ROBOT DYNAMICS

18
T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010 ROBOT DYNAMICS T. Bajd and M. Mihelj

description

ROBOT DYNAMICS. T. Bajd and M. Mihelj. Robot dynamics. In contrast to kinematics, dynamics represents the part of mechanics, which is interested into the forces and torques which are producing the motion of a mechanism. The analysis of robot dynamics enables us to consider - PowerPoint PPT Presentation

Transcript of ROBOT DYNAMICS

Page 1: ROBOT DYNAMICS

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

ROBOT DYNAMICS

T. Bajd and M. Mihelj

Page 2: ROBOT DYNAMICS

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• In contrast to kinematics, dynamics represents the part of mechanics, which is interested into the forces and torques which are producing the motion of a mechanism.

• The analysis of robot dynamics enables us to consider– the torques necessary to compensate the gravity forces of robot

segments,– the differences in moments of inertia occurring during the robot

motion,– dynamic couplings caused by simultaneous movements of all

robot segments.

Robot dynamics

Page 3: ROBOT DYNAMICS

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

Forward and inverse dynamics

Applied torques Joint motions

Page 4: ROBOT DYNAMICS

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• The dynamic analysis of a robot is based on a two-segment robot mechanism.

• The motion of the robot manipulator with two rotational joints occurs in the vertical plane.

• Both segments are of equal length. • The dynamic model is simplified by assuming that

the whole mass of each segment is concentrated in its center of mass.

• Such a pair of segments appears both in the anthropomorphic and in the SCARA robot structures.

• The robot trajectory is denoted by the two joint angles.

• The robot is placed into the fixed reference frame with z axis aligned with the axis of the first joint.

Two-segment robot mechanism

Page 5: ROBOT DYNAMICS

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• Position, velocity and acceleration of the center of mass of the second segment

Torque in the second joint

Page 6: ROBOT DYNAMICS

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• The motion of the second segment mass is given by Newton’s law

• In addition to the force of gravity, the mass is acted upon by the force , transmitted by the massless segment

Torque in the second joint

Page 7: ROBOT DYNAMICS

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• Robot segments and are rigid, thus

Center of mass acceleration

Centripetal acceleration Tangential acceleration

Page 8: ROBOT DYNAMICS

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• The torque in the second joint is

• or

Torque in the second joint

Page 9: ROBOT DYNAMICS

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• Considering

• the torque in the second joint is

• With

Torque in the second joint

Inertial coupling Inertial Centrifugal Gravitational

Page 10: ROBOT DYNAMICS

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• Relation between the total torque of external forces and the time derivative of the angular momentum

• The sum of the torques produced by the external forces

Torque in the first joint

Page 11: ROBOT DYNAMICS

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• The angular momentum of the mass equals

• with

• The angular momentum of the mass equals

• with

Angular momentum

Page 12: ROBOT DYNAMICS

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• With

Torque in the first joint

Inertial coupling

Inertial

Centrifugal

Gravitational

Coriolis

Page 13: ROBOT DYNAMICS

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• The torques in the robot joints can be written in the following general form

• where

Dynamic model in matrix form

Page 14: ROBOT DYNAMICS

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• Inertial matrix

Inertial matrixb11 b12

b21 b22

Page 15: ROBOT DYNAMICS

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• Coriolis and centrifugal terms

Coriolis and centrifugal terms

c11 c12

c21

Page 16: ROBOT DYNAMICS

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• Gravitational terms

Gravitational terms

g1

g2

Page 17: ROBOT DYNAMICS

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

• Inverse dynamic model with friction (diagonal matrix of the joint friction coefficients )

• Forward dynamic model with friction

Forward and inverse dynamic model

Page 18: ROBOT DYNAMICS

T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010

Forward dynamic model block scheme