

    sonicandsubsonicdischargeisgivenby

    theDarcyequation

    (Equation19)

    Source Models 45

    ( )

    =f

    2111

    K

    PPg2YAm&

  • 8/2/2019 Source Models1

    16/20

    1/25/20

    Where

    mmassflowrateofgasthroughthehole(mass/time)

    Y gasexpansionfactor(unitless)

    A areaofthedischarge(length2

    )gc gravitationalconstant(force/massacceleration)

    1 upstreamgasdensity

    P1 pressureupstreamofthehole(force/area)

    P2 downstreampressure(force/area)

    kf Theexcessheadlossusing2Kmethod

    Source Models 46

    Thegasexpansionfactorisdependent

    onlyontheheatcapacityratioofthegas,

    k,andonthefrictionalelementsonthe

    flow ath, k .Itisdeterminedusin onl

    acompleteadiabaticflowmodel.

    Thefollowingprocedureisusedto

    determinethegasexpansionfactor:Source Models 47

    TheupstreamMachnumber,Ma,isdetermined and

    thensubstitutedintothelatterequationthe

    procedureinvolvesthedeterminationoftheupstream

    Manumber bytrialanderrorandifitmeetsthe

    conditionsbelow.Useaspreadsheet.

    (Equation20)

    Source Models 48

    ( ) =+

    +

    +01

    1

    1

    2ln

    2

    122

    1

    fKMaMak

    Yk

  • 8/2/2019 Source Models1

    17/20

    1/25/20

    Thenextstepistodeterminethesonicpressure

    ratio

    (Equation21)

    Iftheactualratiois reaterthanthisthentheflowis

    1

    2

    11

    1

    21

    +=

    k

    Y

    MaP

    PP

    sonicorchokedandthepressuredroppredictedby

    (21)isused.Ifless,thentheflowisnotsonic,and

    theactualpressuredropratioisused

    Source Models 49

    Gasdischarge FinallytheexpressionYiscalculatedfrom

    (Equation22)

    Source Models 50

    =21

    1

    2 PPMaY

    f

    Gas discharge

    Source Models 51

  • 8/2/2019 Source Models1

    18/20

  • 8/2/2019 Source Models1

    19/20

    1/25/20

    2Phasedischarge Whenanypressurizedliquidaboveitsnormal

    boilingpointisreleasedtoatmosphericpressure

    itwillbegintoflashandthe2phaseflowwill

    occur

    Themodelsthatwillbepresentedwillpredict

    minimummassfluxesandmaximumpressure

    drops

    Source Models 55

    2PhasedischargeThenonreactive(reactivecasenotconsideredyet)case

    involvesflashingoftheliquidsastheyaredischargedfrom

    containment.

    Twos ecialconsiderationsaretakenintoaccount

    1. Iftheliquidissubcooled,thedischargeflowwillchokeatits

    saturationvaporpressureatambienttemperature

    2. Iftheliquidisstoredunderitsownvaporpressure,amore

    detailedanalysisisrequired

    Source Models 56

    Bothsituations areaccountedforbythefollowing

    expression

    (Equation23)

    Where

    misthetwophasemassdischargerate

    N

    GGAm

    2

    ERM2

    sub +=&

    Aistheareaofthedischarge(length2)

    Gsub isthesubcooledmassflux(mass/areatime)

    GERM istheequilibriummassflux(mass/areatime)

    Nthenon equilibriumparameter(dimensionless)

    Source Models 57

  • 8/2/2019 Source Models1

    20/20

    1/25/20

    Thesubcooledmassfluxisgivenby

    (Equation24)

    Where

    [ ]satDsub PPgCG = 112

    Psat isthesaturatedvaporpressure

    Pisthestoragepressure

    1 istheliquiddensity

    CD isdischargeCoefficient

    Source Models 58

    Forsaturatedliquidsifthedischargelengthisgreaterthan0.1m(approximatelygreaterthan10diameters)theequilibriummassfluxisgivenby;

    (Equation25)

    Where P

    c

    fg

    fg

    ERMTC

    g

    v

    hG =

    Hfg istheenthalpychangeinvaporization

    Vfg isthechangebetweenspecificvolumebetweenliquidandvapor

    Tisthestoragetemperature

    CpisthespecificheatcapacitySource Models 59

    TherelationshipforNthenonequilibriumparameter

    isgivenbelow

    (Equation26)

    Where

    CPfgD

    fg

    L

    L

    TCvCP

    hN +

    =

    22

    1

    2

    2

    Pisthetotalavailablepressuredrop

    Lpipelengthtoopening

    Lc isthedistancetoequilibriumconditions

    (usually0.1m)

    Source Models 60