Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic...

73
Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The Symmetry of Vibrations + Perturbation Theory + Statistical Thermodynamics

Transcript of Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic...

Page 1: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 1

Chapter 5

Molecular Vibrations andTime-Independent Perturbation Theory

Part A: The Harmonic Oscillator and Vibrations of Molecules

Part B: The Symmetry of Vibrations + Perturbation Theory + Statistical Thermodynamics

Page 2: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 2

• The Classical Harmonic Oscillator

• Math Preliminary: Taylor Series Solution of Differential Eqns.

• The Vibrations of Diatomic Molecules

• The Quantum Mechanical Harmonic Oscillator

• Vibrational Spectroscopy

• Harmonic Oscillator Wavefunctions and Energies

• Properties of the Quantum Mechanical Harmonic Oscillator

• Vibrational Anharmonicity

• The Two Dimensional Harmonic Oscillator

• Vibrations of Polyatomic Molecules

Part A: The Harmonic Oscillator and Vibrations of Molecules

Page 3: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 3

The Classical Harmonic Oscillator

Re

V(R

)

0

A BR

V(R) ½k(R-Re)2

Harmonic Oscillator Approximation

or V(x) ½kx2 x = R-Re

The Potential Energy of a Diatomic Molecule

k is the force constant

Page 4: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 4

m1 m2

x = R - Re

Hooke’s Law and Newton’s Equation

Force:21

2

dV df kx kx

dx dx

Newton’s Equation:2

2

d xf a

dt 1 2

1 2

m m

m m

where

Reduced Mass

Therefore:2

2

d xkx

dt

Page 5: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 5

Solution

2

2

d xkx

dt

2

2

d x kx

dt

Assume: ( ) s i n ( ) c o s ( )x t A t B t 2

2 22

sin ( ) cos( )d x

A t B td t

2 x

2 kx x

k

2

or1

2

k

or1

2

k

c

Page 6: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 6

Initial Conditions (like BC’s)

Let’s assume that the HOstarts out at rest stretchedout to x = x0.

( ) s i n ( ) c o s ( )x t A t B t

x(0) = x0

0

0t

dx

dt

cos( ) sin( )dx

A t B tdt

0

0t

dxA

dt

( ) c o s ( )x t B t

0( 0 )x x B and 0( ) c o s ( )x t x t

1

2 2

k

Page 7: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 7

Conservation of Energy

0 sin ( )dx

x td t

0( ) c o s ( )x t x tk

Potential Energy (V) Kinetic Energy (T) Total Energy (E)

21

2V kx

2 20

1cos ( )

2V kx t

21

2

dxT

dt

2 2 20

1sin ( )

2T x t

2 20

1sin ( )

2T kx t

E T V

20

1

2E kx

20

1

2V kx 0T 2

0

1

2E kx

0V 20

1

2E kx2

0

1

2T kx

t = 0, , 2, ... x = x0

t = /2, 3/2, ... x = 0

Page 8: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 8

Classical HO Properties

Energy: E = T + V = ½kx02 = Any Value i.e. no energy quantization

If x0 = 0, E = 0 i.e. no Zero Point Energy

Probability: E = ½kx02

x

P(x)

0 +x0-x0

Classical Turning Points

Page 9: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 9

• The Classical Harmonic Oscillator

• Math Preliminary: Taylor Series Solution of Differential Eqns.

• The Vibrations of Diatomic Molecules

• The Quantum Mechanical Harmonic Oscillator

• Vibrational Spectroscopy

• Harmonic Oscillator Wavefunctions and Energies

• Properties of the Quantum Mechanical Harmonic Oscillator

• Vibrational Anharmonicity

• The Two Dimensional Harmonic Oscillator

• Vibrations of Polyatomic Molecules

Part A: The Harmonic Oscillator and Vibrations of Molecules

Page 10: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 10

Math Preliminary: Taylor Series Solution of Differential Equations

Taylor (McLaurin) Series

( )

0

1( ) (0)

!n n

n

f x f xn

Example: ( ) xf x e

Any “well-behaved” function canbe expanded in a Taylor Series

2 3 41 1 11

2 6 24x x x x

0

1

!n

n

xn

Page 11: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 11

0 1

x ff f2 f3( )

( ) xf x e2

2 ( ) 12

xf x x

2 3

3 ( ) 12 6

x xf x x

x ff f3 f6( )

0 3

( ) xf x e2 3

3 ( ) 12 6

x xf x x

2 3 4 5 6

6 ( ) 12 6 24 120 720

x x x x xf x x

Example: ( ) xf x e 2 3 41 1 11

2 6 24x x x x

0

1

!n

n

xn

Page 12: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 12

A Differential Equation

( )( )

df xf x

dx

Solution: ( ) xf x A e

Example: ( ) xf x e

Taylor (McLaurin) Series

( )

0

1( ) (0)

!n n

n

f x f xn

Any “well-behaved” function can

be expanded in a Taylor Series

2 3 41 1 11

2 6 24x x x x

0

1

!n

n

xn

Page 13: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 13

Taylor Series Solution

( )( )

df xf x

dx

2 30 1 2 3

0

( ) nn

n

f x a a x a x a x a x

Our goal is to develop a “recursion formula” relatinga1 to a0, a2 to a1... (or, in general, an+1 to an)

SpecificRecursionFormulas:

21 2 3

( )2 3

d f xa a x a x

dx

2 21 2 3 0 1 2

( )2 3 ( )

d f xa a x a x a a x a x f x

d x

Coefficients of xn must be equal for all n

a1 = a0

2a2 = a1 a2 = a1/2 = a0/2

3a3 = a2 a3 = a2/3 = a0/6

1

1

mm

m

ma x

Page 14: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 14

a1 = a0

a2 = a0/2

a3 = a0/6

2 30 1 2 3( )f x a a x a x a x 2 3

0

1 11 ...

2 6a x x x

Power SeriesExpansion for ex

General Recursion Formula

( )( )

df xf x

dx

1

1 0

m nm n

m n

ma x a x

Coefficients of the two series may be equatedonly if the summation limits are the same.

Therefore, set m = n+1 n=m-1and m=1 corresponds to n = 0

10 0

( 1) n nn n

n n

n a x a x

1( 1 ) n nn a a or 1 ( 1)n

n

aa

n

Page 15: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 15

• The Classical Harmonic Oscillator

• Math Preliminary: Taylor Series Solution of Differential Eqns.

• The Vibrations of Diatomic Molecules

• The Quantum Mechanical Harmonic Oscillator

• Vibrational Spectroscopy

• Harmonic Oscillator Wavefunctions and Energies

• Properties of the Quantum Mechanical Harmonic Oscillator

• Vibrational Anharmonicity

• The Two Dimensional Harmonic Oscillator

• Vibrations of Polyatomic Molecules

Part A: The Harmonic Oscillator and Vibrations of Molecules

Page 16: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 16

The Quantum Mechanical Harmonic Oscillator

Schrödinger Equation

Particle vibrating against wall

m

x = R - Re

2 22

2

1

2 2

dkx E

m dx

Two particles vibrating against each other

2 22

2

1

2 2

dkx E

dx

m1 m2

x = R - Re

1 2

1 2

m m

m m

Boundary Condition: 0 as x

Page 17: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 17

Solution of the HO Schrödinger Equation

Rearrangement of the Equation2 2

22

1

2 2

dkx E

dx

2 22

2

10

2 2

dkx E

dx

22

2 2

2 10

2

dkx E

dx

22

2 2 2

20

d E kx

dx

Define

2

2 E

22

k

2 2

2

k

22 2

20

dx

dx

Page 18: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 18

2

2 E

22

k 2

22

22 2

20

dx

dx

Should we try a Taylor series solution?0

nn

n

a x

No!! It would be difficult to satisfy the Boundary Conditions.

Instead, it’s better to use:0

nn asymp

n

a x

( ) a s y m pH x

That is, we’ll assume that is the product of a Taylor Series, H(x),and an asymptotic solution, asympt, valid for large |x|

Page 19: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 19

The Asymptotic Solution

2

2 22

0d

xdx

For large |x|2

2 22

0asymptasympt

dx

dx

We can show that theasymptotic solution is

2 / 2asympt xdxe

dx

2 22

/ 2 2 2 / 22

asym pt x xde x e

dx

22

2 2 / 22

asympt xdx e

dx

2 22 2 / 2 2 2 / 2 0x xx e x e

2 / 2xa s y m p t e

Note that asympt satisfied the BC’s;

i.e. asympt 0 as x

Plug in

Page 20: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 20

A Recursion Relation for the General Solution

2

2 22

0d

xdx

2 / 2

0 0

n n xn asymp n

n n

a x a x e

Assume the general solution is of the form

2 / 2( ) xH x e

If one: (a) computes d2/dx2

(b) Plugs d2/dx2 and into the Schrödinger Equation

(c) Equates the coefficients of xn

Then the following recursion formula is obtained:

2

2 10, 1, 2, 3,

( 1)( 2)n n

na a n

n n

Page 21: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 21

2

2 10, 1, 2, 3,

( 1)( 2)n n

na a n

n n

Because an+2 (rather than an+1) is related to an, it is best to considerthe Taylor Series in the solution to be the sum of an even and odd series

2 2/ 2 2 4 3 5 / 20 2 4 1 3 5

0

n x xn

n

a x e a a x a x a x a x a x e

Even Series Odd Series

From the recursion formula: 0 2 4a a a Even Coefficients

1 3 5a a a Odd Coefficients

a0 and a1 are two arbitrary constants

So far: (a) The Boundary Conditions have not been satisfied

(b) There is no quantization of energy

Page 22: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 22

Satisfying the Boundary Conditions: Quantization of Energy

2

2 E

2

2E

So far, there are no restrictions on and, therefore, none on E

Let’s look at the solution so far:

Does this solution satisfy the BC’s: i.e. 0 as x ?

It can be shown that:

2 2/ 2 2 4 3 5 / 20 2 4 1 3 5

0

n x xn

n

a x e a a x a x a x a x a x e

Even Series Odd Series

2 / 2lim 0n xx x e unless n

Therefore, the required BC’s will be satisfied if, and only if, boththe even and odd Taylor series terminate at a finite power.

Page 23: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 23

2 2/ 2 2 4 3 5 / 20 2 4 1 3 5

0

n x xn

n

a x e a a x a x a x a x a x e

Even Series Odd Series

We cannot let either Taylor series reach x.

2

2 10, 1, 2, 3,

( 1)( 2)n n

na a n

n n

We can achieve this for the even or odd series by settinga0=0 (even series) or a1=0 (odd series).

We can’t set both a0=0 and a1=0, in which case (x) = 0 for all x.

So, how can we force the second series to terminate at a finitevalue of n ?

By requiring that an+2 = 0•an for some value of n.

Page 24: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 24

2

2 10, 1, 2, 3,

( 1)( 2)n n

na a n

n n

If an+2 = 0•an for some value of n, then the required BC willbe satisfied.

Therefore, it is necessary for some value of the integer, n, that:

2 10

( 1)( 2)

n

n n

2 1 0n

This criterion puts restrictions on the allowed values of and,therefore, the allowed values of the energy, E.

Page 25: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 25

Allowed Values of the Energy

22

k

2 2

2

2

2 E

2

2E

Earlier Definitions Restriction on

2 1 0n n = 0, 1, 2, 3,...

(2 1)n

n = 0, 1, 2, 3,...

Quantized Energy Levels

2

2E

2

(2 1)2

n

1

2E n

or 1

2E n h 2

2 1n

2 1

2

n

Page 26: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 26

• The Classical Harmonic Oscillator

• Math Preliminary: Taylor Series Solution of Differential Eqns.

• The Vibrations of Diatomic Molecules

• The Quantum Mechanical Harmonic Oscillator

• Vibrational Spectroscopy

• Harmonic Oscillator Wavefunctions and Energies

• Properties of the Quantum Mechanical Harmonic Oscillator

• Vibrational Anharmonicity

• The Two Dimensional Harmonic Oscillator

• Vibrations of Polyatomic Molecules

Part A: The Harmonic Oscillator and Vibrations of Molecules

Page 27: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 27

HO Energies and Wavefunctions

Harmonic Oscillator Energies

1 10, 1, 2 , 3,

2 2nE n n h n

Angular Frequency: k

Circular Frequency: 1

2

k

En

erg

y

1

2

3

2

5

2

7

2

Wavenumbers: 1

2

k

c

where 11

( ) ( / )cm

cm c cm s

Page 28: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 28E

ner

gy

1

2

3

2

5

2

7

2

Quantized Energies

Only certain energy levels are allowedand the separation between levels is:

E

The classical HO permits any value of E.

Zero Point Energy

The minimum allowed value for theenergy is:

0

1

2E

The classical HO can have E=0.

Note: All “bound” particles have a minimum ZPE. This is a consequence of the Uncertainty Principle.

Page 29: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 29

The Correspondence Principle

The results of Quantum Mechanics must not contradict those ofclassical mechanics when applied to macroscopic systems.

The fundamental vibrational frequency of the H2 molecule is 4200 cm-1. Calculate the energy level spacing and the ZPE, in J and in kJ/mol.

ħ = 1.05x10-34 J•sc = 3.00x108 m/s = 3.00x1010 cm/sNA = 6.02x1023 mol-1

2 2 c 1 0 12 3 .1 4 3 .0 0 1 0 / 4 2 0 0x c m s c m 1 4 17 . 9 2 1 0x s

Spacing: E 3 4 1 4 11 .0 5 1 0 7 .9 2 1 0x J s x s 2 08 . 3 1 0x J

2 3 1 2 06 .0 2 1 0 8 .3 1 0AN E x m o l x J

ZPE: 0

1

2E 34 14 11

1 .05 10 7 .92 102

x J s x s 2 04 . 1 5 1 0x J

45 . 0 0 1 0 / 5 0 /x J m o l k J m o l

2 3 1 2 0 40 6 . 0 2 1 0 4 . 1 5 1 0 2 . 5 1 0 / 2 5 /AN E x m o l x J x J m o l k J m o l

Page 30: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 30

2 4 1 4 12 3 .1 4 1 .0 0 1 0 6 .2 8 1 0x s x s

Spacing: E 3 4 4 1 3 01 .0 5 1 0 6 .2 8 1 0 6 .6 1 0x J s x s x J

ZPE: 0

1

2E 34 4 1 301

1 .0 5 1 0 6 .2 8 1 0 3 .3 1 02

x J s x s x J

ħ = 1.05x10-34 J•sc = 3.00x108 m/s = 3.00x1010 cm/sNA = 6.02x1023 mol-1

Macroscopic oscillators have much lower frequencies thanmolecular sized systems. Calculate the energy level spacing andthe ZPE, in J and in kJ/mol, for a macroscopic oscillator with afrequency of 10,000 cycles/second.

2 3 1 3 0 6 96 . 0 2 1 0 6 . 6 1 0 4 . 0 1 0 / 4 . 0 1 0 /AN E x m o l x J x J m o l x k J m o l

2 3 1 3 0 6 90 6 . 0 2 1 0 3 . 3 1 0 2 . 0 1 0 / 2 . 0 1 0 /AN E x m o l x J x J m o l x k J m o l

Page 31: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 31

Harmonic Oscillator Wavefunctions

Application of the recursion formula yields a different polynomial for each value of n.

These polynomials are called Hermitepolynomials, Hn

2 / 2( ) xn n nN H x e

2 / 2( ) zn n nN H z e

or

where z x

Some specific solutions

n = 02 2/ 2 / 2

0 0 0x zN e N e Even

n = 22 22 / 2 2 / 2

2 2 2( 4 2 ) ( 4 2 )x zN x e N z e Even

n = 12 2/ 2 / 2

1 1 1( 2 ) ( 2 )x zN x e N z e Odd

n = 32 23 / 2 3 / 2 3 / 2

3 3 3( 8 1 2 ) ( 8 1 2 )x zN x x e N z z e Odd

2 / 2

0

n xn

n

a x e

Page 32: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 32

0

1E

2

1

3E

2

2

5E

2

2

Page 33: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 33

E = ½x02

x

P(x)

0 +x0-x0

Classical Turning Points

Quantum Mechanical vs. Classical Probability

Classical

P(x) minimum at x=0

P(x) = 0 past x0

QM (n=0)

P(x) maximum at x=0

P(x) 0 past x0

Page 34: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 34

E = ½x02

x

P(x)

0 +x0-x0

Classical Turning Points

CorrespondencePrinciple

E = ½x02

x

P(x)

0 +x0-x0

Classical Turning Points

-6 -4 -2 0 2 4

vals.1

0.0

0.2

0.4

0.6

0.8

1.0

x 2 V zero

n=9

Note that as n increases, P(x)approaches the classical limit.

For macroscopic oscillatorsn > 106

Page 35: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 35

• The Classical Harmonic Oscillator

• Math Preliminary: Taylor Series Solution of Differential Eqns.

• The Vibrations of Diatomic Molecules

• The Quantum Mechanical Harmonic Oscillator

• Vibrational Spectroscopy

• Harmonic Oscillator Wavefunctions and Energies

• Properties of the Quantum Mechanical Harmonic Oscillator

• Vibrational Anharmonicity

• The Two Dimensional Harmonic Oscillator

• Vibrations of Polyatomic Molecules

Part A: The Harmonic Oscillator and Vibrations of Molecules

Page 36: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 36

Properties of the QM Harmonic Oscillator

2

0

1

2xe dx

2

0

1

2xxe dx

22

0

1

4xx e dx

2320

1

2xx e dx

2420

3

8xx e dx

Some Useful Integrals

Remember

If f(-x) = f(x)

0( ) 2 ( )f x d x f x d x

Even Integrand

If f(-x) = -f(x)

( ) 0f x dx

Odd Integrand

Page 37: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 37

Wavefunction Orthogonality

2 / 20 0

xN e - < x < 2 / 2

1 1 ( 2 ) xN x e - < x < 22 / 2

2 2 ( 4 2 ) xN x e - < x <

<0|1>

2 2/ 2 / 20 1 0 1 2

x xN e N x e d x

2

0 1 0 1 2xN N xe d x

Odd Integrand

0 1 0

Page 38: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 38

Wavefunction Orthogonality

2 / 20 0

xN e - < x < 2 / 2

1 1 ( 2 ) xN x e - < x < 22 / 2

2 2 ( 4 2 ) xN x e - < x <

<0|2>

2 2/ 2 2 / 20 2 0 2 4 2x xN e N x e d x

0 2 0 2

1 14 2 2 2

4 2N N

2

0

1

2xe dx

22

0

1

4xx e dx

2 220 2 0 2 4 2x xN N x e d x e d x

0 2 0

Page 39: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 39

Normalization

We performed many of the calculations below on 0 of theHO in Chap. 2. Therefore, the calculations below will beon 1. 2 / 2

1xA x e - < x <

22

/ 21 1 1 1xA xe dx

fromHW Solns.

1/ 4

2A

Page 40: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 40

Positional Averages

22

/ 21 1 1

xx x x A xe d x

fromHW Solns.

<x>

0x

22

2 2 2 / 21 1 1

xx x x A xe d x

fromHW Solns.

<x2>

2 3

2x

Page 41: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 41

Momentum Averages

2

2

/ 21/ 2

1 1 1ˆ

x

xd A xe

p p A xe dxi dx

fromHW Solns.

<p>

0p

fromHW Solns.

<p2>

2 23

2p

2

2

2 / 212 2 / 2 2

1 1 1 2

x

xd A xe

p p A xe dxdx

^

Page 42: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 42

Energy Averages

Kinetic Energy

221

2 2

pT p

21 3

2 2T

fromHW Solns.

3

4T

Potential Energy

2 21 1

2 2V kx k x

1 3

2 2V k

fromHW Solns.

3

4V

Total Energy

1 3

2 2E n

T V

Page 43: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 43

• The Classical Harmonic Oscillator

• Math Preliminary: Taylor Series Solution of Differential Eqns.

• The Vibrations of Diatomic Molecules

• The Quantum Mechanical Harmonic Oscillator

• Vibrational Spectroscopy

• Harmonic Oscillator Wavefunctions and Energies

• Properties of the Quantum Mechanical Harmonic Oscillator

• Vibrational Anharmonicity

• The Two Dimensional Harmonic Oscillator

• Vibrations of Polyatomic Molecules

Part A: The Harmonic Oscillator and Vibrations of Molecules

Page 44: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 44

The Vibrations of Diatomic Molecules

Re

V(R

)

0A B

R

The Potential Energy

Define: x = R - Req

Expand V(x) in a Taylor series about x = 0 (R = Req)

0 0

1( )

!

nn

nn x

d VV x x

n dx

2 3 4

0 1 2 3 42 3 40

0 0 0 0

1 1 1 1 1( )

0 ! 1! 2 ! 3! 4 !xx x x x

dV d V d V d VV x V x x x x x

dx dx dx dx

2 3 4

2 3 42 3 40

0 0 0 0

1 1 1( )

2 6 24xx x x x

dV d V d V d VV x V x x x x

dx dx dx dx

Page 45: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 45

Re

V(R

)

0

2 3 4

2 3 42 3 40

0 0 0 0

1 1 1( )

2 6 24xx x x x

dV d V d V d VV x V x x x x

dx dx dx dx

00

xV

By convention

0

0x

dV

dx

By definitionof Re as minimum

2

2

0x

d Vk

dx

3

3

0

1

6x

d V

dx

4

4

0

1

24x

d V

dx

2 3 41( )

2V x kx x x

Page 46: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 46

Re

V(R

)

0

2 3 41( )

2V x kx x x

21( )

2V x kx

The Harmonic Oscillator Approximation

2

2

0x

d Vk

dx

where

Ignore x3 and higher order terms in V(x)

Page 47: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 47

The Force Constant (k)

The Interpretation of k

Re

V(R

)

0

2

2

0x

d V d dV dk Slope

dx dx dx dx

i.e. k is the “curvature” of the plot, and represents the “rapidity” with which the slope turns from negative to positive.

Another way of saying this is the k represents the “steepness”of the potential function at x=0 (R=Re).

Page 48: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 48

ReV(R

)

0

Do

ReV(R

)

0

Do

Do is the Dissociation Energy of the molecule, andrepresents the chemical bond strength.

There is often a correlation between k and Do.

Small kSmall Do

Large kLarge Do

Correlation Between k and Bond Strength

Page 49: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 49

0 2 4 6 8 10 12

0

500

1000

1500

2000

2500

HIHBr

H2

O2

NO

CO

N2

Cl2

k [

N/m

]

Do [eV]

Note the approximately linear correlation betweenForce Constant (k) and Bond Strength (Do).

Page 50: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 50

• The Classical Harmonic Oscillator

• Math Preliminary: Taylor Series Solution of Differential Eqns.

• The Vibrations of Diatomic Molecules

• The Quantum Mechanical Harmonic Oscillator

• Vibrational Spectroscopy

• Harmonic Oscillator Wavefunctions and Energies

• Properties of the Quantum Mechanical Harmonic Oscillator

• Vibrational Anharmonicity

• The Two Dimensional Harmonic Oscillator

• Vibrations of Polyatomic Molecules

Part A: The Harmonic Oscillator and Vibrations of Molecules

Page 51: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 51

Vibrational Spectroscopy

Energy Levels and Transitions

1 1

2 2nE n n h

1

2 2

k

Selection Rule

n = 1 (+1 for absorption,-1 for emission)

IR Spectra: For a vibration to be IR active, the dipole moment must change during the course of the vibration.

Raman Spectra: For a vibration to be Raman active, the polarizability must change during the course of the vibration.

Page 52: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 52

Transition Frequency

n n+1

1 11

2 2E n h n h h

Wavenumbers: 1Ecm

hc c

Note:1

2

k

c

The Boltzmann Distribution

/nE k Tn nN g e

The strongest transition corresponds to: n=0 n=1

/nE k Te

Page 53: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 53

Calculation of the Force Constant

Units of k

2

2

0x

d Vk

dx

2

Jk

m

2

2

2

kg ms

m

2

kg

s

2kg m

sm

N

m

Calculation of k

1

2

k

c

22k c

Page 54: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 54

The IR spectrum of 79Br19F contains a single line at 380 cm-1

Calculate the Br-F force constant, in N/m. h=6.63x10-34 J•sc=3.00x108 m/sc=3.00x1010 cm/sk=1.38x10-23 J/K1 amu = 1.66x10-27 kg1 N = 1 kg•m/s2

Br F

Br F

m m

m m

79 19

79 19

amu amu

amu amu

1 5 . 3 2 a m u 2 7 2 61 . 6 6 1 0 / 2 . 5 4 1 0x k g a m u x k g

1

2

k

c

22k c 2

1 0 1 2 62 3 .1 4 3 1 0 / 3 8 0 2 .5 4 1 0x cm s cm x k g

21 3 0 /k k g s 21 3 0 / /k g m s m 1 3 0 /N m

Page 55: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 55

Calculate the intensity ratio, ,for the 79Br19F vibration at 25 oC.10

21

II

R

h=6.63x10-34 J•sc=3.00x108 m/sc=3.00x1010 cm/sk=1.38x10-23 J/K

= 380 cm-1~

1 2 1

0 1 0

I N

I N

1

0

/

/

E kT

E kT

e

e

1 0 /E E k Te /h c k Te

34 10 1

23

(6.63 10 ) 3.00 10 / 380

1.38 10 / 298

x J s x cm s cmhc

kT x J K K

1.841 2

0 1

0.16I

eI

= 1.84

Page 56: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 56

1 2

0 1

IR

I

The n=1 n=2 transition is called a hot band, because itsintensity increases at higher temperature

Dependence of hot band intensity on frequency and temperature

Molecule T R~

79Br19F 380 cm-1 25 oC 0.16

79Br19F 380 500 0.49

79Br19F 380 1000 0.65

H35Cl 2880 25 9x10-7

H35Cl 2880 500 0.005

H35Cl 2880 1000 0.04

Page 57: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 57

• The Classical Harmonic Oscillator

• Math Preliminary: Taylor Series Solution of Differential Eqns.

• The Vibrations of Diatomic Molecules

• The Quantum Mechanical Harmonic Oscillator

• Vibrational Spectroscopy

• Harmonic Oscillator Wavefunctions and Energies

• Properties of the Quantum Mechanical Harmonic Oscillator

• Vibrational Anharmonicity

• The Two Dimensional Harmonic Oscillator

• Vibrations of Polyatomic Molecules

Part A: The Harmonic Oscillator and Vibrations of Molecules

Page 58: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 58

Vibrational Anharmonicity

Re

V(R

)

0

2 3 41( )

2V x kx x x

Harmonic OscillatorApproximation: 21

( )2

V x kx

The effect of including vibrational anharmonicity in treating the vibrationsof diatomic molecules is to lower the energy levels and decrease thetransition frequencies between successive levels.

Page 59: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 59

Re

V(R

)

0

2 3 41( )

2V x kx x x

A treatment of the vibrations of diatomic molecules which includesvibrational anharmonicity [includes higher order terms in V(x)]leads to an improved expression for the energy:

21 1

2 2n

e

En n x

hc

is the harmonic frequency and xe is the anharmonicity constant.~

Measurement of the fundamental frequency (01) and firstovertone (02) [or the "hot band" (1 2)] permits determination of and xe.

~See HW Problem

Page 60: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 60

Energy Levels and Transition Frequencies in H2

E/h

c [c

m-1]

HarmonicOscillator

Actual

2,2000

6,6001

11,0002

15,4003

2,1700

6,3301

10,2502

13,9303

14 4 0 0~ c m

14 4 0 0~ c m

14 4 0 0~ c m

14 1 6 0~ c m

13 9 2 0~ c m

13 6 8 0~ c m

Page 61: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 61

Anharmonic Oscillator Wavefunctions

-0.5 -0.3 -0.1 0.1 0.3 0.5 0.7

vals.1

0.0

0.2

0.4

0.6

0.8

1.0

xang V zero

-0.5 -0.3 -0.1 0.1 0.3 0.5 0.7

vals.1

0.0

0.2

0.4

0.6

0.8

1.0

xang 2 V zero

2n = 0

-0.5 -0.3 -0.1 0.1 0.3 0.5 0.7

vals.1

-1.0

-0.5

0.0

0.5

1.0

xang V zero

2

-0.5 -0.3 -0.1 0.1 0.3 0.5 0.7

vals.1

0.0

0.2

0.4

0.6

0.8

1.0

xang 2 V zero

n = 2

n = 10

-0.5 -0.3 -0.1 0.1 0.3 0.5 0.7

vals.1

-1.0

-0.5

0.0

0.5

1.0

xang V zero

2

-0.5 -0.3 -0.1 0.1 0.3 0.5 0.7

vals.1

0.0

0.2

0.4

0.6

0.8

1.0

xang 2 V zero

Page 62: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 62

• The Classical Harmonic Oscillator

• Math Preliminary: Taylor Series Solution of Differential Eqns.

• The Vibrations of Diatomic Molecules

• The Quantum Mechanical Harmonic Oscillator

• Vibrational Spectroscopy

• Harmonic Oscillator Wavefunctions and Energies

• Properties of the Quantum Mechanical Harmonic Oscillator

• Vibrational Anharmonicity

• The Two Dimensional Harmonic Oscillator

• Vibrations of Polyatomic Molecules

Part A: The Harmonic Oscillator and Vibrations of Molecules

Page 63: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 63

The Two Dimensional Harmonic Oscillator

The Schrödinger Equation

2 21 1( , )

2 2x yV x y k x k y

2 2 22 2

2 2

1 1( , ) ( , )

2 2 2x yk x k y x y E x yx y

2 2 2 22 2

2 2

1 1( , ) ( , )

2 2 2 2x yk x k y x y E x yx y

The Solution: Separation of Variables

The Hamiltonian is of the form: ( , ) ( ) ( )x yH x y H x H y

Therefore, assume that is of the form: ( ) ( )x y( x , y ) x y

Page 64: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 64

2 2 2 22 2

2 2

1 1( ) ( ) ( ) ( )

2 2 2 2x y x y x yk x k y x y E x yx y

222 22 2

2 2

1 1( ) ( )

2 2 2 2yx

y x x x y y x y

ddk x k y E x y

dx dy

222 22 2

2 2

1 1 1 1

2 2 2 2yx

x x y yx y

ddk x k y E

dx dy

The above equation is of the form, f(x) + g(y) = constant.Therefore, one can set each function equal to a constant.

E = Ex + Ey

=

Ex

=

EyEx

Page 65: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 65

222

2

1 1

2 2x

x x xx

dk x E

dx

222

2

1 1

2 2y

y y yy

dk x E

dx

222

2

1

2 2x

x x x x

dk x E

dx

22

22

1

2 2y

y y y y

dk x E

dx

The above equations are just one dimensional HO Schrödinger equations.Therefore, one has:

2 / 2( ) x xxn x n x n xN H x e

1

2x x xE n

xx

k

xx

2 / 2( ) y yyn y n y n yN H y e

1

2y y yE n

yy

k

yy

Page 66: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 66

Energies and Degeneracy

1 1

2 2x y x x y yE E E n n

yxx y

kk

Depending upon the relative values of kx and ky, one may havedegenerate energy levels. For example, let’s assume that ky = 4•kx .

2y x

12 1

2x x y xE n n

32

2x y xE n n

E [

ħ

]

3/20 0

g = 1

5/21 0

g = 1

7/22 0 0 1

g = 2

9/23 0 1 1

g = 2

11/24 0 0 2 2 1

g = 3

Page 67: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 67

• The Classical Harmonic Oscillator

• Math Preliminary: Taylor Series Solution of Differential Eqns.

• The Vibrations of Diatomic Molecules

• The Quantum Mechanical Harmonic Oscillator

• Vibrational Spectroscopy

• Harmonic Oscillator Wavefunctions and Energies

• Properties of the Quantum Mechanical Harmonic Oscillator

• Vibrational Anharmonicity

• The Two Dimensional Harmonic Oscillator

• Vibrations of Polyatomic Molecules

Part A: The Harmonic Oscillator and Vibrations of Molecules

Page 68: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 68

Vibrations of Polyatomic Molecules

I’ll just outline the results.

If one has N atoms, then there are 3N coordinates. For the i’th. atom,the coordinates are xi, yi, zi. Sometimes this is shortened to: xi. = x,y or z.

The Hamiltonian for the N atoms (with 3N coordinates), assumingthat the potential energy, V, varies quadratically with the change incoordinate is:

2 2

,2

1( )( )

2 2eq eq

i j i i j ji i ji i

H F x x x xm x

2

,

,eq eqi j

i ji j x x

VF

x

Page 69: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 69

After some rather messy algebra, one can transform the Cartesiancoordinates to a set of “mass weighted” Normal Coordinates.

, ( )eqk i i k i i

i

Q m L x x

Each normal coordinate corresponds to the set of vectors showingthe relative displacements of the various atoms during a given vibration.

There are 3N-6 Normal Coordinates.

For example, for the 3 vibrations of water, the Normal Coordinatescorrespond to the 3 sets of vectors you’ve seen in other courses.

H H

O

H H

O

H H

O

Page 70: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 70

In the normal coordinate system, the Hamiltonian can be written as:

2 23 62 2

21

1

2 2

N

k kk k

H QQ

2 2 2 2 2 22 2 2 2 2 21 1 2 2 3 32 2 2

1 2 3

1 1 1

2 2 2 2 2 2H Q Q Q

Q Q Q

Note that the Hamiltonian is of the form:3 6

1 1 2 2 3 31

( ) ( ) ( ) ( )N

i ii

H H Q H Q H Q H Q

Therefore, one can assume:3 6

1 1 2 2 3 31

( ) ( ) ( ) ( ) ...N

i ii

Q Q Q Q

and simplify the Schrödinger equation by separation of variables.

Page 71: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 71

One gets 3N-6 equations of the form:22

2 21 12

1

1

2 2i

i i iQ EQ

The solutions to these 3N-6 equations are the familiar HarmonicOscillator Wavefunctions and Energies.

As noted above, the total wavefunction is given by:3 6

1

( )N

i ii

Q

The total vibrational energy is:

3 6

1 2 3 1 1 2 2 3 31

1 1 1 1( )

2 2 2 2

N

i ii

E n n n n n n n

3 6

1 2 31

1( )

2

N

i ii

E n n n n h

Or, equivalently:

Page 72: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 72

3 11 2 3

1

( ) 1

2

N

i ii

E n n nn

hc

In spectroscopy, we commonly refer to the “energy in wavenumbers”,which is actually E/hc:

The water molecule has three normal modes, with fundamental

frequencies: 1 = 3833 cm-1, 2 = 1649 cm-1, 3 = 3943 cm-1.~ ~ ~

What is the energy, in cm-1, of the (112) state (i.e. n1=1, n2=1, n3=2)?

1 2 3

(11 2 ) 1 1 11 1 2

2 2 2

E

hc

1 1 13 3 53 83 3 16 49 3 94 3

2 2 2cm cm cm

11 8 , 0 8 1 c m

Page 73: Slide 1 Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Part A: The Harmonic Oscillator and Vibrations of Molecules Part B: The.

Slide 73

The water molecule has three normal modes, with fundamental

frequencies: 1 = 3833 cm-1, 2 = 1649 cm-1, 3 = 3943 cm-1.~ ~ ~

What is the energy difference, in cm-1, between (112) and (100),i.e. E(112)/hc – E(100)/hc ?

1(11 2 )18, 081

Ecm

hc

1 2 3

(100 ) 1 1 11 0 0

2 2 2

E

hc

1 1 13 1 13 83 3 16 49 3 94 3

2 2 2cm cm cm 18 , 5 4 6 c m

1 1 1(11 2 ) (1 0 0 )1 8 , 0 8 1 8 , 5 4 6 9 , 5 3 5

E Ecm cm cm

h c h c

This corresponds to the frequency of the combination band in whichthe molecule’s vibrations are excited from n2=0n2=1 andn3=0n3=2.