Research Projects in Math Modeling and Numerical...

43
Research Projects in Math Modeling and Numerical Analysis Prof. Nathan L. Gibson Department of Mathematics Graduate Student Seminar May 14, 2014 Prof. Gibson (OSU) Research Projects GSS 2014 1 / 34

Transcript of Research Projects in Math Modeling and Numerical...

Page 1: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Research Projects in Math Modeling andNumerical Analysis

Prof. Nathan L. Gibson

Department of Mathematics

Graduate Student SeminarMay 14, 2014

Prof. Gibson (OSU) Research Projects GSS 2014 1 / 34

Page 2: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Outline

1 ElectromagneticsMaxwell’s EquationsNumerical AnalysisDispersive MediaInverse Problems

2 Reservoir NetworksRiver system and modeling equationsExamples of objective and constraintsRobust Optimization

3 Magneto-Hydrodynamic (MHD) generatorModelSolution MethodInverse Problem

Prof. Gibson (OSU) Research Projects GSS 2014 2 / 34

Page 3: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Outline

1 ElectromagneticsMaxwell’s EquationsNumerical AnalysisDispersive MediaInverse Problems

2 Reservoir NetworksRiver system and modeling equationsExamples of objective and constraintsRobust Optimization

3 Magneto-Hydrodynamic (MHD) generatorModelSolution MethodInverse Problem

Prof. Gibson (OSU) Research Projects GSS 2014 2 / 34

Page 4: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Outline

1 ElectromagneticsMaxwell’s EquationsNumerical AnalysisDispersive MediaInverse Problems

2 Reservoir NetworksRiver system and modeling equationsExamples of objective and constraintsRobust Optimization

3 Magneto-Hydrodynamic (MHD) generatorModelSolution MethodInverse Problem

Prof. Gibson (OSU) Research Projects GSS 2014 2 / 34

Page 5: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Electromagnetics

Outline

1 ElectromagneticsMaxwell’s EquationsNumerical AnalysisDispersive MediaInverse Problems

2 Reservoir NetworksRiver system and modeling equationsExamples of objective and constraintsRobust Optimization

3 Magneto-Hydrodynamic (MHD) generatorModelSolution MethodInverse Problem

Prof. Gibson (OSU) Research Projects GSS 2014 3 / 34

Page 6: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Electromagnetics

Acknowledgements

Collaborators

H. T. Banks (NCSU)

V. A. Bokil (OSU)

W. P. Winfree (NASA)

Students

Karen Barrese and Neel Chugh (REU 2008)

Anne Marie Milne and Danielle Wedde (REU 2009)

Erin Bela and Erik Hortsch (REU 2010)

Megan Armentrout (MS 2011)

Brian McKenzie (MS 2011)

Prof. Gibson (OSU) Research Projects GSS 2014 4 / 34

Page 7: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Electromagnetics Maxwell’s Equations

Maxwell’s Equations

∂D

∂t+ J = ∇×H (Ampere)

∂B

∂t= −∇× E (Faraday)

∇ ·D = ρ (Poisson)

∇ · B = 0 (Gauss)

E = Electric field vector

H = Magnetic field vector

ρ = Electric charge density

D = Electric flux density

B = Magnetic flux density

J = Current density

With appropriate initial conditions and boundary conditions.

Prof. Gibson (OSU) Research Projects GSS 2014 5 / 34

Page 8: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Electromagnetics Maxwell’s Equations

Constitutive Laws

Maxwell’s equations are completed by constitutive laws that describe theresponse of the medium to the electromagnetic field.

D = εE + P

B = µH + M

J = σE + Js

P = Polarization

M = Magnetization

Js = Source Current

ε = Electric permittivity

µ = Magnetic permeability

σ = Electric Conductivity

Prof. Gibson (OSU) Research Projects GSS 2014 6 / 34

Page 9: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Electromagnetics Numerical Analysis

Yee Scheme in One Space Dimension

Staggered Grids: The electric field/flux is evaluated on the primarygrid in both space and time and the magnetic field/flux is evaluatedon the dual grid in space and time.

The Yee scheme is

H|n+ 12

`+ 12

− H|n−12

`+ 12

∆t= − 1

µ

E |n`+1 − E |n`∆z

E |n+1` − E |n`

∆t= −1

ε

H|n+ 12

`+ 12

− H|n+ 12

`− 12

∆z

-�h

tn+ 12

tn+1

� � � � � �

v v v v v. . . z− 5

2

z−2 z− 32

z−1 z− 12

z0 z1z 12

z2z 32

z 52. . .

Prof. Gibson (OSU) Research Projects GSS 2014 7 / 34

Page 10: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Electromagnetics Numerical Analysis

Yee Scheme in One Space Dimension

This gives an explicit second order accurate scheme in both time andspace.

It is conditionally stable with the CFL condition

ν =c∆t

∆z≤ 1

where ν is called the Courant number and c = 1/√εµ.

Prof. Gibson (OSU) Research Projects GSS 2014 8 / 34

Page 11: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Electromagnetics Numerical Analysis

Yee Scheme in One Space Dimension

This gives an explicit second order accurate scheme in both time andspace.

It is conditionally stable with the CFL condition

ν =c∆t

∆z≤ 1

where ν is called the Courant number and c = 1/√εµ.

Prof. Gibson (OSU) Research Projects GSS 2014 8 / 34

Page 12: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Electromagnetics Numerical Analysis

Numerical Stability: A Square Wave

Case c∆t = ∆z

−1 −0.5 0 0.5 1

0

0.5

1

x

E

t=0 t=100 ∆ t t=200 ∆ t

Case c∆t > ∆z

−1 −0.5 0 0.5 1−2

−1

0

1

2

3

x

E

t =0

t =18 ∆ t

Prof. Gibson (OSU) Research Projects GSS 2014 9 / 34

Page 13: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Electromagnetics Numerical Analysis

Numerical Stability: A Square Wave

Case c∆t = ∆z

−1 −0.5 0 0.5 1

0

0.5

1

x

E

t=0 t=100 ∆ t t=200 ∆ t

Case c∆t > ∆z

−1 −0.5 0 0.5 1−2

−1

0

1

2

3

x

E

t =0

t =18 ∆ t

Prof. Gibson (OSU) Research Projects GSS 2014 9 / 34

Page 14: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Electromagnetics Numerical Analysis

Numerical Dispersion: A Square Wave

Case c∆t = ∆z

−1 −0.5 0 0.5 1

0

0.5

1

x

E

t=0 t=100 ∆ t t=200 ∆ t

Case c∆t < ∆z

−1 −0.5 0 0.5 1

0

0.5

1

x

E

t=0 t=100 ∆ t

t=200 ∆ t

Prof. Gibson (OSU) Research Projects GSS 2014 10 / 34

Page 15: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Electromagnetics Numerical Analysis

Dispersion Error

The Yee scheme can exhibit numerical dispersion

Dispersion error can be reduced by using higher order accuratemethods, e.g., (2, 2M) order accurate methods

Theorem (CFL for (2, 2M) [Bokil-G, 2011] )

The method is conditionally stable with CFL condition

ν

M∑p=1

γ2p−1

< 1,

γ2p−1 :=M∑

j=p

(−1)3j−p−2(j + p − 2)![(2M − 1)!!]222p−1

(2p − 1)!(j − p)!(2j − 1)(2M − 2j)!!(2M + 2j − 2)!!

=[(2p − 3)!!]2

(2p − 1)!.

Prof. Gibson (OSU) Research Projects GSS 2014 11 / 34

Page 16: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Electromagnetics Numerical Analysis

Dispersion Error

The Yee scheme can exhibit numerical dispersionDispersion error can be reduced by using higher order accuratemethods, e.g., (2, 2M) order accurate methods

Theorem (CFL for (2, 2M) [Bokil-G, 2011] )

The method is conditionally stable with CFL condition

ν

M∑p=1

γ2p−1

< 1,

γ2p−1 :=M∑

j=p

(−1)3j−p−2(j + p − 2)![(2M − 1)!!]222p−1

(2p − 1)!(j − p)!(2j − 1)(2M − 2j)!!(2M + 2j − 2)!!

=[(2p − 3)!!]2

(2p − 1)!.

Prof. Gibson (OSU) Research Projects GSS 2014 11 / 34

Page 17: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Electromagnetics Numerical Analysis

Dispersion Error

The Yee scheme can exhibit numerical dispersionDispersion error can be reduced by using higher order accuratemethods, e.g., (2, 2M) order accurate methods

Theorem (CFL for (2, 2M) [Bokil-G, 2011] )

The method is conditionally stable with CFL condition

ν

M∑p=1

γ2p−1

< 1,

γ2p−1 :=M∑

j=p

(−1)3j−p−2(j + p − 2)![(2M − 1)!!]222p−1

(2p − 1)!(j − p)!(2j − 1)(2M − 2j)!!(2M + 2j − 2)!!

=[(2p − 3)!!]2

(2p − 1)!.

Prof. Gibson (OSU) Research Projects GSS 2014 11 / 34

Page 18: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Electromagnetics Numerical Analysis

Dispersion Error (cont.)

Mimetic methods adapt free parameters in the scheme to reducecertain errors, e.g., dispersion error [Bokil-G-Gyrya-McGregor,submitted 2014].

Prof. Gibson (OSU) Research Projects GSS 2014 12 / 34

Page 19: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Electromagnetics Dispersive Media

Complex permittivity

We can usually define P in terms of a convolution

P(t, x) = g ∗ E(t, x) =

∫ t

0g(t − s, x; q)E(s, x)ds,

where g is the dielectric response function (DRF).

In the frequency domain D = εE + gE = ε0ε(ω)E, where ε(ω) iscalled the complex permittivity.

ε(ω) described by the polarization model

We are interested in ultra-wide bandwidth electromagnetic pulseinterrogation of dispersive dielectrics, therefore we want an accuraterepresentation of ε(ω) over a broad range of frequencies.

Prof. Gibson (OSU) Research Projects GSS 2014 13 / 34

Page 20: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Electromagnetics Dispersive Media

Dry skin data

102

104

106

108

1010

101

102

103

f (Hz)

ε

True DataDebye ModelCole−Cole Model

Figure: Real part of ε(ω), ε, or the permittivity [GLG96].

Prof. Gibson (OSU) Research Projects GSS 2014 14 / 34

Page 21: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Electromagnetics Dispersive Media

P(t, x) = g ∗ E(t, x) =

∫ t

0g(t − s, x; q)E(s, x)ds,

Debye model [1929] q = [εd , τ ]

g(t, x) = ε0εd/τ e−t/τ

or τ P + P = ε0εdE

or ε(ω) = ε∞ +εd

1 + iωτ

with εd := εs − ε∞ and τ a relaxation time.

Cole-Cole model [1936] (heuristic generalization)q = [εd , τ, α]

ε(ω) = ε∞ +εd

1 + (iωτ)1−α

Prof. Gibson (OSU) Research Projects GSS 2014 15 / 34

Page 22: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Electromagnetics Dispersive Media

P(t, x) = g ∗ E(t, x) =

∫ t

0g(t − s, x; q)E(s, x)ds,

Debye model [1929] q = [εd , τ ]

g(t, x) = ε0εd/τ e−t/τ

or τ P + P = ε0εdE

or ε(ω) = ε∞ +εd

1 + iωτ

with εd := εs − ε∞ and τ a relaxation time.

Cole-Cole model [1936] (heuristic generalization)q = [εd , τ, α]

ε(ω) = ε∞ +εd

1 + (iωτ)1−α

Prof. Gibson (OSU) Research Projects GSS 2014 15 / 34

Page 23: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Electromagnetics Dispersive Media

Dispersive Media

0 0.2 0.4 0.6 0.8−1000

−500

0

500

1000

z

E

Time=5.0ns

0 0.2 0.4 0.6 0.8−80

−60

−40

−20

0

20

40

Time=10.0ns

E

z

Figure: Debye model simulations.

Prof. Gibson (OSU) Research Projects GSS 2014 16 / 34

Page 24: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Electromagnetics Fit to dry skin data with uniform distribution

102

104

106

108

1010

102

103

f (Hz)

ε

True DataDebye (27.79)Cole−Cole (10.4)Uniform (13.60)

Figure: Real part of ε(ω), ε, or the permittivity [REU2008].

Prof. Gibson (OSU) Research Projects GSS 2014 17 / 34

Page 25: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Electromagnetics Random Polarization

Random Polarization

We can define the random polarization P(t, x; τ) to be the solution to

τ P + P = ε0εdE

where τ is a random variable with PDF f (τ), for example,

f (τ) =1

τb − τa

for a uniform distribution.The electric field depends on the macroscopic polarization, which we taketo be the expected value of the random polarization at each point (t, x)

P(t, x) =

∫ τb

τa

P(t, x; τ)f (τ)dτ.

Prof. Gibson (OSU) Research Projects GSS 2014 18 / 34

Page 26: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Electromagnetics Random Polarization

Polynomial Chaos

Apply Polynomial Chaos method to approximate the random polarization

τ P + P = ε0(εs − ε∞)E , τ = τ(ξ) = rξ + m

resulting in(rM + mI )~α + ~α = ε0(εs − ε∞)E ~e1

orA~α + ~α = ~g .

The macroscopic polarization, the expected value of the randompolarization at each point (t, x), is simply

P(t, x ; F ) = α0(t, x).

Prof. Gibson (OSU) Research Projects GSS 2014 19 / 34

Page 27: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Electromagnetics Random Polarization

Polynomial Chaos

Apply Polynomial Chaos method to approximate the random polarization

τ P + P = ε0(εs − ε∞)E , τ = τ(ξ) = rξ + m

resulting in(rM + mI )~α + ~α = ε0(εs − ε∞)E ~e1

orA~α + ~α = ~g .

The macroscopic polarization, the expected value of the randompolarization at each point (t, x), is simply

P(t, x ; F ) = α0(t, x).

Prof. Gibson (OSU) Research Projects GSS 2014 19 / 34

Page 28: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Electromagnetics Inverse Problems

Inverse Problems

Definition

An inverse problem estimates quantities indirectly by using measurementsof other quantities.

For example, a parameter estimation inverse problem attempts todetermine values of a parameter set q given (discrete) observations of(some) state variables.Examples:

distance of an object using echo-location (easily invertible)

amount of oil/water/cave in the ground using RADAR backscatter

geometry or composition of a defect using measurements of EM fields(CT, MRI, etc.)

Prof. Gibson (OSU) Research Projects GSS 2014 20 / 34

Page 29: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Electromagnetics Inverse Problems

Inverse Problems

Definition

An inverse problem estimates quantities indirectly by using measurementsof other quantities.

For example, a parameter estimation inverse problem attempts todetermine values of a parameter set q given (discrete) observations of(some) state variables.Examples:

distance of an object using echo-location (easily invertible)

amount of oil/water/cave in the ground using RADAR backscatter

geometry or composition of a defect using measurements of EM fields(CT, MRI, etc.)

Prof. Gibson (OSU) Research Projects GSS 2014 20 / 34

Page 30: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Electromagnetics Inverse Problems

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10−7

0

2

4

6

8

10

12

τ

f

Estimated density of τ as log normal

Initial estimate (*) Converged estimate (+)and true estimate (o)

Shown are the initial density function, the minimizing density function andthe true density function (the latter two being practically identical).

Prof. Gibson (OSU) Research Projects GSS 2014 21 / 34

Page 31: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Reservoir Networks

Outline

1 ElectromagneticsMaxwell’s EquationsNumerical AnalysisDispersive MediaInverse Problems

2 Reservoir NetworksRiver system and modeling equationsExamples of objective and constraintsRobust Optimization

3 Magneto-Hydrodynamic (MHD) generatorModelSolution MethodInverse Problem

Prof. Gibson (OSU) Research Projects GSS 2014 22 / 34

Page 32: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Reservoir Networks

Group Members

Department of Civil and Construction Engineering

Dr. Arturo Leon (PI)Dr. Duan Chen (Post-doc)Mahabub Alam (Ph.D. student)Luis Gomez-Cunya (Ph.D. student)Parnian Hosseini (Ph.D. student)Christopher Gifford-Miears (MS student)

Department of Mathematics

Dr. Nathan Gibson (Co-PI)Dr. Veronika Vasylkivska (Post-doc)

Department of Mechanical Engineering

Dr. Christopher Hoyle (Co-PI)Matthew McIntire (Ph.D. student)

Funded by BPA Technology Innovation Program: “Towards reduction of uncertainty in the operation of reservoir systems”

Prof. Gibson (OSU) Research Projects GSS 2014 23 / 34

Page 33: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Reservoir Networks River system and modeling equations

Simple River System

Consider this simple network system

Unknowns: flow discharge upstream Qu and downstream Qd , watersurface elevation downstream WSEd for each reach i = 1, 8.

Prof. Gibson (OSU) Research Projects GSS 2014 24 / 34

Page 34: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Reservoir Networks River system and modeling equations

Simulation of Unsteady Flows

Most free surface flows are unsteady and nonuniform.

Unsteady flows in river systems are typically simulated using one-dimensionalmodels.

Saint-Venant equations, PDEs representing conservation of mass andmomentum for a control volume:

B∂y

∂t+∂Q

∂x= 0, (1)

∂Q

∂t+

∂x

(Q2

A

)+ gA

(∂y

∂x+ Sf − S0

)= 0, (2)

where x is a distance along the channel in the longitudinal direction, t is time, yis a water depth, Q is a flow discharge, B is a width of the channel, g is anaccelaration due to gravity, A is a cross-sectional area of the flow, Sf is a frictionslope, S0 is a river bed slope.

Initial and boundary conditions are required to close the system.Prof. Gibson (OSU) Research Projects GSS 2014 25 / 34

Page 35: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Reservoir Networks Examples of objective and constraints

Objective and Constraints

The broad context of the problem of interest is a PDEs-constrained optimalcontrol problem with uncertainty. In particular, an objective is expected to beoptimized by choices of a control functions.

Let P be a price, and E be a produced hydro-power energy, then R = P · E is arevenue.

Objective: max R,

Let Qt denote a turbine flow, Qs a spill flow, and S a storage.

Examples of additional constraints:

0 < Qnt < Qcrit ,

0 ≤ Qns ,

0 < |Qn+1t + Qn+1

s − Qnt − Qn

s | < Allowed Value,

Smin < Sn < Smax.

Prof. Gibson (OSU) Research Projects GSS 2014 26 / 34

Page 36: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Reservoir Networks Examples of objective and constraints

Numerical Experiments. Stochastic Parametrizations

Experiment 1: 5 predictions

Prof. Gibson (OSU) Research Projects GSS 2014 27 / 34

Page 37: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Reservoir Networks Robust Optimization

Robust Optimization

The deterministic constrained optimization problem can be formulated as

find maxq

R(q), (3)

subject to y(x , t; q) < ycrit(x), (4)

where q is a control vector.

We assume that price is deterministic and reformulate our problem as follows

find maxq

(E [R(q)]− αVar[R(q)]

), (5)

subject to P(y(x , t; q) < ycrit(x)) > R0, (6)

where α > 0 is a risk tolerance coefficient, R0 is a reliability level the decision

maker wishes to achieve.

Prof. Gibson (OSU) Research Projects GSS 2014 28 / 34

Page 38: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Magneto-Hydrodynamic (MHD) generator

Outline

1 ElectromagneticsMaxwell’s EquationsNumerical AnalysisDispersive MediaInverse Problems

2 Reservoir NetworksRiver system and modeling equationsExamples of objective and constraintsRobust Optimization

3 Magneto-Hydrodynamic (MHD) generatorModelSolution MethodInverse Problem

Prof. Gibson (OSU) Research Projects GSS 2014 29 / 34

Page 39: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Magneto-Hydrodynamic (MHD) generator

MHD generator

Solenoid

Solenoid

Electrode Partially Ionized Gas

Magnetic Field

Gas Velocity

Current

Funded by National Energy Technology Laboratory Office of Research & Development Fund: “Applying Computational Methods

to Determine the Electric Current Densities in a Magnetohydrodynamic Generator Channel from External Magnetic Flux Density

Measurements”, with Vrushali Bokil (Co-PI)

Prof. Gibson (OSU) Research Projects GSS 2014 30 / 34

Page 40: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Magneto-Hydrodynamic (MHD) generator

A slice of simplified generator geometry

External Casing (Copper?)

Electrode (Ceramics?)

Insulating Segment

Generator Channel

X1

S2S1

C

X2

E1

S3 S4E2

Prof. Gibson (OSU) Research Projects GSS 2014 31 / 34

Page 41: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Magneto-Hydrodynamic (MHD) generator Model

We assume the fluid-electro-magnetic system model by the followingsystem of ten non-linear, partial differential equations.

ρ (∂t − u · ∇) u = j× b−∇p Momentum (7a)

ρ∂t

„u · u

2+ U +

εe · e

2+

b · b

«(7b)

+ ρu · ∇„

u · u

2+ U

«= −∇ · (up)−∇ ·

“µ−1e× b

”Energy (7c)

(∂t + v · ∇)ρ = −ρ∇ · v Mass (7d)

∂tεe + j = ∇× µ−1b Ampere’s Law (7e)

∂t b = −∇× e Faraday’s Law (7f)

j = σ(e + u× b) +β√

b · bj× b Ohm’s Law (7g)

∇ · εe = ρc Gauss’ Law (7h)

∇ · b = 0 Gauss’ Law for Magnetism (7i)

With the following variable definitions:u gas velocityp pressureρ gas densityU thermal energye electric fieldb magnetic flux density fieldj current density fieldρc charge densityε electrical permitivity (tensor)µ magnetic permeability (tensor)σ conductivity (tensor)β Hall parameter (tensor)

Prof. Gibson (OSU) Research Projects GSS 2014 32 / 34

Page 42: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Magneto-Hydrodynamic (MHD) generator Solution Method

Fixed Point Approach

Find Induced magnetic field givencurrent density

Find induced electric field given induced magnetic field, plasma velocity field, and current density

Update current using Ohm’s law

Electro-Magnetic System Iterates until convergence

Find velocity vector u given current and induced field

Magnetic Field Data

Electric Field Data

Current Density Field Data

Plasma Velocity Field Data

Initial Guess

Fluid Mechanics System iterates until convergence

Prof. Gibson (OSU) Research Projects GSS 2014 33 / 34

Page 43: Research Projects in Math Modeling and Numerical Analysissites.science.oregonstate.edu/~gibsonn/GradSem2014.pdfResearch Projects in Math Modeling and Numerical Analysis Prof. Nathan

Magneto-Hydrodynamic (MHD) generator Inverse Problem

Inverse Problem

Domain 2 μ=μ*>1

Domain 1 μ=1

Domain 1 μ=1

Source Current

Noisy Sensor

Prof. Gibson (OSU) Research Projects GSS 2014 34 / 34