Sesi-15.PDF Example but Old Nozzle Flow

42
Session 15 FLOWS THROUGH NOZZLE

Transcript of Sesi-15.PDF Example but Old Nozzle Flow

Page 1: Sesi-15.PDF Example but Old Nozzle Flow

Session 15FLOWS THROUGH

NOZZLE

Page 2: Sesi-15.PDF Example but Old Nozzle Flow

Outline• Definition• Types of nozzle• Flow analysis• Ideal Gas Relationship• Mach Number and Speed of Sound• Isentropic flow of an ideal gas • De Laval nozzle• Nozzle efficiency• Calculation examples

Page 3: Sesi-15.PDF Example but Old Nozzle Flow

DefinitionNozzle is a duct by flowing through which the velocity of

a fluid increases at the expense of pressure drop. A duct which decreases the velocity of a fluid and causes a corresponding increase in pressure is called a diffuser

Page 4: Sesi-15.PDF Example but Old Nozzle Flow

Types of Nozzles

There are three types of nozzlesa. Convergent nozzle

b. Divergent nozzle

c. Convergent-divergent nozzle

Page 5: Sesi-15.PDF Example but Old Nozzle Flow

Flow Analysis

• Incompressible flow• Compressible Flow

The variation of fluid density for compressible flows requires attention to density and other fluid property relationships. The fluid equation of state, often unimportant for incompressible flows, is vital in the analysis of compressible flows. Also, temperature variations for compressible flows are usually significant and thus the energy equation is important. Curious phenomena can occur with compressible flows.

Page 6: Sesi-15.PDF Example but Old Nozzle Flow

Flow Analysis• For simplicity, the gas is assumed to be an ideal gas. • The gas flow is isentropic.• The gas flow is constant • The gas flow is along a straight line from gas inlet to

exhaust gas exit• The gas flow behavior is compressible

Page 7: Sesi-15.PDF Example but Old Nozzle Flow

Ideal Gas Relationship

The equation of state for an ideal gas is:

For an ideal gas, internal energy, û is considered to be a function of temperature only

Thus,

Page 8: Sesi-15.PDF Example but Old Nozzle Flow

Ideal Gas RelationshipThe fluid property enthalpy, ĥ is defined as

Since for an ideal gas, enthalpy is a function of temperature only, the ideal gas specific heat at constant pressure, Cp can be expressed as

And,

Page 9: Sesi-15.PDF Example but Old Nozzle Flow

Ideal Gas RelationshipWe see that changes in internal energy and enthalpy are related to changes in temperature by values of Cp and Cv. We turn our attention now to developing useful relationships for determining Cp and Cv

Thus,

Since, so,

Page 10: Sesi-15.PDF Example but Old Nozzle Flow

Ideal Gas RelationshipFor compressible flows, changes in the thermodynamic property entropy, s, are important. For any pure substance including ideal gases, the “first T ds equation” is

where T is absolute temperature, s is entropy, is internal energy, p is absolute pressure, and is density

If Cp and Cv are assumed to be constant for a given gas, can be integrated to get

Page 11: Sesi-15.PDF Example but Old Nozzle Flow

Ideal Gas RelationshipThe second law of thermodynamics requires that the adiabatic and frictionless flow of any fluid results in ds = 0. Constant entropy flow is called isentropic flow. For the isentropic flow of an ideal gas with constant and

Thus,

which is a useful relationship between temperature, density, andpressure for the isentropic flow of an ideal gas. We can conclude that

Page 12: Sesi-15.PDF Example but Old Nozzle Flow

Mach Number and Speed of Sound

The Mach number is defined as the ratio of the value of the local flow velocity, V, to the local speed of sound, c. In other words,

This discussion about pressure wave patterns suggests the following categories of fluid flow:1. Incompressible flow: Ma ≤ 0.3. Unrestricted, nearly symmetrical and instantaneous pressure communication.2. Compressible subsonic flow: 0.3 < Ma < 1. Unrestricted but noticeably asymmetrical pressure communication.3. Compressible supersonic flow: Ma > 1. Formation of Mach wave; pressure communication restricted to zone of action.

Page 13: Sesi-15.PDF Example but Old Nozzle Flow

Mach Number and Speed of Sound

When the continuity equation is applied to the flow through thiscontrol volume, the result is

Page 14: Sesi-15.PDF Example but Old Nozzle Flow

Mach Number and Speed of SoundWe can also write,

Neglecting the product dρ.dV, both being very small,ρdV = cdρ

The momentum equation for the control volume gives,(p-(p+dρ))A = ρAc((c-dV)-c)

so., we obtain

Page 15: Sesi-15.PDF Example but Old Nozzle Flow

Mach Number and Speed of SoundWe learned earlier that,

And thus,

Thus for an ideal gas

Page 16: Sesi-15.PDF Example but Old Nozzle Flow

Isentropic flow of an ideal gas

When fluid flows steadily through a conduit that has a flow cross-section area that varies with axial distance, the conservation of mass 1 continuity 2 equation

And

If we form the logarithm of both sides of the continuity equation the result is

Page 17: Sesi-15.PDF Example but Old Nozzle Flow

Isentropic flow of an ideal gasDifferentiating results

Since the flow being considered is isentropic, the speed of sound is related to variations of pressure with density, repeated here for convenience as

combined with the definition of Mach number

So

Page 18: Sesi-15.PDF Example but Old Nozzle Flow

Isentropic flow of an ideal gasTo better understand why subsonic and supersonic duct flows are so different, this equation can be used

Page 19: Sesi-15.PDF Example but Old Nozzle Flow

Converging-diverging duct flowIn the preceding section, we discussed the variation of density and velocity of the steady isentropic flow of an ideal gas through a variable area duct. We proceed now to develop equations that help us determine how other important flow properties vary in these flows.

Page 20: Sesi-15.PDF Example but Old Nozzle Flow

Converging-diverging duct flowWe demonstrated that for the isentropic flow of an ideal gas

The streamwise equation of motion for steady and frictionless flow can be expressed for an ideal gas as

since the potential energy term, γ dz can be considered as being negligibly small in comparison with the other terms involved.

Page 21: Sesi-15.PDF Example but Old Nozzle Flow

Converging-diverging duct flow

Consider the steady, one-dimensional, isentropic flow of an ideal gas with constant Cp and Cv through the converging-diverging nozzle of

By using the ideal gas equation of state we obtain

It is of interest to note that combining leads to

results in

Page 22: Sesi-15.PDF Example but Old Nozzle Flow

Converging-diverging duct flow

The definition of Mach number and the speed of sound relationship for ideal gases can be combined to yield

We can also develop an equation for pressure variation. Since p/ρ =RT then

we obtain

Page 23: Sesi-15.PDF Example but Old Nozzle Flow

Converging-diverging duct flowCombining leads to

For density variation we consolidate to get

Page 24: Sesi-15.PDF Example but Old Nozzle Flow

Converging-diverging duct flowWe have already used the stagnation state for which Ma = 0 as a reference condition. It will prove helpful to us to use the state associated with Ma = 1 and the same entropy level as the flowing fluid as another reference condition we shall call the critical state, denoted

We can get a relationship for the critical temperature ratio, T*T0,by substituting Ma = 1. Thus,

Page 25: Sesi-15.PDF Example but Old Nozzle Flow

De Laval nozzleIts operation relies on the different properties of gases flowing at subsonic and supersonic speeds. The speed of a subsonic flow of gas will increase if the pipe carrying it narrows because the mass flow rate is constant. The gas flow through a de Laval nozzle is isentropic (gas entropy is nearly constant). At subsonic flow the gas is compressible; sound, a small pressure wave, will propagate through it. At the "throat", where the cross sectional area is aminimum, the gas velocity locally becomes sonic (Mach number = 1.0), a condition called choked flow. As the nozzle cross sectional area increases the gas continues to expand and the gas flow increases to supersonic velocities where a sound wave will not propagate backwards through the gas as viewed in the frame of reference of the nozzle (Mach number > 1.0).

Page 26: Sesi-15.PDF Example but Old Nozzle Flow

De Laval nozzle

Page 27: Sesi-15.PDF Example but Old Nozzle Flow

De Laval nozzleA de Laval nozzle will only choke at the throat if the pressure and mass flow through the nozzle is sufficient to reach sonic speeds, otherwise no supersonic flow is achieved. In addition, the pressure of the gas at the exit of the expansion portion of the exhaust of a nozzle must not be too low. Because pressure cannot travel upstream through the supersonic flow, the exit pressure can be significantly below ambient pressure it exhausts into, but if it is too far below ambient, then the flow will cease to be supersonic, or the flow will separate within the expansion portion of the nozzle, forming an unstable jet that may 'flop' around within the nozzle, possibly damaging it. In practice ambient pressure must be no higher thanroughly 2-3 times the pressure in the supersonic gas at the exit for supersonic flow to leave the nozzle.

Page 28: Sesi-15.PDF Example but Old Nozzle Flow

Nozzle efficiency

Due to friction between the fluid and walls of the nozzle, the expansion process is irreversible, although still approximately adiabatic. In nozzle design, the usual practice is to base all calculation on isentropic flow and then to make an allowance for friction using a coeficientor efficiency.

Page 29: Sesi-15.PDF Example but Old Nozzle Flow

Nozzle efficiency

The nozzle efficiency, ηn, is defined as the ratio of the actual enthalpy drop to the isentropic enthalpy drop

Page 30: Sesi-15.PDF Example but Old Nozzle Flow

Nozzle efficiencyIf the actual velocity at exit from the nozzle is V1 and the velocity at exit when the flow is isentropic is V1s, then :

When the inlet is very small, then

Page 31: Sesi-15.PDF Example but Old Nozzle Flow

Calculation examples1. Steam is expanded in a set of nozzle from 10 bar. 300

0C to 2 bar. Are the nozzle convergent or convergent-divergent? Neglecting the initial velocity, find the minimum area of the nozzle to flow 1 kg/s of steam, Assume isentropic expansion.

Page 32: Sesi-15.PDF Example but Old Nozzle Flow

Calculation examplesNo.1No.1

Page 33: Sesi-15.PDF Example but Old Nozzle Flow

Calculation examples

2. Steam expands in a set of nozzle from 10 bar, 300 0C to 1 bar. The convergent parts of the nozzle are sharp and frictionless. In the divergent parts, the friction loss may be taken as 0.15 of the isentropic enthalpy drop. If the steam floerate is 1 kg/s and the initial velocity of steam is negligible, find the minimum area of the nozzle. If the exit diameter of nozzle is 25 mm, find the number of nozzles.

Page 34: Sesi-15.PDF Example but Old Nozzle Flow

Calculation examplesNo.2No.2

Page 35: Sesi-15.PDF Example but Old Nozzle Flow

Calculation examples

3. Air at 7.8 bar and 180 0C expands through a convergent divergent nozzle into a space at 1.03 bar. The flow rate of air is 3.6 kg/s. Assuming isentropic flow throughout and neglecting the inlet velocity, calculate the throat and exit areas of the nozzle.

Page 36: Sesi-15.PDF Example but Old Nozzle Flow

Calculation examplesNo.3No.3

Page 37: Sesi-15.PDF Example but Old Nozzle Flow

Calculation examples4. Combustion gases expand in a propulsion nozzle from

3.8 bar and 450 0C to a back pressure of 1 bar at the rate of 16 kg/s. Assuming the inlet velocity to be negligible and taking the coefficient discharge of 0.98 and a nozzle efficiency of 0.93, calculate the required throat and exit areas of the nozzle. For the gases take C­p­ = 1.11 kJ/kg K and γ = 1.333

Page 38: Sesi-15.PDF Example but Old Nozzle Flow

Calculation examples

No.4No.4

Page 39: Sesi-15.PDF Example but Old Nozzle Flow

Calculation examples

Page 40: Sesi-15.PDF Example but Old Nozzle Flow

Calculation examples

5. Steam at 20 bar and 300 oC enters a convergent-divergent nozzle at the rate of 0.3 kg/s with negligible inlet velocity and expand into a space at 3 bar.

a. Assuming that the steam expands isentropically according to a law pv1.3 = constant, estimate the throat and exit areas of the nozzles without using a h-s chartb. Re-calculate the throat and exit areas of the nozzle using the h-s chart and taking a coefficient of discharge of 0.98 and a coefficient of velocity as 0.92

Page 41: Sesi-15.PDF Example but Old Nozzle Flow

Calculation examplesNo.5No.5

Page 42: Sesi-15.PDF Example but Old Nozzle Flow

Calculation examples