Section2 - Weebly

128
Section 2.3 The Kinetic Theory (pg. 476480)

Transcript of Section2 - Weebly

Page 1: Section2 - Weebly

Section  2.3  

The  Kinetic  Theory  

(pg.  476-­‐480)  

Page 2: Section2 - Weebly

OBJECTIVES:  

•  Explain  the  kinetic  theory  of  matter  

•  Describe  particle  movement  in  the  4  states  of  

matter.  

•  Explain  particle  behavior  at  the  melting  and  

boiling  points.    

Page 3: Section2 - Weebly

Vocabulary:    

•  Kinetic  theory  •  Melting  point  

•  Boiling  point  

•  Solid    

•  Liquid  

•  gas  

•  Plasma    

•  diffusion  

Page 4: Section2 - Weebly

What  states  of  matter  are  present?  

Page 5: Section2 - Weebly

•  SOLID:  veggies,  pot,    

•  LIQUID:  soup  itself  

• GAS:  steam  off  soup  

Page 6: Section2 - Weebly

Kinetic  Theory:  

• An  explanation  of  how  

particles  in  matter  behave.    

Page 7: Section2 - Weebly

Kinetic  Theory’s  Explanation:  1.  All  matter  is  composed  of  small  

particles  (atoms,  molecules,  and  ions).  

2.  These  particles  are  in  constant,  random  

motion.  

3.  These  particles  are  colliding  with  each  

other  and  the  walls  of  their  container.    

Page 8: Section2 - Weebly

Picture  it….  

Page 9: Section2 - Weebly

Keep  in  mind….  

•  As  atoms  are  bumping  into  each  other  they  

are  transferring  energy.  

•  The  more  energy  they  have,  the  faster  they  

move,  the  faster  they  bump  into  others  

•  Increasing  the  temp  of  a  material  increases  

the  movement  of  its  atoms.    

Page 10: Section2 - Weebly

• Take  out  a  sheet  of  paper  please…..  

Page 11: Section2 - Weebly

•  Fold a sheet of paper in half lengthwise.

Make the back edge about 5 cm longer

than the front edge.

Page 12: Section2 - Weebly

•  Turn the paper so the fold is on the

bottom. Then fold it into thirds.

Page 13: Section2 - Weebly

• Unfold and cut only the top layer

along both folds to make three tabs.

Page 14: Section2 - Weebly

Label the Foldable as shown.  

Page 15: Section2 - Weebly

SOLIDS  

Page 16: Section2 - Weebly
Page 17: Section2 - Weebly

Characteristics  of  a  SOLID  

• Has  a  definite  shape  all  its  own  

•  Can  be  weighed  in  grams  

•  Can  be  counted  

• Molecules  are  tightly  packed  

together-­‐  can’t  escape  

Page 18: Section2 - Weebly

LIQUIDS  

Page 19: Section2 - Weebly
Page 20: Section2 - Weebly

Characteristics  of  LIQUIDS  •  No  definite  shape  

•  Does  have  a  definite  volume  

•  Can  measure  volume  

•  Can  flow  

•  Particles  are  moving  freely  enough  to  

slip  out  of  ordered  arrangement    

Page 21: Section2 - Weebly

GASES  

Page 22: Section2 - Weebly
Page 23: Section2 - Weebly

Characteristics  of  GASES  •  No  definite  shape  

•  No  definite  volume  

•  Can  flow  

•  Particles  are  moving  fast  enough  to  

escape  the  attractive  forces  between  

them  

Page 24: Section2 - Weebly

2  ways  a  liquid  can  become  a  gas:    

• Evaporation    

• boiling  

Page 25: Section2 - Weebly

Evaporation    

• The  vaporization  of  a  liquid  

that  happens  at  the  

SURFACE  of  the  liquid.  

Page 26: Section2 - Weebly

Boiling  point:    

• The  temperature  at  which  a  

liquid  will  enter  the  gaseous  state  

–  happens  throughout  the  

ENTIRE  liquid  

Page 27: Section2 - Weebly

The  movement  of  particles  and  the  

collisions  between  them  cause  gases  to  diffuse.  

 

Page 28: Section2 - Weebly

Diffusion:  • The  spreading  of  particles  throughout  a  given  volume  

until  they  are  uniformly  

distributed.    

Page 29: Section2 - Weebly

• Diffusion  happens  MOST  

RAPIDLY  in  gases,  but  can  

happen  in  liquids  too.  

Page 30: Section2 - Weebly

PLASMA  

Page 31: Section2 - Weebly

PLASMA:  

•  Matter  consisting  of  positively  and  

negatively  charged  particles.    

•  The  overall  charge  of  plasma  is  neutral  

bc  equal  #’s  of  both  charges  are  present.    

Page 32: Section2 - Weebly

Plasma    

Page 33: Section2 - Weebly

Characteristics  of  PLASMA  • Most  common  state  of  matter  in  the  

UNIVERSE.  

•  Very  similar  to  the  movement  of  gas  

molecules,  only  faster.    

Page 34: Section2 - Weebly

Common  examples  of  plasma:  

Lightning  

Bolts  

Page 35: Section2 - Weebly

Common  examples  of  plasma:  

Neon  

signs  

Page 36: Section2 - Weebly

Common  examples  of  plasma:  

Fluorescent  

tubes  

Page 37: Section2 - Weebly

Common  examples  of  plasma:  

stars  

Page 38: Section2 - Weebly

Common  examples  of  plasma:  

auroras  

Page 39: Section2 - Weebly

RECALL:  • Particles  move  faster  and  

separate  as  the  temperature  

rises.    

• When  the  temp  of  an  object  is  

lowered,  the  particles  slow  down.  

Page 40: Section2 - Weebly

• The  separation  of  the  particles  results  in  an  expansion  of  the  

entire  object,  known  as  

thermal  expansion.    

Page 41: Section2 - Weebly

THERMAL  EXPANSION:    

• An  increase  in  the  size  of  a  substance  when  the  

temperature  is  increased.    

Page 42: Section2 - Weebly

The  opposite  is  true  too….  

•  Temp  decreases,  particles  slow  down  

•  Attraction  bow  particles  increases,  

pulling  particles  closer  together  

•  Results  in  an  overall  shrinking  of  the  substance,  known  as  contraction.  

Page 43: Section2 - Weebly

Expansion  joints  in  sidewalk  

Page 44: Section2 - Weebly

Strange  behavior  of  water:  • Water  is  an  exception  to  the  thermal  

expansion  rule:  

– Temp  increase,  size  increase  

– Temp  decrease,  size  decrease  

Page 45: Section2 - Weebly

•  Water  molecules  have  high  negatively  and  

positively  charged  areas.    

•  As  the  temp  of  water  decreases,  particles  

move  closer  together.  

•  The  unlike  charges  will  be  attracted  to  each  

other  and  line  up  so  that  only  positive  and  

negative  zones  are  near  each  other.  

Page 46: Section2 - Weebly

•  This  causes  empty  spaces  to  form  in  the  

structure.    

•  These  empty  spaces  are  larger  in  ice  than  in  

liquid  water,  so  water  expands  when  going  

from  a  liquid  to  a  solid  state  

•  Solid  ice  is  less  dense  than  liquid  

•  Causes  ice  to  float  

Page 47: Section2 - Weebly

PROPERTIES  OF  FLUIDS  Section  2.4:  (pg.  485-­‐489)    

Page 48: Section2 - Weebly

Objectives    

•  Explain  Archimedes’  principle  

•  Explain  Pascal’s  principle  

•  Explain  Bernoulli’s  principle  and  explain  how  

we  use  it.      

Page 49: Section2 - Weebly

Vocabulary:      

Buoyancy    pressure    viscosity  

Page 50: Section2 - Weebly

Why  do  ships  float?    

Page 51: Section2 - Weebly

Why  do  ships  float?  •  They  float  because  a  greater  force  is  

pushing  up  on  the  ship  than  the  

force  of  the  ship  pushing  down.  

•  This  supporting  force  is  called  the  buoyant  force.  

Page 52: Section2 - Weebly

Buoyancy:    

• The  ability  of  a  fluid-­‐  a  liquid  or  a  gas-­‐  to  exert  an  upward  

force  on  an  object  immersed  

in  it.    

Page 53: Section2 - Weebly

Archimedes'  principle  

Page 54: Section2 - Weebly

Archimedes’  Principle  •  If  the  buoyant  force  is  equal  to  the  

object’s  weight,  the  object  will  float.  

•  If  the  buoyant  force  is  less  than  the  object’s  weight,  the  object  will  sink.  

Page 55: Section2 - Weebly
Page 56: Section2 - Weebly
Page 57: Section2 - Weebly

Remember:    

• Density  (D)  =  Mass  (M)  

                                 Volume  (V)  

Density  of  water  =  1  g/ml  

Page 58: Section2 - Weebly
Page 59: Section2 - Weebly

Density  • An  object  will  float  if  its  density  is  

less  than  the  density  of  the  fluid  

it  is  placed  in.  

Page 60: Section2 - Weebly

•  The  density  of  the  steel  block  is  greater  than  the  density  of  water,  so  it  sinks.  

•  The  density  of  the  wood  block  is  less  

than  the  density  of  water,  so  it  floats.  

Page 61: Section2 - Weebly

Difference  in  mass  

Wood  block  

•  D  =  5  gram  /10  cm  

•  D  =  0.5  g/cm  

•  Object  floats  

Steel  block  

•  D  =  20  gram  /  10  cm  

•  D  =  2  g/cm  

•  Object  sinks  

Page 62: Section2 - Weebly

Difference  in  volume  

Wood  block  

•  D  =  20  gram  /30  cm  

•  D  =  0.67  g/cm  

•  Object  floats  

Steel  block  

•  D  =  20  gram  /  10  cm  

•  D  =  2  g/cm  

•  Object  sinks  

Page 63: Section2 - Weebly

Mass  and  Volume  affect  Density  •  If  you  formed  that  same  steel  block  into  the  

shape  of  a  hull  filled  with  air,  the  same  mass  

would  take  up  a  larger  volume.  

•  The  overall  density  of  the  steel  boat  and  air  

would  be  less  than  the  density  of  water  

•  The  steel  (boat)  would  now  float  

Page 64: Section2 - Weebly

Mass  and  Volume  affect  Density  

•  The  steel  (boat)  would  now  float.  

Page 65: Section2 - Weebly

Pascal’s  Principle  •  Blaise  Pascal  (1692-­‐1662),  a  French  scientist  discovered  a  useful  property  of  

fluids.  

Liquids  AND  Gases  are  considered  to  be  

fluids  because  they  both  have  the  ability  to  

flow.  

Page 66: Section2 - Weebly

Pascal’s  Principle  

•  According  to  Pascal’s  Principle,  pressure  applied  to  a  fluid  is  transmitted  throughout  

the  entire  fluid.    

•  http://www.youtube.com/watch?

v=epOwdGIDzlY  

Page 67: Section2 - Weebly

Example  of  Pascal’s  principle  •  For example when you

squeeze one end of a

toothpaste tube,

toothpaste emerges from

the other end. The

pressure has been

transmitted through the

fluid toothpaste  

Page 68: Section2 - Weebly
Page 69: Section2 - Weebly
Page 70: Section2 - Weebly

Pressure:    

• Force  exerted  per  unit  area.  

• P=  F  /  A  

Page 71: Section2 - Weebly

Applying  the  principle  • Hydraulic  machines  are  machines  

that  move  heavy  loads  in  accordance  

with  Pascal’s  principle.    

•  (Ex:  hydraulic  lift  in  auto  repair  shops)  

Page 72: Section2 - Weebly

Hydraulic  lift  

1.  A  pipe  filled  

with  fluid  

connects  small  

and  large  

cylinders.    

Page 73: Section2 - Weebly

Applying  the  principle  2.  Pressure  applied  

to  the  small  

cylinder  is  

transferred  

through  the  fluid  

to  the  large  

cylinder.    

Page 74: Section2 - Weebly
Page 75: Section2 - Weebly
Page 76: Section2 - Weebly

Bernoulli’s  Principle  

• According  to  Bernoulli’s  principle,  

as  the  velocity  of  a  fluid  

increases,  the  pressure  exerted  

by  the  fluid  decreases.    

Page 77: Section2 - Weebly

Bernoulli’s  Principle  

Page 78: Section2 - Weebly

Bernoulli’s  Principle  •  The  velocity  of  the  air  you  blew  over  the  

top  surface  of  the  

paper  is  greater  than  

that  of  the  quiet  air  

below  it.    

Page 79: Section2 - Weebly

Bernoulli’s  Principle  •  As  a  result,  the  air  pressure  pushing  

down  on  the  top  of  

the  paper  is  lower  

than  the  air  pressure  

pushing  up  on  the  

paper.  

Page 80: Section2 - Weebly

Bernoulli’s  Principle  

•  The  net  force  below  the  paper  

pushes  the  paper  

upward.    

Page 81: Section2 - Weebly

Video Clips 16

Page 82: Section2 - Weebly

Fun  examples  of  Bernoulli’s  Principle  

•  http://www.youtube.com/watch?v=P-­‐

xNXrELCmU  

Page 83: Section2 - Weebly

Fluid  Flow  

•  Another  property  exhibited  by  fluid  is  its  tendency  to  flow.  

•  Fluids  vary  in  viscosity:  warm  syrup  

would  flow  faster  when  spilled  than  cold  

syrup  

Page 84: Section2 - Weebly

•  Viscosity:  Resistance  of  liquid  to  flow.  

Copyright © 2010 Ryan P. Murphy

Page 85: Section2 - Weebly

High  Viscosity  =  travels  slow  because  of  high  resistance  

Page 86: Section2 - Weebly

High  viscosity  =  flows  slowly  

Page 87: Section2 - Weebly

Low  viscosity=  flows  fast  bc  of  low  resistance  

Page 88: Section2 - Weebly

Low  viscosity  =  flows  quickly  

Page 89: Section2 - Weebly

•  Activity!  What  is  more  viscous?  

– Remember,  Viscosity  is  resistance  to  flow.  

Copyright © 2010 Ryan P. Murphy

Which  is  more  viscous?  

Page 90: Section2 - Weebly

•  Answer!  The  peanut  butter  doesn’t  flow  as  

much  as  the  ketchup  so  it  has  more  viscosity.  

Copyright © 2010 Ryan P. Murphy

Page 91: Section2 - Weebly

Review  Question:  

•  If  the  buoyant  force  on  an  object  in  a  fluid  is  LESS  than  the  object’s  weight,  the  object  will  

________.  

A.  Float  

B.  Sink    

Page 92: Section2 - Weebly

Answer:    

•  If  the  buoyant  force  on  an  object  in  a  fluid  is  LESS  than  the  object’s  weight,  the  object  will  

________.  

A.  Float  

Page 93: Section2 - Weebly

Review  Question:  

•  According  to  Pascal’s  principle,  __________  applied  to  a  fluid  is  transmitted  throughout  the  

fluid.  

A.  Density  B.  Pressure  C.  Temp  D.  volume  

Page 94: Section2 - Weebly

Answer:  

•  According  to  Pascal’s  principle,  __________  applied  to  a  fluid  is  transmitted  throughout  the  

fluid.  

A.  Density  B.  Pressure  C.  Temp  D.  volume  

Page 95: Section2 - Weebly

Review  Question  

•  The  more  viscous  a  fluid  is  the  

______________  it  will  flow?  

•  Faster  •  Slower  •  Farther  • Heavier  

Page 96: Section2 - Weebly

Answer:  

The  more  viscous  a  fluid  is  the  

______________  it  will  flow?  

•  Faster  

•  Farther  • Heavier  

Page 97: Section2 - Weebly

BEHAVIOR  OF  GASES  Section  2.5    (pg.  490-­‐495)  

Page 98: Section2 - Weebly

Remember:  

•  Kinetic  theory  tells  us  that  all  gas  particles  are  constantly  moving  and  

colliding  with  anything  in  their  path.    

•  The  collision  of  these  particles  in  the  air  result  in  pressure.  

Page 99: Section2 - Weebly

Pressure:  

•  Force  exerted  per  unit  area  

•  P  =  F  /  A  

Page 100: Section2 - Weebly

Gases  are  often  confined  to  containers.  

Page 101: Section2 - Weebly

They  remain  

inflated  bc  of  

collisions  the  air  

particles  have  

with  the  walls  of  

the  container  

(balloon)  

Page 102: Section2 - Weebly

•  The  air  molecules  hitting  the  walls  of  

the  balloon  cause  the  walls  to  

expand  outward.  

•  If  more  air  is  pumped  into  the  

balloon,  the  #  of  air  molecules  is  

increased.  

Page 103: Section2 - Weebly

This  causes  

more  collisions  

with  the  walls  

of  the  

container  

causing  it  to  

expand.    

Page 104: Section2 - Weebly

Since  the  walls  

of  the  bicycle  

tube  can’t  

expand  very  

much,  the  

pressure  within  

the  tube  would  

increase.      

Page 105: Section2 - Weebly

•  Pressure  is  measured  in  a  unit  called  Pascal  

(Pa),  the  SI  unit  of  pressure.    

•  Most  pressures  are  expressed  as  kPa  or  1,000  

Pascals  (sometimes  called  atm  –  atomic  

pressure)  

Page 106: Section2 - Weebly

•  The  pressure  of  a  gas  depends  on  how  often  

its  particles  strike  the  walls  of  the  container.    

•  If  you  squeeze  gas  into  a  smaller  space,  its  

particles  will  strike  the  walls  more  often  –  

giving  an  increased  pressure.  

– The  opposite  is  true  too  

Page 107: Section2 - Weebly

•  If  you  give  the  gas  particles  more  space,  they  

will  hit  the  walls  less  often  –  gas  pressure  is  

reduced.  

•  British  scientist  named  Robert  Boyle  

described  this  property  of  gases….  

Page 108: Section2 - Weebly

Boyle’s  Law  Pressure-­‐Volume  Relationship  

•  The  pressure  and  volume  of  a  sample  of  

gas  at  constant  temperature  are  

inversely  proportional  to  each  other.    

Page 109: Section2 - Weebly

Boyle’s  Law  

•  (as  one  goes  up,  the  other  goes  down)  

•  P  goes  up,  V  goes  up:  P  goes  down,  V  goes  

down  

•  P1V1  =  P2V2  

•  If  3  of  the  variables  are  known,  the  fourth  can  

be  calculated.    

Page 110: Section2 - Weebly

Work  it  out  •  The  gas  in  a  20.0  mL  container  has  a  

pressure  of  2.77  kPa.  When  the  gas  is  

transferred  to  a  34.0  mL  container  at  the  

same  temperature,  what  is  the  new  pressure  

of  the  gas?  

• P  1V  1  =  P2V2  

Page 111: Section2 - Weebly

Work  it  out  •  The  gas  in  a  20.0  mL  container  has  a  

pressure  of  2.77  kPa.  When  the  gas  is  

transferred  to  a  34.0  mL  container  at  the  

same  temperature,  what  is  the  new  pressure  

of  the  gas?  

ANSWER:      1.63  kPa    

Page 112: Section2 - Weebly

•  If  a  set  amount  of  gas  is  transferred  

into  a  larger  container,  would  the  

pressure  go  up  or  down?  

Page 113: Section2 - Weebly

•  If  a  set  amount  of  gas  is  transferred  

into  a  larger  container,  would  the  

pressure  go  up  or  down?  

Answer:  DOWN    

Page 114: Section2 - Weebly

• Would  there  be  more  collisions,  or  

fewer  collisions  with  the  container  

holding  the  gas  if  the  gas  was  

transferred  into  a  larger  container?  

Page 115: Section2 - Weebly

• Would  there  be  more  collisions,  or  

fewer  collisions  with  the  container  

holding  the  gas  if  the  gas  was  

transferred  into  a  larger  container?  

Answer:    FEWER  

 

Page 116: Section2 - Weebly

Rationale:    •  The  more  volume  (space)  means  fewer  

collisions  with  the  container,  therefore  

pressure  goes  down.    

(from  2.77  kPa  to  1.63  kPa)  

Page 117: Section2 - Weebly

Boyle’s  Law  in  Action  

•  http://www.youtube.com/watch?

v=27yqJ9vJ5kQ  

Page 118: Section2 - Weebly

Charles’s  Law  

Temperature-­‐Volume  relationship  

•  At  constant  pressure,  the  volume  of  a  

fixed  amount  of  gas  is  directly  

proportional  to  its  absolute  

temperature.  

Page 119: Section2 - Weebly

•  As  Temp  goes  up,  V  goes  up  

•  As  Temp  goes  down,  V  goes  down  

   V1        V2  

             ______        =      _________  

   T1                      T2  

If  3  of  the  variables  are  known,  the  fourth  can  be  calculated  

Page 120: Section2 - Weebly

Work  it  out:  • What  will  be  the  volume  of  a  gas  

sample  at  355K  if  its  volume  at  273K  

is  8.5  L?  

Page 121: Section2 - Weebly

Work  it  out:  • What  will  be  the  volume  of  a  gas  

sample  at  355K  if  its  volume  at  273K  

is  8.5  L?  

ANSWER:                11.1  L  

Page 122: Section2 - Weebly

•  If  the  temperature  of  a  given  

quantity  of  gas  is  increased,  what  

will  happen  to  the  volume  it  

occupies?  (In  an  elastic  container?)  

Page 123: Section2 - Weebly

•  If  the  temperature  of  a  given  quantity  of  gas  is  

increased,  what  will  happen  to  the  volume  it  

occupies?  (In  an  elastic  container?)    

ANSWER:    volume  would  increase  (container  

would  get  bigger)  

Page 124: Section2 - Weebly

Rationale:  

• Gas  particles  moving  faster  would  

have  more  collisions  with  the  

container  and  exert  more  force  to  

enlarge  the  volume  of  the  elastic  

container.    

Page 125: Section2 - Weebly

Fun  with  Charles’s  Law  

•  http://www.youtube.com/watch?v=Jeso  

•  E4F2Pb20  

•  http://www.youtube.com/watch?

v=GcCmalmLTiU  

Page 126: Section2 - Weebly

Review  Question  •  Boyle’s  Law  states  that  as  the  pressure  

exerted  on  a  container  of  gas  increases,  the  

volume  of  the  gas  will  _____.  

A.  Increase    B.  decrease  

C.  Stay  the  same  D.  none  of  the  above  

Page 127: Section2 - Weebly

ANSWER:    •  Boyle’s  Law  states  that  as  the  pressure  

exerted  on  a  container  of  gas  increases,  the  

volume  of  the  gas  will  _____.  

A.  Increase    B.  

C.  Stay  the  same  D.  none  of  the  above  

Page 128: Section2 - Weebly

REVIEW  QUESTION: