Rosalia Ameliana Pupella Mechanical Ventilation in Patient ...

16
Mechanical Ventilation in Patient with Respiratory Failure Rosalia Ameliana Pupella 123

Transcript of Rosalia Ameliana Pupella Mechanical Ventilation in Patient ...

Page 1: Rosalia Ameliana Pupella Mechanical Ventilation in Patient ...

Mechanical Ventilation in Patient with Respiratory Failure

Rosalia Ameliana Pupella

123

Page 2: Rosalia Ameliana Pupella Mechanical Ventilation in Patient ...

Mechanical Ventilation in Patient with Respiratory Failure

Page 3: Rosalia Ameliana Pupella Mechanical Ventilation in Patient ...
Page 4: Rosalia Ameliana Pupella Mechanical Ventilation in Patient ...

Rosalia Ameliana Pupella

Mechanical Ventilation in Patient with Respiratory Failure

Page 5: Rosalia Ameliana Pupella Mechanical Ventilation in Patient ...

Rosalia Ameliana PupellaManilaPhilippines

ISBN 978-981-10-5339-9 ISBN 978-981-10-5340-5 (eBook)DOI 10.1007/978-981-10-5340-5

Library of Congress Control Number: 2017958356

© Springer Nature Singapore Pte Ltd. 2018This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claimsin published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer NatureThe registered company is Springer Nature Singapore Pte Ltd.The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Page 6: Rosalia Ameliana Pupella Mechanical Ventilation in Patient ...

Dedicated with loveto both my parents and my familyfor their support in my studies: they deserve thisfor everything

Page 7: Rosalia Ameliana Pupella Mechanical Ventilation in Patient ...

vii

Preface

Mechanical ventilation is one important part of care for many critically ill patients, especially for patients with respiratory failure. It is mostly provided inside the hos-pital, especially inside the ICU, but it is also provided at sites outside the ICU and even outside the hospital. A deep and thorough understanding of mechanical venti-lation is a requirement for respiratory therapists and also critical care physicians. Basic knowledge of the principles of mechanical ventilation is also required by critical care nurses and other physicians (aside from critical care physicians) whose patients occasionally need ventilatory support.

This book is focused on this subject, which is explained also with graphs and tables concerning the mechanical ventilator. The contents are applicable to any adult mechanical ventilator. This book does not cover issues related to pediatric and neonatal mechanical ventilation; its topics are limited to the focus of this book, adult mechanical ventilation.

Page 8: Rosalia Ameliana Pupella Mechanical Ventilation in Patient ...

ix

Acknowledgments

I owe a great debt and wish to offer my sincere gratitude to the people who have made this book possible. First, I would like to thank the professors who taught me during my college days and my training to be a respiratory therapist; especially, my two professors—Tito C.  Capaycapay and Jeffrey S.  Lim—for teaching me and reaching out to me with the knowledge they have, and also for reviewing this book for the finalization of the contents and topics. This is the first book that I have writ-ten, specifically about understanding mechanical ventilation in patients with respi-ratory failure, which has taken a lot of time and a significant amount of editorial work and also support.

Second, I would like to offer special thanks for the guidance provided by the staff of Springer throughout this project, particularly Dr. Naren Aggarwal, Executive Editor Clinical Medicine and Abha Krishnan, Project Coordinator. Their dedication to this project has been immensely helpful, and I feel fortunate to have had the opportunity to work with such a professional group.

I owe so much also to my family for their patience, encouragement, and perse-verance through the creation of this book. I give my grateful thanks to my Dad and Mom, who keep on supporting and encouraging me no matter what I’m working on. Special thanks to my Dad, who has helped me by giving me ideas and also in the making of figures, graphs, and illustrations, because I am not really an expert in this discipline. When I started developing this book, I was still in my fourth and last year of college, and was doing my internship while also working on this.

I am grateful to all the people I have mentioned above, because without them this book would not have been possible.

Page 9: Rosalia Ameliana Pupella Mechanical Ventilation in Patient ...

xi

1 Basic Mathematics and Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Multiplication and Division . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Electrical Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Data Tables and Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Gas Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Boyle’s Law of Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3.2 The Ideal Gas Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4.1 Pressure Due to Flow Resistance . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.6 Various Inspiratory Flow Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.7 Expiratory Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.8 Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Respiratory Anatomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Dead Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 Lung Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4 Control System and Respiratory Anatomy . . . . . . . . . . . . . . . . . . . . . 21 2.5 Spontaneous Inspiration and Expiration in Healthy Human . . . . . . . . 25 2.6 Inspiration and Expiration of Patient with Mechanical

Ventilatory Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.7 Complete Expiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.8 Expiration in Mechanical Ventilation: PEEP and Base Flow . . . . . . . 29

2.8.1 PEEP (Positive End-Expiratory Pressure: Pressure at the End of Expiration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8.2 Base Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.9 Incomplete Expiration: Air Trapping and Intrinsic PEEP . . . . . . . . . . 30 2.10 Needs of Patient on Mechanical Ventilatory Support . . . . . . . . . . . . . 30

3 Mechanical Breath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 Various Types of Breath Delivery Based on Flow Control Target . . . . 34

Contents

Page 10: Rosalia Ameliana Pupella Mechanical Ventilation in Patient ...

xii

3.2.1 Volume-Controlled Breath Delivery . . . . . . . . . . . . . . . . . . . . 34 3.2.2 Pressure-Controlled Breath Delivery . . . . . . . . . . . . . . . . . . . . 48 3.2.3 Pressure Support Breath Delivery . . . . . . . . . . . . . . . . . . . . . . 59

3.3 A Breath Sequence (Initiation, Target, Cycling, and Expiratory Baseline) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.3.1 Breath Initiation (Trigger Variable) . . . . . . . . . . . . . . . . . . . . . 64 3.3.2 Breath Delivery Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.3.3 Cycling to Expiration (Cycle Variable) . . . . . . . . . . . . . . . . . . 76 3.3.4 Expiration (Baseline Variable) . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4 Type of Breath Based on Breath Initiation Source . . . . . . . . . . . . . . . 79 3.4.1 Mandatory Breath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.4.2 Assisted Breath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.4.3 Spontaneous Breathing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Basic Ventilation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.2 Fully Controlled and Assist-Controlled Ventilation Modes . . . . . . . . . 83

4.2.1 Fully Controlled Ventilation Mode . . . . . . . . . . . . . . . . . . . . . 83 4.2.2 Assist-Controlled Ventilation Mode . . . . . . . . . . . . . . . . . . . . . 84

4.3 Synchronized Intermittent Mandatory Ventilation (SIMV) Mode . . . . 85 4.3.1 SIMV Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Pressure Support and Continuous Positive Airway Pressure (CPAP) Ventilation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.4.1 Pressure Support Ventilation Mode . . . . . . . . . . . . . . . . . . . . . 88 4.4.2 CPAP Ventilation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Overview of Acid-Base Balance, Oxygenation, Ventilation, and Perfusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1.1 How the Body Compensates . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.2 Oxygenation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.3 Ventilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.1 Effect of Minute Volume in Ventilation . . . . . . . . . . . . . . . . . . 97 5.4 Perfusion and Ventilation/Perfusion Ratio . . . . . . . . . . . . . . . . . . . . . . 98

6 Advanced Ventilation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.2 BiPAP and APRV and Their Weaning Process . . . . . . . . . . . . . . . . . 101

6.2.1 BiPAP: Bi-level Positive Airway Pressure . . . . . . . . . . . . . . . 101 6.2.2 APRV: Airway Pressure Release Ventilation . . . . . . . . . . . . . 104

6.3 Dual Control (Within Breath and Breath-to-Breath) Ventilation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.3.1 Within Breath: Volume Control Pressure-Limited

Ventilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Contents

Page 11: Rosalia Ameliana Pupella Mechanical Ventilation in Patient ...

xiii

6.3.2 Within Breath: Pressure Control Volume Guarantee Ventilation (PC VG Within Breath) . . . . . . . . . . . . . . . . . . . . 108

6.3.3 Within Breath: Pressure Support Volume Guarantee Ventilation (PS VG Within Breath) . . . . . . . . . . . . . . . . . . . . 110

6.3.4 Breath-to-Breath: Pressure Control with Volume Guarantee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3.5 Breath-to-Breath: Pressure BiPAP with Volume Guarantee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3.6 Breath-to-Breath: Pressure Support with Volume Guarantee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.4 Minute Volume Guarantee and Adaptive Support Ventilation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.4.1 Guarantee/Mandatory Minute Volume Ventilation Mode . . . 119 6.4.2 Adaptive Support Ventilation . . . . . . . . . . . . . . . . . . . . . . . . . 123

7 Advanced Ventilation Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.2 Graphical Loops of (Full/Assist) Controlled Breath and 

Spontaneous Breath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.3 Graphical Loops in Airway Resistance and Lung Compliance

Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 7.4 Leakage Indication and Upper/Lower Inflection Points on 

Graphical Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 8.2 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Contents

Page 12: Rosalia Ameliana Pupella Mechanical Ventilation in Patient ...

xv

About the Author

Rosalia Ameliana Pupella recently graduated from Emilio Aguinaldo College Manila, Philippines, with a Bachelor of Science in Respiratory Therapy (BSRT). She was a member and became the President of the Respiratory Therapy Student Association from 2014 to 2015. She has received the College Leadership Award, and was also selected as the Most Outstanding Student during her last year of college.

Page 13: Rosalia Ameliana Pupella Mechanical Ventilation in Patient ...

xvii

Introduction

This book can be your reference for reviewing a mechanical ventilation graph to differentiate the changes of condition in a patient with respiratory failure and get-ting breathing support from a ventilator. To make for easier understanding, almost every page of this book has an illustration such as a picture or waveform, covering such topics as:

– Gas particles, gas particle density, and gas (oxygen) concentration – Relationship between resistance, pressure, flow, and volume – Illustration of respiratory anatomy from control system to alveoli – Comparison of alveolar pressure, transpulmonary pressure, intrapleural pressure

and airway pressure in control breath and spontaneous breath – Effect of increased liquid or accumulated air in pleural space – Effect of airway resistance change and compliance change in inspiratory and

expiratory conditions, including intrinsic-PEEP, air-trapping and dynamic hyperinflation

– Pressure, flow, and volume waveform in volume breath, pressure control breath and pressure-supported breath

– Basic ventilation modes in volume and pressure  →  control, SIMV, and spontaneous

– Advance ventilation modes → dual control, BiPAP, APRV and guaranteed min-ute volume

– Graphical loops in controlled breath, triggered controlled breath and spontane-ous breath, in airway resistance and lung compliance change and also leakage indication

This is the only book which explains with so many illustrations, pictures, and graphs.

Page 14: Rosalia Ameliana Pupella Mechanical Ventilation in Patient ...

1© Springer Nature Singapore Pte Ltd. 2018R.A. Pupella, Mechanical Ventilation in Patient with Respiratory Failure, DOI 10.1007/978-981-10-5340-5_1

1Basic Mathematics and Physics

1.1 Introduction

An important point to appreciate how ventilation occurs is the concept of gas flow itself. Gas has its own characteristics, like when it is on sea level, it is different com-pared when it is under sea level or even above sea level. This means even the gas or air inside our lungs, e.g., oxygen and carbon dioxide, changes its characteristics on sea level, under sea level, or above sea level. In this chapter, basic mathematics and physics will be explained. They are related to gas characteristics in the lungs and also related to the tables and graphs shown on ventilator. Mechanical ventilator also shows graphs of flow, pressure, and volume. In the following chapter, all those variables which are often encountered on mechanical ventilator will be discussed; the relationship of flow and resistance to pressure, which is related to pressure from mechanical ventilator against resistance in the lungs and even the ventilator tubings, will also be in this chapter.

In mechanical ventilator, there are various flow patterns, square, decelerating, and sinus waveform, which will be explained and shown further in this chapter.

1.1.1 Multiplication and Division

Based on the equations in Table 1.1, it is concluded that:

A is inversely proportional to B:For the same C value, when A, for example, increases three times, then B needs to

be decreased 1/3 time.A is proportional to C:

Table 1.1 Simple equation of multiplication and division

A × B = C A

CB=

B

CA=

Page 15: Rosalia Ameliana Pupella Mechanical Ventilation in Patient ...

2

Time Volume Time Pressure0.0 0.0 5.0 cmH2O0.1 0.10.2 60 mL 0.20.3 90 mL 0.30.4 0.40.5 0.50.6 0.60.7 0.70.8 0.80.9 0.91.0 1.01.1 300 mL 1.11.2 300 mL 1.21.3 98 mL 1.31.4 32 mL 1.41.5 0 mL 1.5

0 mL30 mL

120 mL150 mL180 mL210 mL240 mL270 mL300 mL

11.5 cmH2O13.0 cmH2O14.5 cmH2O16.0 cmH2O17.5 cmH2O19.0 cmH2O20.5 cmH2O22.0 cmH2O23.5 cmH2O25.0 cmH2O20.0 cmH2O20.0 cmH2O5.0 cmH2O5.0 cmH2O5.0 cmH2O

Volume-Time Graph and Pressure-Time Graph

Fig. 1.1 Tables and graphs of volume time and pressure time

For the same B value, when A, for example, increases three times, then C needs to be increased three times as well.

B is proportional to C:For the same A value, when B, for example, increases three times, then C needs to

be increased three times as well.

1.1.2 Electrical Equation

Electric Voltage Electric Current ResistanceV I R( ) = ( )´ ( )

The voltage difference between two electric poles

= = = ( )´ ( )V V Electric Current Resistance2 1- V I R

Electric voltage represents ion density which is more positive.Electric current will flow through a resistance of poles with higher voltage to a

lower voltage. So when the electric voltage of both two poles is the same, then electric current will not flow.

When electric current is injected through a resistance, there will be differences in the density of ions which produces electric voltage.

1.2 Data Tables and Graphs

To understand the waveforms of volume and pressure, Fig. 1.1 shows those wave-forms, and the table shows the number of volume and pressure according to time.

The waveforms (graphs) from Fig. 1.1 of volume and pressure are combined into a loop in Fig. 1.2, which shows amount of pressure and volume at the same time as they increase in table.

1 Basic Mathematics and Physics

Page 16: Rosalia Ameliana Pupella Mechanical Ventilation in Patient ...

3

1.3 Gas Law

1.3.1 Boyle’s Law of Gases

Look at Fig. 1.3 which explains a condition when a temperature which is considered does not change; then:

P V P V1 1 2 2× = ×

P1 = Pressure on the condition 1 V1 = Volume on the condition 1P2 = Pressure on the condition 2 V2 = Volume on the condition 2

1.3.2 The Ideal Gas Law

Ideal gas law is a combination of Boyle’s law of gases, Charles’ law of gases, and Avogadro’s law of gases which is shown in Fig. 1.4.

The pressure (P) and volume (V) of a gas in a confined space are determined by the amount of gas particles (n) and temperature (T) of a gas and multiplied to the constant ideal gas 0.08205 L atm/mol K.

P = Pressure on condition 1 V = Volume on condition 1n = Number of gas particles R = Constant Ideal gas T = Gas temperature

Pressure Volume

0 mL

30 mL

60 mL

90 mL

5.0 cmH2O

11.5 cmH2O

13.0 cmH2O

14.5 cmH2O

16.0 cmH2O

17.5 cmH2O

19.0 cmH2O

20.5 cmH2O

22.0 cmH2O

23.5 cmH2O

25.0 cmH2O

20.0 cmH2O

20.0 cmH2O

5.0 cmH2O

5.0 cmH2O

5.0 cmH2O

120 mL

150 mL

180 mL

210 mL

240 mL

270 mL

300 mL

300 mL

300 mL

98 mL

32 mL

0 mL

Volume-Pressure Graph (Loop)

Fig. 1.2 Table and graph combination of volume and pressure

1.3 Gas Law