Resource Adequacy: How did we get here (and where are we ...

56
Resource Adequacy: How did we get here (and where are we going)? Michael Milligan, Consultant [email protected] NARUC/NASEO Training, May 6, 2021

Transcript of Resource Adequacy: How did we get here (and where are we ...

Page 1: Resource Adequacy: How did we get here (and where are we ...

Resource Adequacy: How did we get here (and where are we 

going)?

Michael Milligan, Consultant

[email protected]

NARUC/NASEO Training, May 6, 2021

Page 2: Resource Adequacy: How did we get here (and where are we ...

2Michael Milligan, Consultant | milligangridsolutions.com

Outline

• Historical reliability assessments: LOLE• Impact of renewables• Emerging interest in portfolio effects• What about transmission, and long‐term weather?

• Gap between model capability and decision‐making

Page 3: Resource Adequacy: How did we get here (and where are we ...

3Michael Milligan, Consultant | milligangridsolutions.com

Reference: The North American Grid

Source: NERC

Page 4: Resource Adequacy: How did we get here (and where are we ...

Resource Adequacy

Page 5: Resource Adequacy: How did we get here (and where are we ...

5Michael Milligan, Consultant | milligangridsolutions.com

Resource Adequacy (RA) is a counting problem

• Have we built enough stuff to supply demand at some future date(s)?o RTO, utility IRP, region

• “How adequate” can be turned upside down into “How often do we have a problem?”

• How many problems?• How long did they last?• How large was the energy deficit?

• How large was the capacity deficit?

Page 6: Resource Adequacy: How did we get here (and where are we ...

6Michael Milligan, Consultant | milligangridsolutions.com

What should be counted?

• Do we want to count only resources (RA)?

• Do we want to include resources plus transmission (system adequacy)?

• Do we want to consider external support from power pool participation or other neighbors who might have the capacity/energy to help during an emergency?

Page 7: Resource Adequacy: How did we get here (and where are we ...

7Michael Milligan, Consultant | milligangridsolutions.com

…and what is “acceptable” RA target?

• How many loss‐of‐load events per period?

• How long of a LOL event is too long?

• How much demand/energy is “ok” to not supply?

• Policy questions

• Trade‐off between reliability and cost. Reliability is not free

Page 8: Resource Adequacy: How did we get here (and where are we ...

8Michael Milligan, Consultant | milligangridsolutions.com

Traditional Approach to RA• Often measured based on installed capacity, peak load, and a 

planning reserve• A fixed planning reserve margin (PRM), often in a range of 12‐15% 

above forecasted peak demand, was (and is still, unfortunately) common

o 10,000 MW peak, 11,500 Installed capacity is a 15% PRM.• However, this isn’t a true reliability measure; the following 

questions are not answered:o How often does it fail?o How long are failures?o Or…how successful are we in keeping the lights on?

• And – it does not work with high levels of renewables

Page 9: Resource Adequacy: How did we get here (and where are we ...

9Michael Milligan, Consultant | milligangridsolutions.com

Resource Adequacy: From PRM to LOLP

• How adequate is adequate enough?

• Quantify the number of times system will be inadequate – often measured as hours/year or days/year (1d/10y ≈ 99.97%)

• Probability that demand will exceed supply: Loss of load probability (LOLP)

0

5

10

15

20

25

30

All Sizes 001‐099 100‐199 200‐299 300‐399 400‐599 600‐799 800‐999

Forced Outage Rate (EFO

Rd)

Unit Size (MW)

Forced Outage Rates for Oil Fired Generating Units

0

5

10

15

20

25

30

001‐099 100‐199 200‐299 300‐399 400‐599 600‐799 800‐999Fo

rced

 Outag

e Ra

te (E

FORd

)

Capacity (MW)

Forced Outage Rates for Gas Fired Generating Units

Forced outage rates source: NERC

0

2

4

6

8

10

12

14

16

All Sizes 001‐099 100‐199 200‐299 300‐399 400‐599 600‐799 800‐999 1000 Plus

Forced Outage Rate (EFO

Rd) 

Capacity (MW)

Forced Outage Rates for Coal Fired Generating Units

Page 10: Resource Adequacy: How did we get here (and where are we ...

10Michael Milligan, Consultant | milligangridsolutions.com

Resource Adequacy: From PRM to LOLP• How adequate is adequate 

enough?• Quantify the number of times 

system will be inadequate – often measured as hours/year or days/year (1d/10y ≈ 99.97%)

• Probability that demand will exceed supply: Loss of load probability (LOLP)

• The “Loss of load” part of this term should be changed to “probability of emergency import” in interconnected systems

0

5

10

15

20

25

30

All Sizes 001‐099 100‐199 200‐299 300‐399 400‐599 600‐799 800‐999

Forced Outage Rate (EFO

Rd)

Unit Size (MW)

Forced Outage Rates for Oil Fired Generating Units

0

5

10

15

20

25

30

001‐099 100‐199 200‐299 300‐399 400‐599 600‐799 800‐999Fo

rced

 Outag

e Ra

te (E

FORd

)

Capacity (MW)

Forced Outage Rates for Gas Fired Generating Units

Forced outage rates source: NERC

0

2

4

6

8

10

12

14

16

All Sizes 001‐099 100‐199 200‐299 300‐399 400‐599 600‐799 800‐999 1000 Plus

Forced Outage Rate (EFO

Rd) 

Capacity (MW)

Forced Outage Rates for Coal Fired Generating Units

Page 11: Resource Adequacy: How did we get here (and where are we ...

11Michael Milligan, Consultant | milligangridsolutions.com

First assessments using LOLP

• Computation capability limited

• Select the peak hour from each weekday

• Exclude holidays (~6) falling on weekdays

• 5 x 52 – 6 = 254 peak demand values used for an annual assessment (about 3% of the year)

11

Page 12: Resource Adequacy: How did we get here (and where are we ...

12Michael Milligan, Consultant | milligangridsolutions.com

LOLP development

• Calabrese et al introduced convolution method in 1947 that is still common

• Calabrese (1950): 1 day in 50 years ”should be satisfactory”

• Remember – one data point per non‐holiday weekday!

Page 13: Resource Adequacy: How did we get here (and where are we ...

13Michael Milligan, Consultant | milligangridsolutions.com

Terms 

• Probability: between 0, 1 inclusively• P(heads) = 0.5• Expected value = probability x number of trials (or similar)

• Expected number of heads after 100 coin tosses = 100 x 0.5 = 50

• Power systemo LOLP = loss of load probability (0.0‐1.0)o LOLE = loss of load expectation (days/year, hours/year, etc.)

Page 14: Resource Adequacy: How did we get here (and where are we ...

14Michael Milligan, Consultant | milligangridsolutions.com

LOLE development: 1 day/10 years • 1 day/10 years is a “nice round 

number” for a reliability target• Is it from Marsh? • We don’t know where it came 

from• Corresponding LOLP = 1/3650 = 

0.0002734

LOLP: probability, 0 <= LOLP <= 1LOLE: expected value = P x TimeLOLH: hours of LOL eventsLOLEv: # of events of LOLEEUE: Expected unserved energy

0 1 2 3 4 5 6 7 8 9 10 Years

One event

Remember, one data point per non‐holiday weekday.

Page 15: Resource Adequacy: How did we get here (and where are we ...

15Michael Milligan, Consultant | milligangridsolutions.com

Renewables are complicating risk assessment• Traditional

o Most LOL risk during/near system peak

o Focus on daily LOLP; ignore hourly data

• With renewableso Shifting risk periodso More interest in hourly viewo More interest in energy metrics

• Fortunately, methods and computational tools exist that can help

See ESIG: Redefining Resource Adequacy: https://www.esig.energy/resources/redefining‐resource‐adequacy‐for‐modern‐power‐systems‐derek‐stenclik‐december‐2020/

Page 16: Resource Adequacy: How did we get here (and where are we ...

16Michael Milligan, Consultant | milligangridsolutions.com

Effective load‐carrying capability (ELCC)

• Rooted in base‐load evaluations from the 1950’s forward

• Easily adapted to renewables

• Part of a framework of reliability assessments 0.06

0.07

0.08

0.09

0.1

0.11

0.12

8 8.5 9 9.5 10 10.5 11

Loss of Loa

d Expe

ctation (days/year)

Load (GW)

Original Reliability Curve

Target Reliability Level

1

2

4

3

Each generator added to the system helps increase the load that can be supplied at all reliability levels.

Added generators

Gi+1Gi Gi+2Gn‐2

400MW

Larger graph is on next slide

• ELCC calculation assumes no other changes to power system

Page 17: Resource Adequacy: How did we get here (and where are we ...

17Michael Milligan, Consultant | milligangridsolutions.com

Graphical depiction of ELCC

0.06

0.07

0.08

0.09

0.1

0.11

0.12

8 8.5 9 9.5 10 10.5 11

Loss of Loa

d Expe

ctation (days/year)

Load (GW)

Original Reliability Curve

Target Reliability Level

1

2

4

3

Each generator added to the system helps increase the load that can be supplied at all reliability levels.

Added generators

Gi+1Gi Gi+2Gn‐2

400MW

Page 18: Resource Adequacy: How did we get here (and where are we ...

18Michael Milligan, Consultant | milligangridsolutions.com

Recipe for ELCC

• Reliability model, or production simulation model

• Inputs:o Hourly demand, wind, solar, hydro datao Resource data including forced outage rateso Multiple years of time‐sync’d data 

• Outputo Each model run provides LOLE outputo Iteratively re‐run model until LOLE target is achieved with, and without, renewable resource (multiple model runs)

Page 19: Resource Adequacy: How did we get here (and where are we ...

19Michael Milligan, Consultant | milligangridsolutions.com

Enter: Renewables (wind example)

16x103

14

12

10

8

6

4

2

0

MW

13401320130012801260124012201200Hours

Load Net Load Wind

Steeper ramps Lower turn-down

Page 20: Resource Adequacy: How did we get here (and where are we ...

20Michael Milligan, Consultant | milligangridsolutions.com

Enter: Renewables (wind example)

16x103

14

12

10

8

6

4

2

0

MW

13401320130012801260124012201200Hours

Load Net Load Wind

Steeper ramps Lower turn-down

Partial capacity contribution

Page 21: Resource Adequacy: How did we get here (and where are we ...

21Michael Milligan, Consultant | milligangridsolutions.com

Example Wind/Solar Capacity Value

21

0

10

20

30

40

50

60

70

AZ‐NM‐NV Basin CA‐North CA‐South RMPA Interconnect

Solar P

V Ca

pacity Value

 as % of R

ated

 Cap

acity

ELCC of Solar

0

5

10

15

20

25

30

35

AZ‐NM‐NV Basin CA‐North CA‐South RMPA Alberta NWPP BC

Wind Ca

pacity Value

 as %

 of R

ated

 Cap

acity

ELCC of Wind

Adapted from Milligan, Michael; Bethany Frew; Ibanez, Eduardo; Kiviluoma, Juha; Holttinen, Hannele; Söder, Lennart, Capacity Value Assessments for Wind Power: An IEA Task 25 Collaboration. Wiley Wires. 2016.

Page 22: Resource Adequacy: How did we get here (and where are we ...

22Michael Milligan, Consultant | milligangridsolutions.com

Wind/Solar Capacity Value Depends on…

• Penetration rates ofo Windo Solar

• Storage and mode of operation• Maintenance schedules• Demand patterns/levels• Forced outage rates of other units

• Imports/exports• Hydro generation patterns• Inter‐annual variation

22

Andrew Mills, LBNL

Page 23: Resource Adequacy: How did we get here (and where are we ...

23Michael Milligan, Consultant | milligangridsolutions.com

Storage and demand response examples

23

E3, https://irp.nspower.ca/files/key‐documents/presentations/20190807‐02_‐E3‐Capacity‐Study‐Overview.pdf

Page 24: Resource Adequacy: How did we get here (and where are we ...

24Michael Milligan, Consultant | milligangridsolutions.com

Emerging interest in portfolio effects

Adapted from Mills and Wiser (2012), An Evaluation of Solar Valuation Methods Used in Utility Planning and Procurement Processes. https://eta‐publications.lbl.gov/sites/default/files/lbnl‐5933e.pdf

Page 25: Resource Adequacy: How did we get here (and where are we ...

25Michael Milligan, Consultant | milligangridsolutions.com

Emerging interest in portfolio effects

First‐in contribution

Last‐in contribution

Portfolio contribution – area under curve

Adapted from Mills and Wiser (2012), An Evaluation of Solar Valuation Methods Used in Utility Planning and Procurement Processes. https://eta‐publications.lbl.gov/sites/default/files/lbnl‐5933e.pdf

Page 26: Resource Adequacy: How did we get here (and where are we ...

26Michael Milligan, Consultant | milligangridsolutions.com

Emerging interest in portfolio effects

E3, https://irp.nspower.ca/files/key‐documents/presentations/20190807‐02_‐E3‐Capacity‐Study‐Overview.pdf

Page 27: Resource Adequacy: How did we get here (and where are we ...

27Michael Milligan, Consultant | milligangridsolutions.com

Wind and Storage Example

27

E3, https://irp.nspower.ca/files/key‐documents/presentations/20190807‐02_‐E3‐Capacity‐Study‐Overview.pdf

Page 28: Resource Adequacy: How did we get here (and where are we ...

28Michael Milligan, Consultant | milligangridsolutions.com

How does weather affect RE? Climate.gov

Milligan, M. R.; Artig, R. (1999). Choosing Wind Power Plant Locations and Sizes Based on Electric Reliability Measures Using Multiple‐Year Wind Speed Measurements. Prepared for the U.S. Association for Energy Economics Annual Conference, 29 August—1 September 1999, Orlando, Florida; 11 pp.; NREL Report No. CP‐500‐26724. Available at http://www.nrel.gov/docs/fy99osti/26724.pdf

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

2002 2003 2004EL

CC

% o

f Rat

ed C

apac

ity

Wind (Northern Cal)Wind (San Gorgonio)Wind (Tehachapi)

05

10152025

2003 2004 2005

Year

Perc

ent o

f Win

d Ra

ted

Capa

city

15%20%25%

California RPS Integration Study

Minnesota Wind Integration Study

Adapted from Shiu, H.; Milligan, M. Kirby, B.; Jackson, K. (2006). California Renewables Portfolio Standard Renewable Generation Integration Cost Report. Prepared for the California Energy Commission, May.

Zavadil, King, et al. 2006 Minnesota Wind Integration Study. https://mn.gov/puc/assets/000664_tcm14‐4689.pdf

Page 29: Resource Adequacy: How did we get here (and where are we ...

29Michael Milligan, Consultant | milligangridsolutions.com

What is appropriate reliability/RA target?

• 1 day/10 years legacy target, no real justification, focuses on daily evento No information about the event length, depth, capacity

• Are 10 “small” events the same as 1 “large” event?

• Should we focus on hours lost, capacity lost, energy lost?

Time

EUE

MW dropped

Page 30: Resource Adequacy: How did we get here (and where are we ...

Transmission can increase reliability, enhance markets, and reduce need to build resources

Page 31: Resource Adequacy: How did we get here (and where are we ...

31Michael Milligan, Consultant | milligangridsolutions.com

Transmission can play a critical role• Increasing transmission links and associated operational coordination can reduce the need for installed capacity

0

5

10

15

20

25

30

35

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Wind ELCC

 as %

 of R

ated

 Cap

acity

 

ELCC of Wind + Transmission for 3 Years

Generation w/transmission

Adapted from Eastern Wind Integration and Transmission Study https://www.nrel.gov/docs/fy11osti/47078.pdf 

0

10

20

30

40

50

60

Reference High Wind High Mix High Solar

ELCC

 of Tr

ansm

ission (M

W)

Benefit of Aggregation

Interconnection Subregion

ELCC

 of T

ransmission

 (GW)

Ibanez and Milligan (2012), “Impact of Transmission on Resource Adequacy in Systems with Wind and Solar Power.” IEEE Power and Energy Society General Meeting, Summer 2012. San Diego, and “A Reliability‐Based Assessment of Transmission Impacts in Systems with Wind Energy”. Available at www.nrel.gov/publications

Page 32: Resource Adequacy: How did we get here (and where are we ...

What do we need to do?

Page 33: Resource Adequacy: How did we get here (and where are we ...

33Michael Milligan, Consultant | milligangridsolutions.com

What do we need to do?

• Integrate resource, transmission, distribution planning

• Focus on “energy‐first” planning• Think more about long‐term weather impacts – on demand and resources (wind, solar, hydro)

• Re‐think metrics• Incorporate DR, storage• Close the gap between technical modeling capability and decision‐making

Page 34: Resource Adequacy: How did we get here (and where are we ...

34Michael Milligan, Consultant | milligangridsolutions.com

Integrate transmission & resource planningExample:MISO/NREL Study Process (EWITS, 2010)

Page 35: Resource Adequacy: How did we get here (and where are we ...

35Michael Milligan, Consultant | milligangridsolutions.com

https://www.hawaiianelectric.com/documents/clean_energy_hawaii/integrated_grid_planning/20180301_IGP_final_report.pdf

Integrate G, T, D planning (HI example)

HECO Integrated Grid Planning

35

Incorporate market input

Integrated T&D solutions

Utility solutions vs aggregated DER vs tariffs

Page 36: Resource Adequacy: How did we get here (and where are we ...

36Michael Milligan, Consultant | milligangridsolutions.com

Transmission planning challenges

• Most are well‐known…• Design and build for the short‐term, or the long‐term?• Renewable energy siting in advance?

o Example: ERCOT’s Competive Renewable Energy Zones (CREZ)

Donohoo, P. 2011. Integrating Dynamics and Generator Location Uncertainty for Robust Electric Transmission Planning. INFORMS Annual Meeting. Charlotte, North Carolina, USA.

Page 37: Resource Adequacy: How did we get here (and where are we ...

37Michael Milligan, Consultant | milligangridsolutions.com

Energy‐first planning

• Who is in charge?• ”energy‐first”* planning

o Focus on clean energy firsto Then “fill in” to achieve RA (energy adequacy?)

• Fill in witho Storageo DR/dispatchable demando Quick‐start thermalo Other

• Move away from “peak only” and focus on energy adequacy

Renewables & DR

Other

*First coined by Dave Olsen, CAISO

Page 38: Resource Adequacy: How did we get here (and where are we ...

38Michael Milligan, Consultant | milligangridsolutions.com

Weather, weather, weather

Resource Adequacy/Capacity

Value Determination

Transmission Planning

Operations & Markets

It’s the meteorology stupid!

Forecastability

Variability• Seasonal• Diurnal• Ramping

Uncertainty• Climate scales• Weather scales

Correlations:• Wind↔Solar ↔ Load ↔ Hydro

ClimateChange

Resource Diversity• In time• In space

Extreme Events• Impacts• Scale• Longevity• Connections

Justin Sharp

Page 39: Resource Adequacy: How did we get here (and where are we ...

39Michael Milligan, Consultant | milligangridsolutions.com

Long‐term weather; need more robust planning

• As a species, humans often don’t have the capability to incorporate uncertainty and volatility into planning

• Planning is usually done based on “average” or “representative” weather

You’re so above average!

Page 40: Resource Adequacy: How did we get here (and where are we ...

40Michael Milligan, Consultant | milligangridsolutions.com

Long‐term weather; need more robust planning

• As a species, humans often don’t have the capability to incorporate uncertainty and volatility into planning

• Planning is usually done based on “average” or “representative” weather

You’re so above average! That’s cold!

Page 41: Resource Adequacy: How did we get here (and where are we ...

41Michael Milligan, Consultant | milligangridsolutions.com

We need more work on metric comparison

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

LOL Even

t/Normalize

 EUE

Example Comparison of LOLH and EUE

LOLH EUE

Two LOL eventsLOLH = 6 hoursEUE = 84.2 GWh

Avg LOLH/event = 3 hoursAvg EUE/event = 42.1 GWh

LOLH = loss of load hours (hours of emergency import), number of hours of shortageEUE = expected unserved energy (emergency import energy)

Page 42: Resource Adequacy: How did we get here (and where are we ...

42Michael Milligan, Consultant | milligangridsolutions.com

Some potentially useful metrics

• Models (generally):o LOLH – counts hours with LOL events

o LOLE – loss of load expectation (i.e. expected value). Can be measured in days, hours, or …

o LOLEv – counts eventso LOLH/LOLEv – average length of LOL events

o EUE – expected unserved energy (MWh, GWh)

o EUE/LOLEv – average energy lost in LOL event

Break down the wall between modeling capabilities and policy‐making – and re‐work target reliability

• Policy (generally):o Planning reserve margin (% by which installed capacity exceeds peak demand)

o 0.1 d/year (sometimes)

o Single year of modeling

Page 43: Resource Adequacy: How did we get here (and where are we ...

43Michael Milligan, Consultant | milligangridsolutions.com

Example demand response for regulation

http://enbala.com/solutions.html

Page 44: Resource Adequacy: How did we get here (and where are we ...

44Michael Milligan, Consultant | milligangridsolutions.com

Animation

Page 45: Resource Adequacy: How did we get here (and where are we ...

45Michael Milligan, Consultant | milligangridsolutions.com

Close the gap between modeling and decision‐making

Multiple potential metrics that models can produce today.

PRM or 1d/10y –often not even calculated properly

ModelsDecision‐makers

Page 46: Resource Adequacy: How did we get here (and where are we ...

46Michael Milligan, Consultant | milligangridsolutions.com

Conclude• We already have much of what we 

need…in our collective heads/models, but not in practice

• Best practices must evolve – and we need to re‐think reliability targets

• Need common framework for all resources

• We need to focus more on inter‐annual variability inherent in wind/solar/hydro and demand

• We need to pay more attention to dispatchable demand and storage, and continually improve on algorithms

• Integrate transmission and resource planning

• Connect the tracks!

Renewables & DR

Other

Page 47: Resource Adequacy: How did we get here (and where are we ...

47Michael Milligan, Consultant | milligangridsolutions.com

Questions?

Page 48: Resource Adequacy: How did we get here (and where are we ...

Appendix: Long‐term adequacy and resilience

Page 49: Resource Adequacy: How did we get here (and where are we ...

49Michael Milligan, Consultant | milligangridsolutions.com

Our planning processes are not robust

• As a species, humans don’t have the capability to incorporate uncertainty and volatility into planning

• Planning is usually done based on “average” or “representative” weather

Page 50: Resource Adequacy: How did we get here (and where are we ...

50Michael Milligan, Consultant | milligangridsolutions.com

Single‐mode failure and resilience• Less convolution; more Monte Carlo*• Get the fundamental probability 

distributions correct (a hard problem)• Summer vs. winter forced outage rates 

should be a dependent variable, not an independent variable

• Lack of fuel supply for multiple gas plants

• Create plausible load‐weather‐RE years (NREL’s forthcoming study on extreme weather)

• Explore the corners

* Convolution example: 100 coin tosses. P(head) = 0.5. Expected heads = 50.Monte Carlo: Computer “tosses” the coin 100 times. Actual number of heads will be “close” to 50. Also results in 100 “scenarios” of coin toss

Page 51: Resource Adequacy: How did we get here (and where are we ...

51Michael Milligan, Consultant | milligangridsolutions.com

Infrequent events• What is the risk of

o “major” heat storm every 20 yearso “major” polar vortex every 13 years

• And how do collect good data sets and assess resilience?

• How to account for impact of climate change on these variables?

0 10 20 30 40 50 60 70 80 90 100 Years

Page 52: Resource Adequacy: How did we get here (and where are we ...

52Michael Milligan, Consultant | milligangridsolutions.com

Multiple dimensions

Time

EUE

MW dropped

Small and Short

Large and shortLarge and Long

Small and Long

Page 53: Resource Adequacy: How did we get here (and where are we ...

53Michael Milligan, Consultant | milligangridsolutions.com

Issues in assessment• See NREL’s forthcoming report on extreme weather• Is event outside “normal” data sets?• How to define large‐scale threats; i.e. what happens and 

where? What damage/outages?o Use extreme weather scenarios as inputso NERC/National Labs archive for power sector use

• Each region will have different risk profile, for example:o SERC: hurricaneso SPP/MISO: tornadoso ISO‐NE/MISO: cold weather, gas supply disruptiono CAISO: forest fires

• Normalize reliability score to scale 0‐10 based on metric of choice (LOLH, EUE, ??). 10= resilient, 0=failure

Page 54: Resource Adequacy: How did we get here (and where are we ...

54Michael Milligan, Consultant | milligangridsolutions.com

Example Resilience Diagram

0

1

2

3

4

5

6

7

8

9

10

Normal Ops

Cyber

Fuel

Flooding

Severe heat

Polar Vortex

Scoring: 10=reliability target met; 0 = severe outages

Page 55: Resource Adequacy: How did we get here (and where are we ...

55Michael Milligan, Consultant | milligangridsolutions.com

Resilience to different storm profiles

0

1

2

3

4

5

6

7

8

9

Polar Vortex 1

Polar Vortex 2

Polar Vortex 3

Polar Vortex 4

Polar Vortex 5

Polar Vortex 6

Resilience to Different Extreme Storm Profiles

Scoring: 10=reliability target met; 0 = severe outages

Page 56: Resource Adequacy: How did we get here (and where are we ...

56Michael Milligan, Consultant | milligangridsolutions.com

Questions?