Scott Austin - Frog Heart Lab Report - Section A07 · ! 1!...

28
1 Introduction: The heart muscle is unlike other organs in the body, powered electrically and on it’s own. It is completely capable of function without neuronal input. When removed from the body, the heart is capable of contraction when supplied with necessary nutrients (Faller, 2004, p. 214). Contractile and autorhythmic cells are the two main cell types within the heart. 99% of the total cells in the human heart are contractile cells. These cells are responsible for pumping blood by contracting the heart. Autorhythmic cells comprise the remainder of cells in the heart, and are responsible for initiating and conducting action potentials within the heart (Sherwood, 2010, p. 309). Autorhythmic cells have no resting potential. Instead, they slowly depolarize until threshold is reached, then fire an action potential. This is known as pacemaker activity (Sherwood, 2010, p. 309). The spread of an action potential from the autorhythmic cell to the contractile cell leads to the beating observed in the heart. Ionic movement of Na + through hyperpolarization of specific voltage gated channels is the initial source of the action potential in the autorhythmic cell. K + channels and Ca 2+ channels additionally contribute to the pacemaker potential in the cell. These ionic shifts result in the pacemaker activity of the heart (Sherwood, 2010, p. 310). In the bullfrog, autorhythmic cells are found primarily in the sinus venosus. This is the primary pacemaker in the frog heart. From the primary pacemaker an action potential is able to spread to contractile cells via gap junctions (Sherwood, 2010, p. 308). Contractile cells maintain a steadier resting potential than the autorhythmic cells. This is mainly due to leaky K + channels, which keep the membrane potential close to the K +

Transcript of Scott Austin - Frog Heart Lab Report - Section A07 · ! 1!...

Page 1: Scott Austin - Frog Heart Lab Report - Section A07 · ! 1! Introduction:!The!heart!muscle!isunlikeotherorgansinthebody, poweredelectricallyandonit’s! own.Itiscompletely!capable!of!function!withoutneuronalinput.When

  1  

Introduction:  

  The  heart  muscle  is  unlike  other  organs  in  the  body,  powered  electrically  and  on  it’s  

own.    It  is  completely  capable  of  function  without  neuronal  input.    When  removed  from  the  

body,  the  heart  is  capable  of  contraction  when  supplied  with  necessary  nutrients  (Faller,  

2004,  p.  214).  

Contractile  and  autorhythmic  cells  are  the  two  main  cell  types  within  the  heart.    

99%  of  the  total  cells  in  the  human  heart  are  contractile  cells.    These  cells  are  responsible  

for  pumping  blood  by  contracting  the  heart.    Autorhythmic  cells  comprise  the  remainder  of  

cells  in  the  heart,  and  are  responsible  for  initiating  and  conducting  action  potentials  within  

the  heart  (Sherwood,  2010,  p.  309).      

  Autorhythmic  cells  have  no  resting  potential.    Instead,  they  slowly  depolarize  until  

threshold  is  reached,  then  fire  an  action  potential.    This  is  known  as  pacemaker  activity  

(Sherwood,  2010,  p.  309).    The  spread  of  an  action  potential  from  the  autorhythmic  cell  to  

the  contractile  cell  leads  to  the  beating  observed  in  the  heart.          

Ionic  movement  of  Na+  through  hyperpolarization  of  specific  voltage  gated  channels  

is  the  initial  source  of  the  action  potential  in  the  autorhythmic  cell.    K+  channels  and  Ca2+  

channels  additionally  contribute  to  the  pacemaker  potential  in  the  cell.    These  ionic  shifts  

result  in  the  pacemaker  activity  of  the  heart  (Sherwood,  2010,  p.  310).    

In  the  bullfrog,  autorhythmic  cells  are  found  primarily  in  the  sinus  venosus.    This  is  

the  primary  pacemaker  in  the  frog  heart.    From  the  primary  pacemaker  an  action  potential  

is  able  to  spread  to  contractile  cells  via  gap  junctions  (Sherwood,  2010,  p.  308).      

Contractile  cells  maintain  a  steadier  resting  potential  than  the  autorhythmic  cells.    

This  is  mainly  due  to  leaky  K+  channels,  which  keep  the  membrane  potential  close  to  the  K+  

Page 2: Scott Austin - Frog Heart Lab Report - Section A07 · ! 1! Introduction:!The!heart!muscle!isunlikeotherorgansinthebody, poweredelectricallyandonit’s! own.Itiscompletely!capable!of!function!withoutneuronalinput.When

  2  

equilibrium  potential.    The  action  potential  looks  markedly  different  in  a  contractile  cell  

than  in  an  autorhythmic  cell.    The  contractile  cell  contains  fast  Na+  channels  providing  a  

rapid  influx  of  Na+;  transient  K+  channels  leading  to  a  brief  repolarization  period;  L-­‐type  

Ca2+  channels,  which  are  much  slower  than  it’s  T-­‐type  counterpart,  leading  to  a  plateau  

period;  and  a  rapid  efflux  of  K+  via  voltage  gated  K+  channels  (Sherwood,  2010,  p.  314).      

Both  the  parasympathetic  and  the  sympathetic  nervous  system  innervate  the  heart,  

having  opposing  effects  on  heart  rate  and  strength  of  contraction  (Sherwood,  2010,  p.  325).    

The  parasympathetic  nerve  in  the  heart  is  the  Vagus  nerve  and  releases  acetylcholine  to  

bind  with  muscarinic  receptors  leading  to  a  decrease  in  rate  of  depolarization  and  a  

decrease  in  heart  rate.    Over  stimulating  the  Vagus  nerve  can  lead  to  bradycardia  leading  to  

cardiac  arrest.    The  sympathetic  nervous  system  releases  norepinephrine  to  bind  with  β-­‐

adrenergic  receptors  leading  to  an  increased  rate  of  depolarization  and  an  increase  in  heart  

rate  (Sherwood,  2010,  p.  326).    

Cardiac  output  is  determined  by  heart  rate  and  stroke  volume.    Stroke  volume  is  

controlled  by  intrinsic  and  extrinsic  controls.    Intrinsic  control  is  based  on  how  much  blood  

returns  to  the  heart  and  how  much  blood  is  pumped  out.    This  is  the  Frank-­‐Starling  law  of  

the  heart.    The  more  filling  that  takes  place,  the  more  force  that  blood  is  ejected  with.    

Larger  venous  return  equals  larger  stroke  volume  (Sherwood,  2010,  p.  328).    Extrinsic  

controls  in  the  heart  are  a  result  of  sympathetic  stimulation.    Sympathetic  stimulation  

releases  norepinephrine  and  epinephrine,  leading  to  increased  cytosolic  Ca2+,  which  leads  

to  increased  contractile  force  resulting  in  increased  cardiac  output  (Sherwood,  2010,  p.  

329).  

 

Page 3: Scott Austin - Frog Heart Lab Report - Section A07 · ! 1! Introduction:!The!heart!muscle!isunlikeotherorgansinthebody, poweredelectricallyandonit’s! own.Itiscompletely!capable!of!function!withoutneuronalinput.When

  3  

Methods:  

  The  procedure  followed  for  the  lab  can  be  found  in  the  NPB  101L  Physiology  Lab  

Manual  (Bautista  &  Korber,  2009,  p.  54).    Prior  to  the  experiment  the  bullfrog  was  double  

pithed  by  the  lab  TA’s.    The  brain  and  spinal  cord  were  destroyed  so  the  frog  could  not  feel  

pain  or  control  its  own  movement.    The  frog  was  kept  moist  with  a  paper  towel  dampened  

with  deionized  water.    Once  the  heart  was  exposed  the  tissue  was  fed  nutrients  through  

application  of  Ringers  saline  solution.    Ringers  solution  is  rich  in  electrolyte  ions  Ca2+,  Na+,  

and  K+.  

  The  abdomen  was  opened  avoiding  veins.    The  pectoral  girdle  was  cut  through.    The  

pericardium  was  removed  and  the  heart  was  exposed.    The  Vagus  nerve  was  isolated  and  

confirmed  through  stimulation  and  observation  of  bradycardia.      

  The  force  transducer  was  calibrated  as  per  lab  manual  instruction  and  the  ventricle  

was  punctured  with  wire  ensuring  un-­‐insulated  areas  were  in  contact  with  the  tissue  and  

the  end  of  the  wire  at  the  force  transducer.    The  left  leg  of  the  bullfrog  was  punctured  with  

a  T-­‐pin  and  ground  wires  were  connected  to  the  T-­‐pin.      

  All  experiments  were  performed  as  presented  in  the  lab  manual.    Deviations  from  

the  lab  manual  occurred  in  Part  4:  Extrasystolic  Contractions.    For  the  early  diastole  

experiment  only  1  extrasystole  was  recorded.    Additionally  in  Part  6:  Effects  of  

Epinephrine,  the  frog  heart  was  injected  three  times  with  epinephrine  and  data  were  

collected  for  3  minutes  post  injection.      

 

 

 

Page 4: Scott Austin - Frog Heart Lab Report - Section A07 · ! 1! Introduction:!The!heart!muscle!isunlikeotherorgansinthebody, poweredelectricallyandonit’s! own.Itiscompletely!capable!of!function!withoutneuronalinput.When

  4  

Results:  

Part  3:    Electrical  &  Mechanical  Activity  of  the  Heart  

With  a  starting  baseline  tension  of  0.0-­‐0.1g,  average  arterial  contraction  force  was  

measured.    Atrial  contractions  were  analyzed  every  15  seconds  for  2  minutes  utilizing  

maximum  tension  in  a  P  wave  (Figure  1).      

 

Figure  1:    The  tension  (g)  at  15-­‐second  intervals  over  a  2-­‐minute  duration  during  atrial  contraction  in  the  

bullfrog’s  heart  represented  in  the  blue  line  averaged  0.38g.    Contraction  force  initially  increased  then  

decreased,  evening  out  over  the  data  sample.    Baseline  tension  was  0.0-­‐0.1g.    Time  is  measured  in  seconds  

along  the  X-­‐axis,  and  contraction  force  is  measured  in  grams  along  the  Y-­‐axis.    

  Ventricular  contraction  force  was  established  by  analyzing  maximum  tension  over  a  

2  minute  period  every  15  seconds  (Figure  2).      

 

 

 

0.3  

0.35  

0.4  

0.45  

0   15   30   45   60   75   90   105   120  

Contraction  Force  

(grams)  

Time  (seconds)  

Atrial  Contraction  Force  

Measured  Tension  

Page 5: Scott Austin - Frog Heart Lab Report - Section A07 · ! 1! Introduction:!The!heart!muscle!isunlikeotherorgansinthebody, poweredelectricallyandonit’s! own.Itiscompletely!capable!of!function!withoutneuronalinput.When

  5  

 

Figure  2:    The  tension  (g)  at  15-­‐second  intervals  over  a  2-­‐minute  duration  during  atrial  contraction  in  the  

bullfrog’s  heart  represented  in  the  blue  line  averaged  1.35g.    Baseline  tension  was  0.0-­‐0.1g.    Force  of  

contraction  declined  over  the  data  sample.    Time  is  measured  in  seconds  along  the  X-­‐axis,  and  contraction  

force  is  measured  in  grams  along  the  Y-­‐axis.      

  The  average  heart  rate  of  38.95  BPM  was  analyzed  measuring  the  beginning  of  

contractile  phase  1  of  the  electrical  signal  of  contraction  to  the  same  point  of  the  next  

electrical  signal  (Figure  3).    

 

Figure  3:    The  beats  per  minute  (BPM)  at  15-­‐second  intervals  for  a  2-­‐minute  period  represented  by  the  blue  

line  averaged  38.95  BPM.    There  was  an  initial  increase  in  BPM,  peaking  at  40.81,  a  gradual  decrease,  finally  

increasing.    Time  is  measured  in  seconds  along  the  X-­‐axis,  and  beats  per  minute  (BPM)  are  measured  along  

the  Y-­‐axis.  

  The  average  latency  between  mechanical  and  electrical  activity  was  analyzed  

measuring  from  the  beginning  of  phase  0  of  the  contraction  cycle  of  the  electrical  activity  to  

the  beginning  of  ventricular  contraction  and  was  calculated  to  be  an  average  of  0.30  

1.2  

1.3  

1.4  

1.5  

0   15   30   45   60   75   90   105   120  

Contraction  Force  

(grams)  

Time  (seconds)  

Ventricular  Contraction  Force  

Measured  Tension  

37  

38  

39  

40  

41  

0   15   30   45   60   75   90   105   120  

Beats  Per  Minute  

(BPM

)  

Time  (seconds)  

Heart  Rate  (BPM)    

Beats  Per  Minute  (BPM)  

Page 6: Scott Austin - Frog Heart Lab Report - Section A07 · ! 1! Introduction:!The!heart!muscle!isunlikeotherorgansinthebody, poweredelectricallyandonit’s! own.Itiscompletely!capable!of!function!withoutneuronalinput.When

  6  

seconds.    The  measurements  taken  at  15-­‐second  intervals  over  a  2-­‐minute  time  period  as  

compared  to  the  average  baseline  latency  of  0.30  seconds  from  phase  0  of  the  electrical  

contraction  cycle  to  the  start  of  mechanical  contraction  (Figure  4).  

 

Figure  4:    The  latency  between  the  onset  of  electrical  activity  (phase  0)  and  the  initiation  of  ventricular  

contraction  was  averaged  to  be  0.30  seconds.    Individual  measurements  were  taken  every  15-­‐seconds  over  a  

2-­‐minute  time  period.    Time  is  measured  in  seconds  along  the  X-­‐axis,  and  latency  is  measured  in  seconds  

along  the  Y-­‐axis.    

Part  4:    Extrasystolic  Contractions  

  Extrasystolic  contractions  were  initiated  and  measured  during  late  diastole.    A  

minimum  voltage  of  4.0V  was  determined  to  be  the  minimum  voltage  to  provide  an  

extrasystolic  contraction  and  was  used  as  the  threshold  voltage,  with  an  initial  baseline  

tension  of  0.0-­‐0.1g.    After  the  extrasystolic  contraction,  a  rest  period  of  10  beats  was  

provided  before  repeating  the  process.    This  was  done  for  3  trials  (Table  1).  

 

 

 

 

 

0.26  

0.28  

0.30  

0.32  

0.34  

0   15   30   45   60   75   90   105   120  

Latency  (seconds)  

Time  (seconds)  

Latency  Between  Mechanical  and  Electrical  Activity  

Latency  (seconds)  

Page 7: Scott Austin - Frog Heart Lab Report - Section A07 · ! 1! Introduction:!The!heart!muscle!isunlikeotherorgansinthebody, poweredelectricallyandonit’s! own.Itiscompletely!capable!of!function!withoutneuronalinput.When

  7  

Table  1:    Contractile  force  of  ventricular  contraction  in  grams  (g)  before  an  extrasystole,  for  the  extrasystole,  

and  immediately  post  extrasystole  when  a  4.0V  stimulus  was  directly  applied  to  the  frog  heart  in  late  diastole.    

Compensatory  pause  was  measured  in  seconds  (sec).    Data  for  3  trials  as  well  as  averages  are  shown.    

Baseline  tension  was  0.0-­‐0.1g.    

 

  Threshold  voltage  of  4.0V  was  doubled  to  8.0V  and  the  experiment  was  repeated.    

Initial  baseline  tension  was  0.0-­‐0.1g  and  the  stimulus  was  applied  in  late  diastole.    After  the  

extrasystolic  contraction  a  rest  period  of  10  beats  was  provided  to  the  frog  heart  before  

repeating.    Three  trials  were  done  and  averages  were  taken  and  compensatory  pause  was  

measured  (Table  2).    

Table  2:    Contractile  force  of  ventricular  contraction  measured  in  grams  (g)  before  an  extrasystole,  for  the  

extrasystole,  and  immediately  post  extrasystole  when  an  8.0V  stimulus  was  directly  applied  to  the  frog  heart  

in  late  diastole.    Compensatory  pause  was  measured  in  seconds  (sec).    Baseline  tension  was  0.0-­‐0.1g.      

 

  An  extrasystolic  contraction  was  initiated  in  early  diastole  stimulating  the  frog  heart  

with  a  minimum  threshold  voltage  measured  at  5.0V.    Initial  baseline  tension  was  0.0-­‐0.1g.  

Page 8: Scott Austin - Frog Heart Lab Report - Section A07 · ! 1! Introduction:!The!heart!muscle!isunlikeotherorgansinthebody, poweredelectricallyandonit’s! own.Itiscompletely!capable!of!function!withoutneuronalinput.When

  8  

This  was  done  one  time.    Measurements  that  were  taken  for  the  trial  and  compensatory  

pause  of  the  5.0V  direct  stimulation  of  the  frog  heart  in  early  diastole  (Table  3).  

Table  3:    Contractile  force  of  ventricular  contraction  in  grams  (g)  before  an  extrasystole,  for  the  extrasystole,  

immediately  post  extrasystole  when  a  5.0V  stimulus  was  directly  applied  to  the  frog  heart  in  early  diastole.    

Compensatory  pause  was  measured  in  seconds  (sec).    Baseline  tension  was  0.0-­‐0.1g.  

 

Part  5:    Vagal  Stimulation  

An  electrode  was  hooked  onto  the  Vagus  nerve  of  the  frog  with  a  piece  of  parafilm  

isolating  the  electrode  from  tissue  contact.    The  minimum  threshold  voltage  to  elicit  

bradycardia  was  determined  to  be  2.75V  by  observing  a  decrease  in  contractile  strength.    

Contractile  strength  began  at  1.19g  and  was  observed  over  a  10  second  time  period  with  a  

frequency  of  20  pulses  per  second  (pps)  (Figure  5).  

 

Figure  5:    Ventricular  contraction  force  measured  before  and  after  stimulating  the  Vagus  nerve  in  the  frog.    

Stimulation  was  applied  using  an  electrode  directly  attached  to  the  nerve.    Stimulation  measured  2.75V  at  a  

frequency  of  20pps  (pulse  per  second).    Contractile  force  before  stimulation  measured  1.19g  and  after  

stimulation  measured  0.75g,  declining  after  stimulation.    Ventricular  contraction  force  is  measured  in  grams  

along  the  X-­‐axis.    Baseline  tension  was  0.0-­‐0.1g.  

0   0.2   0.4   0.6   0.8   1   1.2   1.4  

Contractile  Force  Before  (g)  Contractile  Force  After  (g)  

Ventricular  Contraction  Force  (g)  

Ventricular  Contraction  Force  Before  and  After  Vagal  Stimulation  During  Bradycardia  

Page 9: Scott Austin - Frog Heart Lab Report - Section A07 · ! 1! Introduction:!The!heart!muscle!isunlikeotherorgansinthebody, poweredelectricallyandonit’s! own.Itiscompletely!capable!of!function!withoutneuronalinput.When

  9  

  Heart  rate  was  monitored  during  the  same  10-­‐second  time  period  and  did  not  

change  (Figure  6).  

 

Figure  6:    Heart  Rate  of  44.11  BPM  (beats  per  minute)  before  and  after  stimulating  the  Vagus  nerve  in  the  

frog.    Stimulation  was  applied  using  an  electrode  directly  attached  to  the  nerve.    Stimulation  measured  2.75V  

at  a  frequency  of  20pps  (pulse  per  second).    Beats  per  minute  (BPM)  are  measured  along  the  X-­‐axis,  and  

remained  unchanged.      

  Stimulus  voltage  was  increased  on  the  Vagus  nerve  to  4.0V  to  elicit  cardiac  arrest.    

Initial  heart  rate  was  recorded  for  30  seconds  prior  to  stimulation  and  measured  using  the  

5  beats  prior  to  stimulation  and  averaged.    Stimulation  of  the  Vagus  nerve  was  initiated  at  a  

frequency  of  20pps  (pulse  per  second).    Cardiac  arrest  lasted  for  65  seconds  before  a  

mechanical  signal  was  next  detected.    A  regular  rhythm  occurred  at  81  seconds  post  

stimulation  and  Vagal  stimulation  was  terminated.    Post  stimulation  heart  rate  and  

contraction  tension  were  recorded  using  the  5  beats  post  termination  and  averaged  (Table  

4).  

 

 

 

 

 

 

40   41   42   43   44   45  

HR  Before  (BPM)  HR  After  (BPM)  

Beats  Per  Minute  (BPM)  

Heart  Rate  Before  and  After  Vagal  Stimulation  During  Bradycardia  

Page 10: Scott Austin - Frog Heart Lab Report - Section A07 · ! 1! Introduction:!The!heart!muscle!isunlikeotherorgansinthebody, poweredelectricallyandonit’s! own.Itiscompletely!capable!of!function!withoutneuronalinput.When

  10  

Table  4:    Measurements  for  initial  activity  prior  to  vagal  stimulation  and  averaged.    Baseline  tension  was  0.0-­‐

0.1g.    Average  contractile  tension  was  1.01g  and  average  heart  rate  was  42.98  BPM.    Post  Vagal  stimulation  

average  contractile  tension  was  0.42g  and  average  BPM  was  31.27,  decreasing  in  both  categories,  for  the  5  

beats  immediately  after  Vagal  stimulation  of  4.0V  at  20pps  was  terminated.  

 

  Comparing  the  initial  heart  rate  with  the  post  cardiac  arrest  heart  rate  identifies  a  

large  decrease  in  BPM  post  cardiac  arrest  (Figure  7).  

 

Figure  7:    Initial  heart  rate  measured  42.98  BPM.    Post  cardiac  arrest  heart  rate  was  averaged  at  31.27  BPM  

for  the  5  beats  after  stimulation  of  the  Vagus  nerve  was  terminated.    Beats  per  minute  (BPM)  are  measured  

along  the  X-­‐axis.  

  Comparing  the  initial  ventricular  contractile  force  with  the  post  cardiac  arrest  

ventricular  contractile  force  indicates  a  large  drop  in  tension  after  cardiac  arrest  (Figure  8).  

 

 

 

0   5   10   15   20   25   30   35   40   45   50  

HR  Before  (BPM)  HR  After  (BPM)  

Beats  Per  Minute  (BPM)  

Heart  Rate  Before  and  After  Cardiac  Arrest  

Page 11: Scott Austin - Frog Heart Lab Report - Section A07 · ! 1! Introduction:!The!heart!muscle!isunlikeotherorgansinthebody, poweredelectricallyandonit’s! own.Itiscompletely!capable!of!function!withoutneuronalinput.When

  11  

 

Figure  8:    Initial  ventricular  contractile  force  measured  1.01g.    Baseline  tension  was  0.0-­‐0.1g.    Post  cardiac  

arrest  contractile  force  measured  0.42g  for  the  5  beats  after  stimulation  of  the  Vagus  nerve  was  terminated.    

Tension  is  measured  in  grams  along  the  X-­‐axis.        

Part  6:    The  Effects  of  Epinephrine  

  Epinephrine  was  injected  in  the  frog’s  heart  3  times.    An  initial  tension  (g)  and  heart  

rate  (BPM)  were  measured  averaging  the  5  beats  immediately  before  the  injections.    BPM  

was  calculated  from  the  beginning  of  phase  0  of  the  electrical  signal  to  the  same  point  of  the  

next  signal.    The  5  beats  post  injection  and  at  30  second  intervals  for  3  minutes  were  

averaged  identically  to  the  baseline  measurements  (Table  5).      

Table  5:    Initial  average  tension  (g)  of  0.48g  and  beats  per  minute  (BPM)  of  43.17  BPM  compared  with  

measurements  taken  at  30-­‐second  intervals  over  a  3  minute  time  period.    Baseline  tension  was  0.0-­‐0.1g.    

Averages  were  measured  from  the  5  beats  immediately  after  each  time  point.    Tension  (g)  increased  50%  and  

heart  rate  (BPM)  increased  35.46%  over  baseline  averages.      

 

  Average  heart  rate  continued  to  increase  over  the  3  minute  time  period  with  the  

largest  %  increase  of  10.08%  seen  from  30  to  60  seconds  (Figure  9).  

0   0.2   0.4   0.6   0.8   1   1.2  

Contractile  Force  Before  (g)  Contractile  Force  After  (g)  

Tension  (g)  

Ventricular  Contraction  Force  Before  and  After  Cardiac  Arrest  

Page 12: Scott Austin - Frog Heart Lab Report - Section A07 · ! 1! Introduction:!The!heart!muscle!isunlikeotherorgansinthebody, poweredelectricallyandonit’s! own.Itiscompletely!capable!of!function!withoutneuronalinput.When

  12  

 

Figure  9:    Average  heart  rate  (BPM)  measured  every  30  seconds  for  a  3-­‐minute  time  period  after  injecting  the  

frog  heart  with  epinephrine.    Baseline  tension  was  0.0-­‐0.1g.    Initial  heart  rate  measured  43.17  BPM  and  

continued  to  increase  throughout  the  experiment.    Ending  average  heart  rate  of  58.48  BPM  was  an  increase  of  

35.46%  over  baseline.    Averages  were  calculated  with  the  5  beats  immediately  after  each  time  interval.    Time  

interval  is  measured  in  seconds  along  the  X-­‐axis  and  heart  rate  is  measured  in  BPM  along  the  Y-­‐axis.  

  Average  ventricular  contraction  force  (g)  peaked  at  30  seconds  with  an  87.50%  

increase  over  baseline  tension  (Figure  10).      

 

Figure  10:    Average  ventricular  contraction  force  (g)  measured  every  30  seconds  for  a  3-­‐minute  time  period  

after  injecting  the  frog  heart  with  epinephrine.    Averages  were  measured  from  the  5  beats  immediately  after  

each  time  point.    Baseline  tension  was  0.0-­‐0.1g.    Tension  initially  increased  and  then  decreased,  ending  with  

an  overall  increase  in  contraction  force.    Initial  tension  measured  0.48g  increasing  50%  over  the  time  period  

to  0.72g.    Peak  tension  was  measured  at  30  seconds  of  0.92g,  an  87.50%  increase  over  initial  tension.    Time  

interval  is  measured  in  seconds  along  the  X-­‐axis  and  ventricular  contraction  force  is  measured  in  grams  along  

the  Y-­‐axis.      

 

 

30.00  

40.00  

50.00  

60.00  

Before   0   30   60   90   120   150   180  

Heart  Rate  (BPM

)  

Time  Interval  (seconds)  

Average  Heart  Rate  (BPM)  at  Varying  Time  Intervals    

Heart  Rate  (BPM)  

0.00  

0.50  

1.00  

Before   0   30   60   90   120   150   180  

Tension  (g)  

Time  Interval  (seconds)  

Average  Ventricular  Contraction  Force  (g)  at  Varying  Time  Intervals  

Tension  (g)  

Page 13: Scott Austin - Frog Heart Lab Report - Section A07 · ! 1! Introduction:!The!heart!muscle!isunlikeotherorgansinthebody, poweredelectricallyandonit’s! own.Itiscompletely!capable!of!function!withoutneuronalinput.When

  13  

Discussion:  

Part  3:    Electrical  &  Mechanical  Activity  of  The  Heart  

  Action  potentials  generated  from  autorhythmic  cells  in  the  sinus  venosus  of  the  frog  

heart  are  spread  to  contractile  cells  to  initiate  contraction.    The  signals  are  transmitted  

from  cell  to  cell  from  a  specialized  structure  called  an  intercalated  disc.    The  intercalated  

disc  has  two  types  of  membrane  junctions,  desmosomes  and  gap  junctions.    Contraction  in  

the  heart  creates  mechanical  stress.    Desmosomes  provide  the  mechanical  stability  needed  

to  withstand  this  stress.    Gap  junctions  are  responsible  for  transmitting  the  electrical  signal  

from  cell  to  cell  (Sherwood,  2010,  p.  308).      

  Atrial  cells  are  separated  from  ventricular  cells  and  contract  separately  and  with  

different  amounts  of  force  (Sherwood,  2010,  p.  308).    This  can  be  observed  from  measuring  

contraction  tension  and  measuring  the  electrical  activity  of  the  cardiac  cycle.      

  The  atria  generate  less  electrical  activity  than  the  ventricle  does  due  to  its  smaller  

size.    When  the  atria  contracts  blood  rushes  to  the  ventricle,  filling  the  ventricle.    When  the  

ventricle  fills  and  its  pressure  exceeds  aortic  pressure  the  aortic  valve  opens  and  blood  

leaves  the  ventricle.    This  amount  of  blood  leaving  the  ventricle  is  the  stroke  volume  

(Sherwood,  2010,  p.  323).    This  variance  in  mechanical  activity  was  observed  in  the  

measured  atrial  contraction  force  of  0.38g  and  the  ventricular  contraction  force  of  1.35g.  

The  Frank-­‐Starling  Law  of  The  Heart  explains  the  relationship  between  stroke  

volume  and  ventricular  contraction.    The  more  stretched  the  ventricle  becomes,  that  is  the  

larger  the  end  diastolic  volume,  the  larger  the  force  of  contraction  will  be,  increasing  stroke  

volume  (Widmaier,  Raff,  &  Strang,  2004,  p.  396).  

Page 14: Scott Austin - Frog Heart Lab Report - Section A07 · ! 1! Introduction:!The!heart!muscle!isunlikeotherorgansinthebody, poweredelectricallyandonit’s! own.Itiscompletely!capable!of!function!withoutneuronalinput.When

  14  

  Cardiac  output  is  the  amount  of  blood  the  ventricle  pumps  out  per  minute.    This  is  

measured  by  evaluating  the  stroke  volume  and  heart  rate.    Heart  rate  is  regulated  from  the  

electrical  activity  of  the  autorhythmic  cells  and  is  a  result  of  ionic  movement  (Sherwood,  

2010,  p.  325).      

  Once  a  contractile  cell  receives  a  signal  from  an  autorhythmic  cell  it  begins  its  action  

potential  by  opening  fast  Na+  channels  and  rapidly  depolarizes.      K+  transient  channels  

release  K+  as  the  Na+  channels  close  providing  an  initial  rapid  repolarization  period.    Then  

L-­‐type  Ca2+  channels  slowly  open  creating  a  plateau  phase,  and  voltage-­‐gated  K+  channels  

rapidly  flush  out  K+  bringing  the  membrane  potential  of  the  contractile  cell  back  to  

threshold  (Sherwood,  2010,  p.  314).    

   This  cycle  was  used  to  measure  heart  rate  in  beats  per  minute  on  the  frog  heart.    

The  initial  opening  of  the  fast  Na+  channels  was  identified  as  phase  0  and  was  measured  to  

the  initiation  of  the  next  contraction  cycle.    The  frog  had  an  initial  heart  rate  of  38.95  BPM.      

  There  is  a  delay  between  the  onset  of  a  contraction  from  an  action  potential  and  the  

actual  response.    This  is  known  as  the  refractory  period,  and  is  to  prevent  tetanus  in  the  

heart  (Sherwood,  2010,  p.  316).    In  the  frog,  latency  between  electrical  activity  and  

contractile  response  was  measured  at  0.30  seconds.    In  a  study  on  mammalian  hearts  of  

rabbits,  cats,  and  dogs  it  was  found  that  this  latency  period,  the  absolute  refractory  period,  

remains  constant  regardless  of  the  heart  rate  (Dale  &  Drury,  1932,  p.  222).        

  Sources  of  error  in  this  experiment  were  due  to  an  excess  of  adipose  tissue  in  the  

frog  heart,  inconsistent  supply  of  Ringers  solution,  and  outside  movement  of  the  subject’s  

table.      

Part  4:  Extrasystolic  Contractions  

Page 15: Scott Austin - Frog Heart Lab Report - Section A07 · ! 1! Introduction:!The!heart!muscle!isunlikeotherorgansinthebody, poweredelectricallyandonit’s! own.Itiscompletely!capable!of!function!withoutneuronalinput.When

  15  

  An  extrasystolic  contraction  is  also  known  as  a  premature  ventricular  contraction  

(PVC)  (Sherwood,  2010,  p.  319).    These  occur  during  the  relative  refractory  period  in  the  

ventricular  contractile  cell  and  initiate  a  contraction  before  the  cell  has  returned  to  it’s  

resting  membrane  potential.    Due  to  the  extrasystolic  contraction,  there  is  an  extra  delay  

before  the  next  contraction  occurs.    This  is  known  as  compensatory  pause,  and  is  regulated  

by  the  pacemaker  activity  in  the  heart.      

  A  case  study  on  a  68-­‐year-­‐old  patient  shows  the  mechanism  of  compensatory  pause.    

After  analyzing  recorded  data  from  the  patient,  two  beats  occurring  close  together  were  

followed  by  a  long  pause  (Carbone,  Oreto,  &  Oreto,  2013,  p.  90).    This  was  seen  in  our  

experiments  on  late  diastole  stimulation  and  early  diastole  stimulation.  

  It  is  expected  that  the  extrasystolic  contraction  would  have  a  greater  force  of  

contraction  due  to  the  cell  not  fully  returning  to  resting  potential.    In  the  experiments  

conducted  this  was  not  seen.    Minimum  threshold  voltage  to  elicit  an  extrasystolic  

contraction  during  late  diastole  was  found  to  be  4.0V.    At  this  voltage  the  extrasystolic  

contraction  was  found  to  be  0.03g  less  forceful  than  the  initial  contraction  with  a  

compensatory  pause  of  0.94  seconds.    When  the  voltage  was  doubled  to  8.0V  the  

extrasystolic  contraction  results  were  the  same,  with  a  compensatory  pause  of  1.01  

seconds.    During  the  attempt  on  early  diastole  at  5.0V  the  extrasystolic  contraction  was  

0.22g  smaller  than  the  initial  contraction  with  a  compensatory  pause  of  1.26  seconds.      

  Due  to  our  inability  to  accurately  and  precisely  initiate  the  stimulus  in  the  relative  

refractory  period  it  was  expected  to  not  obtain  predicted  results.    Additionally  the  frog  

heart  began  to  tear,  Ringers  solution  was  inconsistently  applied,  and  there  was  outside  

interference  of  the  subject’s  table.  

Page 16: Scott Austin - Frog Heart Lab Report - Section A07 · ! 1! Introduction:!The!heart!muscle!isunlikeotherorgansinthebody, poweredelectricallyandonit’s! own.Itiscompletely!capable!of!function!withoutneuronalinput.When

  16  

Part  5:    Vagal  Stimulation  

  The  Vagus  nerve  is  the  parasympathetic  input  to  the  heart.    Parasympathetic  

stimulation  in  the  heart  increases  membrane  permeability  to  K+  thus  making  it  more  

negative,  or  hyperpolarizing  it,  leading  to  a  decrease  in  heart  rate  (Widmaier,  Raff,  &  

Strang,  2004,  p.  395).    The  Vagus  nerve  releases  acetylcholine,  which  then  binds  to  a  

muscarinic  receptor.    A  G-­‐protein  cascade  occurs  with  this,  inhibiting  the  cAMP  pathway  

activity.  This  ultimately  inhibits  phosphorylation  and  reduces  activity  of  voltage-­‐gated  

channels  required  for  contraction,  leading  to  a  decrease  in  heart  rate  and  contractile  force  

(Sherwood,  2010,  p.  326).    This  decrease  in  heart  rate  and  contractile  force  was  observed  in  

the  experiment  when  cardiac  arrest  occurred,  as  expected.    The  presence  of  acetylcholine  

made  the  heart  unable  to  return  to  its  pre-­‐stimulation  heart  rate  of  42.98  BPM  and  

contractile  force  of  1.01g,  but  would  be  expected  to  return  to  normal  heart  rate  and  force  of  

contraction  with  time.    This  was  shown  in  an  experiment  on  mongrel  dogs,  and  gradually  

the  heart  rate  did  return  to  normal  (Campos  &  Friedman,  1963,  p.  251).      

  During  bradycardia  the  heart  rate  slows  (Sherwood,  2010,  p.  319).    The  same  

experiment  on  mongrel  dogs  shows  this  effect,  however  was  not  seen  in  our  experiment  on  

the  frog  heart(Campos  &  Friedman,  1963,  p.  251).    There  was  a  reduction  in  contractile  

force  from  1.19g  to  0.75g,  however  heart  rate  remained  unchanged.    This  could  be  due  to  

not  enough  stimulus  voltage  to  elicit  a  delay  in  rate  of  beating,  or  not  stimulating  the  Vagus  

nerve  for  enough  time  to  allow  acetylcholine  to  appropriately  inhibit  it’s  factors.    

Additionally  in  the  experiment  there  was  excess  Ringers  solution,  which  may  have  altered  

the  electrical  stimulation  on  the  nerve.      

Part  6:    The  Effects  of  Epinephrine  

Page 17: Scott Austin - Frog Heart Lab Report - Section A07 · ! 1! Introduction:!The!heart!muscle!isunlikeotherorgansinthebody, poweredelectricallyandonit’s! own.Itiscompletely!capable!of!function!withoutneuronalinput.When

  17  

  Opposite  of  the  Vagus  nerve,  epinephrine  is  the  resultant  effect  of  stimulation  of  the  

sympathetic  nervous  system.    The  experiment  involved  injecting  the  frog  heart  with  

epinephrine,  was  administered  3  times,  and  deviated  from  the  lab  manual.      

  The  sympathetic  nervous  system  impacts  heart  rate  and  contractile  force  in  times  of  

need  for  an  increase  of  such  factors,  such  as  in  times  of  exercise  or  emergency  (Sherwood,  

2010,  p.  327).    Antagonistic  to  acetylcholine,  epinephrine  increases  rate  of  depolarization  

in  the  cardiac  cells  leading  to  an  increase  in  rate  of  contraction.    This  increase  in  rate  of  

contraction  leads  to  an  increase  in  heart  rate  and  contractile  force  ultimately  increasing  

stroke  volume  and  cardiac  output  (Sherwood,  2010,  p.  328).      

  Epinephrine  acts  on  beta-­‐adrenergic  receptors  in  the  main  pacemaker  of  the  heart.  

These  receptors  stimulate  a  G-­‐protein  cascade  increasing  the  cAMP  pathway  activity  in  

cardiac  cells,  increasing  phosphorylation.    This  allows  energy  requiring  processes,  such  as  

the  voltage-­‐gated  channels  used  in  contraction,  to  remain  open  longer.    This  will  ultimately  

increase  contractile  strength,  and  additionally  decrease  delay  between  beats  of  the  heart  

(Sherwood,  2010,  p.  327).  

  This  mechanism  was  seen  in  the  experiments  on  the  frog  heart  with  an  increase  in  

heart  rate  of  35.46%  over  the  3-­‐minute  data  sample.    An  experiment  on  bull  calves  showed  

similar  results  to  heart  rate  increase  when  injected  with  epinephrine  (Stewart  &  Webster,  

2010,  p.  5252).    

  Contractility  has  a  greater  effect  with  increased  presence  of  epinephrine  due  to  the  

greater  influx  of  Ca2+  into  the  contractile  cell.    From  this  increased  concentration  of  

intracellular  Ca2+  there  is  greater  cross-­‐bridge  cycling  and  the  myocardial  fibers  are  able  to  

generate  more  force.    This  process  ultimately  increases  stroke  volume  leading  to  an  

Page 18: Scott Austin - Frog Heart Lab Report - Section A07 · ! 1! Introduction:!The!heart!muscle!isunlikeotherorgansinthebody, poweredelectricallyandonit’s! own.Itiscompletely!capable!of!function!withoutneuronalinput.When

  18  

increase  in  cardiac  output,  ultimately  shifting  the  Frank-­‐Starling  curve  inward  (Sherwood,  

2010,  p.  329).  

  This  increase  in  contractility  was  seen  in  our  experiment  with  an  overall  increase  of  

50%  over  the  3-­‐minute  time  period.    However,  due  to  tearing  of  the  heart  muscle  and  

inconsistent  application  of  Ringers  solution  the  contractile  force  declined  after  the  30-­‐

second  measurement.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 19: Scott Austin - Frog Heart Lab Report - Section A07 · ! 1! Introduction:!The!heart!muscle!isunlikeotherorgansinthebody, poweredelectricallyandonit’s! own.Itiscompletely!capable!of!function!withoutneuronalinput.When

  19  

References:    Bautista,  E.,  &  Korber,  J.  (2009).  NPB  101L  Physiology  Lab  Manual  (2nd  Edition).    Mason,  

Ohio:  Cengage  Learning,  43-­‐54.    Campos,  H.,  &  Friedman,  A.  (1963).  The  Influence  of  Acute  Sympathetic  Denervation,  

Reserpine  and  Choline  Xylyl  Ether  on  Vagal  Escape.  Journal  of  Physiology  ,  169,  249-­‐262.  

 Carbone,  V.,  Oreto,  L.,  &  Oreto,  G.  (2013).  Ventricular  Extrasystoles  with  Interpolation  or  

Postponed  Compensatory  Pause  during  Atrial  Fibrillation:  Fact  or  Fiction?  Annals  of  Noninvasive  Electrocardiology  ,  18  (1),  90-­‐94.  

 Dale,  A.,  &  Drury,  A.  (1932).  The  refractory  period  of  mamalian  cardiac  muscle,  with  

especial  reference  to  purkinje  tissue.  The  Journal  of  Physiology,  76  (2),  201-­‐223.    Faller,  A.  (2004).  The  Human  Body:  An  Introduction  to  Structure  and  Function  (13th  

Edition).  Stuttgart,  Germany:  Thieme,  214.    Sherwood,  L.  (2010).  Human  Physiology:  From  Cells  to  Systems  (7th  Edition).  Belmont:  

Brooks/Cole,  308-­‐329.    Stewart,  M.,  &  Webster,  J.  (2010).  Technical  note:  Effects  of  an  epinephrine  infusion  on  eye  

temperature  and  heart  rate  variability  in  bull  calves.  Journal  of  Dairy  Science,  93  (11),  5252-­‐5257.  

 Widmaier,  E.,  Raff,  H.,  &  Strang,  K.  (2004).  Vander,  Sherman,  &  Luciano's  Human  Physiology:  

The  Mechanisms  of  Body  Function  (9th  Edition).  New  York:  McGraw  Hill,  394-­‐396.                          

 Raw  Data:  

Page 20: Scott Austin - Frog Heart Lab Report - Section A07 · ! 1! Introduction:!The!heart!muscle!isunlikeotherorgansinthebody, poweredelectricallyandonit’s! own.Itiscompletely!capable!of!function!withoutneuronalinput.When

  20  

Average  Atrial  Contraction  Force  

 

Average  Ventricle  Contraction  Force  

 

 

 

 

Average  Heart  Rate  

Page 21: Scott Austin - Frog Heart Lab Report - Section A07 · ! 1! Introduction:!The!heart!muscle!isunlikeotherorgansinthebody, poweredelectricallyandonit’s! own.Itiscompletely!capable!of!function!withoutneuronalinput.When

  21  

 

Latency  between  electrical  and  mechanical  activity  

 

 

 

 

 

Extrasystole  obtained  from  4.0V  stimulation  during  late  diastole  

Page 22: Scott Austin - Frog Heart Lab Report - Section A07 · ! 1! Introduction:!The!heart!muscle!isunlikeotherorgansinthebody, poweredelectricallyandonit’s! own.Itiscompletely!capable!of!function!withoutneuronalinput.When

  22  

 

Extrasystole  obtained  from  8.0V  stimulation  during  late  diastole  

 

 

 

 

 

Extrasystole  obtained  from  5.0V  stimulation  during  early  diastole  

Page 23: Scott Austin - Frog Heart Lab Report - Section A07 · ! 1! Introduction:!The!heart!muscle!isunlikeotherorgansinthebody, poweredelectricallyandonit’s! own.Itiscompletely!capable!of!function!withoutneuronalinput.When

  23  

 

Vagal  nerve  stimulation  at  2.75V  for  10  seconds  to  elicit  bradycardia  

 

 

 

 

 

 

Cardiac  Arrest/Vagal  Escape  at  4.0V  

Page 24: Scott Austin - Frog Heart Lab Report - Section A07 · ! 1! Introduction:!The!heart!muscle!isunlikeotherorgansinthebody, poweredelectricallyandonit’s! own.Itiscompletely!capable!of!function!withoutneuronalinput.When

  24  

 

Effects  of  Epinephrine  –  Before  Injection  

 

 

 

 

 

Effects  of  Epinephrine  –  Immediately  Post  Injection  

Page 25: Scott Austin - Frog Heart Lab Report - Section A07 · ! 1! Introduction:!The!heart!muscle!isunlikeotherorgansinthebody, poweredelectricallyandonit’s! own.Itiscompletely!capable!of!function!withoutneuronalinput.When

  25  

 

Effects  of  Epinephrine  –  30  seconds  Post  Injection  

 

 

 

 

Effects  of  Epinephrine  –  60  Seconds  Post  Injection  

Page 26: Scott Austin - Frog Heart Lab Report - Section A07 · ! 1! Introduction:!The!heart!muscle!isunlikeotherorgansinthebody, poweredelectricallyandonit’s! own.Itiscompletely!capable!of!function!withoutneuronalinput.When

  26  

 

Effects  of  Epinephrine  –  90  Seconds  Post  Injection  

 

 

 

 

Effects  of  Epinephrine  –  120  Seconds  Post  Injection  

Page 27: Scott Austin - Frog Heart Lab Report - Section A07 · ! 1! Introduction:!The!heart!muscle!isunlikeotherorgansinthebody, poweredelectricallyandonit’s! own.Itiscompletely!capable!of!function!withoutneuronalinput.When

  27  

 

Effects  of  Epinephrine  –  150  Seconds  Post  Injection  

 

 

 

 

Effects  of  Epinephrine  –  180  Seconds  Post  Injection  

Page 28: Scott Austin - Frog Heart Lab Report - Section A07 · ! 1! Introduction:!The!heart!muscle!isunlikeotherorgansinthebody, poweredelectricallyandonit’s! own.Itiscompletely!capable!of!function!withoutneuronalinput.When

  28