Revolutionary Communications

21
Revolutionary Revolutionary Communications Communications Will Stewart Chief Scientist, Marconi Communications Traffic Forecast (1996)-2005 0 2000 4000 6000 8000 10000 12000 14000 CAGR 1996-2005 Internet 95.8% Voice over IP 30% Data Traffic 30% Circuit Switched 12.1% Terabytes/Day Source : Renaissance Analysis

Transcript of Revolutionary Communications

Page 1: Revolutionary Communications

RevolutionaryRevolutionaryCommunicationsCommunications

Will StewartChief Scientist, Marconi

Communications Traffic Forecast (1996)-2005

0

2000

4000

6000

8000

10000

12000

14000

CAGR1996-2005

Internet 95.8%

Voice over IP30%

Data Traffic30%

Circuit Switched 12.1%

Ter

abyt

es/D

ay

Source : Renaissance Analysis

Page 2: Revolutionary Communications

1994 1996 1998 2000 2002 20042000

5000

10000

20000

50000

100000.

200000.

MegaMinutes pa

Year

Mobile

Fixed

UK Mobile (voice) growth, OfTEL

How much data?

About 40,000 movies have been released in the US - at 4GigaBytes/movie (DVD) thisis about 1015 bits = 1000 TeraBit ~ 1 MovieBrain

A 10 Terabit (1013)/sec optical linkwill transmit this in about 2 minutes!

1 MB/minute MP3 file

Page 3: Revolutionary Communications

Service Provider RevenuesService Provider Revenues

$$bnbn

YearYear

9993 94 95 96 97 0098 0201 0403

Switched Voice RevenuesSwitched Voice Revenues

Data & IP Revenues Data & IP Revenues

Source: DataquestSource: Dataquest

Service Provider Revenues/2Service Provider Revenues/2

$$bnbn

YearYear

9993 94 95 96 97 0098 0201 0403

Switched Voice RevenuesSwitched Voice Revenues

Data & IP Revenues Data & IP Revenues

Source: DataquestSource: Dataquest

New Data Service RevenuesNew Data Service Revenues

IP Revenues IP Revenues

Switched Voice RevenuesSwitched Voice Revenues

Source: RHK

Page 4: Revolutionary Communications

New Public Network Architecture

Internet

CorporateData

PSTN MobileCable

Intelligent OpticalTransport & Switching

BroadbandAccess

NPNEnhanced Service &

Connection “servers”

Key Issues

• Transport capacity -> Photonics• Switching -> shift functions to the optical layer (transparency)• Mobility -> Mobile, IP

• Control moving to the edge• IP quality of service -> MPLS/MPlamS• Integration with legacy systems

Page 5: Revolutionary Communications

NPN Applications

DEMAND FOR:

Application Class

Sp

ee

d/u

se

r

Lo

w L

ate

nc

y

Lo

w D

elay

Po

ten

tia

l u

se

r b

as

e

AG

R

Ne

two

rk i

nfo

Se

cu

rity

Ne

two

rk C

on

tro

l

Telephone 64k L H Billions 12% Low M NASP, remote support, (Luminate, Xdrive, Medical) ? H H 100's k 109% HVideo/TV (BBC..) 10-250M L no 100's M LRadio (Live 365, realplayer) 64k-? L L 100's M LInternet 50k-10M H M 10'sM 96% LGames 50k-10M H M 100's M 100% MOnline Auctions (Ebay, Dovebid) 64k-10M H H He-commerce ? H M 100'sM VHExotic Caching (Akamai, ValueClick) H H H H MGames support (Powerplay) H H 100'sM H M HGrid Computing/Thin client (Sychron) ?1-10M M-H M ? H M MFreecalls 64k L H Billions H M LPositional data/WAP 10-300k H M 100's M 14%? H L L

Deployment Trend of SONET/SDHand WDM

SONET/SDH

WDM

Access/ Edge

Largestnetworks

Fibre

Core

Mediumsized

networks

“Metro”

Page 6: Revolutionary Communications

Wave CharacteristicsWave Characteristics

Wavelength -> size of antenna

Frequency - > ability to carry information

velocity

750 600 500 430

Frequency,Frequency, TeraHertz TeraHertz

0.4 µm

Wavelength, µmWavelength, µm

0.55 µm 0.7 µm

Page 7: Revolutionary Communications

The Electromagnetic Spectrum

100 MHz

Atmospheric absorptionFog

Fibre

10 GHz

2.7°K microwave background

hot bodyRadio 4

Sunlight

1PHz10 THz

1000

100

10

1

0.1

dB/km attenuation

-2 -1 0 1 2 3-2 -1 0 1 2 3

Electromagnetic Information

10 MHz 1PHz

Atmospheric absorptionFog

Fibre

10 GHz

Log scales

Linear Frequency scale

100100 THz THz

Page 8: Revolutionary Communications
Page 9: Revolutionary Communications

1985 1987.5 1990 1992.5 1995 1997.5 2000Year

50

100

150

200

250

300

1985 1990 1995 2000 2005

Year

1

10

100

1000

10000

Total Rate, GBitês

Factorêyr = 1.72209

Optical Fibre Capacities

Growth rate ~ *1.7 per year

1

0.1

0.01

Ter

abit/

sec/

fibr

e

Number of channels

Channel Rate

1985 1990 1995 2000 2005Year

10

100

1000

Channel Rate, GBitês

Factorêyr = 1.60061

Page 10: Revolutionary Communications

Spectral Efficiency Bits/sec/Hz

1992 1994 1996 1998 2000 2002 2004Year

0.02

0.05

0.1

0.2

0.5

BitsêHz

Factorêyr = 1.58227

Rate v range

100 200 500 1000 2000 5000 10000Range, km

200

500

1000

2000

5000

10000

Total Rate, GBitês

Log Gradient = -0.285356

Page 11: Revolutionary Communications

Moore's Law

year1970 1975 1980 1985 1990 1995 2000

1 0 3

1 0 4

1 0 5

1 0 6

1 0 7

1 0 8T

rans

isto

rs p

er c

hip

after G Moore, Intel

Growth rate ~ *1.4 per year

New Optical Networks

The growth in opticalfibre capacity (60-80%pa) is outstrippingThe (Moore’s law)growth in processorspeeds (~25% pa andfalling)*

*classic x2/18 months includes increasing chip sizes!

1975 1980 1985 1990 1995 2000 2005 2010Year

0.1

10

1000

TotalRate, GBitês

Optical fibre

Silicon

Sources: fibre: reported data major conferences Silicon: International roadmap 1999

Page 12: Revolutionary Communications

New Optical Networks

This led in the mid-90’sto the rise of WDM:-

1975 1980 1985 1990 1995 2000 2005 2010

Year25

50

75100

125

150

175

200

Source: fibre: reported data major conferences

Increasing channels/fibre

2000 2002 2004 2006 2008 2010

10

20

50

100

200

500

performance êcost

Disk Drive (Philips)

Single optical Fibre(conference data)

Silicon Performance (International Roadmap)

DRAM (Philips)

Trends Performance v cost for Fibre and Silicon

Page 13: Revolutionary Communications

Dense WDM for switching

Switch

Switch

Transport Transport

But now the processorsin switches cannot copewith the fibre datadelivery rate and someof the the switchingfunctions are movinginto the optical regime:-

Dense WDM for routing

Page 14: Revolutionary Communications

MPLS(Lambda)

Convergence - IP / MPLS / WDM

Fibre

SwitchingSwitching

SignallingSignalling

Call controlCall control

ATM

IP

ServicesVoice Data

SDH

MPLS(Label)

WDM

Off-loading Switched Data Trafficonto the Managed Photonic Layer

IP IP

IP cloud

IP

Direct

Transit andrestoration

traffic: 60-70%

Reducingnetwork costs

Transport cloudWDM

Switched glass &air cheaper thansilicon & copper!

Page 15: Revolutionary Communications

New Optical Networks

• Control MPLS• Lasers• Detectors

• Electrical XCs• Optical ADMs

• SDH networks

New Technologies:-

• MPLambdaS• tunable lasers• tunable detectors• wavelength translators• Optical XCs -> wavelength-selective OXCs• Optical ADMs

• Static WDM overlayed SDH ->Dynamically reconfigurable SDH/WDM

VCSEL

Modulator

Tunable laser

Silicon Technology

Frequency, THz

Scal

e, µ

mScale v speed for Electronics & Scale v speed for Electronics & PhotonicsPhotonics

Er band

Yariv

Page 16: Revolutionary Communications

GaAs Modulator RF Response

-9

-6

-3

0

3

0 10 20 30 40 50 60

Frequency (GHz)

Op

tica

l Mo

du

lati

on

(d

B)

GaAs Modulator Modelling

GaAs Modulator Measured

LiNb03 Modulator

0 15 20 45 60 75

Gbit/s data transmission

GaAs/AlGaAs Mach-Zender Modulator

RFConductive n-doped layer

S.I. Substrate

Page 17: Revolutionary Communications

Fiber Grating Holographic Fabrication Technique

Performance of actual filters

Wavelength (nm)

-40

-30

-20

-10

01545.32 1546.12 1546.92 1547.72 1548.52 1549.32 1550.12

Tra

nsm

issi

on

(d

B)

Fiber Grating (100 GHz)

Bulk Diffraction Grating (100GHz)

Dielectric filter

Page 18: Revolutionary Communications

3D MEMS OXC

• 256 ports > 1,000 ports

Fibre arrays

Mirror arrays

SG-DBR Tunable Laser Source

Op

tica

l Ou

tpu

t P

ow

er (

mW

in f

ibre

)

Module 9831L Tuning Comb; Superimposed Spectra

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575

Wavelength (nm)

Page 19: Revolutionary Communications

Laser StructureLaser Structure

Principle of Optical Cross-connect Basedon Tuneable Laser and Passive Router

TPTPTP

Transponder

Tuneable laser

TPTPTP

Waveguide Grating Router/ NxN AWG Router

Routes inputsto outputs

according toinput port

number andinput

wavelength

#1 #1

#8 #8

Passive, reliable,piece of glass!

Page 20: Revolutionary Communications

Minimum IC structure dimensions

(as reported at the IEEE SSC conference)

1985 1990 1995 2000 2005

0.05

0.1

0.5

1

5

10

0.05

0.1

0.5

1

5

Min

imum

dim

ensi

on, µ

m

YearAfter Alec Broers

Forecast average

Range for optical microstructures

Zoom MovieZoom Movie

All actual pictures of electronic devices(movie by Richard Beanland)

Page 21: Revolutionary Communications

pbg integration technology

High confinement implies dense circuits without crosstalk -- needed to match electronic densities and switch performance

Hole Array (Glasgow)

Self-assembled PyramidArray (Imperial College)