Section2 TB Meteo

download Section2 TB Meteo

of 46

Transcript of Section2 TB Meteo

  • 7/28/2019 Section2 TB Meteo

    1/46

    CAE NLS-Hoofddorp 1

    Section 2: Thermodynamics

    water vapour

    temperature

    stability

    Thermodynamics= change of energy(heat/warmth) in work and reverse)

  • 7/28/2019 Section2 TB Meteo

    2/46

    CAE NLS-Hoofddorp 2

    radiosonde

    temperature T TSK

    humidity Td

    pressure height

    wind*

    transmitter

  • 7/28/2019 Section2 TB Meteo

    3/46

    CAE NLS-Hoofddorp 3

  • 7/28/2019 Section2 TB Meteo

    4/46

    CAE NLS-Hoofddorp 4

  • 7/28/2019 Section2 TB Meteo

    5/46

    CAE NLS-Hoofddorp 5

  • 7/28/2019 Section2 TB Meteo

    6/46

    CAE NLS-Hoofddorp 6

  • 7/28/2019 Section2 TB Meteo

    7/46

    CAE NLS-Hoofddorp 7

    500

    600

    700

    800

    900

    1000

    2 4 6 10 20 30

    0 10 20 30

    pressure

    temperaturedry adiabatic

    wet adiabatic

    mixing ratio

    Thermodynamical diagram (TEMP)

    g/kg

    C C C

    pressure

  • 7/28/2019 Section2 TB Meteo

    8/46

    CAE NLS-Hoofddorp 8

  • 7/28/2019 Section2 TB Meteo

    9/46

    CAE NLS-Hoofddorp 9

    solid

    liquidgas

    Change of state of aggregation

    From higher density to lower density = Energy neaded (+)

    From lower density to higher density = Energy release (-)

    + E

    - E

    + E+ E

    - E- E

  • 7/28/2019 Section2 TB Meteo

    10/46

    CAE NLS-Hoofddorp 10

    solid

    liquidgas

    Water:

    Ice

    VapourWater

    melt

    freeze

    evaporate

    condens

    EvaporateSublime

    Deposit (in meteo*

    sublimation)

  • 7/28/2019 Section2 TB Meteo

    11/46

    CAE NLS-Hoofddorp 11

    -10 0 10 20 30

    30

    20

    10

    C

    hPa

    T = 15 C

    E = 17 hPa

    e = 11 hPa

    Td = 8 C17

    Max. watervapour E

    8 15

    11

    Rh = 11/17*100%

    = 65 %

    e

    T

    SATURATED

    UNSATURATED

  • 7/28/2019 Section2 TB Meteo

    12/46

    CAE NLS-Hoofddorp 12

    E

    hPa

    E

    0C

    t

    dam

    pdruk

    IJS

    ONDERKOELD

    WATER

  • 7/28/2019 Section2 TB Meteo

    13/46

    CAE NLS-Hoofddorp 13

    de grootte van E is afhankelijk van

    DE TEMPERATUUR

    DE KROMMING VAN HET WATEROPPERVLAK

    DE AANWEZIGHEID VAN NIET OPGELOSTESTOFFEN

  • 7/28/2019 Section2 TB Meteo

    14/46

    CAE NLS-Hoofddorp 14

    VERLOOP VAN DE DAMPSPANNING BOVEN EEN

    WATEROPPERVLAK

    e

    E

    Water

    Er is altijd een zeer dun laagje boven een wateroppervlak waar de

    relatieve vochtigheid (Rh=Relative Humidity) 100% is: E

    Het water wil verdampen (Saturate): De moleculen springen eruit!

  • 7/28/2019 Section2 TB Meteo

    15/46

    CAE NLS-Hoofddorp 15

    p

    e

    RT

    p

    8

    31

    )(.

    )(

    )/(

    )/(

    2

    3

    hParwatervapoueairforconstR

    KetemperaturT

    mNPapressurep

    mkgdensity

    Dry air is more heavy than moist air

    e >

  • 7/28/2019 Section2 TB Meteo

    16/46

    CAE NLS-Hoofddorp 16

    Measuring watervapour in the air

    psychrometer

    15

    T

    8

    Td

    12

    Tw

    T

    hPa

    e

    ?? Dry

    Bulb=

    Droge

    bol

    T Tw(ater)

    Wet

    Bulb=

    Natte

    bol

    E

  • 7/28/2019 Section2 TB Meteo

    17/46

    CAE NLS-Hoofddorp 17

    Moisture parameters

    wetbulb temperature (Tw)

    watervapour pressure (e)

    dewpointtemperature (Td) (wordt bepaald via Tw)

    mixing ratio (x) amount of watervapour in gr/kg

    dry air

    Relative humidity can be influenced by:

    1. Rising/dropping of temperature2. More/less watervapour

    3. Combination 1 & 2

  • 7/28/2019 Section2 TB Meteo

    18/46

    CAE NLS-Hoofddorp 18

    Adiabatic processes*

    Process in which rising air is cooling due to the

    expanding of the air, or warming due to

    compressing by descending.

    No heat exchange with surrounding !!

  • 7/28/2019 Section2 TB Meteo

    19/46

    CAE NLS-Hoofddorp 19

    Dry* air: ALWAYS!!

    3C/1000 ft

    ~1 100 m

    Saturated*air: VARYING !!

    05000 ft: 1.8 (2)**C/1000 ft ~0,6 100 m

    5000-TROP: 2-3* C/1000 ft

    20

    12

    Dry Adiabatic Laps

    Rate =

    DALR

    Saturated Adiabatic Laps

    Rate =

    SALR

  • 7/28/2019 Section2 TB Meteo

    20/46

    CAE NLS-Hoofddorp 20

    High in troposhere:

    1. Low temperatures, cold

    2. Cold air cant hold moist

    Conclusion:

    DALR reaches SALR !!!

    SALR

    DALR

  • 7/28/2019 Section2 TB Meteo

    21/46

    CAE NLS-Hoofddorp 21

    Dauwpuntskromme (Td) Vocht

    Temperatuurkromme

    = TSK (ELR)

    Toestandskromme

    of

    Environmental

    Lapse Rate ELR

  • 7/28/2019 Section2 TB Meteo

    22/46

    CAE NLS-Hoofddorp 22

    100% HUMID = CLOUDS

    Tropopause

  • 7/28/2019 Section2 TB Meteo

    23/46

    CAE NLS-Hoofddorp 23

    Oefeningetje

    1) T surface

    2) Td surface

    3) 0-degree level

    (FZL*)

    4) T, Td en RV op

    500hPa (ca 18000

    ft)

    5) Height of

    Tropopause (km

    and ft)6) T at tropopause

    T = 15Td = 11

    FZL8000 ft

    Ca. 2500m

    T = -18

    Td = -28

    RV 1: 2= 50%

    33000ft

    10.000m T = -54

  • 7/28/2019 Section2 TB Meteo

    24/46

    CAE NLS-Hoofddorp 24

    stableunstable

    indifferent

    arcel of airreturns

    arcel of aircontinues

    stable unstable indifferent

    Stability in atmosphere

    or Neutral

  • 7/28/2019 Section2 TB Meteo

    25/46

    CAE NLS-Hoofddorp 25

    stableunstable

    indifferent

    arcel of airreturns

    arcel of aircontinues

    stable unstable indifferent

    Stability in atmosphere

    or Neutral

  • 7/28/2019 Section2 TB Meteo

    26/46

    CAE NLS-Hoofddorp 26

    stableunstable

    indifferent

    arcel of airreturns

    arcel of aircontinues

    stable unstable indifferent

    Stability in atmosphere

    or Neutral

  • 7/28/2019 Section2 TB Meteo

    27/46

    CAE NLS-Hoofddorp 27

    Boek: fig 2.10 LCL (Lifting Condensation Level)

    Follow mixing ratio

    through Td

    Follow DALR through T

    1. Warm air rises

    2. Td decreases viamixing ratio line

    3. T decreases via DALR

    4. Point they meet:

    Condensation=LCL

    http://upload.wikimedia.org/wikipedia/commons/8/8a/LCL-NCA.pnghttp://upload.wikimedia.org/wikipedia/commons/8/8a/LCL-NCA.pnghttp://upload.wikimedia.org/wikipedia/commons/8/8a/LCL-NCA.pnghttp://upload.wikimedia.org/wikipedia/commons/8/8a/LCL-NCA.png
  • 7/28/2019 Section2 TB Meteo

    28/46

    CAE NLS-Hoofddorp 28

  • 7/28/2019 Section2 TB Meteo

    29/46

    CAE NLS-Hoofddorp 29

    DFA versie aug2004 Adiabatics and stability 17

    VERTICALE EVENWICHTSTOESTANDEN ONDERZOEKEN

    MET EEN THERMODYNAMISCH DIAGRAM

    We maken een paar afspraken:

    We stellen ons in gedachten een pakketje lucht voor, waargeen omhulling omheen zit.

    We stellen ons voor dat we dit pakketje lucht omhoog en

    omlaag kunnen bewegen.We kunnen het pakketje op elk willekeurig niveau aanpakken.

    De processen verlopen droog- of verzadigd adiabatisch.

    rogelucht is onverzadigde lucht, waar w waterdamp in

    kan zitten.

  • 7/28/2019 Section2 TB Meteo

    30/46

    CAE NLS-Hoofddorp 30

    500

    600

    700

    800

    900

    1000

    Stable for dry adiabatic process

    TSK

    Take airbell on TSK

    (ELR)move airbell upwards

    along dryadiabatic

    Airbell colder(heavier)

    than TSK

    airbell will return to

    its starting position

    air is stable

  • 7/28/2019 Section2 TB Meteo

    31/46

    CAE NLS-Hoofddorp 31

    500

    600

    700

    800

    900

    1000

    2 4 6 10 20 30

    0 10 20 30

    unstable for dry adiabatic process

    take airbell on TSK

    move airbell upwards

    along dryadiabatic

    airbell warmer(less heavy)

    than TSK

    airbell will move further

    upwards

    air is unstable

  • 7/28/2019 Section2 TB Meteo

    32/46

    CAE NLS-Hoofddorp 32

    500

    600

    700

    800

    900

    1000

    2 4 6 10 20 30

    0 10 20 30

    indifferent for dry adiabatic process

    take airbell on TSK

    move airbell upwards

    along dry adiabatic

    airbell remains at

    same level

    air is indifferent

    (neutral) for dry air

    airbells T remains the same

    temperature as environment:

    so same density/weight

  • 7/28/2019 Section2 TB Meteo

    33/46

    CAE NLS-Hoofddorp 33

    500

    600

    700

    800

    900

    1000

    2 4 6 10 20 30

    0 10 20 30

    stable for saturated adiabatic process

    take airbell on TSK

    move airbell upwards

    along saturated adiabatic

    airbell colder(heavier)

    than TSK

    airbell will return to

    its starting position

    air is stable forsaturated air

  • 7/28/2019 Section2 TB Meteo

    34/46

    CAE NLS-Hoofddorp 34

    500

    600

    700

    800

    900

    1000

    2 4 6 10 20 30

    0 10 20 30

    unstable for saturated adiabatic process

    take airbell on TSK

    move airbell upwards

    along saturated adiabatic

    airbell warmer(less heavy)

    than TSK

    airbell will move

    further upwards

    air is unstable forsaturated air

  • 7/28/2019 Section2 TB Meteo

    35/46

    CAE NLS-Hoofddorp 35

    500

    600

    700

    800

    900

    1000

    2 4 6 10 20 30

    0 10 20 30

    indifferent for saturated adiabatic process

    take airbell on TSK

    move airbell upwards

    along saturated adiabatic

    airbells T remains the same

    temperature as environment:

    so same density/weight

    airbell remains at

    same level

    air is indifferent for

    saturated air

  • 7/28/2019 Section2 TB Meteo

    36/46

    CAE NLS-Hoofddorp 36

    exercise

    On the thermodynimical diagram we take several temperatures at different levels and try to conclude if the layer

    between two levels is stable, unstable or indifferent for dry and for saturated air.

    1. 1000 hPa: 18C)

    > layer 1

    2. 900 hPa: 20C)

    > layer 2

    3. 800 hPa: 8C)

    > layer 3

    4. 700 hPa: -2C )

    > layer 4

    5. 600 hPa: -9C )

    > layer 5

    6. 500 hPa: -20C)

    >layer 6

    7. 400 hPa: -40C)

    > layer 7

    8. 300 hPa: -40C

    10 0 10 20 30

    Layer 1: stable for dry air

  • 7/28/2019 Section2 TB Meteo

    37/46

    CAE NLS-Hoofddorp 37

    1000

    900

    800

    700

    600

    500

    400

    300

    -10 0 10 20 30

    0 10 20 30

    Layer 1

    Layer 2

    Layer 3

    Layer 4

    Layer 5

    Layer 6

    Layer 7

    stable for saturated air

    absolute stableLayer 2: unstable for dry air

    unstable for saturated air

    absolute unstableLayer 3: indifferent for dry air

    unstable for saturated air

    Layer 4: stable for dry air

    indifferent for saturated air

    Layer 5: stable for dry air

    unstable for saturated air

    conditional stableLayer 6: unstable for dry air

    unstable for saturated air

    absolute unstableLayer 7: stable for dry air

    stable for saturated air

    absolute stable

    DE TSK VERLOOPT STABIEL VOOR DROOG- EN

  • 7/28/2019 Section2 TB Meteo

    38/46

    CAE NLS-Hoofddorp 38

    DE TSK VERLOOPT STABIEL VOOR DROOG- EN

    NATADIABATISCHE PROCESSEN:ABSOLUUT STABIEL

    S

    U

    M

    M

    A

    R

    Y

    Blz

    2-15

    DE TSK VERLOOPT ONSTABIEL VOOR DROOG- EN

  • 7/28/2019 Section2 TB Meteo

    39/46

    CAE NLS-Hoofddorp 39

    DE TSK VERLOOPT ONSTABIEL VOOR DROOG- EN

    NATADIABATISCHE PROCESSEN:ABSOLUUT ONSTABIEL

    DE TSK VERLOOPT STABIEL VOOR EEN DROOG- MAAR

  • 7/28/2019 Section2 TB Meteo

    40/46

    CAE NLS-Hoofddorp 40

    DE TSK VERLOOPT STABIEL VOOR EEN DROOG-, MAAR

    ONSTABIEL VOOR EEN NATADIABATSCICH PROCES:

    VOORWAARDELIJK (ON)STABIEL

  • 7/28/2019 Section2 TB Meteo

    41/46

    CAE NLS-Hoofddorp 41

    Potential instability fig.:2.18Temp:

    Onderin nat.

    Bovenin droog

    Td T

  • 7/28/2019 Section2 TB Meteo

    42/46

    CAE NLS-Hoofddorp 42

    Potential instability

    In layered clouds EMBD (Embedded) CBs

    http://annettekapoen.punt.nl/upload/weer/zon_1.gifhttp://www.astro.uu.nl/~strous/AA/pic/maan08.jpg
  • 7/28/2019 Section2 TB Meteo

    43/46

    CAE NLS-Hoofddorp 43

    Changing stability by

    1) Diurnal variation of Temperature

    T10 13 15 19

    ELR

    WAA

    No advection

    h

    2) Advection* of Warm or Cold

    air

    FRICTION INVERSION

    http://annettekapoen.punt.nl/upload/weer/zon_1.gifhttp://www.astro.uu.nl/~strous/AA/pic/maan08.jpg
  • 7/28/2019 Section2 TB Meteo

    44/46

    CAE NLS-Hoofddorp 44

    3) Turbulence (=mixing)

    Changing stability by

    4) Vertical movement by Divergence orConvergence

    inversion Wind

    ELR-

    TSK

    FRICTION-INVERSION

    T

    DALR

    S bid I i

  • 7/28/2019 Section2 TB Meteo

    45/46

    CAE NLS-Hoofddorp 45

    Subidence Inversion

    SAMENDRUKKEN VAN EEN LUCHTLAAG TIJDENS

  • 7/28/2019 Section2 TB Meteo

    46/46

    CAE NLS-Hoofddorp 46

    SAMENDRUKKEN VAN EEN LUCHTLAAG TIJDENS

    SUBSIDENTIE