Research(atthe( Interface(of(Physics(and(Medicine:( An...

48
Research at the Interface of Physics and Medicine: An Update on the Development of Proton Computed Tomography Reinhard Schulte Department of Radia@on Medicine Loma Linda University Medical Center Loma Linda, California, USA R Schulte, Proton Computed Tomography, UCSC Physics Colloquium, Nov 3, 2011

Transcript of Research(atthe( Interface(of(Physics(and(Medicine:( An...

Page 1: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Research  at  the  Interface  of  Physics  and  Medicine:  

An  Update  on  the  Development  of  Proton  Computed  Tomography  

Reinhard  Schulte  Department  of  Radia@on  Medicine  

Loma  Linda  University  Medical  Center  Loma  Linda,  California,  USA  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Page 2: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Outline  

•  The  Clinical  Perspec@ve:  Proton  Therapy  and  Proton  Imaging  

•  Concepts  of  Proton  CT  •  Technical  Realiza@ons  of  Proton  CT  – Phase  I  preclinical  head  scanner  – Phase  II  clinical  head  scanner  

•  Next  steps  &  future  applica@ons/Plans  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Page 3: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

THE  CLINICAL  PERSPECTIVE:  PROTON  THERAPY  AND  PROTON  IMAGING  

SECTION  I    

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Page 4: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Depth-­‐Dose  Characteris@cs  of  Mono-­‐Energe@c  Protons  

•  Compared  to  x-­‐rays  and  electrons  (which  are  also  used  therapeu@cally)  protons  have  a  unique  inverted  depth  dose  profile  

•  The  dose  peak  at  the  end  of  the  proton  range  is  called  “Bragg  peak”  aXer  the  physicist  William  Henry  Bragg,  who  discovered  it  in  1903  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Page 5: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Protons  in  Comparison  •  Proton  energy  deposi@on  per  

track  length  (propor@onal  to  dose)  increases  as  they  slow  down  

•  Bragg  peak  dose  at  the  end  of  the  proton  range  

•  Depth  of  peak  (proton  range)  adjustable  by  choosing  right  energy  

•  Ac@ve  or  passive  modula@on  generates  spread-­‐out  Bragg  peak  (SOPBP)  

•  Dose  sparing  up-­‐  and  down-­‐stream  from  tumor  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Page 6: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Protons  for  Precision  Radia@on  Therapy  /    Radiosurgery  

•  Addi@onal  features  that  make  protons  an  a^rac@ve  modality  for  proton  radia@on  therapy/radiosurgery:  –  Pencil  beam  forma@on  with  

magne@c  lenses  –  Magne@c  tracking  of  proton  

pencil  beams  –  Edge  tracking  (not  possible  with  

photon  beams)  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Page 7: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Proton  Therapy:  A  man  –  A  Vision  •  Robert  Wilson,  Ph.D.  

(1914-­‐200)  was  the  first  to  publish  a  paper  on  the  medical  uses  of  protons  (Radiology  1946:47:487-­‐91)  

•  It  took  45  years  before  his  dream  became  reality  when  the  first  hospital-­‐based  proton  treatment  center  opened  at  LLUMC  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Robert  R.  Wilson,  Ph.D.,  1914-­‐2000  

Page 8: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

The  Early  Years  of  Proton  &  Heavy  Ion  Radiosurgery  at  the  

Lawrence  Berkeley  Laboratory  (1948-­‐1955)  •  Star@ng  in  1948,  John  Lawrence  

(physician)  and  Cornelius  Tobias  (biophysicist)  developed  biomedical  program  of  heavy  ions  at  the  LBL  cyclotrons  

•  In  1954,  the  LBL  group  began  to  direct  the    high  doses  of  heavy  ion  beams  (protons  &  helium)  at  human  pituitary  glands  (about  50  pa@ents)  

•  Reported  successful  hormonal  abla@on  &  regression  of  disease  in  advanced  breast  cancer  pa@ents  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Page 9: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Large-­‐Scale  Proton  Radiosurgery:  The  Harvard  Experience  

1961-­‐2001  •  In  1961,  MGH  neurosurgeon  Raymond  

Kjellberg  began  trea@ng  pa@ents  with  pituitary  adenomas  using  160  MeV  Bragg  peak  protons  from  the  Harvard  Cyclotron  Laboratory  (HCL)  

•  Star@ng  in  the  1970s,  Dr.  Kjellberg  also  treated  large,  inoperable  arteriovenous  malforma@ons  (AVMs)  with  Bragg  peak  protons,  despite  limita@ons  in  imaging  and  planning  techniques  at  that  @me  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Page 10: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Proton  Therapy  at  LLUMC  

•  Proton  therapy  was  used  in  a  hospital  sekng  first  at  LLUMC  in  1990  

•  More  than  14,000  pa@ents    have  been  treated  at  LLUMC  

•  Due  to  the  Bragg  peak  feature,  protons  deliver  less  dose  to  normal  @ssue  than  IMRT  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Page 11: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

LLUMC  Facility  Design  •  Built   around   a   proton   accelerator   (weak-­‐focusing   synchrotron)   used   to   deliver  

protons  of  10-­‐300  MeV  (Gantry  accepts  up  to  250  MeV).  

•  4  Clinical  rooms  (1  fixed  beam  room  w  2  beam  lines,  3  Gantries)  

•  Research  rooms  with  3  horizontal  beam  lines  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Research  Room  

Page 12: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Annual  Proton  Treatments  at  LLUMC  (1990  –  2008)  

010020030040050060070080090010001100

Num

ber o

f Pat

ient

s

No. 3 53 345 338 416 494 681 760 944 780 899 1033 1035 1013 984 893 894 906 847

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Page 13: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Worldwide  Expansion  of  Proton  Therapy  (1990  –  2010)  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Page 14: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

History  of  Proton  Radiography  (pRad)  •  A.  Koehler    was  the  first  to  point  

out  the  poten@al  value  of  pRad  and  to  perform  experiments  with  160  MeV  (Koehler,  Science  160,  303–304,  1968)  

•  The  higher  density  resolu@on  but  poorer  spa@al  resolu@on  was  noted  by  Koehler  and  later  by  Kramer  et  al.  (Radiology,  1980)  

•  Medical  interest  in  pRad  as  a  QA  tool  for  proton  therapy  was  revived  by  U.  Schneider  at  PSA  during  the  1990s  

•  Another  strong  mo@va@on  of  pRad  development  comes  from  nuclear  weapons  tes@ng  programs  at  Los  Alamos  NL  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Andy  Koehler,  former  director  of  the  Harvard  Cyclotron)  

Page 15: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Proton  Computed  Tomography  (pCT):  A  man  –  A  Vision  (Harvard,  1963)  

•  Alan  M.  Cormack,  physicist  (1924-­‐1998)  was  the  first  to  publish  a  paper  on  the  reconstruc@on  of  tomographic  images  based  on  X-­‐ray  absorp@on  and  proton  degrada@on  (J.  Appl.  Phys.  34,  2722,  1963)  

•  It  took  less  than  10  years  before  his  idea  became  reality  when  the  first  when    Geoffrey  Hounsfield  constructed  the  first    X-­‐ray  CT  scanner  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Alan  M.  Cormack,    1924-­‐1998  Physics  Nobel  Laureate  1979  

Page 16: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

The  Proton  CT  Collabora@on  

•  Group  of  scien@sts  first  met  at  IEEE  in  Norfolk,  VA  in  2002  and  BNL  in  2003  to  outline  the  goal  of  building  a  clinical  proton  CT  (pCT)  scanner,  many  have  contributed  since  then  

•  Phase  0  (2003  –  2007):  Conceptual  design,  Geant4  simula@ons,  most  likely  path  concept,  proof-­‐of-­‐principle  experiments  

•  Phase  I  (2008  –  now):  First  genera@on  (preclinical)  pCT  scanner  using  single  par@cle  tracking  

•  Phase  II  (started  in  2011):  Second  genera@on  (clinical)  pCT  scanner,  funded  by  NIH  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Page 17: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Gensheimer  F,  et  al.,  Int  J  Radia@on  Oncol  Biol  Phys  2010  (50%  idosdose,  red  =  observed,  blue  =  planned  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

The  Mo@va@on  for  pCT  Range  Uncertain@es  in  Proton  Therapy  •  Differences  in  the  

interac@on  of  x-­‐rays  and  protons  with  ma^er  make  proton  range  calcula@ons  uncertain  

•  Range  uncertain@es  can  range  from  mm  to  cm  (see  recent  MGH  study)  

•  Materials  of  unknown  density,  streak  ar@fact  create  addi@onal  uncertainty  

•  Proton  CT  is  a  poten@al  solu@on  to  reduce  this  uncertainty  from  3%-­‐4%  to  ≤  1%  of  range  

Page 18: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Range  Uncertainty  in  Proton  Therapy  

•  Inhomogenei@es  are  fundamentally  more  important  in  proton  (hadron)  therapy  than  in  X-­‐ray  therapy  

•  We  have  learned  to  deal  with  them  by  –  Op@mizing  our  X-­‐ray  CT  calibra@on  

methods  –  Incorpora@ng  addi@onal  margins  –  Developing  robust  op@miza@on  

•  We  have  remaining  issues  due  to  –  Restric@ons  in  beam  entry  direc@ons  –  CT  ar@facts  in  the  presence  of  metallic  

hardware,  dental  fillings  emboliza@on  glue  etc.  

–  Intra-­‐  and  inter-­‐treatment  changes  of  proton  range  (mo@on,  weight  loss  etc.)  

–  Higher  RBE  of  distal  edge  when  placed  into  cri@cal  normal  @ssues  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Page 19: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

CONCEPTS  OF  PROTON  CT  SECTION  II  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Page 20: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

The  Principle  of  Tomography  •  The  Radon  transform  (Radon,  

1917)  relates  any  2D  func@on  f(x,y)  to  an  infinite  number  of  line  integrals  covering  an  angular  space  of  2π

•  Radon  proved  mathema@cally  that  both  of  the  func@on  representa@ons  are  equivalent  

•  The  inversion  of  the  Radon  transform  from  an  infinite  set  of  line  integrals  forms  the  basis  for  tomographic  image  reconstruc@on  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Page 21: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Computed  Tomography:  X-­‐rays  vs.  Protons  

0.01

0.1

1

10

100

1000

104

0.001 0.01 0.1 1

X-Ray Absorption Coefficient

Muscle

Bone

Water

Air

µ

Energy [MeV]

[1/cm]

A^enua@on  of  Photons,  Z  ln(N)  =  No∫  µ  x  dx  

Energy  Loss  of  Protons,  ρ     ∫=Δ dx

dxdEE

NIST  Data  R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  Courtesy:  H.  Sadrozinski,  

UCSC  

Page 22: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

pCT  Single  Proton  Concept  

•  An  energe@c  low  intensity  cone  beam  of  protons  traverses  the  pa@ent  

•  The  posi@on  and  direc@on  (entry  &  exit)  and  energy  loss  of  each  proton  is  measured  

•  Proton  histories  from  mul@ple  projec@on  angles  

•  Minimal  proton  loss  and  high  detec@on  efficiency  make  this  a    low-­‐dose  imaging  modality  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Design  of  a  Proton  CT  Scanner  rota@ng  with  the  proton  gantry  (R  Schulte  et  al.  IEEE  Trans.  Nucl.  Sci.,  51(3),  866-­‐872,  2004)  

Low  intensity  proton  beam  

Tracking  of  individual  protons  

Page 23: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Principles  of  the  pCT  Imaging  Process  

•  The  measurement  is  propor@onal  to  the  outgoing  energy  of  each  proton,  and  thus  to  energy  loss  in  the  phantom  

•  The  energy  loss  can  be  converted  to  a  line  integral  of  proton  stopping  power  rela@ve  to  water  along  the  proton  path,  RSP  is  (prac@cally)  independent  of  proton  energy  

•  Energy  straggling  →  affects  RSP  resolu@on  •  Mul@ple  Coulomb  sca^ering  (MCS)  →  affects  spa@al  resolu@on  

•  Solu@on  →  calculate  most  probable  path  of  the  proton  within  the  object  using  a  reconstruc@on  algorithms  that  takes  MCS  into  account  

•  Requires  reconstruc@on  algorithm  that  can  handle  non-­‐linear  paths  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Page 24: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

24

Sta@s@cal  Model  of  a  Proton  Path      

( )( ) ( )(( ) ( )) ⎟

⎟⎟

⎜⎜⎜

−Σ−

+−Σ−−=

11212112

00111001

21 21

exp|yRyRyy

yRyRyyyyL

TTT

TTT

Page 25: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Path  Reconstruc@on  Concepts  •  Different  proton  paths  may  be  

used  in  the  reconstruc@on:  MLP  =  Most  Likely  Path,  SLP  =  straight  line  path,  CSP  =  cubic  spline  path    

•  The  MLP  is  determined  by  maximizing  likelihood  (chi  square)  of  output  parameters,  given  entry  parameters  

•  MLP  significantly  improves  spa@al  resolu@on  compared  to  SLP,    CSP  reconstruc@on  is  nearly  as  good  as  MLP  reconstruc@on  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Page 26: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

•  A  total  number  of  m  protons  trace  paths  through  the  voxel  space  and  aij  is  the  intersec@on  length  of  the  ith  proton,  i=1…m  with  the  jth  voxel  

•  In  the  fully  discre@zed  model,  the  object  is  treated  as  n-­‐dimensional  vector  xj,  j=1…n,  where  xj  is  the  constant  rela@ve  stopping  power  of  the  jth  voxel  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

The  Discrete  pCT  Reconstruc@on  Problem  

Page 27: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

First  Itera@ve  Algorithm  Applied:  Algebraic  Reconstruc@on  Technique  (ART)  (work  done  by  

Tianfang  Li  &  Jerome  Liang,  SUNY)    •  Originally  developed  by  

Kaczmarz,  1937  •  Sequen@al  orthogonal  

projec@ons  onto  hyperplanes  

•  Works  but  well  for  proton  CT  but  is  inherently  slow  

•  High  frequency  noise  is  present  

xk+1

Li et al Med Phys 2006

Page 28: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Further  Development  of  pCT  Reconstruc@on  with  Geant4  Simula@ons  (work  done  by  Sco^  Penfold)  

•  Simulate  pCT  system  and  digital  head  phantom1  •  Test/compare  different  reconstruc@on  algorithms  

1G. T. Herman, Image Reconstruction From Projections: The Fundamentals of Computerized Tomography, Academic Press, New York (1980).

Page 29: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

TECHNICAL  REALIZATIONS  OF  PROTON  CT    

SECTION  III  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Page 30: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Phase  I  pCT  Scanner  Design  (completed  in  2010)  

•  Horizontal  beamline  setup  

•  Rota@onal  stage  for  object  rota@on  

•  Upstream  and  downstream  tracker  modules  

•  Downstream  energy  detector  (calorimeter)  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Page 31: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Phase  I  pCT  Tracker  (UCSC)  •  The  Phase  I  pCT  tracker  consists  of  

front  and  rear  module  for  loca@on  and  direc@on  measurements  

•  Modules:  two  detector  boards  measuring  the  X-­‐Y  posi@on  in  two  loca@ons  =>  direc@on  

•  Detector  boards:  4  Si  Strip  Detectors  (SSDs),  9  cm  x  9  cm,  384  strips,  0.23  mm  pitch  

•  Strips  oriented  in  horizontal  or  ver@cal  direc@on  (X  and  Y  sensi@vity)  

•  Total  sensi@ve  area  9  cm  x  18  cm  •  Modified  GLAST/Fermi  readout  chip,  

max  rate  100  kHz    

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Phase  I  pCT  scanner  front  module  Detector  board  with  2  SSDs  in  the  front  (visible)  and  2  SSDs  in  the  back  of  the  board  

Page 32: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Phase  I  pCT  Energy  Detector  (Calorimeter)  (NIU-­‐LLUMC,  UCSC)  

•  Crystal  matrix  with  18  thallium-­‐doped  cesium-­‐iodide  (CsI(Tl))  crystals  (~3.6  cm  x  3.6  cm  x  12.5  cm)  

•  Each  crystal  read  out  by  area-­‐matched  Si  photodiode  

•  Si  photodiode  =>  preamp/shaper  =>  ADC  

•  Excellent  linearity  and  energy  resolu@on  <  1%  above  40  MeV  

•  Integrated  with  rear  tracker  module  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Page 33: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Phase  I  pCT  DAQ  Hardware  (UCSC  –  LLU)  

•  Design  based  on  field-­‐programmable  gate  arrays  (FPGAs)  -­‐  Master  &  Slave  

•  Reads  and  processes  data  from  16  tracker  SSDs  &  18  crystal  frontends  in  parallel  

•  Data  rate  has  been  op@mized  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Page 34: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Phase  I  pCT  DAQ  SoXware/GUI  (Ford  Hurley,  LLU)  

•  User-­‐friendly  user  interface  for  main  pCT  func@ons  

•  Online  display  of  tracker  and  calorimeter  response  

•  Root-­‐based  reconstruc@on  of  proton  histories    

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Page 35: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Phase  I  pCT  Scanner  at  LLUMC:  Timeline  

•  System  component  integra@on  &  moun@ng  (April  2010)  

•  Tes@ng  with  radioac@ve  source  and  cosmic  rays  (muons)  

•  Installa@on  on  proton  research  beam  line  &  1st  test  runs  (May  2010)  

•  Spill  uniformity  op@miza@on  (June  2010)  

•  Scanner  calibra@on  (July  2010)  •  Phantom  scans  since  Dec  2010  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Page 36: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Crystal  Calorimeter  Calibra@on  •  The  rela@ve  sensi@vity  

(individual  weigh@ng  factors)  for  individual  crystals  are  measured  at  the  scan  energy  before  each  scan  

•  Only  central  proton  histories  that  most  likely  did  not  leave  the  individual  crystal  are  used  

•  Weigh@ng  factors  between  different  crystals  vary  within  +/-­‐  15%,  and  between  different  energies  <1%  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Proton  tracks  used  for  to  derive  a  rela@ve  weigh@ng  factor  for  each  crystal  

Page 37: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Phase  I  pCT  Scanner  WET  Calibra@on  •  The  calorimeter  response  is  

calibrated  against  polystyrene  plates  of  known  thickness  and  rela@ve  stopping  power,  resul@ng  in  individual  response  curves,  to  which  a  Gaussian  was  fi^ed  

•  The  Gaussian  peaks  are  used  to  construct  a  curve  that  converts  calorimeter  response  to  a  water-­‐equivalent  path  length  (WEPL)  

•  The  response  vs.  WEPL  curve  is  fi^ed  to  a  second  order  polynomial,  providing  fast  conversion  to  WEPL  

•  This  inverse  calibra@on  was  verified  by  comparing  the  measured  stopping  power  of  @ssue  equivalent  plates  to  known  values  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Page 38: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Developing  Advanced  Reconstruc@on  Algorithms  with  GEANT4  Simula@ons  •  Reconstruc@on  of  the  

original  object  (a)  with  a  constant  intersec@on  length  (equal  to  the  voxel  size)  leads  to  “noisy”  images  (b)  

•  Using  a  refined  intersec@on  length  depending  on  projec@on  angle  (c)  or  varying  from  voxel  to  voxel  (d)  leads  to  significantly  improved  images  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Page 39: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Status  of  Proton  CT  Reconstruc@on  

•  A  series  of  pCT  scans  of  the  Lucy  radiosurgery  phantom  was  started  in  Oct  2010  

•  Phantom  images  were  reconstructed  with  our  newly  developed  3D  reconstruc@on  algorithm  

•  Good  image  quality  has  been  achieved  

•  A  sytema@c  evalua@on  using  standard  CT  phantom  modules  and  a  realis@c  anatomical  head  phantom  is  underway  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Page 40: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

GPU-­‐Accelerated  Reconstruc@on  •  Reconstruc@on  is  

performed  using  an  NVIDIA  Tesla  general  purpose  graphics  processing  unit  (GP-­‐GPU)  

•  This  state  of  the  art  inexpensive  computer  cluster  technology  speeds  up  reconstruc@on  @me  by  orders  of  magnitude,  compared  to  tradi@onal  CPUs  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

NVIDIA  Tesla  C1060    GPU:  240  stream  processors  with  4  GB  of  device  RAM  

Page 41: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Phase  I  pCT  Reconstruc@on  of  Lucy  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

14  cm  diameter  polystyrene  sphere  with  @ssue  equivalent  inserts  

64  slice  Mul@-­‐Slice  X-­‐ray  CT,  0.53  x  0.53  x  0.625  mm3  

pCT  Phase  I,  0.63  x  0.63  x  2.5  mm3  

Page 42: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Phase  I  pCT  Reconstruc@on  of    the  Catphan®  Uniformity  Module  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

•  A  series  of  pCT  scans  of  standard  CT  performance  phantom  modules  is  underway  

•  The  uniformity  module  tests  hypothesis  that  pCT  RSP  reconstruc@on  is  not  affected  by  energy  loss  

•  The  noise  power  analysis  shows  interes@ng  characteris@cs  of  pCT  reconstruc@on  algorithms  

Page 43: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

NEXT  STEPS  &  FUTURE  APPLICATIONS/PLANS  

SECTION  IV  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Page 44: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Phase    I  pCT  Scanner  at  LLUMC:    Next  Steps  

•  Systema@c  tes@ng  with  contrast,  spa@al  resolu@on  &  dose  phantoms  (Catphan)  

•  Live  imaging  of  small  animals  (rats)  

•  Stepwise  improvement  of  reconstruc@on,    image  quality  &  data  rates  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Rat  scanned  on  the  Phase  I  pCT  scanner  at  LLUMC  

Page 45: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Development  of  Phase  II  Clinical  pCT:  Issues  and  Possible  Choices  

•  Size  of  System  –  Large  area  tracker  suitable  for  head  &  neck,  thorax  (36  cm  x  9  cm),  may  move  longitudinally  during  scan  

•  Type  of  Tracker  –  Silicon  (larger,  thinner,  ac@ve  edge  =  “edge  less”  (implemented  by  SCIPP)    

–  Scin@lla@ng  fiber  with  Si  Photomul@plier  readout  (implemented  by  NIU)  

•  Type  of  Energy/Range  Detector  –  “Modern”  crystals  (e.g.  YAG:Ce,  Menichelli  et  al  2010  IEEE  TNS)  –  Range  detector:  Stack  of  plas@c  scin@llators  with  direct  or  fiber-­‐mediated  SIPM  readout  (implemented  by  NIU,  tested  at  LLU)  

–  Segmented  scin@llators  (tested  at  LLU)    

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Page 46: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Primary  Applica@ons  for  pCT  •  Higher  planning  accuracy/precision  needed  –  Radiosurgery  for  vascular  

malforma@ons,  pituitary  adenomas,  meningiomas,  etc.  

–  High-­‐dose  boosts  to  tumors  near  organs  at  risk  for  damage  

–  Crea@ng  lesions  in  defined  loca@ons  for  pain  treatment  

•  Restricted  beam  angle  choices  –  Paraspinal  tumors  –  Craniospinal  irradia@on  with  sparing  

of  vertebral  bodies  in  children  •  X-­‐ray  CT  ar@facts  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Where  is  the  Target?  

Page 47: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

Future  Physics  Contribu@ons  to  Proton  Therapy  

•  Adap@ve  proton  treatments  with  fast-­‐replanning  

•  On-­‐line  verifica@on  of  p  pencil  beams  using  vertex  tracking  

•  Post-­‐treatment  dose  verifica@on  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011  

Page 48: Research(atthe( Interface(of(Physics(and(Medicine:( An ...scipp.ucsc.edu/.../RSchulte_UCSC_colloquium_talk_Nov_3_2011.pdf · Tomography,(UCSC(Physics(Colloquium,Nov3,2011 Further(Developmentof(pCT(Reconstruc@on(with(Geant4(Simulaons((work(done(by(Sco^(Penfold)(•

What  have  we  learned?    

•  pCT  is  an  interes@ng  and  challenging  project  that  requires  input/collabora@on  from/with  many  scien@fic  different  fields  

•  Interest  in  the  physics  community  is  quite  large,  but  there  is  s@ll  skep@cism  in  the  medical  community  

•  Proof  of  principle  with  current  Phase  I  prototype  (beyond  simula@on)  will  be  crucial  for  clinical  acceptance  

•  Besides  usefulness  for  proton  therapy,  low-­‐dose  aspect,  faithful  reproduc@on  of  density,  and  freedom  from  ar@facts  should  be  inves@gated  &  stressed  

R  Schulte,  Proton  Computed  Tomography,  UCSC  Physics  Colloquium,  Nov  3,  2011