So a webinar-2013-2

39
Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013 Perspectives of Predictive Modeling Arthur Charpentier [email protected] http ://freakonometrics.hypotheses.org/ (SOA Webcast, November 2013) 1

description

(animations are missing, need to read the pdf file with Acrobat)

Transcript of So a webinar-2013-2

Page 1: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Perspectives of Predictive Modeling

Arthur Charpentier

[email protected]

http ://freakonometrics.hypotheses.org/

(SOA Webcast, November 2013)

1

Page 2: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Agenda• Introduction to Predictive Modeling◦ Prediction, best estimate, expected value and confidence interval◦ Parametric versus nonparametric models• Linear Models and (Ordinary) Least Squares◦ From least squares to the Gaussian model◦ Smoothing continuous covariates• From Linear Models to G.L.M.• Modeling a TRUE-FALSE variable◦ The logistic regression◦ R.O.C. curve◦ Classification tree (and random forests)• From individual to functional data

2

Page 3: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Prediction ? Best estimate ?

E.g. predicting someone’s weight (Y )Consider a sample {y1, · · · , yn} −→Model : Yi = β0 + εi

with E(ε) = 0 and Var(ε) = σ2

ε is some unpredictable noise

Y = y is our ‘best guess’...

Weight (lbs.)

Den

sity

100 150 200 250

0.00

00.

005

0.01

00.

015

●● ●●● ●● ●● ●● ●●●● ● ●●● ●●● ●●●● ●● ●●●●● ●● ●● ●●●●● ●● ● ●●● ● ●●● ● ●● ●●● ●● ●●● ● ●● ●● ● ●●● ●● ● ● ●●● ●●●● ●●● ●● ●● ● ●●● ●● ● ● ●● ●● ●● ● ●● ●●●● ●● ●● ●●● ● ●● ●● ●●● ●●●● ● ● ●● ●●● ● ● ●●●● ●●●● ● ●●● ● ●●●●● ● ●● ● ● ●●●● ●●●● ●● ●● ●●● ●●●● ●● ●● ●● ●●●●● ●● ● ●●● ●●

Predicting means estimating E(Y ).

Recall that E(Y ) = argminy∈R

{‖Y − y‖L2} = argminy∈R

{E([

ε︷ ︸︸ ︷Y − y]2

)}︸ ︷︷ ︸

least squares

3

Page 4: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Best estimate with some confidence

E.g. predicting someone’s weight (Y )Give an interval [y−, y+] such that

P(Y ∈ [y−, y+]) = 1− α

Confidence intervals can be derived ifwe can estimate the distribution of Y

F (y) = P(Y ≤ y) or f(y) = dF (x)dx

∣∣∣∣x=y

Weight (lbs.)

Den

sity

100 150 200 250

0.00

00.

005

0.01

00.

015

●● ●●● ●● ●● ●● ●●●● ● ●●● ●●● ●●●● ●● ●●●●● ●● ●● ●●●●● ●● ● ●●● ● ●●● ● ●● ●●● ●● ●●● ● ●● ●● ● ●●● ●● ● ● ●●● ●●●● ●●● ●● ●● ● ●●● ●● ● ● ●● ●● ●● ● ●● ●●●● ●● ●● ●●● ● ●● ●● ●●● ●●●● ● ● ●● ●●● ● ● ●●●● ●●●● ● ●●● ● ●●●●● ● ●● ● ● ●●●● ●●●● ●● ●● ●●● ●●●● ●● ●● ●● ●●●●● ●● ● ●●● ●●

(related to the idea of “quantifying uncertainty” in our prediction...)

4

Page 5: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Parametric inference

E.g. predicting someone’s weight (Y )Assume that F ∈ F = {Fθ,θ ∈ Θ}1. Provide an estimate θ2. Compute bound estimates

y− = F−1θ

(α/2)

y+ = F−1θ

(1− α/2)

Standard estimation technique :−→ maximum likelihood techniques

Weight (lbs.)

Den

sity

100 150 200 250

0.00

00.

005

0.01

00.

015

90%

θ = argmaxθ∈Θ

{ n∑i=1

log fθ(yi)︸ ︷︷ ︸log likelihood

} explicit (analytical) expression for θnumerical optimization (Newton Raphson)

5

Page 6: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Non-parametric inference

E.g. predicting someone’s weight (Y )1. Empirical distribution function

F (y) = 1n

n∑i=1

1(yi ≤ y)︸ ︷︷ ︸#{i such that yi≤y}

natural estimator for P(Y ≤ y)2. Compute bound estimates

y− = F−1(α/2)y+ = F−1(1− α/2)

Weight (lbs.)

Den

sity

100 150 200 250

0.00

00.

005

0.01

00.

015

90%

●● ●●● ●● ●● ●● ●●●● ● ●●● ●●● ●●●● ●● ●●●●● ●● ●● ●●●●● ●● ● ●●● ● ●●● ● ●● ●●● ●● ●●● ● ●● ●● ● ●●● ●● ● ● ●●● ●●●● ●●● ●● ●● ● ●●● ●● ● ● ●● ●● ●● ● ●● ●●●● ●● ●● ●●● ● ●● ●● ●●● ●●●● ● ● ●● ●●● ● ● ●●●● ●●●● ● ●●● ● ●●●●● ● ●● ● ● ●●●● ●●●● ●● ●● ●●● ●●●● ●● ●● ●● ●●●●● ●● ● ●●● ●●

6

Page 7: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Prediction using some covariates

E.g. predicting someone’s weight (Y )based on his/her sex (X1)

Model : Yi =

βF + εi if X1,i = FβH + εi if X1,i = M

or Yi = β0︸︷︷︸βM

+ β1︸︷︷︸βF−βM

1(X1,i = F) + εi

with E(ε) = 0 and Var(ε) = σ2

Weight (lbs.)

Den

sity

100 150 200 250

0.00

00.

005

0.01

00.

015

Female

Male

7

Page 8: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Prediction using some (categorical) covariatesE.g. predicting someone’s weight (Y )

based on his/her sex (X1)Conditional parametric modelassume that Y |X1 = x1 ∼ Fθ(x1)

i.e. Yi ∼

FθFif X1,i = F

FθMif X1,i = M

−→ our prediction will beconditional on the covariate Weight (lbs.)

Den

sity

100 150 200 250

0.00

00.

005

0.01

00.

015

Female

Male

8

Page 9: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Prediction using some (categorical) covariatesPrediction of Y when X1 = F Prediction of Y when X1 = M

Weight (lbs.)

Den

sity

100 150 200 250

0.00

00.

005

0.01

00.

015

90%

Weight (lbs.)

Den

sity

100 150 200 250

0.00

00.

005

0.01

00.

015

90%

9

Page 10: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Linear Models, and Ordinary Least Squares

E.g. predicting someone’s weight (Y )based on his/her height (X2)

Linear Model : Yi = β0 + β2 X2,i + εi

with E(ε) = 0 and Var(ε) = σ2

Conditional parametric modelassume that Y |X2 = x2 ∼ Fθ(x2)

E.g. Gaussian Linear ModelY |X2 = x2 ∼ N ( µ(x2)︸ ︷︷ ︸

β0+β2x2

, σ2(x2)︸ ︷︷ ︸σ2

)●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

Height (in.)

Wei

ght (

lbs.

)

5.0 5.5 6.0 6.5

100

150

200

250

−→ ordinary least squares, β = argmin{

n∑i=1

[Yi −XTi β]2

}β is also the M.L. estimator of β

10

Page 11: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Prediction using no covariates

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

Height (in.)

Wei

ght (

lbs.

)

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

5.0 5.5 6.0 6.5

100

150

200

250

90%

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●● ●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

11

Page 12: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Prediction using a categorical covariates

E.g. predicting someone’s weight (Y )based on his/her sex (X1)

E.g. Gaussian linear modelY |X1 = M ∼ N (µM , σ2)

E(Y |X1 = M) = 1nM

∑i:X1,i=M

Yi = Y (M)

Y ∈[Y (M)± u1−α/2︸ ︷︷ ︸

1.96

· σ]

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●● ●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

Remark In the linear model, Var(ε) = σ2 does not depend on X1.

12

Page 13: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Prediction using a categorical covariates

E.g. predicting someone’s weight (Y )based on his/her sex (X1)

E.g. Gaussian linear modelY |X1 = F ∼ N (µF , σ2)

E(Y |X1 = F) = 1nF

∑i:X1,i=F

Yi = Y (F)

Y ∈[Y (F)± u1−α/2︸ ︷︷ ︸

1.96

· σ]

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●● ●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

Remark In the linear model, Var(ε) = σ2 does not depend on X1.

13

Page 14: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Prediction using a continuous covariates

E.g. predicting someone’s weight (Y )based on his/her height (X2)

E.g. Gaussian linear modelY |X2 = x2 ∼ N (β0 + β1x2, σ

2)

E(Y |X2 = x2) = β0 + β1x2 = Y (x2)

Y ∈[Y (x2)± u1−α/2︸ ︷︷ ︸

1.96

· σ]

14

Page 15: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Improving our prediction ?

(Empirical) residuals, εi = Yi−XTi β︸ ︷︷ ︸Yi

R2 or log-likelihoodparsimony principle ?−→ penalizing the likelihood with

the number of covariatesAkaike (AIC) orSchwarz (BIC) criteria

no covariates

height as

covariate

sex as

covariate

−50 0 50 100

●●●

●●●●

● ●●●

−50 0 50 100

15

Page 16: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Relaxing the linear assumption in predictionsUse of b-spline function basis to estimate µ(·) where µ(x) = E(Y |X = x)

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

Height (in.)

Wei

ght (

lbs.

)

5.0 5.5 6.0 6.5

100

150

200

250

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

Height (in.)

Wei

ght (

lbs.

)

5.0 5.5 6.0 6.5

100

150

200

250

16

Page 17: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Relaxing the linear assumption in predictions

E.g. predicting someone’s weight (Y )based on his/her height (X2)

E.g. Gaussian linear modelY |X2 = x2 ∼ N (µ(x2), σ2)E(Y |X2 = x2) = µ(x2) = Y (x2)

Y ∈[Y (x2)± u1−α/2︸ ︷︷ ︸

1.96

· σ]

Gaussian model : E(Y |X = x) = µ(x) (e.g. xTβ) and Var(Y |X = x) = σ2.

17

Page 18: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Nonlinearities and missing covariates

E.g. predicting someone’s weight (Y )based on his/her height and sex

−→ nonlinearities can be related tomodel mispecification

E.g. Gaussian linear model

Yi =

β0,F + β2,FX2,i + εi if X1,i = Fβ0,M + β2,MX2,i + εi if X1,i = M

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

Height (in.)

Wei

ght (

lbs.

)

5.0 5.5 6.0 6.5

100

150

200

250

−→ local linear regression, βx = argmin{

n∑i=1

ωi(x) · [Yi −XTi β]2

}and set Y (x) = xTβx

18

Page 19: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Local regression and smoothing techniques

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

Height (in.)

Wei

ght (

lbs.

)

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

5.0 5.5 6.0 6.510

015

020

025

0

19

Page 20: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

k-nearest neighbours and smoothing techniques

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

Height (in.)

Wei

ght (

lbs.

)

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

5.0 5.5 6.0 6.510

015

020

025

0

20

Page 21: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Kernel regression and smoothing techniques

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

Height (in.)

Wei

ght (

lbs.

)

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

5.0 5.5 6.0 6.510

015

020

025

0

21

Page 22: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Multiple linear regression

E.g. predicting someone’s misperceptionof his/her weight (Y )based on his/her height︸ ︷︷ ︸

X2

and weight︸ ︷︷ ︸X3

−→ linear modelE(Y |X2, X3) = β0 + β2X2 + β3X3

Var(Y |X2, X3) = σ2

22

Page 23: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Multiple non-linear regression

E.g. predicting someone’s misperceptionof his/her weight (Y )based on his/her height︸ ︷︷ ︸

X2

and weight︸ ︷︷ ︸X3

−→ non-linear modelE(Y |X2, X3) = h(X2, X3)Var(Y |X2, X3) = σ2

23

Page 24: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Away from the Gaussian model

Y is not necessarily GaussianY can be a counting variable,E.g. Poisson Y ∼ P(λ(x))Y can be a FALSE-TRUE variable,E.g. Binomial Y ∼ B(p(x))

(see next section)−→ Generalized Linear ModelE.g. Y |X2 = x2 ∼ P

(eβ0+β2x2

)

Remark With a Poisson model, E(Y |X2 = x2) = Var(Y |X2 = x2).

24

Page 25: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Logistic regression

E.g. predicting someone’s misperceptionof his/her weight (Y )

Yi =

1 if prediction > observed weight0 if prediction ≤ observed weight

Bernoulli variable,P(Y = y) = py(1− p)1−y, where y ∈ {0, 1}−→ logistic regressionP(Y = y|X = x) = p(x)y(1− p(x))1−y,where y ∈ {0, 1}

● ● ●

●●●●●

●●●●

●●●●●

●●●●●

●●

●●

●●

●●●●●

●●

●●

●●

●●

●●●

●●●●●

●●

●●●●

●●

●●

●●

●●

●●

●●●●●●

●●●●

●●●●

●●

●●

●●

●●●

●●●●●

●●

●●●●●●●

●●

●●●●●

●●

●●●

●●●●●

●●●●●

●●●●

●●

●●

●●●●●●●

● ●● ●

5.0 5.5 6.0 6.5

0.0

0.4

0.8

Height (in.)

●● ●

● ●● ●●

●●●●

● ●●● ●

●● ●● ●

●●

●●

●●

●●●● ●

● ●

●●

● ●

● ●

●● ●

● ●●● ●

●●

●● ● ●

● ●

● ●

● ●

●●

●●

●●● ●● ●

● ● ●●

● ●● ●

●●

●●

● ●

● ●●

●● ●●●

●●

●●● ● ●● ●

● ●

● ● ●●●

● ●

●● ●

●● ●●●

●● ●●●

●●● ●

●●

●●

●●● ●● ● ●

●● ●●

100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

Weight (lbs.)

25

Page 26: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Logistic regression

−→ logistic regressionP(Y = y|X = x) = p(x)y(1− p(x))1−y,where y ∈ {0, 1}

Odds ratio P(Y = 1|X = x)P(Y = 0|X = x) = exp

(xTβ

)

E(Y |X = x) =exp

(xTβ

)1 + exp (xTβ)

Estimation of β ?−→ maximum likelihood β (Newton - Raphson)

26

Page 27: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Smoothed logistic regression

GLMs are linear sinceP(Y = 1|X = x)P(Y = 0|X = x) = exp

(xTβ

)−→ smooth nonlinear function insteadP(Y = 1|X = x)P(Y = 0|X = x) = exp (h(x))

E(Y |X = x) = exp (h(x))1 + exp (h(x))

● ● ●

●●●●●

●●●●

●●●●●

●●●●●

●●

●●

●●

●●●●●

●●

●●

●●

●●

●●●

●●●●●

●●

●●●●

●●

●●

●●

●●

●●

●●●●●●

●●●●

●●●●

●●

●●

●●

●●●

●●●●●

●●

●●●●●●●

●●

●●●●●

●●

●●●

●●●●●

●●●●●

●●●●

●●

●●

●●●●●●●

● ●● ●

5.0 5.5 6.0 6.5

0.0

0.4

0.8

Height (in.)

●● ●

● ●● ●●

●●●●

● ●●● ●

●● ●● ●

●●

●●

●●

●●●● ●

● ●

●●

● ●

● ●

●● ●

● ●●● ●

●●

●● ● ●

● ●

● ●

● ●

●●

●●

●●● ●● ●

● ● ●●

● ●● ●

●●

●●

● ●

● ●●

●● ●●●

●●

●●● ● ●● ●

● ●

● ● ●●●

● ●

●● ●

●● ●●●

●● ●●●

●●● ●

●●

●●

●●● ●● ● ●

●● ●●

100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

Weight (lbs.)

27

Page 28: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Smoothed logistic regression

−→ non linear logistic regressionP(Y = 1|X = x)P(Y = 0|X = x) = exp (h(x))

E(Y|X = x) = exp (h(x))1 + exp (h(x))

Remark we do not predict Y here,but E(Y |X = x).

28

Page 29: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Predictive modeling for a {0, 1} variable

What is a good {0, 1}-model ?

−→ decision theory

if P(Y |X = x) ≤ s, then Y = 0if P(Y |X = x) > s, then Y = 1

Y = 0 Y = 1

Y = 0 fine errorY = 1 error fine

Obs

erve

d

Y=

1Y

=0

Predicted

Y = 0 Y = 1

●●●

● ●● ●●

●●●●

● ●●● ●

●● ●● ●

●●

●●

●●

●●●● ●

● ●

●●

● ●

● ●

●● ●

● ●●●●

●●

●● ● ●

● ●

● ●

● ●

●●

●●

●●● ●● ●

● ● ●●

● ●●●

●●

●●

● ●

● ●●

●● ●●●

●●

●●● ●●● ●

● ●

● ● ●●●

● ●

●●●

●● ●●●

●● ●●●

●●● ●

●●

●●

●●● ●● ● ●

●● ●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Predicted

Obs

erve

d

● ●●●●● ●●● ● ●●●● ● ●● ●●● ●●●●● ●● ●●● ●● ●●●● ●● ● ●● ●●●● ● ●●●● ●●● ●● ●●● ● ●●●●● ● ●●●● ● ●●● ●●● ●●● ●●● ●

●●● ●●●●●● ●●●● ●● ● ●●●● ●●● ●●●● ●●● ●●●

● ●● ●● ●●● ●●● ●● ●●● ●●● ●●●●●● ●● ●●●●

●●●●●●●●●● ●●●●●●●● ●●● ●● ●● ● ●●● ●● ●●● ●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

False Positive Rate

True

Pos

itive

Rat

e

●●

29

Page 30: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

R.O.C. curve

True positive rateTP (s) = P(Y (s) = 1|Y = 1)

=nY=1,Y=1

nY=1False positive rateFP (s) = P(Y (s) = 1|Y = 0)

=nY=1,Y=1

nY=1

R.O.C. curve is{FP (s), TP (s)), s ∈ (0, 1)}

(see also model gain curve)

30

Page 31: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Classification tree (CART)

If Y is a TRUE-FALSE variableprediction is a classification problem.

E(Y |X = x) = pj if x ∈ Ajwhere A1, · · · , Ak are disjointregions of the X-space.

31

Page 32: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Classification tree (CART)

−→ iterative processStep 1. Find two subset of indiceseither A1 = {i,X1,i < s}

and A2 = {i,X1,i > s}or A1 = {i,X2,i < s}

and A2 = {i,X2,i > s}

maximize homogeneity within subsets& maximize heterogeneity between subsets

32

Page 33: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Classification tree (CART)

Need an impurity criteriaE.g. Gini index

−∑

x∈{A1,A2}

nxn

∑y∈{0,1}

nx,ynx·(

1− nx,ynx

)●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

5.0 5.5 6.0 6.510

015

020

025

0

Height (in.)

Wei

ght (

lbs.

)

0.273

0.523 0.317

33

Page 34: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Classification tree (CART)

Step k. Given partition A1, · · · , Akfind which subset Aj will be divided,either according to X1

or according to X2

maximize homogeneity within subsets& maximize heterogeneity between subsets ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

5.0 5.5 6.0 6.5

100

150

200

250

Height (in.)

Wei

ght (

lbs.

)

0.273

0.444 0.621

0.111

0.472

34

Page 35: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

Visualizing classification trees (CART)

|Y < 124.561

X < 5.692260.2727

0.5231 0.3175

|Y < 124.561

X < 5.39698 X < 5.69226

X < 5.52822 Y < 162.04

0.3429 0.1500

0.4444 0.6207

0.1111 0.4722

35

Page 36: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

From trees to forests

Problem CART tree are not robust−→ boosting and bagginguse bootstrap : resample in the dataand generate a classification treerepeat this resampling strategyThen aggregate all the trees

36

Page 37: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

A short word on functional data

Individual data, {Yi, (X1,i, · · · , Xk,i, · · · )}Functional data, {Y i = (Yi,1, · · · , Yi,t, · · · )}E.g. Winter temperature, in Montréal, QC

●●

●●

● ●

● ●

5 10 15

−20

−15

−10

−5

05

10

Week of winter (from Dec. 1st till March 31st)

Tem

pera

ture

(in

°C

elsi

us)

●●●

●●

●●●●

●●●●

●●●●

●●●●

●●

●●

●●

●●●●●●●●

●●

●●

●●

●●

●●

●●●

●●●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●●●●

●●●

●●●●●●

●●●

●●

●●

●●

●●●●

●●

●●●●

●●●

●●

●●●●●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●●

●●

●●●●

●●

●●

●●●●●●●

●●

●●

●●●

●●

●●

●●●

●●●

●●●

●●

●●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●●

●●●

●●●●●●

●●

●●●●●●●●

●●

●●●●

●●●

●●

●●●

●●

●●

●●

●●●

●●

●●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●●

●●

●●●●

●●

●●

●●

●●●●

●●●

●●

●●●

●●●●●●●●

●●

●●●●

●●●

●●●●

●●

●●●●●

●●

●●

●●●

●●

●●

●●

●●●●

●●●

●●

●●

●●●

●●●

●●

●●

●●●●

●●

●●●

●●●

●●●●●●●●●

●●

●●

●●●

●●●

●●

●●●●

●●

●●●

●●●

●●

●●●

●●●●●●●

●●

●●●

●●

●●●●

●●●●

●●●

●●●●●●

●●●●●

●●

●●●●

●●

●●

●●●●

●●

●●●

●●

●●

●●

●●●

●●●

●●

●●●●

●●

●●●●●

●●●●

●●

●●

●●

●●

●●●●●

●●

●●

●●

●●

●●

●●●

●●●●●●

●●●

●●●

●●

●●●

●●●

●●●●●●●●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●●●●●●●●

●●

●●●●●●●

●●

●●

●●●

●●

●●

●●●●

●●

●●

●●●

●●

●●

●●

●●

●●●●●●●●●

●●●●●●●●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●

0 20 40 60 80 100 120

−30

−20

−10

010

Day of winter (from Dec. 1st till March 31st)

Tem

pera

ture

(in

°C

elsi

us)

●●●●

●●●●●●

●●●●●●●●●

●●●●

●●●●

●●

●●

●●

●●●

●●●

●●

●●●

●●●

●●

●●●

●●●●●●●

●●

●●●●

●●●

●●

●●●

●●

●●

●●●

●●●●

●●●

●●●

●●

●●

●●

●●●●●

●●●

●●●●●●●●●

●●●

●●

●●●●

●●

●●

●●

●●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●●

●●●●●●●●●

●●●●●

●●

●●

●●●

●●

●●●●

●●

●●●

●●

●●

●●●

●●●●

●●

●●●●●●

●●●

●●●●●

●●

●●●

●●●

●●

●●

●●●●●

●●●●●

●●

●●●●●●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●●●●●●●●

●●●●●

●●●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●

●●

●●

●●●●●●●●●

●●●●

●●●●●

●●●

●●

●●●

●●●

●●

●●●

●●●●●●●●

●●

●●

●●

●●

●●●●●

●●

●●

●●

●●

●●●

●●●●●

●●

●●●●●

●●

●●

●●

●●

●●

●●●●

●●

●●●

●●●●●

●●

●●

●●

●●●●●●●●●

●●●

●●●●●

●●

●●

●●

●●

●●

●●●

●●●

●●●

●●●

●●●●●●●●●

●●

●●

●●

●●

●●

●●

●●●

●●●●●●●●●

●●●●●●●●●

●●

●●●●●

●●

●●

●●

●●●

●●●●●

●●●

●●●●

●●●

●●●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●●●●

●●●●

●●●

●●●●●●

●●

●●

●●

●●●

●●

●●●

●●

●●●

●●

●●●●

●●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●●●

●●

●●●

●●●●

●●

●●●●●

●●

●●●

●●

●●

●●●

●●●●

●●

●●

●●●●

●●

●●●●●●●

●●●●●●

●●●●●

●●

●●

●●●

●●

●●

●●●

●●●●●

●●●●

●●

●●

●●●●

●●

●●

●●●

●●●●

●●

●●

●●●

●●

●●

●●●●●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●●●

●●●

●●

●●

●●●●●●●●

●●●

●●●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●●●●●

●●

●●●●●●●●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●●

●●

●●●

●●

●●●●●

●●

●●●●●●●●●

●●

●●●

●●●

●●

●●●

●●●●

●●●

●●●●●

●●●

●●●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●●●

●●●●

●●●

●●

●●

●●

●●

●●

●●●●●●

●●●●●●

●●

●●●●●●

●●

●●

●●

●●

●●●●

●●●

●●

●●

●●

●●

●●

●●

●●●●●●●

●●

●●●●

●●

●●●

●●●

●●

●●

●●

●●●

●●

●●

●●●●

●●

●●●●●

●●

●●●●●●●

●●

●●

●●

●●

●●

●●

●●●●

●●●

●●

●●

●●●

●●●

●●

●●●●●●

●●

●●

●●●

●●

●●

●●●

●●

●●●

●●●

●●●

●●

●●●●●●

●●●

●●●●●●●●

●●●●●

●●

●●

●●

●●●

●●

●●●

●●

●●●●

●●

●●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●●●●●●●●

●●

●●

●●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●●●

●●

●●

●●●●

●●●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●●●●●

●●

●●

●●●

●●

●●

●●●●

●●●●●

●●

●●

●●

●●●●●●

●●

●●●

●●

●●

●●●

●●

●●

●●●●

●●●

●●

●●●●

●●

●●●

●●●

●●

●●

●●●

●●●

●●

●●●

●●

●●

●●●

●●●●

●●

●●

●●

●●●

●●●●

●●●●●●●●●

●●

●●

●●●

●●●●

●●●

●●●

●●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●●

●●●

●●

●●●

●●

●●

●●

●●●●

●●●●

●●

●●●●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●●●●●

●●●●●●

●●●

●●●●

●●

●●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●

●●●●●●●●

●●

●●

●●●

●●●

●●●

●●

●●●●●

●●●

●●

●●

●●

●●

●●

●●

●●●●

●●●

●●

●●

●●

●●

●●●

●●●●●

●●●●●●●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●●●●

●●●●

●●●●

●●

●●●●●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●●

●●

●●

●●●

●●●

●●

●●●

●●●

●●●

●●

●●

●●

●●●

●●

●●●

●●

●●●●

●●

●●●

●●●

●●

●●●●

●●

●●

●●

●●

●●●●

●●

●●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●●●

●●

●●●

●●

●●●●●

●●●●

●●●

●●

●●

●●●

●●

●●●●

●●●

●●

●●

●●

●●

●●

●●●●

●●●●

●●

●●●●

●●

●●

●●

●●

●●

●●●

●●●●●

●●

●●

●●

●●

●●

●●

●●●

●●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●●●●●

●●●

●●

●●

●●

●●●●●

●●

●●

●●

●●

●●

●●●

●●●●

●●●●

●●●

●●●●●●●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●●●

●●

●●●

●●●

●●

●●

●●●●●

●●

●●

●●

●●●●

●●●●

●●

●●

●●●●

●●●●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●●●

●●●●●

●●

●●●

●●●

●●

●●

●●

●●●●

●●

●●

●●

●●●●

●●●●●●●●●

●●

●●

●●

●●●

●●

●●

●●●●

●●

●●●

●●

●●●

●●

●●

●●●●●

●●●●

●●

●●

●●

●●●

●●●

●●

●●●

●●

●●●

●●●

●●

●●●●●

●●

●●

●●

●●

●●

●●

●●

●●●●●

●●

●●

●●

●●●

●●●

●●

●●●●●

●●●

●●●●●●

●●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●●

●●●●●●

●●●

●●●●

●●●

●●

●●●

●●●

●●●

●●●

●●

●●●

●●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●●●

●●●●●

●●●●

●●●●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●●●

●●●

●●●●

●●●●

●●

●●

●●●

●●

●●●

●●●

●●

●●●

●●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●●●

●●

●●●

●●●

●●●●●●●●●

●●●●

●●

●●

●●●

●●

●●

●●●

●●

●●

●●●●●●

●●●

●●

●●●●

●●

●●●●

●●●

●●

●●●

●●●

●●

●●

●●●

●●

●●

●●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●●●●

●●●

●●●●

●●

●●

●●

●●●●

●●

●●

●●●

●●●

●●●

●●

●●●

●●

●●●●●●

●●

●●

●●●●●

●●●

●●●

●●

●●●●

●●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●●●●

●●●●●●●●●

●●

●●

●●

●●

●●

●●●

●●

●●●●

●●

●●

●●

●●●●

●●

●●●

●●●

●●

●●●

●●

●●

●●●●●●●●

●●●

●●●●●

●●

●●

●●

●●●●●

●●●●

●●

●●

●●

●●●●

●●

●●

●●

●●●●

●●●●●●

●●

●●●

●●

●●●●●

●●

●●

●●

●●●

●●●●●

●●●

●●●

●●●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●●●

●●

●●

●●●●●

●●●

●●

●●

●●●

●●

●●●

●●

●●

●●●

●●

●●●●

●●●●

●●●

●●●●●●

●●

●●

●●●●

●●

●●

●●

●●●

●●

●●

●●

●●●●●●●●●

●●

●●

●●●●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●●●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●●●

●●●

●●

●●●●●●●●●

●●

●●

●●

●●●●

●●

●●●●●

●●●●●

●●●●

●●

●●

●●

●●●

●●

●●●

●●●

●●

●●

●●●

●●●●●●●●

●●●●

●●

●●

●●

●●●●●

●●

●●●

●●

●●

●●●

●●●

●●●●●●

●●

●●●

●●

●●

●●●

●●●●

●●●●

●●●●

●●

●●●●●●

●●●●●●

●●

●●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●●

●●

●●●

●●●●●●●●●

●●●●

●●●

●●●●●

●●●

●●

●●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●●

●●●●●●

●●●●●

●●

●●●●

●●

●●●

●●●

●●●

●●●●

●●

●●●

●●

●●

●●

●●●

●●●

●●

●●●

●●●

●●●●●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●●●●

●●●●

●●●

●●●●

●●●

●●●●

●●●

●●●

●●●

●●

●●

●●●

●●

●●

●●●

●●

●●●●●●●●●

●●●●●●●●●

●●●

●●

●●

●●●

●●

●●●

●●

●●●

●●●●●●●●

●●●●●●●●●

●●●●●

●●

●●

●●

●●

●●●●●

●●

●●●

●●●

●●●

●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●●●●

●●

●●●

●●●

●●●●●●●●●

●●●●

●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●●

●●●

●●

●●●●

●●

●●●

●●●

●●

●●

●●

●●●

●●

●●●●●●

●●

●●

●●●●

●●●●●●●●●

●●

●●●●●●●

●●

●●

●●

●●●

●●●●

●●●

●●

●●●●

●●

●●

●●

●●

●●●●●●●●●

●●

●●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●●●●●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●●●●

●●●●

●●●●

●●●

●●●●●

●●●

●●

●●●●●●●●

●●●

●●

●●

●●●

●●●

●●●●●●●●●

●●

●●●

●●●

●●

●●

●●●●●●●

●●

●●

●●

●●●●

●●●●●

●●●●

●●●

●●

●●●●●●

●●

●●

●●

●●

●●●

●●●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●●●●●●●●

●●

●●

●●●

●●●

●●●

●●●

●●

●●

●●

●●

●●●●●●

●●●

●●●●

●●●

●●●●

●●●●

●●

●●

●●

●●

●●

●●

●●●●

●●●

●●●

●●●●●●

●●●●●●●●●

●●●

●●

●●

●●●●

●●

●●●

●●

●●

●●

●●

●●

●●●●●●●

●●●●●●●●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●●

●●●

●●●●

●●●●●

●●●

●●●●

●●

●●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●●●

●●●

●●●●

●●●

●●

●●●●

●●●

●●

●●●●

●●

●●●●

●●●●

●●●●●●●●●●

●●●

●●

●●●●●

●●●●

●●●

●●

●●●●

●●●●

●●●●

●●●●

●●●●●

●●●

●●●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●

●●●●●

●●

●●

●●●●●

●●●

●●●

●●●●●

●●

●●

●●●●●●

●●●●●

●●●

●●●●

●●●●●

●●●●●●●●

●●●

●●●

●●●●●●●

●●

●●

●●●●

●●

●●●●

●●●

●●

●●●●●●

●●●●

●●●●

●●●●

●●●

●●

●●

●●

●●●

●●

●●

●●●

●●●

●●

●●●●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●

●●●●●●●●●

●●●●●●●●●

●●

●●

●●

●●●

●●●

●●●

●●

●●

●●●

●●●

●●●●●●

●●●●●●●●●

●●

●●●

●●

●●●●

●●●

●●●●

●●

●●●●

●●

●●●

●●

●●

●●●●●●●

●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●●

●●●●

●●●●●●●●●

●●

●●●

●●

●●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●●●●

●●●

●●●●●●●

●●●●

●●

●●

●●

●●●●●

●●●

●●●

●●●●●

●●

●●●●●

●●●●●●●●●

●●●

●●●

●●

●●

●●●●●●

●●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

37

Page 38: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

A short word on functional data

−20 −10 0 10 20 30 40 50

−20

020

40

Comp.1

Com

p.2

●●

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975 1976

1977

1978

1979

1980

1981

1982

1983

1984 1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

Daily dataset

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●

●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●

●●●●●●

●●

●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●

●●

●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●

●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●

●●●●●

●●

●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●

●●●●●●

●●●●

0 20 40 60 80 100 120

−50

050

Day of winter (from Dec. 1st till March 31st)

PC

A C

omp.

1

DECEMBER JANUARY FEBRUARY MARCH

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●

0 20 40 60 80 100 120

−30

−20

−10

010

2030

Day of winter (from Dec. 1st till March 31st)

PC

A C

omp.

2

● ●

● ●● ●

38

Page 39: So a webinar-2013-2

Arthur CHARPENTIER - Predictive Modeling - SoA Webinar, 2013

To go further...

forthcoming book entitledComputational Actuarial Science with R

39