Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock...

43
Simulation of Roll Compaction Simulation of Roll Compaction Bruno C. Hancock, PhD

Transcript of Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock...

Page 1: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Simulation of Roll CompactionSimulation of Roll Compaction

Bruno C. Hancock, PhD

Page 2: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Acknowledgements• Glenn Carlson• Mike Cavanaugh

g

• Beth Langdon• Jeff Moriarty• Matthew Mullarneyy• Cindy Oksanen• Chris Sinko• Barbara Spong• Barbara Spong• Andre Zinchuk

Page 3: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Outline

• Motivation• Scale-up parameters• Approach taken• Verification• Limitations• Custom instrument design

Page 4: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Motivation

• Roll compaction process development consumes a i ifi t t f d f i t tsignificant amount of powder for equipment set-up

and to achieve steady-state operation

• Can the process by simulated to save material early in development?in development?

C t i t• Constraints– Quick and simple

Achieve proof of concept using existing equipment– Achieve proof-of-concept using existing equipment– Fit-for-purpose

Page 5: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Roll compactionp

Powder

PowderRibbons Granules

Ribbon

(Images courtesy of PharmTech magazine)

Page 6: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

History• Fuel “briquette” production

took off in 1870s Europe & USUS

• Initially horizontal fixed rollers used ; gravity-fed

• Used today for variety of y ymetal ores & chemicals

• Frank Chilson developed a pgranulator in mid-1950s

• Fitzpatrick started to make pharmaceutical mills in p1940s

• First “Chilsonator” Model SN in late 1950s

(Slide courtesy of Ian Smales)

Page 7: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

ine)

ech

mag

azi

of P

harm

Tees

cou

rtesy

(Im

age

Page 8: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

(Images courtesy of PharmTech magazine)

Page 9: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Feeder

Rolls

Mill

Lab scale Pilot scale

(Images courtesy of Vector Corp)

Page 10: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Important considerations for simulation

1. Continuous process2 N d t d t d

• Can we simulate using a batch process?2. Need to understand

critical product attributes3. Need to identify important

batch process?• How best to characterize

product (ribbons)?3. Need to identify important process parameters

4. Slow compaction & low ti f

p ( )• Process parameter

criticality?N d f lcompaction forces

5. Integral feeding & milling operations

• No need for complex hydraulics

• May need to simulateoperations May need to simulate feeding and milling

Page 11: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Solid Fraction Spectrum

TabletsTablets

Ribbons

P dPowders

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0Solid Fraction

Page 12: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Ribbon Solid Fraction SurveyyThickness and solid fraction of ribbons produced

during clinical manufacturing(n = 23, Vector type compactors)

Parameter Solid Fraction Thickness (mm)

Mean 0.71 1.91

Maximum 0.80 3.43

Minimum 0.57 1.33

Page 13: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Tools for scale-up of solid fractionTools for scale up of solid fraction

Calipers(Sample dimensions)(Sample dimensions)

Mi i j l ’ t bl Mini jeweler’s table saw(rectangular sample preparation)

Helium pycnometer(true density)

Page 14: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Ribbon Solid Fraction Determination

mm

Flat or serrated ribbons

t

)**(Fρρ

s

t

e VtlwVS +==

nwthVs **139.0*)( −=w1 w2

l2

t1h1w1 w2

l2

t1h1

Sample

l

2

Ribbon

SerrationSample

l

2

Ribbon

Serration

l1

t2h2

l1

t2h2

Page 15: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Ribbon Solid Fraction by Displacement

GeoPyc (Micromeritics Corp)

Page 16: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Comparison of methods

Page 17: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Ribbon Solid Fraction by Lasery• Includes automated weighing• Irregular shaped samples OK• Irregular shaped samples OK

Laserwww.customlabsoftware.com/

Page 18: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

SF Testing Method Comparison 2:1 Avicel PH102:Lactose Fast Flo Placebo

3mm; 6 RPM; knurled rollers on Gerteis Mini-Pactor

0.85

0.9

3mm; 6 RPM; knurled rollers on Gerteis Mini Pactor Data points are average of n = 3

0.75

0.8

0 6

0.65

0.7

ract

ion

.

0.5

0.55

0.6

Sol

id F

Caliper Method

Laser SF Tester

0.4

0.45

0 2 4 6 8 10 12 140 2 4 6 8 10 12 14Gerteis Roll Force (kN/cm)

Page 19: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Tensile Strength DeterminationF

W t

RIBBON SAMPLE

1

2 3L

1.8

2T tWLF

23σ

××

=

1 01.21.41.61.8

(kg)

σT - Tensile Strength

0.40.60.81.0

Forc

e (

Ribbon fracture

0.00.2

500 700 900 1100Time (nominal)

Sample Dimensions:~ 10mm X 25mm

Page 20: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Precision of Ribbon Tests

• Solid fraction– Mean measurement RSD ~3 %

Ribbon SFs of 0.66 & 0.69 are equivalentS f & ffRibbon SFs of 0.66 & 0.70 are different

• Tensile strength– Mean measurement RSD ~6 %

Ribbon TSs of 1.00 MPa & 1.06 MPa are equivalentRibbon TSs of 1.00 MPa & 1.10 MPa are different

Page 21: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Critical process parameters– roll dimensions

• diameter, width, type– material mass flow rate

• ribbon thickness & solid fraction (density)– compaction conditions

• force (pressure) & force application rate (roll speed & di t )diameter)

– feeding & milling conditionsfeeder design screen size etc• feeder design, screen size, etc

– environmental conditions• temperature and humidity• temperature and humidity

Page 22: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Simulation approach

<<Insert picture of tooling>>p g

Page 23: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Principal underlying simulationy g

Page 24: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Simulation Proof of Concept

5 0

6.0Real Ribbons

Si l t d Ribb

4.0

5.0

h (M

Pa)

Simulated Ribbons

3.0

e S

tren

gth

1 0

2.0

Ten

sile

0.0

1.0

0.45 0.50 0.55 0.60 0.65 0.70 0.75Solid Fraction

Page 25: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Scale-up30.0

58686-10-74 (Stability Lot)

53783-100-74 (Microformulation Lot)

20.0

25.0

d

( )

ED-G-111-402 (Clinical Lot)

15.0

% R

etai

ned

5 0

10.0

%

0.0

5.0

840 420 250 177 149 74 44 <44840 420 250 177 149 74 44 <44Particle Size Distribution (micrometers)

Page 26: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Limitations

• Shear forces are neglected– However, these are expected to be quite low in

pharmaceutical roll compactors• By pass is not simulated• By-pass is not simulated

– Easily accounted for by adding uncompacted powder to the ribbons

• Interaction with seals (at ribbon edge) not simulated– Solid fraction variability can be introduced by varying y y y g

compaction settings during the experiments• Feeding process is not simulated

– Same as for tablet compaction simulation

Page 27: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Unanswered questions

• Force/pressure measurements– See next slide

• Feeding simulation– Pulsing from screw feeders– Air entrapment

Optimal roll design• Optimal roll design– Smooth vs. knurled

• Lubrication• Lubrication– Friction with rolls?– Nip angle?– Nip angle?

• Milling simulation

Page 28: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Use in Formulation

50 70

One Example: Correlation between Roller Compactor Pressure and Simulator Compression Stress Can be Used for Process Scale-up

40

45

50

m2 )

60

70

MPa

)

Avicel PH 101Material AMaterial B

real ribbons

25

30

35

re (k

g f/c

m

40

50

Stre

ss (Msimulated ribbons

15

20

25

l Pre

ssur

20

30

pres

sion

5

10

15

Rol

10

20

Com

p

00.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80

Solid Fraction

0

Page 29: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Development of a custom instrument

• Motivation– Eliminate the need to use tablet compaction simulator– Portability

Increased level of powder containment– Increased level of powder containment– High volume/throughput operation– Custom software and analysis toolsCustom software and analysis tools

Page 30: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Touch Panel Control Screen & Electronics

Self Contained Compaction

A /A blArea/Assembly

Hydraulic DriveSystem

HEPA filtering unit

Page 31: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Linear Actuator/Position Sensor

Punch

HopperHopper

Sampling Assembly

Page 32: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40
Page 33: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40
Page 34: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40
Page 35: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40
Page 36: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Integrated Milling f Ribbof Ribbons

Page 37: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Custom milling simulatorg

• Diameter and width reduced

• Screens cut down to fit

Page 38: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Software Interface & Controls•User can select

degrees (o) or # of rotations for cw/ccw

movement

•Rotational speed•Rotational speed (0..180 RPM) is scaled

down to equivalent rotor tip speeds on

the Mini-pactorthe Mini pactor

•Counter counts number or rotationnumber or rotation

cycles•Run/Stop buttons allow the mill to be

38

run continuously until user hits stop

Page 39: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Experimental Verification• Ribbons from a single batch were milled using the Gerteis Mini-pactor and the milling simulator (under identical conditions)conditions)

• Granules were produced with an indiscernible difference in particle size distribution

Comparison of Granule PSD (Sympatec) from Gerties Mini-pactor and Mill Simulator [R6 lense; 0.2 bar pressure; 100% Vibri]

7

4

5

6

ncy

Granules from GerteisMini-pactorGranules from GSim Mill

2

3

4

% F

requ

e

39

0

1

1 10 100 1000 10000

Particle Size (μm)

Page 40: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40

Summaryy

• Simulation of roll compaction can be achieved by dif i th i fil t bl tmodifying the compression profile on a tablet

compaction simulatorTh i lifi ti / i ti i d• The simplifications/approximations required appear to be reasonable

• Material property tests for ribbons need to be• Material property tests for ribbons need to be developed and implemented

• The impact of processing changes can be studied in• The impact of processing changes can be studied in detail using less than 100g of powder blend

• If needed a custom simulator can be readily builtIf needed, a custom simulator can be readily built

Page 41: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40
Page 42: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40
Page 43: Simulation of Roll CompactionSimulation of Roll Compactionccetinka/CompactionPresentation/15 Hancock BMS.pdfAvicel PH 101 Material A Material B real ribbons 25 30 35 r e (kg f /c 40