Sepsis and Multiple Organ Failure - Start Bronkhorst 2012.pdf · Sepsis and Multiple Organ Failure...

33
Sepsis and Multiple Organ Failure J.G. van der Hoeven Radboud University Nijmegen Medical Centre

Transcript of Sepsis and Multiple Organ Failure - Start Bronkhorst 2012.pdf · Sepsis and Multiple Organ Failure...

Sepsis and Multiple Organ Failure

J.G. van der HoevenRadboud University Nijmegen Medical Centre

Microorganism

Sepsis - initiation

Pathogen Associated Molecular Pattern(PAMP)

Immune cell

Pattern Recognition Receptor(PRR)

Tissue Damage

Immune cell

Pattern Recognition Receptor(PRR)

Damage Associated Molecular Patterns(DAMP)

Inflammatory Response

Alarmins

= =

Pro-inflammatory cytokines/chemokines

Activation of endothelium + PMN migration

IL-17cytokine family

Activation of coagulation

Induction of “late” cytokines

HMGB-1 and MIFC5a

Adaptive immune response

+ +

N = 1664

0

10

20

30

40

Mortality D28 Mortality D 90

32,7

24,2

34,1

26,4

Mor

talit

y (%

)

aPC Placebo

Ranieri VM. N Engl J Med 2012

Systolic and diastolicmyocardial dysfunction

Increased endothelial permeability

Excessive vasodilation

Venous pooling

Microcirculatory shuntingMitochondrial dysfunction

Vasodilatation in SepsisSeptic shock with lactate acidosis

iNO synthase ↑

NO ↑

cGMP ↑

Vasopressin secretion ↑

Vasopressin stores ↓

Vasopressin plasma ↓

ATP ↓, H+ ↑, Lactate ↑ vascular smooth muscle

Open KATPOpen KCa

Cytoplasmic Calcium ↓

Phosphorylated myosin ↓

Vasodilatation

IFN-Υ ± IL-10 ↑

IDO activity ↑

Tryptophan ↓ & kynurenine ↑

Increased KT ratio plasma

Lymphocyte apoptosis ↑

Microvascular reactivity ↓

IL-6 ↑e NO ↓

Darcey CJ. PLOSone 2011;6:e21185

N = 80

Changsirivathanathamrong D. Crit Care Med 2011;39:2678-2683

INOTROPIC DOSE

IDO ACTIVITY

N = 16

Changsirivathanathamrong D. Crit Care Med 2011;39:2678-2683

Treatment

• Early antibiotics and source control

• Volume therapy

• Increasing afterload with NE / vasopressin

• Inotropic agents

• Standard ICU treatment

HES 130/0.42 versus Ringer’s acetate

• Adult patients with severe sepsis

• MC (N = 26), blinded, stratified clinical trial

• HES 130/0.42 vs Ringer’s acetate

• Daily maximum dose 33 mL/kg IBW

• Primary outcome composite death/dialysis dependence at D90

Perner A. N Engl J Med 2012;367:124-134

HES 130/0.42 versus Ringer’s acetate

0

15

30

45

60

Death/DD Day 90 Death Day 90 Severe bleeding RRT

Ringer’s HES 130/042

P = 0.03 P = 0.03 P = 0.09 P = 0.04

No differences in total amount of fluid neededPerner A. N Engl J Med 2012;367:124-134

HES 130/0.4 versus NaCl 0.9%

CHEST trialMyburgh JA. N Engl J Med 2012;367:1901-1911

AKI and HES 130/0.4

0

2

4

6

8

10

RRT

7

5,8

Placebo HES 130/0.4

P = 0.04

Myburgh JA. N Engl J Med 2012;367:1901-1911

ALBIOS trial

Albumin Crystalloid

Non-survivors 326 (35.9%) 342 (37.7%) 668 (36.8%)

Survivors 582 (64.1%) 565 (62.3%) 1146 (63.2%)

908 907 1815

Mortality at hospital dischargeGattinoni L. ESCIM 2012

Lactate driven therapy

0

10

20

30

40

50

33,9

43,5

Mor

talit

y (%

)

Control Lactate driven

N = 348P = 0.067

Admission lactate ≥ 3 mmol/lGoal: lactate ↓ ≥ 20% in 2 hrs

• After correction for risk factors mortality lower in lactate group (HR 0.61, p = 0.006)

• Duration MV ↓, duration ICU stay ↓, lower SOFA score

Jansen TC. Am J Respir Crit Care Med 2010, 182:752-761

Anti-­‐inflammatoryresponse

Time  (days)

Pro-­‐inflammatoryresponse

Homeostasis

A

Anti-­‐inflammatoryresponse

Time  (days)

Pro-­‐inflammatoryresponse

Homeostasis

CDeath Death

Pro-­‐inflammationAnti-­‐inflammationBacterial load

Death

Pro-­‐inflammatoryresponse

Anti-­‐inflammatoryresponse

Time  (days)

HomeostasisB

Immunoparalysis• Monocyte Class II MHC

expression ↓

• LPS-induced cytokine production ↓

• Lymphocyte apoptosis ↑

• T-reg dominant adaptive immune response

• Changes in lymphocyte phenotype

-100

-75

-50

-25

0

TNF-α IL-1β IL-12 IF-ϒ% c

ytok

ine

redu

ctio

n af

ter L

PS s

timul

atio

n

Draisma A. Crit Care Med 2009;37:1261-1267

Immunoparalysis

Spleen of septic and control patients

HLA-DR expression in patients with sepsis

Monneret G. Intensive Care Med 2006;32:1175-1182

Boomer JS. Crit Care 2012;16:R112

IFNγ secretion

Clinical evidence

• Low virulence bacterial infections

• CMV

• HS

• Aspergillus

Aspergillus after H1N1N = 40

Proven H1N1 infectionin the ICU

N = 31 (77%)No Invasive Pulmonary

Aspergillosis

N = 9 (23%)Invasive Pulmonary

Aspergillosis

ProvenN = 5

ProbableN = 5

Use of corticosteroids significant risk factor

Wauters J. Intensive Care Med 2012;38:1761-1768

Leentjes J. Am J Respir Crit Care Med 2012;186:838-845

GM-CSF treatment in sepsisPRCT N = 38

Meisel C. Am J Respir Crit Care Med 2009;180:640-648

Meisel C. Am J Respir Crit Care Med 2009;180:640-648

Decreased time on MV

Improvement in APACHE II score

Decrease in LOS (NS)Inte

rleu

kin-

10In

terl

euki

n-6

Inte

rleu

kin-

8T

NF-α

HLA

-DR

Important questions remain

• What should we administer?

• When should we administer?

• Which markers should we use?

• HLA-DR expression

• Cytokine production after ex-vivo stimulation

Skrupky LP. Anesthesiology 2011;115:1349-1362

What can be done?

Skrupky LP. Anesthesiology 2011;115:1349-1362

PD-1Negative costimulatory

molecule on Tcells

Conclusions

• Hemodynamic instability in sepsis is multi- factorial

• Starch products should be avoided

• Sepsis induced immunoparalysis may result in severe opportunistic infections

• Immunoparalysis may be reversed with IFN-γ, GM-CSF and IL-7