Rekayasa Geoteknik II (Print)

68
01/10/2012 1 DAYA DUKUNG FONDASI DALAM TIANG PANCANG DAN TIANG BOR Idrus Ir M.Sc IPM STAFF PENGAJAR JURUSAN TEKNIK SIPIL ISTN MEMBER OF HATTI MEMBER OF ISSMGE PERHITUNGAN PONDASI Daya Dukung Aksial Pile Daya Dukung Lateral Pile Analisis Group Pile

description

geoteknik

Transcript of Rekayasa Geoteknik II (Print)

  • 01/10/2012

    1

    DAYA DUKUNG FONDASI DALAM

    TIANG PANCANG DAN TIANG BOR

    Idrus Ir M.Sc IPM

    STAFF PENGAJAR JURUSAN TEKNIK SIPIL ISTNMEMBER OF HATTI

    MEMBER OF ISSMGE

    PERHITUNGAN

    PONDASI

    Daya Dukung Aksial Pile

    Daya Dukung Lateral PileAnalisis Group Pile

  • 01/10/2012

    2

  • 01/10/2012

    3

    Load Transfer Friksi

    Load Transfer End Bearing

    displacement

    Friksi

    0.4% Diameter Pile

    displacement

    EndBearing

    6% Diameter Pile

  • 01/10/2012

    4

    AXIAL LOAD TEST PILE #14

    Lo

    ad

    (T

    on

    s)

    Settlement (mm)

    Friction(Elastic Zone)

  • 01/10/2012

    5

    Settlement (mm)

    AXIAL LOAD TEST FOR PILE #22L=45m, f=60 cm

  • 01/10/2012

    6

    Rumus umum daya dukung aksial fondasi dalam:

    Qult = Qs + Qp

    Qs = Tahanan Geser Selimut TiangQp = Tahanan Ujung Tiang

    DAYA DUKUNG AKSIAL

    Qu = Qp + Qs

    Qp

    Qs =2pir l ( C)+ 2pir l (k v tan)

    .S.F

    QQ uall =

    =Ap(c Nc +q Nq)

    l

    v

    v

  • 01/10/2012

    7

    Jenis HammerCara uji SPT

    C (t/m2) = 2/3 N

    N-SPT = Jumlah pukulan untuk memasukkan split spoon sedalam 30 cm

    SPT (Standard Penetration Test)

    Relationship between Cohesion and N-Value (Cohesive soil)

    2/3 N

  • 01/10/2012

    8

    Relationship between Angle of Internal Friction and N-Value (Sandy Soil)

    Faktor Koreksi N SPT Lapangan seusai dengan

    Metoda Pelaksanaan Test:

    Country

    Hammer Type

    Hammer Release

    Estimated Rod Energy (%)

    Correction Factor fo r 60% Rod Energy

    Donut

    Free Fall

    78

    78/60 = 1.30 Japan

    Donut

    Rope an Pulley with special throw release

    67

    67/60 = 1.12

    Safety

    Rope and Pulley

    60

    60/60 = 1.00

    USA

    Donut

    Rope and Pulley

    45

    45/60 = 0.75 Argentina

    Donut

    Rope and Pulley

    45

    45/60 = 0.75

    Safety

    Rope and Pulley

    60

    60/60 = 1.00

    USA

    Donut

    Rope and Pulley

    45

    45/60 = 0.75 Argentina

    Donut

    Rope and Pulley

    45

    45/60 = 0.75 Donut

    Free Fall

    60

    60/60 = 1.00

    China Donut

    Rope and Pulley

    50

    50/60 = 0.83

    Harga N free fall tidak perlu dikoreksi krn menjadi standard

    Harga N rope and pulley harus dikalikan dengan 0.70

  • 01/10/2012

    9

    CPT (Cone Penetration Test) atau Sondir CPT (Cone Penetration Test) atau Sondir

    C= qc/(15 sampai 20) dalam kg/cm2

    Tahanan Geser SelimutTanah Kohesif

    Tiang PancangTiang Bor

    Tanah PasirTiang PancangTiang Bor

  • 01/10/2012

    10

    Tahanan Geser Selimut Tiang :

    1. Tahanan geser selimut tiang yang merupakan kontribusi dari Cohesi Tanah adalah:

    Qs = . Cu. Li. PDimana, = Koefisien adhesi antara tanah dan tiangCu = Undrained CohesionLi = Panjang lapisan tanahp = keliling tiang

    Tahanan Geser Selimut Tiang :

    2. Tahanan geser selimut tiang yang merupakan kontribusi dari sudut geser dalam () adalah:

    Qs = fi.Li.pDimana,fi = tahanan geser selimut tiang per satuan luasfi = Ko . o. Tan (2/3 . )Li = Panjang lapisan tanahp = keliling tiang

  • 01/10/2012

    11

    Faktor Adhesi () pada Tanah Kohesif untuk Tiang Pancang :

    1. API Metode - 2, 1986

    Faktor Adhesi () pada Tanah Kohesif untuk Tiang Pancang :

    2. Tomlinson, 1977 :Tergantung pada

    kondisi tanah.

  • 01/10/2012

    12

    Faktor Adhesi () pada Tanah Kohesif untuk Tiang Bor :

    1. Reese and Wright, 1977 :Manurut Reese dan Wright koefisien untuk bored pile adalah 0.55

    2. Kulhawy, 1984( k N / m )

    U n d r a in e d S h e a r in g R e s is t a n c e , s ( t s f )

    Ad

    hesio

    n f

    acto

    r (

    )

    T o m l in s o n , 1 9 5 7 ( c o n c r e t e p ile s )

    6 5 U 8 4 1 C lo a d t e s t s

    = 0 . 2 1 + 0 .2 6 p / s ( < 1 )

    u

    a u

    S h a f t s in c o m p r e s s io n

    S h a f t s in u p l i f t

    2

    D a t a g r o u p 1

    D a t a g r o u p 2

    D a t a g r o u p 3

    D a t a g r o u p 3

    D a t a g r o u p 2

    D a t a g r o u p 1

    Perbandingan Harga Faktor Adhesi () dari Beberapa Metede pada Tanah Kohesif untuk

    Tiang Bor :

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    1.20

    0 50 100 150 200 250 300

    S u (kN/m 2)

    ad

    hes

    ion

    fa

    cto

    r

    Design =( Kulhawy + Reese)/2Kulhawy

    ReeseC ore Team

  • 01/10/2012

    13

    Faktor Adhesi () pada Tanah Kohesif untuk Tiang Bor :

    3. Reese and ONeil, 1988 :

    Undrained Shear Strength, Su

    Value of

    < 2 tsf 2 3 tsf 3 4 tsf 4 5 tsf 5 6 tsf 6 7 tsf 7 8 tsf 8 9 tsf > 9 tsf

    0.55 0.49 0.42 0.38 0.35 0.33 0.32 0.31

    Treat as Rock

    Tahanan Geser Selimut Tiang dari Tanah Berpasir

    Menurut Naval Engineering Facilities Command:

    1. Tiang Pancang :

    Qs = 0.2 x (N SPT) x Li x p (ton)

    2. Tiang Bor :

    Qs = 0.1 x (N SPT) x Li x p (ton)

  • 01/10/2012

    14

    Tahanan Geser Selimut Tiang Bor pada Tanah

    Berpasir Rojiani, Duncan and Barker (1991)

    = 0.11 N (t/m2)

    = 0.28 N (t/m2)

    (=27.5 t/m2)

    =0.32 N (t/m2) N < 53

    Z=depth below ground surface

    0.20 N

    Tahanan UjungTanah C dan untuk dasar teori

    Tanah LempungTiang PancangTiang Bor

    Tanah PasirTiang PancangTiang Bor

  • 01/10/2012

    15

    Tahanan Unjung Tiang

    - dan CuTahanan Ujung Tiang Pada Umunya dinyatakan sebagai

    persamaan :

    Qp = Ap (c Nc* + q Nq*)

    Dimana,

    Qp = Tahanan Ujung Ultimate

    Ap = Luas Penampang Tiang

    C = Undrained kohesi

    q = Over Bourden Pressure

    Nc, Nq= Faktor daya dukung.

    Beberapa Motode Penentuan Faktor Daya Dukung

    - dan Cu

    1. Meyerhoff, 1976

    0 10 20 30 40 45

    2

    1

    4

    6

    810

    20

    40

    60

    80100

    200

    400

    600

    800

    1000

    an

    d

    Soil friction angle, (deg)

  • 01/10/2012

    16

    Beberapa Motode Penentuan Faktor Daya Dukung:

    2. Vesic, 1977Nc = (Nq 1) cot

    Dimana, Nq = f(Irr)Nq* = 4/3 ln (Irr + 1) + pipipipi/2 +1

    Irr = Ir Nilai Ir ditunjukkan pada tabel dibawah:

    Soil type Ir Sand 70 150 Silts and clays (drained condition) 50 100 Clays (undrained condition) 100 200

    - dan Cu

    Beberapa Motode Penentuan Faktor Daya Dukung:

    3. Janbu, 1976

    S oil fr ictio n ang le , (deg)

    0 10 20 30 40 4 51

    2

    4

    6

    8

    10

    20

    40

    60

    80

    1 00

    2 00

    4 00

    6 00

    8 0010 00

    an

    d

    - dan Cu

  • 01/10/2012

    17

    Daya Dukung Ujung untuk Tanah Kohesif Cu

    Tiang Pancang dan Tiang Bor:

    Qp = 9 x Cu x Ap

    Daya Dukung Ujung untuk Tanah Pasiran

    Tiang Pancang :

    Qp = 40 x N SPT x Ap

    Dimana,NSPT = (N1+N2)/2

    N1= harga rata-rata N dari dasar ke 10-D keatasN2= harga rata-rata N dari dasar ke 4-D kebawah

  • 01/10/2012

    18

    Nilai N SPT Desain

    adalah:

    Ndesain = (N1 +N2)

    NILAI N SPT UNTUK DESIGN TAHANAN UJUNG PADA TANAH PASIRAN :

    D

    (4 x D) dirata-rata untuk desain tahanan ujung = N2

    (10 x D) dirata-rata untuk desain tahanan ujung = N1

    Ground Surface

    Tiang Pancang

    Daya Dukung Ujung untuk Tanah Pasiran Tiang BorTiang BorTiang BorTiang Bor

    =7 N (t/m2)=400 (t/m2)

    qp = 7 N (t/m2) < 400 (t/m2)

  • 01/10/2012

    19

    Daya Dukung Ujung Tiang Bor Tanah Pasiran :

    Qb = v.Nq.Ab

    Kulhawy, 1983

    DAYA DUKUNG AKSIAL

    Qu = Qp + Qs

    Qp

    Qs =2pir l ( C)+ 2pir l (k v tan)

    .S.F

    QQ uall =

    =Ap(c Nc +q Nq)

    l

    v

    v

  • 01/10/2012

    20

    Summary

    qp

    Clay Sand

    Pancang PancangTiang Bor Tiang Bor

    C C

    Untuk PancangAPI

    Untuk Tiang BorKulhawy, 84Reese, 88

    0.2 N

    (Meyerhof)

    0.2 N

    (Rata2 antaraMeyerhof, 76 danReese+Wright, 77)

    9999 C 40 N< 1600 t/m2N=(N1+N2)/2

    7 N (t/m2) < 400 (t/m2)

    (Reese+Wrihgt, 77) (Meyerhof)

    Pult = 2pir l + pir2 qp

    Faktor Adhesi () pada Tanah Kohesif untuk Tiang Pancang :

    1. API Metode - 2, 1986

  • 01/10/2012

    21

    Faktor Adhesi () pada Tanah Kohesif untuk Tiang Bor :

    1. Reese and Wright, 1977 :Manurut Reese dan Wright koefisien untuk bored pile adalah 0.55

    2. Kulhawy, 1984( k N / m )

    U n d r a in e d S h e a r in g R e s is t a n c e , s ( t s f )

    Ad

    hesio

    n f

    acto

    r (

    )

    T o m l in s o n , 1 9 5 7 ( c o n c r e t e p ile s )

    6 5 U 8 4 1 C lo a d t e s t s

    = 0 . 2 1 + 0 .2 6 p / s ( < 1 )

    u

    a u

    S h a f t s in c o m p r e s s io n

    S h a f t s in u p l i f t

    2

    D a t a g r o u p 1

    D a t a g r o u p 2

    D a t a g r o u p 3

    D a t a g r o u p 3

    D a t a g r o u p 2

    D a t a g r o u p 1

    D

    (4 x D)dirata-rata untukdesain tahanan ujung = N2

    (10 x D)dirata-rata untukdesain tahanan ujung = N1

    Ground Surface

    Tiang Pancang

    Ndesain = (N1 +N2)

  • 01/10/2012

    22

    SF Criterion Based on Canadian Foundation Engineering Manual (1992)

    SF Criterion Based on Tomlinson (1977)

  • 01/10/2012

    23

    Lensa Pada Group Tiang:

    (Tomlinson, 1977)

    Ketebalan Lapisan Tanah Yang Harus Diperhitungkan Dalam

    Perhitungan Daya Dukung :

    3-4B

    a=4B

    b=6-8 B

    Minimal kedalaman penyelidikan tanah adalah sampai 4 diameter tiang (atau 5 m) dibawah dasar pondasi

    3-4B

    a=4B

    b=6-8 B

    3-4B3-4B

    a=4B

    b=6-8 B

    Minimal kedalaman penyelidikan tanah adalah sampai 4 diameter tiang (atau 5 m) dibawah dasar pondasi

  • 01/10/2012

    24

    Cross section of Soil Investigation

    28.20R1

    32.20R2

    36.95R5

    36.9738.2038.20R5 R5

    38.20R5 R2 R1

    38

    20

    2221

    78

    4488

    47

    21

    29

    2734

    24

    1918

    27

    3224

    23

    22

    41

    25

    1921

    BT-2

    18

    20

    33

    22

    22

    24

    19

    18

    17

    18

    50

    37

    BH-201

    3

    10

    5

    31.0036.95

    R1 R3R2

    38.20 38.2031.00

    R4R4

    43.20

    R5R3

    38.20 36.95

    R2R5

    38.20

    R1

    66

    32

    26

    30

    16

    80

    88

    36

    29

    27

    50

    3334

    45

    912

    32

    54

    62

    60

    39

    33

    50

    18

    26

    21

    90

    8

    6

    10

    10

    6

    BT-1

    Proposed Additional Soil Investigation

    Proposed Additional Soil Investigation

    BH-201 BT-02

    BT-01BH-202

    Qult = 1610 ton

    East Side (STA 1+050)

    45m

    Bored Pile Diameter 1,5m, panjang 45m

  • 01/10/2012

    25

    Very stiff

    Very stiff

    Very stiff

    Soft

    Hard

    Hard

    Dense

    Dense

    Axial Capacity of Single Bored PileBased on Data at Sta 1+050

    Positive Qb Cu As or 0.2N As (Ton)

    1 0.0 - 2.0 2.02 2.0 - 6.0 4.0 Clayey Silts 3 2.0 0.80 1.6 30.8 31 77.3 108.1 433 6.0 - 9.0 3.0 Clayey Sand 10 25 4.0 14.1 45 218.8 263.7 1054 9.0 - 11.5 2.5 Clayey Sand 37 30 14.8 43.6 88 618.5 707.0 2835 11.5 - 12.5 1.0 Sandstone 80 40 20.0 23.6 112 356.9 468.9 1886 12.5 - 15.0 2.5 Clayey Silts 33 22.4 0.46 10.3 121.6 234 237.9 471.6 1897 15.0 - 19.0 4.0 Clayey Silts 22 15.0 0.49 7.3 137.5 371 162.2 533.4 2138 19.0 - 22.0 3.0 Silty Clay 15 10.2 0.53 5.4 75.9 447 299.2 746.2 2989 22.0 - 30.0 8.0 Silty Clay 21 14.3 0.49 7.0 264.6 712 302.8 1014.4 40610 30.0 - 32.0 2.0 Silty Clay 39 26.5 0.45 12.0 112.9 824 245.1 1069.6 42811 32.0 - 33.0 1.0 Silty Clay 23 15.6 0.48 7.6 35.7 860 248.7 1108.9 44412 33.0 - 34.0 1.0 Silty Clay 22 15.0 0.49 7.3 34.4 895 270.4 1164.9 46613 34.0 - 35.0 1.0 Silty Clay 23 15.6 0.48 7.6 35.7 930 288.4 1218.6 48714 35.0 - 36.0 1.0 Silty Clay 24 16.3 0.48 7.8 37.0 967 299.2 1266.4 50715 36.0 - 37.0 1.0 Silty Clay 28 19.0 0.47 8.9 42.2 1009 274.0 1283.3 51316 37.0 - 38.0 1.0 Silty Clay 28 19.0 0.47 8.9 42.2 1051 259.6 1311.0 52417 38.0 - 39.0 1.0 Silty Clay 27 18.4 0.47 8.7 40.9 1092 227.1 1319.4 52818 39.0 - 40.0 1.0 Silty Clay 21 14.3 0.49 7.0 33.1 1125 237.9 1363.3 54519 40.0 - 41.0 1.0 Silty Clay 21 14.3 0.49 7.0 33.1 1158 248.7 1407.2 56320 41.0 - 42.0 1.0 Silty Clay 23 15.6 0.48 7.6 35.7 1194 302.8 1497.0 59921 42.0 45.0 3.0 Silty Clay 28 19.0 0.47 8.9 126.5 1321 254.2 1574.8 63022 45.0 - 47.0 2.0 Silty Clay 28 19.0 0.47 8.9 84.3 1405 205.5 1610.4 64423 47.0 - 50.0 3.0 Silty Clay 19 12.9 0.50 6.5 91.4 1496 227.1 1723.5 68924 50.0 - 55.5 5.5 Silty Clay 21 14.3 0.49 7.0 181.9 1678 1618.5 3296.8 131925 55.5 - 60.5 5.0 Silty sand 60 40 20.0 116.6 1795 1618.5 3413.4 1365

    No. Depth Tebal Lapisan (m) Deskripsi Qult (Ton)Qall (ton) SF = 2.5

    Pile Cap

    Skin Friction (ton) Kumulatif Friction (ton)

    End Bearing (ton)N-SPT c (t/m2)

    Unit Skin Frinction

    (t/m2)

  • 01/10/2012

    26

    Medium stiff

    Stiff

    Hard

    Very Hard

    Hard

    Very stiff

    Dense

    Dense

    Axial Capacity of Single Bored PileBased on Data at Sta 0+490

    Flyover CirebonSkin Friction (ton)

    Positive Qb

    Cu As or 0.2N As (Ton)1 0.0 - 3.0 3.0 Clayey Silts 8 5.2 0.55 40.1 40 82.7 122.82 3.0 - 6.0 3.0 Clayey Silts 8 5.2 0.55 40.1 80 82.7 162.83 6.0 - 9.0 3.0 Clayey Silts 8 5.2 0.55 40.1 120 103.4 223.64 9.0 - 11.6 2.6 Clayey Silts 12 7.8 0.49 47.0 167 737.8 905.05 11.6 - 12.9 1.3 Tuffaceous Sand 90 35 30.6 198 450.8 648.76 12.9 - 17.0 4.1 Silty Sand 22 30 42.5 240 320.5 560.87 17.0 - 24.0 7.0 Silty Clay 31 20.2 0.43 284.2 525 620.3 1144.88 24.0 - 30.2 6.2 Tuffaceous Silt 60 39.0 0.41 460.9 985 408.3 1393.89 30.2 - 31.0 0.9 Tuffaceous Silt 45 29.3 0.41 48.6 1034 389.4 1423.410 31.0 - 32.0 1.0 Tuffaceous Silt 34 22.1 0.42 44.1 1078 351.5 1429.711 32.0 - 33.0 1.0 Tuffaceous Silt 34 22.1 0.42 44.1 1122 351.5 1473.812 33.0 - 34.0 1.0 Tuffaceous Silt 33 21.5 0.43 43.0 1165 341.1 1506.413 34.0 - 35.0 1.0 Tuffaceous Silt 33 21.5 0.43 43.0 1208 341.1 1549.414 35.0 - 36.0 1.0 Tuffaceous Silt 34 22.1 0.42 44.1 1252 351.5 1603.915 36.0 - 37.0 1.0 Tuffaceous Silt 36 23.4 0.42 46.5 1299 372.2 1671.116 37.0 - 38.0 1.0 Tuffaceous Silt 38 24.7 0.42 48.9 1348 392.8 1740.717 38.0 - 39.0 1.0 Tuffaceous Silt 27 17.6 0.43 35.9 1384 279.1 1662.818 39.0 - 40.0 1.0 Tuffaceous Silt 29 18.9 0.43 38.2 1422 299.8 1721.719 40.0 - 41.0 1.0 Tuffaceous Silt 29 18.9 0.43 38.2 1460 299.8 1759.920 41.0 - 42.6 1.6 Tuffaceous Silt 30 19.5 0.43 63.1 1523 237.8 1761.021 42.6 - 46.0 3.4 Tuffaceous Silt 23 15.0 0.44 105.8 1629 237.8 1866.822 46.0 - 46.0 0.0 Tuffaceous Silt 23 15.0 0.44 0.0 1629 620.3 2249.3

    N-SPT c (t/m2) No. Depth Tebal Lapisan (m) Deskripsi Kumulatif Friction (ton) Qult (Ton)End Bearing (ton)

    2.41.0

    45.0

  • 01/10/2012

    27

    29 25 15 0.5 7.5 112.5 108 175 242

    27 20 12 0.5 6.0 30 144 210 300

    314 430

    Prediksi Daya Dukung Tiang PancangTambak Lorok

    rope and pulley (bukan free falling)

    Based on Bored P-0 1.20

    Skin Friction End Bearing

    0.01 0.0 - 1.0 1.0 Silty Gravel 0 0.0 1.00 0.0 0 0 02 1.0 - 2.0 1.0 Silty Gravel 0 0.0 1.00 0.0 0 0 03 2.0 - 3.0 1.0 Silty sandy clay 5 3.0 0.80 9.0 9 31 404 3.0 - 4.0 1.0 Silty sandy clay 5 3.0 0.80 9.0 18 31 495 4.0 - 5.0 1.0 Silty sandy clay 7 4.2 0.62 9.8 28 43 716 5.0 - 6.0 1.0 Silty sandy clay 11 6.6 0.26 6.5 34 67 1027 6.0 - 7.0 1.0 Silty sandy clay 11 6.6 0.26 6.5 41 67 1088 7.0 - 8.0 1.0 Medium - Stiff clay 6 3.6 0.71 9.6 50 37 879 8.0 - 9.0 1.0 Medium - Stiff clay 20 12.0 0.40 18.1 69 122 19110 9.0 - 10.0 1.0 Tuffaceous 20 12.0 0.40 18.1 87 122 20911 10.0 - 11.0 1.0 Tuffaceous 31 18.6 0.40 28.0 115 189 30414 11.0 - 12.0 1.0 Tuffaceous 60 36.0 0.40 54.3 169 366 53515 12.0 - 13.0 1.0 Tuffaceous 60 36.0 0.40 54.3 223 366 59016 13.0 - 14.0 1.0 Tuffaceous 37 22.2 0.40 33.5 257 226 48317 14.0 - 15.0 1.0 Tuffaceous 48 28.8 0.40 43.4 300 293 59318 15.0 - 16.0 1.0 Tuffaceous 51 30.6 0.40 46.1 346 311 65819 16.0 - 17.0 1.0 Tuffaceous Silty sand with Gravel 51 30.6 0.40 46.1 392 311 70420 17.0 - 18.0 1.0 Tuffaceous Silty sand with Gravel 57 34.2 0.40 51.6 444 348 79221 18.0 - 19.0 1.0 Tuffaceous Silty sand with Gravel 62 37.2 0.40 56.1 500 379 87922 19.0 - 20.0 1.0 Tuffaceous Silty sand with Gravel 62 37.2 0.40 56.1 556 379 93523 20.0 - 21.0 1.0 Tuffaceous Silty sand with Gravel 54 32.4 0.40 48.9 605 330 93524 21.0 - 22.0 1.0 Tuffaceous Silty sand with Gravel 54 32.4 0.40 48.9 654 330 98425 22.0 - 23.0 1.0 Tuffaceous Silty sand with Gravel 60 36.0 0.40 54.3 708 366 107526 23.0 - 24.0 1.0 Tuffaceous Silty sand with Gravel 60 36.0 0.40 54.3 763 366 112927 24.0 - 25.0 1.0 Tuffaceous Silty sand with Gravel 51 30.6 0.40 46.1 809 311 112028 25.0 - 26.0 1.0 Tuffaceous Silty sand with Gravel 51 30.6 0.40 46.1 855 311 116629 26.0 - 27.0 1.0 Tuffaceous Silty sand with Gravel 39 23.4 0.40 35.3 890 238 112830 27.0 - 28.0 1.0 Tuffaceous silt very stiff 39 23.4 0.40 35.3 925 238 116431 28.0 - 29.0 1.0 Tuffaceous silt very stiff 47 28.2 0.40 42.5 968 287 125532 29.0 - 30.0 1.0 Tuffaceous silt very stiff 47 28.2 0.40 42.5 1010 287 129733 30.0 - 31.0 1.0 Gravel with sand noncemented 60 12 45.2 1056 452 150834 31.0 - 32.0 1.0 Gravel with sand noncemented 60 12 45.2 1101 452 155335 32.0 - 33.0 1.0 Tuffaceous silty sand very stiff 30 18.0 0.40 27.1 1128 183 131136 33.0 - 34.0 1.0 Tuffaceous silty sand very stiff 35 21.0 0.40 31.7 1160 214 137337 34.0 - 35.0 1.0 Tuffaceous silty sand very stiff 35 21.0 0.40 31.7 1191 214 140538 35.0 - 36.0 1.0 Tuffaceous silty sand very stiff 42 25.2 0.40 38.0 1229 257 1486

    Maximum end bearing 400 ton/m2

    N-SPT c (t/m2) Cu As or

    0.2N As

    KsNo. DepthTebal

    Lapisan (m)

    DeskripsiC N atau qNq Ap

    Meyerhof

    Kumulatif Friction (ton) Qult (Ton)

    Bored Pile Kiara Condong

  • 01/10/2012

    28

    Pelaksanaan Bored Pile

    Pelaksanaan Bored Pile

  • 01/10/2012

    29

    Pelaksanaan Bored Pile

    Slurry Method

  • 01/10/2012

    30

    Casing Method

  • 01/10/2012

    31

    Method Statement of Bored Pile

    Casing Installation Drilling Process Cleaning at Final Depth

    Reinforcement Installation Pouring Concrete

    Temporary CasingRemoval

    Bored Piling Method of Works

    Drilling tools

    Auger Cleaning bucket

    Underreamer

    Roller bit core barrel

    Drill Bucket

    Round shank Core BarrelTapered rock auger

  • 01/10/2012

    32

    Sambungan Tiang Pancang

    Sambungan Tiang Pancang

  • 01/10/2012

    33

    Spesifikasiend bearing = 1 in/ 10 blows

    Final Set = ? In/10 blows

    Analisis Daya Dukung Berdasarkan Persamaan

    Gelombang

    A = cross-sectional area of pile Cm = relative displacement between two

    adjacent pile elements

    D?m = element displacement two time intervals back m

    D?m = element displacement in preceding time interval DT m

    Dm = current element displacement

    DT = time interval (At on Error! Reference source not found.c) E = modulus of elasticity of pile material Fm = element force = Cm Km Fam = unbalanced force in element causing acceleration (F = ma)

    g = gravitation constant J = damping constant, use Js for side

    value, Jp = point value Km = element springs = AE/L for pile

    segments K?m = soil springs = R/quake

    L = length of pile element Rm = side or point resistance including

    damping effects R?m = amount of estimated Pu on each

    element including the point j for 100

    m percent of Pu on point R3 through R11 of Error! Reference source not found.b are zero and R12 = Pu

    t = current instant in time = number of iterations x DT

    v = velocity of element m at DT

    v?m = velocity of element m at DT - 1 Wm = weight of pile segment m

  • 01/10/2012

    34

    Formula Dinamik ENR

    CShWQu R

    +

    =

    atau

    CSHEQu E+

    =.

    dimana:

    Qu : Kapasitas daya dukung ultimateWR : Berat ram (kN)h : Tinggi jatuh ram (cm)S : Penetrasi tiang untuk setiap pukulan(m/blow)C : konstanta, untuk drop hammer = 2.54 cm, untuk steam hammer = 0.254 cmAngka keamanan yang direkomendasikan adalah 6.

    Modified New ENR (recommended)

    +

    +

    +=

    PR

    pRR

    WWWnW

    CShWEQu

    2..

    dimana:

    E : Efisiensi hammer C : 0.254 cm untuk unit S dan h dalam centimeter Wp : Berat tiang

    n : koefisien restitusi antara ram dan pile cap Angka keamanan yang direkomendasikan adalah 6.

  • 01/10/2012

    35

    Harga Efisiensi Hammer (E)dan Koef. Restitusi (n)

    Tipe Hammer Efficiency, E

    Single and Double acting hammer 0.7 0.8

    Diesel Hammer 0.8 0.9 Drop Hammer 0.7 0.9

    Pile Material Coefficient of restitution, n

    Cast iron hammer and concrette pile (whitout cap) 0.4 0.5

    Wood cushion on steel pile 0.3 0.4 Wooden pile 0.25 0.3

    Michigan State Highway Commission

    +

    +

    +=

    PR

    pRE

    WWWnW

    CSHQu

    25.2

    dimana:

    HE : Rated hammer energy (from the factory) C : 0.254 cm Angka keamanan yang direkomendasikan adalah 6.

  • 01/10/2012

    36

    Dannishs Formula

    +

    =

    pp

    E

    E

    EALHES

    HEQu

    ..2..

    .

    dimana:

    Ep : Modulus Young dari material tiang

    L : Panjang tiang Ap : Luas penampang tiang Angka keamanan yang direkomendasikan bervariasi dari 3 hingga 6.

    Analisis Daya Dukung Berdasarkan Persamaan Gelombang

    A = cross-sectional area of pile Cm = relative displacement between two

    adjacent pile elements

    D?m = element displacement two time intervals back m

    D?m = element displacement in preceding time interval DT m

    Dm = current element displacement

    DT = time interval (At on Error!

    Reference source not found.c) E = modulus of elasticity of pile material Fm = element force = Cm Km

    Fam = unbalanced force in element causing acceleration (F = ma)

    g = gravitation constant J = damping constant, use Js for side

    value, Jp = point value

    Km = element springs = AE/L for pile segments

    K?m = soil springs = R/quake

    L = length of pile element Rm = side or point resistance including

    damping effects R?m = amount of estimated Pu on each

    element including the point j for 100

    m percent of Pu on point R3 through

    R11 of Error! Reference source not found.b are zero and R12 = Pu

    t = current instant in time = number of

    iterations x DT v = velocity of element m at DT

    v?m = velocity of element m at DT - 1 Wm = weight of pile segment m

  • 01/10/2012

    37

    Contoh Perhitungan

    Diameter PC Spun Pile : 400 mmBerat Tiang Per m : 200 kgBerat hammer pemancang : 3,45 (K 35)Tinggi Jatuh : 1,60 mDaya Dukung Ultimate yang diinginkan : 210 ton.Daya Dukung Ijin yang diinginkan : 50 ton.

    Perhitungan Final set :

    SF = 6 ultimated bearing Capacity = 300 ton.

    Contoh Perhitungan

    1. Menggunakan Modified ENR Formula

    pR

    pRRu WW

    WnWCS

    WEQ+

    +

    +=

    2.

    cms

    s

    s

    S

    xs

    Sx

    248,0)08,523(2106

    82,119,5342106783.102,7

    82,11300

    )02,7()254.0(82,11300

    6,342,36,35.042,3

    254.042,38,0300

    2

    =

    =

    =+

    +=

    +=

    +

    +

    +=

    Final Set adalah 0,248 cm/blow 2,48 cm/10 blows.

  • 01/10/2012

    38

    Contoh Perhitungan

    2. Menggunakan formula dari Michigan state Highway Commision (1965)

    Final Set adalah 0,225 cm/blow 2,25 cm/10 blows.

    pR

    pREu WW

    WnWCSHQ

    +

    +

    +

    =

    25.2

    cms

    s

    s

    s

    s

    S

    2258,0)74,67(300461,82,76300

    254.0461,8300

    6154.0254.075.13300

    6,342,36,35,042,3

    254.05,55.2300

    2

    =

    =

    =++

    =

    +

    =

    +

    +

    +

    =

    Contoh Perhitungan

    3. Menggunakan formula Danish

    Final Set adalah 0,03 cm/blow 0,3 cm/10 blows.

    pp

    E

    Eu

    EALHES

    HEQ

    .2..

    +

    =

    blowcmss

    s

    S

    S

    S

    /03,0025,9300

    75,2775,113000392.0

    75,2300

    321300095,4

    75,2300

    10.1,20765,02185,55,0

    5,55.0300

    7

    =

    =

    =++

    =

    +

    =

    +

    =

  • 01/10/2012

    39

    UJI BEBAN STATIS DAN

    INTERPRETASINYA

    Uji Beban : Uji beban pendahuluan (preliminaries test)

    dengan instrumentasi sampai kegagalan Uji beban pembuktian (proof test)

    Sampai 200% beban rencana, 100% atau kurang

    Uji Beban Statis dan Interpretasinya (1)

    Uji Beban : Slow Slow maintained test (cyclic) Quick : Quick maintained load

    Constant rate of penetration (CRP)Prinsip Interpretasi :

    Batas penurunan Rate of settlement (kecepatan penurunan) Kegagalan didefinisikan dari bentuk kurva load & deformation

    Uji Beban Tiang (tekan)

  • 01/10/2012

    40

    Uji Beban Statis dan Interpretasinya (2)

    Interpretasi uji beban :Cara DavissonCara MazurkiewicsCara Chin

    Kurva load vs settlement uji beban siklik

    0

    5

    10

    15

    20

    25

    30

    350 200 400 600 800 1000 1200 1400 1600

    APPLIED LOAD (TONS)

    SETT

    LEM

    ENT

    (MM

    )

    Cycle 1 Cycle 2 Cylce 3Cylce 4 Cycle 5 Cycle 6

  • 01/10/2012

    41

    0

    5

    10

    15

    20

    25

    30

    350 200 400 600 800 1000 1200 1400 1600

    APPLIED LOAD (TONS)

    SETT

    LEM

    ENT

    (MM

    )Cara Davisson

    Metode Davisson

    EAQL

    e =

    12015,0 Dx +=

    inch

    dimana e = penurunan elastis Q = beban uji yang diberikan L = panjang tiang A = luas penampang tiang E = modulus elastisitas tiang

    XQult = 1415 ton

    Cara Mazurkiewics

  • 01/10/2012

    42

    y = 0.0006x + 0.0036

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00SETTLEMENT (mm)

    SETT

    LEM

    ENT/

    LOA

    D (m

    m/to

    n)

    Cara Chin

    Metode Chin

    21 CCQ +=

    1

    1C

    Qu =

    Qu koreksi = 0,8 Qu

    1/Qult = 0,0006 Qult = 1666,67 ton Faktor reduksi = 20 % Qult koreksi = 1333 ton

    C2

    0

    5

    10

    15

    20

    250 200 400 600 800 1000 1200 1400 1600

    Loads (ton)

    Sett

    lem

    ent (

    mm

    )

    Cara Davisson untuk cylce ke-6

    Qult = 1505 ton

  • 01/10/2012

    43

    Cara Chin untuk cycle ke-6

    y = 0.0005x + 0.0036

    0

    0.002

    0.004

    0.006

    0.008

    0.01

    0.012

    0.014

    0.016

    0.018

    0 5 10 15 20 25Settlement (mm)

    Settl

    em

    en

    t/Lo

    ad

    (mm

    /ton

    )

    1/Qult = 0,0005 Qult = 2000 ton Faktor reduksi = 20 % Qult koreksi = 1600 ton

    NEGATIVE SKIN FRICTION :Terjadi kondisi dimana Pondasi direncanakan akan dipancang sampai

    lapisan tanah keras sementara tanah di atasnya adalah lapisan kompresibel,

    yang di atasnya terdapat timbunan. Tanah kompresibel ini akan mengalami

    konsolidasi akibat adanya pertambahan beban timbunan. Selama proses

    konsolidasi ini tanah akan bergerak relatif terhadap tiang. Sehingga,

    menghasilkan tahanan geser ke bawah di sekeliling tiang

  • 01/10/2012

    44

    NEGATIVE SKIN FRICTION :

    Daerah Negative Skin Friction

    Fill material

    Soft soil,Consolidating soil

    Bearing soil

  • 01/10/2012

    45

    METODA PERHITUNGAN NEGATIVE SKIN FRICTION : Negative Skin Friction pada Kondisi Un-Drained :

    dimana,

    = faktor adhesi

    Cu = undrained shear strength dari nilai N SPT

    Ks = Koeffisien lateral earth pressure.

    = interface sudut geser dalam antar tiang dan tanah.v = effective overbourden pressure.

    Prakash dan Sharma, 1990

    ( )zKsCuP

    vdiameterpile

    LbLcLfx

    LcLfxutseareafriction

    +=

    = ++=

    +=

    pi

    tan5,0

    lim

    tanah lempung tanah pasir

  • 01/10/2012

    46

    METODA PERHITUNGAN NEGATIVE SKIN FRICTION : Negative Skin Friction pada Kondisi Drained :

    dimana,

    o = Effective vertical stress at depth z

    f = pile diameter

    Le = panjang effective dari lapisan yang terkonsolidasi yang menimbulkannegative skin friction. Lc = 0.75 Le

    No = Non dimensional factor.

    +=

    =

    +=

    =

    =

    =

    LeLfz

    z

    LeLfz

    z

    negatif

    zRN

    zRQf

    000

    0

    )(

    pi

    pi

    Prakash dan Sharma, 1990

    METODA PERHITUNGAN NEGATIVE SKIN FRICTION :

    Non dimensional factor (No):

    Prakash dan Sharma, 1990

    Soil Type No

    a. Uncoated Pile

    - Sand 0.35 0.50

    - Silt 0.25 0.35

    - Clay 0.20 0.25

    b. Coated Pile with Bitumen SL pile : = 0.2 ton/m2

    Alternative Pelapisan Bitument :

    - Untuk mengurangi pengaruh terjadinya konsolidasi tanah lunak akibat timbunandi atasnya bisa diupayakan dengan melakukan pelapisan bitument asphalt padatiang pancang sebelum dilakukan pemancangan.

    - Pelapisan bitument dilakukan sepanjang lapisan lunak yang mengalami konsoli-dasi.

    - Dengan pelapisan bitument tersebut, negative skin friction yang terjadi bisa di-minimasi.

  • 01/10/2012

    47

    KAPASITAS IJIN TIANG YANG MENGALAMI NEGATIVE

    SKIN FRICTION (NSF):

    Prakash dan Sharma, 1990

    SFNSFultimate

    ijin

    =

    atau

    NSFSFultimate

    ijin =

    SF berkisar antara 2,0 3,0

  • 01/10/2012

    48

    Pile Group Efficiency

    Salah satu perilaku tiang group adalah ada group efficincy yang Berhubunan dengan parak tiang tunggal dalam group tiang:

    (Nav Doc, September 1986)

  • 01/10/2012

    49

    Pile Group Efficiency CONVERSE LABARRE FORMULA (n-1)m + (m-1)n = 1 - { ------------------------- } / 90 m n

    = Factor Effisiensi Group = arc tan d/s (in degree) m = jumlah baris n = jumlah pile pada satu baris d = diameter tiang s = jarak antara tiang ke tiang

    l

    m = 2 , n = 3 , d= 30 cm s=120 cm = arc tan 30/120

    s

    Transfer beban pada Group Tiang:

    (Tomlinso, 1977)

  • 01/10/2012

    50

    Settlement Analysis

    Consolidation Settlement

  • 01/10/2012

    51

    Seluruh dipikul air

    Seluruh dipikul Tanah

    U + U

    S

    pegas(tanah)

    kecepatan air ditentukan permeabilitas

    air

    0 0

    0

    PEMODELAN KONSOLIDASI PRIMER

    Akibat pertambahan beban kenaikan tekanan air pori

    Keluarnya air dari pori tekanan air pori kembali lagi (tanah settle)

    Kurva Test Konsolidasi

  • 01/10/2012

    52

    Persamaan untuk Menghitung Penurunan Konsolidasi (Normally Consolidated Clay)

    o

    avo

    o

    cc

    p

    pplog

    e1

    HC

    +

    +

    Dimana,

    p0 = tekanan efektif akibat berat sendiri

    pav = tambahan tekanan efektif akibat beban diatas lapisan kompresible

    e0 = initial void ratio

    Cc = compression index

    Hc = tebal lapisan lempung

    Calculation of Settlement (STA 0+490)

    ' 'b 'm 1 =o+s Cc eo s(t/m

    3) (t/m

    2) (t/m

    2) (t/m

    2) (t/m

    2) (m)

    1 0.0 - 3.0 3.02 3.0 - 6.0 3.03 6.0 - 9.0 3.04 9.0 - 11.6 2.65 11.6 - 12.9 1.36 12.9 - 17.0 4.17 17.0 - 24.0 7.08 24.0 - 26.5 2.59 26.5 30.0 3.510 30.0 - 33.0 3.0 0.7 2.1 1.1 4.04 5.1 0.05 0.6 0.0611 33.0 - 36.0 3.0 0.7 4.2 3.2 3.03 6.2 0.05 0.6 0.0312 36.0 - 39.0 3.0 0.7 6.3 5.3 2.36 7.6 0.05 0.6 0.0213 39.0 - 42.0 3.0 0.7 8.4 7.4 1.89 9.2 0.05 0.6 0.0114 42.0 - 44.0 2.0 0.7 9.8 9.1 1.65 10.8 0.07 0.55 0.0115 44.0 - 46.0 2.0 0.7 11.2 10.5 1.46 12.0 0.07 0.55 0.01

    0.13AB Value Correction 0.7

    0.09

    No. Depth Tebal Lapisan (m)

    Settlement (m)

    Settlement (m)

    31.5x0.7=22.0534.5x0.7=24.1537.5x0.7=26.2540.5x0.7=28.3543.0x0.7=30.1045.0x0.7=31.50

    o

    26.0927.1828.6130.2431.7532.96

    0.0070.0050.0040.0030.0020.0020.023

  • 01/10/2012

    53

    Contoh-Contoh Pemilihan Jenis Pondasi

    Location of Soil Investigation

    S-3

    S-1

    S-2

    S-4

    S-5

    S-6

  • 01/10/2012

    54

    Soil ProfileBH 1.0 (EL+0.473) BH 1.1 (EL+0.582) BH 1.2 (EL+1.895)

    BH 1.0 (EL+0.473) BH 1.1 (EL+0.582) BH 1.2 (EL+1.895) BH 1.3 (EL+0.942) BH 1.4 (EL+0.415)

    SPUN PILE PENETRATIONWITHOUT PRE-AUGER

    SPUN PILE PENETRATION

    WITH PRE-AUGER

    PIPE PILE PENETRATION

    ESTIMATED MAXIMUM

    ESTIMATED MAXIMUM

    ESTIMATED MAXIMUM STEEL

    ( = 600 mm, thickness = 140 mm)

    Figure 8 - Estimated Maximum Length of Pile Penetration (Tank-1)Maximum penetration for precast concrete pile

    Without preauger

    With preauger

  • 01/10/2012

    55

    BH 2.0 (EL+0.657) BH 2.1 (EL+0.406) BH 2.2 (EL+1.807) BH 2.3 (EL+1.987) BH 2.4 (EL+1.060)

    WITHOUT PRE-AUGERSPUN PILE PENETRATIONESTIMATED MAXIMUM

    ESTIMATED MAXIMUMSPUN PILE PENETRATIONWITH PRE-AUGER

    ESTIMATED MAXIMUM STEELPIPE PILE PENETRATION( = 600 mm,thickness = 140 mm)

    Figure 9 - Estimated Maximum Length of Pile Penetration (Tank-2)

    BH 1.0 (EL+0.473) BH 1.1 (EL+0.582) BH 1.2 (EL+1.895) BH 1.3 (EL+0.942) BH 1.4 (EL+0.415)

    SPUN PILE PENETRATIONWITHOUT PRE-AUGER

    SPUN PILE PENETRATION

    WITH PRE-AUGER

    PIPE PILE PENETRATION

    ESTIMATED MAXIMUM

    ESTIMATED MAXIMUM

    ESTIMATED MAXIMUM STEEL

    ( = 600 mm, thickness = 140 mm)

    Figure 8 - Estimated Maximum Length of Pile Penetration (Tank-1)

    Maximum penetration for steel pipe pileRecommended thickness 16 mm

    BH 2.0 (EL+0.657) BH 2.1 (EL+0.406) BH 2.2 (EL+1.807) BH 2.3 (EL+1.987) BH 2.4 (EL+1.060)

    WITHOUT PRE-AUGERSPUN PILE PENETRATIONESTIMATED MAXIMUM

    ESTIMATED MAXIMUMSPUN PILE PENETRATIONWITH PRE-AUGER

    ESTIMATED MAXIMUM STEELPIPE PILE PENETRATION( = 600 mm,thickness = 140 mm)

    Figure 9 - Estimated Maximum Length of Pile Penetration (Tank-2)

    BH 1.0 (EL+0.473) BH 1.1 (EL+0.582) BH 1.2 (EL+1.895) BH 1.3 (EL+0.942) BH 1.4 (EL+0.415)

    SPUN PILE PENETRATIONWITHOUT PRE-AUGER

    SPUN PILE PENETRATION

    WITH PRE-AUGER

    PIPE PILE PENETRATION

    ESTIMATED MAXIMUM

    ESTIMATED MAXIMUM

    ESTIMATED MAXIMUM STEEL

    ( = 600 mm, thickness = 140 mm)

    Figure 8 - Estimated Maximum Length of Pile Penetration (Tank-1)Recommended foundation for large tension load

    Bored pile

  • 01/10/2012

    56

    PEMANCANGAN

    Pemancangan menggunakan Pontoon Hammer dng minimum energy 6 ton.m

    -16 lws

    -12 lws

    URUTAN PEMANCANGAN DAN ANCHORING

    1 2 3 4 5

    Pemancangan sampai batas maksimal yang dapat ditembus (5.0 m) menggunakan minimal K-60

    Pembersihan tanah / kotoran didalam pipa

    Pemboran tanah dalam pipa untuk anchor

    Pemasangan Ground anchor

    Grouting & CuringPenegangan kabel untuk kelurusan

    Pengecoran isi dalam tiang dengan menggunakan tremi, bucket cor diangkat menggunakan crane

    Pengecoran plat form dan curing

    Stresing kabelPengecoran kepala anchor.

  • 01/10/2012

    57

    5.0

    0 m

    5.0

    0 m

    6.30 m 5.00 m

    7.00 m

    DAMPAK PENGGALIAN TERHADAP

    KESTABILAN TANAH

    HASIL-HASIL PENYELIDIKAN TANAH (BH-355)

    B.04

    mixed with fines material

    gravels & boulders andesite

    KETERANGAN :

    : Collovial deposit

    B.03BH-355

    B.05BH-355

    G.W.L

    TO JAKARTA

    BH-355B.02

    : Siltstone / claystone

    G.W.L

    0

    1

    3

    5

    10 M

    G.W.L

    BH-355

    TO BANDUNG

    B.01BH-355

    z = 3.00 3.60

    m

    qu = 1.71

    kg/cm2

    c = 0.082

    kg/cm2

    = 80qc = 5 kg/cm

    2

    z = 3.50 4.00

    m

    qu = 1.1 kg/cm2

    c = 0.482

    kg/cm2

    = 230qc = 25 kg/cm

    2

  • 01/10/2012

    58

    TIPIKAL BENTUK PIER

    Tampak Atas

    Tampak Samping Tampak Depan

    Transfer beban pada Group Tiang:

    (Tomlinso, 1977)

  • 01/10/2012

    59

    Berikut ini adalah jarak Pile agar effiency group

    menjadi optimal :

    (Tomlinson, 1977)

    Berikut ini adalah jarak Pile agar effiency group

    menjadi optimal :

    (Tomlinson, 1977)

  • 01/10/2012

    60

    P existing tunggal pada Pile Group

    8

    2

    4 5 6

    7

    1

    9

    3

    X

    Y

    My

    Mx

    X

    Y

    P existing tunggal pada Pile GroupP Group My . X Mx . Y

    P singgle = --------------- + --------------------- + -----------------N X 2 Y 2

    P Singgle = Gaya Aksial yang bekerja pada tiang tunggal di koord ( x , y )P Group = Gaya Aksil yang bekerja pada Pile GroupN = Jumlah Tiang pada Pile GroupMy = Momen yang bekerja pada Pile Group arah sumbu yMx = Momen yang bekerja pada Pile Group arah sumbu xX & Y = Koordinat P singgle yang akan dicari Gayanya X 2 & Y 2 = Jumlah dari jarak koordinat kwadrat sumbu x dan sumbu y

  • 01/10/2012

    61

    Pile No Sum P/n Xi Yi My X/xi2 Mx Y/yi2 Force Ext.

    ton cm cm ton

    1 23.6988 -400 400 -13.2124 0.3900 10.8763

    2 23.6988 0 400 0.0000 0.3900 24.0888

    3 23.6988 400 400 13.2124 0.3900 37.3012

    4 23.6988 -400 0 -13.2124 0.0000 10.4864

    5 23.6988 0 0 0.0000 0.0000 23.6988

    6 23.6988 400 0 13.2124 0.0000 36.9112

    7 23.6988 -400 -400 -13.2124 -0.3900 10.0964

    8 23.6988 0 -400 0.0000 -0.3900 23.3088

    9 23.6988 400 -400 13.2124 -0.3900 36.5213

  • DRIVEN PILE CAPACITY (ONSHORE AREA)USING SPT - DATABORED HOLE NUMBER DB-1 PROJECT PLAZA GALARA MALL PALUUSING PRECAST CONCRETE PILE LOCATION PALU , SELAWESI TENGAHUnit Weight 2,4 t/m3

    Depth N-SPT L of Pile N average Nb Pile meter P ult P all Comp. P all Tensionmeter Dimension tonf tonf , SF tonf , SF

    3,0 6,00,001,00 7 7,00 8,33 Dia of Pile m 0,4 162,12 56,15 24,272,00 8 7,50 9,25 L of Pile m 213,00 10 8,33 10,504,00 12 9,25 11,50 Dia of Pile m 0,5 209,80 73,23 30,665,00 12 9,80 11,75 L of Pile m 216,00 12 10,17 11,507,00 11 10,29 11,50 Dia of Pile m 0,6 260,33 91,52 37,198,00 11 10,38 11,50 L of Pile m 2110,00 12 10,56 12,2511,00 12 10,70 12,50 Dia of Pile m 0,8 369,97 131,76 50,6412,00 14 11,00 12,25 L of Pile m 2113,00 12 11,08 12,2514,00 11 11,08 11,6715,00 12 11,14 11,50 Dia of Pile m 0,4 254,54 87,36 38,7016,00 22 12,21 17,00 L of Pile m 2517,00 22 13,21 22,0018,00 20 13,93 21,00 Dia of Pile m 0,5 327,51 113,10 48,7619,00 20 14,50 20,00 L of Pile m 2520,00 22 15,21 21,0021,00 30 16,50 26,00 Dia of Pile m 0,6 404,23 140,39 58,9922,00 30 17,86 30,00 L of Pile m 2522,00 30 17,86 30,00 L of Pile m 2523,00 30 19,21 30,0024,00 30 20,50 30,00 Dia of Pile m 0,8 568,86 199,67 79,9125,00 38 22,36 34,00 L of Pile m 2526,00 38 24,07 38,0027,00 38 25,93 38,0028,00 51 28,79 44,5029,00 52 31,64 51,5030,00 52 33,79 52,00

    Qu = 7 Nb. Ap + 0,32 N As (Tonf) Nb < 60

    Qu = 400. Ap+{0,024 (N -53) +17,2} As (Tonf) Nb > 60

  • DRIVEN PILE CAPACITY (ONSHORE AREA)USING SPT - DATABORED HOLE NUMBER DB-1 PROJECT PLAZA GALARA MALL PALUUSING PRECAST CONCRETE PILE LOCATION PALU , SELAWESI TENGAHUnit Weight 2,4 t/m3

    Depth N-SPT L of Pile N average Nb Pile meter P ult P all Comp. P all TensionDimension tonf tonf , SF tonf , SF

    3,0 6,00,001,00 7 7,00 8,33 Dia of Pile m 0,4 363,07 123,84 55,402,00 8 7,50 9,25 L of Pile m 283,00 10 8,33 10,504,00 12 9,25 11,50 Dia of Pile m 0,5 466,07 159,75 69,695,00 12 9,80 11,75 L of Pile m 286,00 12 10,17 11,507,00 11 10,29 11,50 Dia of Pile m 0,6 573,95 197,65 84,158,00 11 10,38 11,50 L of Pile m 2810,00 12 10,56 12,2511,00 12 10,70 12,50 Dia of Pile m 0,8 804,39 279,38 113,6112,00 14 11,00 12,25 L of Pile m 2813,00 12 11,08 12,2514,00 11 11,08 11,6715,00 12 11,14 11,50 Dia of Pile m16,00 22 12,21 17,00 L of Pile m17,00 22 13,21 22,0018,00 20 13,93 21,00 Dia of Pile m19,00 20 14,50 20,00 L of Pile m20,00 22 15,21 21,0020,00 22 15,21 21,0021,00 30 16,50 26,00 Dia of Pile m22,00 30 17,86 30,00 L of Pile m23,00 30 19,21 30,0024,00 30 20,50 30,00 Dia of Pile m25,00 38 22,36 34,00 L of Pile m26,00 38 24,07 38,0027,00 38 25,93 38,0028,00 51 28,79 44,5029,00 52 31,64 51,5030,00 52 33,79 52,00

    GROUP PILE CAPACITY

    Qu = 400. Ap+{0,024 (N -53) +17,2} As (Tonf) Nb > 60

    Qu = 7 Nb. Ap + 0,32 N As (Tonf) Nb < 60

  • USING DIA 80 CmPile to Pile Distance 200 CmNUMBER OF PILEIN GROUP D S E m n Eff

    80 200 21,8124675 1 2 0,878819680 200 21,8124675 1 3 0,838426280 200 21,8124675 2 2 0,757639380 200 21,8124675 3 3 0,676852380 200 21,8124675 2 3 0,7172458

    BUILDING = PLAZA GALARA MALL PALUUsing Borep Pile Dia 80 Cm L=28 meter Using Borep Pile Dia 60 Cm L=28 meter

    P all 1 275 190Cor of Load 1,4Dia 0,8 m Dia 0,6 mLenght 28 m Lenght 28 m

    PILE in LOAD N of pile P all Group Remark LOAD N' of pile P all Group RemarkGroup Total 275 Total Total Total

    1 P-1 1 275,00 P-1 1 190,002 P-2 2 483,35 P-2 2 333,953 P-3 3 691,70 P-3 3 477,904 P-4 4 833,40 P-4 4 575,815 P-5 5 930,67 P-5 5 643,016 P-6 6 1183,46 P-6 6 817,66

    Ass LOAD LOAD N of Pile P all Group N' of pile P all Group Used UsedBuilding Total LL,DL =1 ton ton Dia 80 Dia 60

    23456

    Building Total LL,DL =1 Total Dia 80 ton Total Dia 60 ton Dia 80 Dia 601-G 733 524 3 691,70 4 575,81 31-E 916 654 3 691,70 6 817,66 31-D 536 383 2 483,35 3 477,90 22-G 789 564 3 691,70 4 575,81 32-E 867 619 3 691,70 5 643,01 32-D 692 494 3 691,70 4 575,81 33-G 687 491 3 691,70 4 575,81 33-E 858 613 3 691,70 5 643,01 33-D 694 496 3 691,70 4 575,81 34-G 675 482 3 691,70 4 575,81 34-E 801 572 3 691,70 4 575,81 34-D 731 522 3 691,70 4 575,81 34-C 323 231 1 275,00 2 333,95 24-B 317 226 1 275,00 2 333,95 24-A 350 250 1 275,00 2 333,95 25-G 490 350 2 483,35 3 477,90 25-E 682 487 3 691,70 4 575,81 35-D 761 544 3 691,70 4 575,81 35-C 476 340 2 483,35 3 477,90 35-B 423 302 2 483,35 2 333,95 25-A 502 359 2 483,35 3 477,90 3

    5'-G1 436 311 2 483,35 2 333,95 26'-G1 384 274 1 275,00 2 333,95 26'-E1 627 448 2 483,35 3 477,90 27'-G1 354 253 1 275,00 2 333,95 27'-E1 510 364 2 483,35 2 333,95 27'-D1 636 454 2 483,35 3 477,90 27'-C1 444 317 2 483,35 2 333,95 28'-G1 278 199 1 275,00 2 333,95 28'-E1 336 240 1 275,00 2 333,95 28'-D1 388 277 2 483,35 2 333,95 28'-C1 471 336 2 483,35 3 477,90 28'-B1 62 44 1 275,00 1 190,00 19'-G1 210 150 1 275,00 1 190,00 19'-E1 229 164 1 275,00 1 190,00 1

    73 1026,9056 104 822,9312 47 35 938,1064

  • LATERAL CAPACITY OF PILE FOR NON COHESSIVE SOIL

    Soil Type

    `

    Nh ( kN/m3)

    Dry or moist sand Loose : 1800 - 2200Medium : 5500-7000

    Dense : 15000-18000Submerged sand Loose : 1000 - 1400

    Medium : 3500 - 4500Dense : 9000 - 12000

    DIAMETER OF PILE 0,4 M Nh 14000 kN/m3LENG OF PILE (L) 28 M

    Allowable lateral displacement at the top of the pile is 8 mm at z = 0,00 mAx 2,435

    Ix 0,001256 m4 (1/64)(3,14 D^4)Ep 20000000 kN/m2 2000/cm^2T (Ep x Ix / nh)0,2T 1,1240311 Meter ``

    L/T 24,91034 > 5 Remark < 5 Short Pile> 5 Long Pile

    X (z) = Ax x (Qg . T3 / Ep . Ip)

    Qg = ( X (z). Ep . Ip / Ax . T3)

    Qg = 58,11332 kN

    DIAMETER OF PILE 0,6 M Nh 14000 kN/m3LENG OF PILE (L) 28 M

    Allowable displacement at the top of the pile is 8 mm at z = 0,00 mAx 2,435

    Ix 0,0063585 m4Ep 20000000 kN/m2 2000/cm^2T (Ep x Ix / nh)0,2T 1,5547169 Meter

    L/T 18,00971 > 5 Remark < 5 Short Pile> 5 Long Pile

    X (z) = Ax x (Qg . T3 / Ep . Ip)

    Qg = ( X (z). Ep . Ip / Ax . T3)

  • Qg = 111,1787 kN

    DIAMETER OF PILE 0,8 M Nh 14000 kN/m3LENG OF PILE (L) 28 M

    Allowable displacement at the top of the pile is 8 mm at z = 0,00 mAx 2,435

    Ix 0,020096 m4Ep 20000000 kN/m2 2000/cm^2T (Ep x Ix / nh)0,2T 1,9570518 Meter

    L/T 14,30724 > 5 Remark < 5 Short Pile> 5 Long Pile

    X (z) = Ax x (Qg . T3 / Ep . Ip)

    Qg = ( X (z). Ep . Ip / Ax . T3)

    Qg = 176,1666 kN

    MAXIMUM LATERAL BASE REACTION AT TOP FOUNDATION

    Max Lateral RemarkLateral GroupBase Reac Capacity

    Max Lateral

    NUMBER PILE in Group Found &Code Coordinate

    Max Lateral30046 52850,0 OK Lateral less than Group ==>SAVE16565 35233,3 OK Base Reac Capacity19089 33353,6 OK21946 22235,7 OKNo 11 2 Dia 60 cm

    No 53 3 Dia 80 cmNo 17 2 Dia 80 cmNo 6 3 Dia 60 cm

  • LATERAL CAPACITY OF PILE FOR COHESSIVE SOIL

    DIAMETER OF PILE 0,8 M

    LENG OF PILE (L) 28 M

    Young's modullus of soil E (kN/m2) 24000 kN/m2

    Pile diameter (D) in meter 0,8 meter

    Ip 0,020096 m4

    Ep 20000000 kN/m2

    2000/cm^2Poisson ratio ( ) 0,3k after Vesic (1963)

    k = 0,65 x{Es D4/EpIp}^0,0833x[Es/(1-2)] 6563,5322R (Ep x Ip / k)^0,25 2,7973738

    L/R 10,0094 > 5 Remark < 5 Short Pile> 5 Long Pile

    Allowable lateral displacement at the top of the pile is 8 mm at z = 0,00 mA'x 1,85A'x 1,85

    R 2,797374 Meter

    X (z) = A'x . (Qg . R3 / Ep . Ip)

    Qg = ( X (z). Ep . Ip / A'x . R3)

    Qg = 79,3974 kN

  • ``