Róbert Beleznai Tibor Köves Péter Kavalyecz

25
2 nd Hungarian-Ukrainian Joint Conference on SAFETY-RELIABILITY AND RISK OF ENGINEERING PLANTS AND COMPONENTS ASSESSMENT OF SUB-CLAD FLAWS, J-INTEGRAL CALCULATION Róbert Beleznai Tibor Köves Péter Kavalyecz BAY-LOGI Bay Zoltán Foundation for Applied Research Institute for Logistic and Production Systems Kyiv 20 th September, 2007

description

BAY - LOGI. 2 nd Hungarian-Ukrainian Joint Conference on SAFETY-RELIABILITY AND RISK OF ENGINEERING PLANTS AND COMPONENTS ASSESSMENT OF SUB-CLAD FLAWS, J-INTEGRAL CALCULATION. Róbert Beleznai Tibor Köves Péter Kavalyecz. Bay Zoltán Foundation for Applied Research - PowerPoint PPT Presentation

Transcript of Róbert Beleznai Tibor Köves Péter Kavalyecz

Page 1: Róbert Beleznai Tibor Köves Péter Kavalyecz

2nd Hungarian-Ukrainian Joint Conferenceon SAFETY-RELIABILITY AND RISK OF

ENGINEERING PLANTS AND COMPONENTS

ASSESSMENT OF SUB-CLAD FLAWS, J-INTEGRAL CALCULATION

Róbert Beleznai

Tibor Köves

Péter Kavalyecz

BAY-LOGI

Bay Zoltán Foundation for Applied ResearchInstitute for Logistic and Production Systems

Kyiv20th September, 2007

Page 2: Róbert Beleznai Tibor Köves Péter Kavalyecz

2nd Hungarian-Ukrainian Joint Conference – Kyiv, 2007 2

CONTENT

• Test specimens– Crack type

– Crack dimensions

– Crack geometry

• Material properties• Residual stress• Validation of the model• Boundary condition• J-integral calculation

BAY-LOGI

Page 3: Róbert Beleznai Tibor Köves Péter Kavalyecz

2nd Hungarian-Ukrainian Joint Conference – Kyiv, 2007 3

BAY-LOGI

Main objective of the work

WWER Cladded Reactor Pressure Vessel (WWER-440) J-integral calculation based on the report of the Nuclear Research Institute Rez plc, Division of Integrity and Technical Engineering.

Introduction

Page 4: Róbert Beleznai Tibor Köves Péter Kavalyecz

2nd Hungarian-Ukrainian Joint Conference – Kyiv, 2007 4

Test specimen

• Specimen type: 4PB (40x85x670 mm)

Support(Reaction Force F/2)

670 mm

(Total)Applied Force F

Flaw Centreplane248 mm 57 mm

Support(Reaction Force F/2)

BAY-LOGI

Page 5: Róbert Beleznai Tibor Köves Péter Kavalyecz

2nd Hungarian-Ukrainian Joint Conference – Kyiv, 2007 5

Material properties

• WWER reactor pressure vessel steel with austenitic cladding

• Data arises from the report of the NRI

• True stress – true plastic strain curve was derived for the FE calculation

BAY-LOGI

Page 6: Róbert Beleznai Tibor Köves Péter Kavalyecz

2nd Hungarian-Ukrainian Joint Conference – Kyiv, 2007 6

BAY-LOGIMaterial propertiesAged base metal

860

880

900

920

940

960

980

1000

1020

1040

1060

0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07

True plastic strain, [-]

Tru

e st

ress

, [M

pa]

Aged cladding

0

100

200

300

400

500

600

700

800

900

1000

0 0,1 0,2 0,3 0,4 0,5

True plastic strain, [-]

Tru

e st

ress

, [M

Pa]

E=211 GPa=12.55*10-6

E=162 GPa=17.1*10-6

Poisson ratio: =0.3

Page 7: Róbert Beleznai Tibor Köves Péter Kavalyecz

2nd Hungarian-Ukrainian Joint Conference – Kyiv, 2007 7

Crack types

• Two different crack lengths were analyzed• 1e2 and 1e4:

– crack length: 15 mm– upper crack tip located 3 mm under the fusion line of the

cladding– both crack tips are sharp

• 1e7: – crack length: 40 mm– upper crack tip located 3 mm under the fusion line of the

cladding– upper crack tip is sharp– lower crack tip is drilled out

BAY-LOGI

Page 8: Róbert Beleznai Tibor Köves Péter Kavalyecz

2nd Hungarian-Ukrainian Joint Conference – Kyiv, 2007 8

Crack dimensionsStraight crack front were considered in all case.

BAY-LOGI

1e21e2

Cladding thickness 10.8 mm

Upper crack front 69.81 mm

Lower crack front 55.88 mm

Crack length 13.93 mm

1e41e4

Cladding thickness 11.35 mm

Upper crack front 70.76 mm

Lower crack front 55.87 mm

Crack length 14.89 mm

1e71e7

Cladding thickness 11.25 mm

Upper crack front 70.63 mm

Lower crack front 30.78 mm

Crack length 39.85 mm

Page 9: Róbert Beleznai Tibor Köves Péter Kavalyecz

2nd Hungarian-Ukrainian Joint Conference – Kyiv, 2007 9

Crack geometry BAY-LOGI

Page 10: Róbert Beleznai Tibor Köves Péter Kavalyecz

2nd Hungarian-Ukrainian Joint Conference – Kyiv, 2007 10

Residual stress

• Residual stress arises from the difference of the thermal expansion coefficients

• Stress free temperature: Tsf=350°C

BAY-LOGI

Temperature-time curve

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50

Time, [s]

Tem

per

atu

re, [

°C]

Load-time curve

0

0,2

0,4

0,6

0,8

1

0 10 20 30 40 50Time, [s]

Loa

d, [-

]

Page 11: Róbert Beleznai Tibor Köves Péter Kavalyecz

2nd Hungarian-Ukrainian Joint Conference – Kyiv, 2007 11

Residual stressBAY-LOGI

Comp 11 of stress

Residual stress distribution

-200

-150

-100

-50

0

50

100

150

200

250

0 20 40 60 80

Distance from upper cladding surface, [mm]

Com

p 1

1 of

Str

ess,

[M

Pa]

Page 12: Róbert Beleznai Tibor Köves Péter Kavalyecz

2nd Hungarian-Ukrainian Joint Conference – Kyiv, 2007 12

Residual stress BAY-LOGI

Residual stress distribution

-200

-150

-100

-50

0

50

100

150

200

0 20 40 60 80

Distance from upper cladding surface, [mm]

Com

p 3

3 of

Str

ess,

[M

Pa]

Page 13: Róbert Beleznai Tibor Köves Péter Kavalyecz

2nd Hungarian-Ukrainian Joint Conference – Kyiv, 2007 13

Validation of the FE model

BAY-LOGI

Page 14: Róbert Beleznai Tibor Köves Péter Kavalyecz

2nd Hungarian-Ukrainian Joint Conference – Kyiv, 2007 14

BAY-LOGI

FEM calculations results - stress variation over specimen width (in stress measurement position)

-150

-100

-50

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90

Distance from upper cladding surface [mm]

[MP

a]

longitudinal transversal

NRI

The results of NRI and BZF are in very good correlation.

Residual stress distribution

-200

-150

-100

-50

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90

Distance from upper cladding surface, [mm]

Res

idu

al s

tres

s, [

MP

a]Longitudinal

Transversal

BZF

Page 15: Róbert Beleznai Tibor Köves Péter Kavalyecz

2nd Hungarian-Ukrainian Joint Conference – Kyiv, 2007 15

Load-displacement curves BAY-LOGI

1E2

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6Displacement, [mm]

For

ce, [

kN]

FEM result_BZF

Measurement_NRI

1E4

0

50

100

150

200

250

300

0 1 2 3 4Displacement, [mm]

For

ce, [

kN

]

FEM result_BZF

Measurement_NRI

1E7

0

50

100

150

200

250

0 1 2 3 4

Displacement, [mm]

For

ce,

[kN

]

FEM result_BZF

Measurement_NRI

Page 16: Róbert Beleznai Tibor Köves Péter Kavalyecz

2nd Hungarian-Ukrainian Joint Conference – Kyiv, 2007 16

FE model

MSC.MARC 2005R3 code 3D model 20 nodes hexahedron elements J-integral calculation

BAY-LOGI

Specimen number

Number of elements

Number of nodes

1E2 3840 18593

1E4 4152 20017

1E7 4818 23134

Page 17: Róbert Beleznai Tibor Köves Péter Kavalyecz

2nd Hungarian-Ukrainian Joint Conference – Kyiv, 2007 17

Boundary conditions

Only one quarter of the specimen was simulated.

BAY-LOGI

Total applied force2

Total applied force2

Symmetry condition

Specimen numberSpecimen number Total applied force [kN]Total applied force [kN]

1E2 259.7

1E4 339.4

1E7 205.5

Page 18: Róbert Beleznai Tibor Köves Péter Kavalyecz

2nd Hungarian-Ukrainian Joint Conference – Kyiv, 2007 18

J-integral calculation

J-integral values along the crack front at max loading

BAY-LOGI

Straight crack frontStraight crack front

1E2

0

10

20

30

40

50

60

70

0 5 10 15 20 25Width of the specimen, [mm]

J-in

tegr

al, [

kJ/

m2 ]

Upper crack front straight

Lower crack front_straight

1E4

0

50

100

150

200

250

300

0 5 10 15 20 25Width of the specimen, [mm]

J-in

tegr

al, [

kJ/

m2 ]

Upper crack front straight

Lower crack front straight

1E7

0

50

100

150

200

250

300

0 5 10 15 20 25Width of the specimen, [mm]

J-in

tegr

al, [

kJ/

m2 ]

Upper crack front straight

Page 19: Róbert Beleznai Tibor Köves Péter Kavalyecz

2nd Hungarian-Ukrainian Joint Conference – Kyiv, 2007 19

J-integral calculationJ-integral values history plot

BAY-LOGI

Straight crack frontStraight crack front

1E2 upper crack tip

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Time, [s]

J-in

tegr

al,

[kJ/

m^

2]

1e2_side_straight

1e2_centre_straight

1E2 lower crack tip

0

5

10

15

20

25

30

0 10 20 30 40 50 60

Time, [s]

J-in

tegr

al, [

kJ/m

^2]

1e2_side_straight

1e2_centre_straight

1E4 upper crack tip

0

50

100

150

200

250

300

0 10 20 30 40 50 60

Time, [s]

J-in

tegr

al, [

kJ/

m^

2]

1e4_side_straight

1e4_centre_straight

1E4 lower crack tip

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60

Time, [s]

J-in

tegr

al, [

kJ/

m^

2]

1e4_side_straight

1e4_centre_straight

1E7 upper crack tip

0

50

100

150

200

250

300

0 10 20 30 40 50 60

Time, [s]

J-i

nte

gra

l, [

kJ

/m^

2] 1e7_side_straight

1e7_centre_straight

1E2 lower crack tip

0

5

10

15

20

25

30

0 10 20 30 40 50 60

Time, [s]

J-in

tegr

al, [

kJ/m

^2]

1e2_side_straight

1e2_centre_straight

1E7 upper crack tip

0

50

100

150

200

250

300

0 10 20 30 40 50 60

Time, [s]

J-in

tegr

al, [

kJ/m

^2]

1e7_side_straight

1e7_centre_straight

Page 20: Róbert Beleznai Tibor Köves Péter Kavalyecz

2nd Hungarian-Ukrainian Joint Conference – Kyiv, 2007 20

Real crack front BAY-LOGI

1E2

1E41E71E7

Page 21: Róbert Beleznai Tibor Köves Péter Kavalyecz

2nd Hungarian-Ukrainian Joint Conference – Kyiv, 2007 21

J-integral along the crack front BAY-LOGI

Real crack frontReal crack front

1E2

0

10

20

30

40

50

60

70

0 10 20 30 40 50Width of the specimen, [mm]

J-in

tegr

al, [

kJ/

m2 ]

Upper crack front straightLower crack front_straightUpper crack front real Lower crack front real

1E4

0

50

100

150

200

250

300

0 10 20 30 40 50Width of the specimen, [mm]

J-in

tegr

al, [

kJ/

m2 ]

Upper crack front straight

Lower crack front straight

Upper crack front real

Lower crack front real

1E7

0

50

100

150

200

250

300

0 10 20 30 40 50Width of the specimen, [mm]

J-in

tegr

al, [

kJ/

m2 ]

Upper crack front straight

Upper crack front real

Page 22: Róbert Beleznai Tibor Köves Péter Kavalyecz

2nd Hungarian-Ukrainian Joint Conference – Kyiv, 2007 22

J-integral history plot BAY-LOGI

Real crack frontReal crack front

J-integral values history plot1E2 upper crack tip

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Time, [s]

J-in

tegr

al, [

kJ/

m^

2]

1e2_side_straight

1e2_centre_straight

1e2_side_real

1e2_centre_real

1E2 lower crack tip

0

5

10

15

20

25

30

0 10 20 30 40 50 60

Time, [s]

J-in

tegr

al, [

kJ/

m^

2]

1e2_side_straight

1e2_centre_straight

1e2_side_real

1e2_centre_real

1E4 upper crack tip

0

50

100

150

200

250

300

0 10 20 30 40 50 60

Time, [s]

J-in

tegr

al, [

kJ/

m^

2]

1e4_side_straight

1e4_centre_straight

1e4_side_real

1e4_centre_real

1E4 lower crack tip

-20

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60

Time, [s]

J-in

tegr

al, [

kJ/

m^

2]

1e4_side_straight

1e4_centre_straight

1e4_side_real

1e4_centre_real

1E7 upper crack tip

0

50

100

150

200

250

300

0 10 20 30 40 50 60

Time, [s]

J-in

tegr

al, [

kJ/

m^

2]

1e7_side_straight

1e7_centre_straight

1e7_side_real

1e7_centre_real

1E2 lower crack tip

0

5

10

15

20

25

30

0 10 20 30 40 50 60

Time, [s]

J-in

tegr

al, [

kJ/

m^

2]

1e2_side_straight

1e2_centre_straight

1e2_side_real

1e2_centre_real

1E7 upper crack tip

0

50

100

150

200

250

300

0 10 20 30 40 50 60

Time, [s]J-

inte

gral

, [k

J/m

^2]

1e7_side_straight

1e7_centre_straight

1e7_side_real

1e7_centre_real

Page 23: Róbert Beleznai Tibor Köves Péter Kavalyecz

2nd Hungarian-Ukrainian Joint Conference – Kyiv, 2007 23

Conclusion

• In case of short straight and short real cracks the difference of the J-integral values is not significant.

• In case of deep crack more accurate J-integral value was resulted, if real crack front was modelled.

• Residual stress was considered, and this calculation is validated by NRI data.

• FE models were also validated by LLD curve of NRI.

BAY-LOGI

Page 24: Róbert Beleznai Tibor Köves Péter Kavalyecz

2nd Hungarian-Ukrainian Joint Conference – Kyiv, 2007 24

Possibilities for further investigations

• Weibull stress calculation based on the Beremin-model.

• T-stress calculation.

BAY-LOGI

Page 25: Róbert Beleznai Tibor Köves Péter Kavalyecz

2nd Hungarian-Ukrainian Joint Conference – Kyiv, 2007 25

Thank you for your kind attention!Thank you for your kind attention!

BAY-LOGI