Referensi

21
1 References: 1. Ulrich, K.T., and Eppinger, S.D., Product Design and Development. 2nd edition 2000 (McGraw Hill, Boston). 2. Wills, L.M., Kordon, F., and Luqi., Rapid system prototyping. The Journal of Systems and Software, 2004, 70, 225–227. 3. Lennings, A.F., CNC ofers RP on the desktop. Annual Report, Prototyping Technology International, 1997, (UK and International Press, Dorking). pp. 297-301. 4. Emad Abouel Nasr, and Ali K. Kamrani, Computer-Based Design and Manufacturing An Information-Based Approach, 2007, (Springer US). DOI: 10.1007/978-0-387- 23324-6_11. 5. Greenwood D., Gloden M., Using rapid prototyping to reduce cost and time to market. In Proceedings of Rapid Prototyping and Manufacturing Conference, Dearbon, MI, 11–13 May 1993. 6. Onuh S.O., Yusuf Y.Y., Rapid prototyping technology: applications and benefits for rapid product development. J Intell Manuf , 1999, 10, 301–311. 7. Griffiths, M., Rapid prototyping options shrink development costs. Mod Plast, 1993, 70, 24–27. 8. Jacobs, P.F., Stereolithography and other RP&M technologies: from rapid prototyping to rapid tooling. 1996 (ASME Press, NY). 9. Prinz, F.B., Atwood, C.L., Aubin, R.F., Beaman, J.J., Brown, R.L., Fussell, P.S., Lightman, A.J., Sachs, E., Weiss, L.E., Wozny, M.J., Rapid Prototyping in Europe and Japan. VOL:I. March 1997 (Rapid Prototyping Association of the Society of Manufacturing Engineers). 10. Kochan, D., Kai, C.C., and Zhaohui, D., Rapid prototyping issues in the 21st century. Computers in Industry. 1999, 39, 3–10. 11. Rochus, P., Plesseria, J.-Y., Elsen, M.V., Kruth, J.P., Carrus, R., and Dormal, T., New applications of rapid prototyping and rapid manufacturing (RP/RM)

Transcript of Referensi

Page 1: Referensi

1

References:

1. Ulrich, K.T., and Eppinger, S.D., Product Design and Development. 2n d edition 2000

(McGraw Hill, Boston).

2. Wills, L.M., Kordon, F., and Luqi., Rapid system prototyping. The Journal of

Systems and Software, 2004, 70, 225–227.

3. Lennings, A.F., CNC ofers RP on the desktop. Annual Report, Prototyping

Technology International, 1997, (UK and International Press, Dorking). pp. 297-301.

4. Emad Abouel Nasr, and Ali K. Kamrani, Computer-Based Design and Manufacturing

An Information-Based Approach, 2007, (Springer US). DOI: 10.1007/978-0-387-

23324-6_11.

5. Greenwood D., Gloden M., Using rapid prototyping to reduce cost and time to

market. In Proceedings of Rapid Prototyping and Manufacturing Conference,

Dearbon, MI, 11–13 May 1993.

6. Onuh S.O., Yusuf Y.Y., Rapid prototyping technology: applications and benefits for

rapid product development. J Intell Manuf , 1999, 10, 301–311.

7. Griffiths, M., Rapid prototyping options shrink development costs. Mod Plast, 1993,

70, 24–27.

8. Jacobs, P.F., Stereolithography and other RP&M technologies: from rapid

prototyping to rapid tooling. 1996 (ASME Press, NY).

9. Prinz, F.B., Atwood, C.L., Aubin, R.F., Beaman, J.J., Brown, R.L., Fussell, P.S.,

Lightman, A.J., Sachs, E., Weiss, L.E., Wozny, M.J., Rapid Prototyping in Europe and

Japan. VOL:I. March 1997 (Rapid Prototyping Association of the Society of

Manufacturing Engineers).

10. Kochan, D., Kai, C.C., and Zhaohui, D., Rapid prototyping issues in the 21st century.

Computers in Industry. 1999, 39, 3–10.

11. Rochus, P., Plesseria, J.-Y., Elsen, M.V., Kruth, J.P., Carrus, R., and Dormal, T., New

applications of rapid prototyping and rapid manufacturing (RP/RM)

Page 2: Referensi

2

technologies for space instrumentation, Acta Astronautica, June-August 2007, Volume

61, Issues 1-6, 352-359.

12. Wohlers, T., Wohlers report 2001: rapid prototyping & tooling, state of the industry,

Annual worldwide progress report. (Wohlers Associates, Fort Collins).

13. Dutta, D., Prinz, F.B., Rosen, D., and Weiss, L., Layered manufacturing: current

status and future trends. J. Computing Inf. Sci. Engng, 2001, 1, 60-71.

14. Tangelder, J.W.H., and Vergeest, J.S.M., Robust NC path generation for rapid shape

prototyping. J. Des. Mfg, 1994, 4, 28 1-292.

15. http://www.deskproto.com.

16. https ://secure.ibsystems.com/goto.php?http://www.rolanddga.com.

17. http://www.millit.com.

18. Yang, Z.Y., Chen, Y.H., and Sze, W.S., Layer-based machining: recent development

and support structure design. Proc Instn Mech Engrs, Part B: J Engineering

Manufacture, 2002, 216, 979-991.

19. Ramaswami, K., Process planning for Shape Deposition Manufacturing. PhD thesis,

1997 (Stanford University).

20. Newman, W.S., Mathewson, B.B., Zheng, Y., and Choi, S., A novel selective-area

gripper for layered assembly of laminated objects. Robotics Computer-Integrated

Mfg, 1996, 12(4), 293-302.

21. Filho, F.A.R., Bracarense, A.Q., Product Design Methodologies For Development Of

Low Cost Robots, ABCM Symposium Series in Mechatronics, 2008, Vol. 3, pp.754-

763.

22. Xiong, X., A new method of direct metal prototyping: hybrid plasma deposition and

milling, Rapid Prototyping Journal, 2008, Vol. 14, Issue. 1, DOI:

10.1108/13552540810841562, 53-56.

23. Xiong, X., Zhang, H., and Wang, G., Metal direct prototyping by using hybrid plasma

deposition and milling, Journal of Materials Processing Technology, 1 January 2009,

Volume 209, Issue 1, 124-130.

24. Taylor, J.B., and Cormier, D.R., A process for solvent welded rapid prototyping

tooling. Robotics Computer- Integrated Mfg, 2001, 17, 15 1-157.

Page 3: Referensi

3

25. Kietzman, J.W., Cooper, A.G., Weiss, L.E., Schultz, L., Lombardi, J.L., Prinz, F.B.,

Layered Manufacturing Material Is sues for SDM of Polymers and Ceramics. In

Proceedings Solid Freeform Fabrication Symposium. The University of Texas, Austin,

Texas, August 1997.

26. Radstok, E., Rapid tooling. Rapid Prototyping J, 1999, 5, 164–169.

27. Cheah, C.M., Chua, C.K., Lee, C.W., Feng, C., and Totong, K., Rapid prototyping and

tooling techniques: a review of applications for rapid investment casting. Int J Adv

Manuf Technol, 2004, DOI 10. 1007/s00170-003-1 840-6.

28. Ryall, C., Overview of rapid casting techniques. Rapid prototyping casebook, 2001

(Professional Engineering Publishing, London).

29. Rosochowski, A., Matuszak, A. Rapid tooling: the state of the art. J Mater Process

Tech, 2000, 106, 191–198

30. Vickers, C. An alternative route to metal components for prototype and low-volume

production. Rapid prototyping casebook, 2001, (Professional Engineering Publishing,

London).

31. Smith, B.J., St. Jean P., Duquette M.L., A comparison of rapid prototype techniques

for investment casting Be-Al. In Proceedings of Rapid Prototyping and

Manufacturing Conference, Dearbon, MI, 23–25 April 1996, pp. 1–11.

32. Dickens, P.M., Stangroom, R., Greul, M., Holmer, B., Hon, K.K.B., Hovtun, R.,

Neumann, R., Noeken, S., Wimpenny, D. Conversion of RP models to investment

castings. Rapid Prototyping J, 1995, 1, 4–11

33. Ashley, S., From CAD art to rapid metal tools. Mechanical Engineering, March 1997,

82–87.

34. Chua, C.K., Hong, K.H., and Ho, S.L., Rapid Tooling Technology. Part 1. A

Comparative Study. Int J Adv Manuf Technol, 1999, 15, 604–608.

35. Pham D.T., and Dimov, S.S., Rapid prototyping and rapid tooling—the key enablers

for rapid manufacturing. Proc. Instn Mech. Engrs Part C: J. Mechanica l Engineering

Science, 2003, 217, 1-23.

36. Asiabanpour, B., Mokhtar, A., and Houshmand, M., Collaborative Engineering, 2008

(Springer US), 127-152.

Page 4: Referensi

4

37. Watson, K., Peterson, D., and Crockett, R., Application of solid freeform fabrication

technology to NASA exploration missions. In Proceedings of the SFF Symposium,

Austin, Texas, 1999, pp. 857–864.

38. Im, Y.G., Cho, B.H., Seo, S.H., Son, J.H., Chung, S.I., and Jeong, H.D., Functional

prototype development of multi-layer board (MLB) using rapid prototyping

technology, Journal of Materials Processing Technology, 12 June 2007, Volumes 187-

188, 619-622.

39. Boehm, B.W., Gray, T.E., and Seewaldt, T., Prototyping versus specifying: A

multiproject experiment. IEEE Transactions on Software Engineering, 1984, 10, 3,

290-303.

40. Computer-Based Design and Manufacturing, 2007, (Springer US), DOI :

10.1007/978-0-387-23324-6_11, ISBN: 978-0-387-23323-9 (Print) 978-0-387-23324-

6, 28 1-282.

41. Chua, C.K., and Leong, K.F., Rapid Prototyping: Principles and Applications in

Manufacturing, 1997, (John Wiley, Singapore).

42. Adrian P.P., Petru U., and Gheorghe B.M., The Aspects About Rapid Prototyping

System, Annals of the Oradea University. Fascicle of Management and Technological

Engineering, 2008, Volume VII (XVII).

43. Kruth, J.P., Material incress manufacturing by rapid prototyping technologies. Ann.

CIRP, 1991, 40(2), 603–614.

44. Pham, D.T., and Dimov, S.S., Rapid Manufacturing: The Technologies and

Applications of Rapid Prototyping and Rapid Tooling, 2001 (Springer-Verlag,

London).

45. Paul F. Jacobs, Rapid Prototyping & Manufacturing: Fundamentals of

Stereolithography, Society of Manufacturing Engineers, Dearborn, Michigan, 1992.

46. Paul F. Jacobs, Stereolithography and other RP&M Technologies: From Rapid

Prototyping to Rapid Tooling, Society of Manufacturing Engineers, Dearborn,

Michigan, 1996.

47. Pham, D.T., and Ji, C., Design for stereolithography. Proc. Instn Mech. Engrs, Part

C: J. Mechanical Engineering Science, 2000, 214(C5), 635–640.

Page 5: Referensi

5

48. Onuh, S.O., and Hon, K.K., Application of the Taguchi method and new hatch styles

for quality improvement in stereolithography. Proc. Instn Mech. Engrs, Part B: J.

Engineering Manufacture, 1998, 212(B6), 461–472.

49. Cubital Web page, Cubital Limited, Ra’anana, Israel, 2001,

http://www.cubital.com/.

50. Levi, H., Accurate Rapid Prototyping by the Solid Ground Curing Technology. In

Proceedings of the Solid Freeform Fabrication Symposium, The University of Texas,

Austin, Texas, August 1991, pp. 110-1 14.

51. Steven Ashley, Rapid Prototyping is Coming of Age. Mechanical Engineering, July

1995, vol.117, no. 7, p. 66.

52. Marshall Burns, Automated Fabrication: Improving Productivity in Manufacturing.

1993, (Englewood Cliffs, New Jersey: PTR Prentice Hall) p. 66.

53. MicroTEC Web page, Gesellschaft fu¨r Mikrotechnologie GmbH, Duisburg,

Germany, 2001, www.microtec-d.com.

54. Objet Web page, Objet Geometries Limited, Rehovot, Israel, 2000,

http://clients.tia.co.il/objet/inner/products. html.

55. Anon, State of the Art Review-93-01, 1993, (MTIAC, Chicago, Illinois).

56. Masters, W.E., The ballistic particle manufacturing process. In Proceedings of

National Conference on Rapid Prototyping, 1990, pp. 39-48.

57. Richardson, K.E., The production of wax models by the ballistic particle

manufacturing process. In Proceedings of Second Conference on Rapid Prototyping,

1991, pp. 15-22.

58. Sachs, E., Cima, M., Williams, P., Brancazio, D., and Cornie, J., Three dimensional

printing: rapid tooling and prototyping directly from a CAD model. Trans. ASME, J.

Engng for Industry, November 1992, 114, 481–488.

59. Rapid Prototypes. Mechanical Engineering, vol. 117, no. 5, May 1995, p. 20.

60. Stratasys, Inc., Fast, Precise, Safe Prototype with FDM. In Proceedings of the Solid

Freeform Fabrication Symposium, The University of Texas, Texas, 12-14 August

1991, pp. 115-122.

61. Stratasys Web page, Stratasys, Inc., Eden Prairie, Minnesota, 2001,

www.stratasys.com.

Page 6: Referensi

6

62. Wohlers, Terry (2008). "Wohlers Report 2008". Wohlers Associates.

63. Merz, R., Prinz, F.B., Ramaswami, K., Terk, M., and Weiss, L.F., Shape deposition

manufacturing. In Proceedings of the 5th Symposium on Solid Freeform Fabrication,

Austin, Texas, 8–10 August 1994, pp. 1–8.

64. Prinz, F.B., and Weiss, L.E., Method for Fabrication of Three-Dimensional Articles.

U.S. Patent No. 5,301,415, 1994.

65. Elsen,M.V., Al-Bender, F., and Kruth, J.P., Application of dimensional analysis to

selective laser melting, Rapid Prototyping Journal, 2008, Volume 14, Issue 1, DOI:

10.1108/13552540810841526, 15-22.

66. MCP Tooling Technologies Limited, www: www.mcp-group.com

67. http://www.arcam.com.

68. Cormier, D., et al., Characterization of H13 steel produced via electron beam

melting. Rapid Prototyping Journal, 2003, Volume 10, Number 1, 35-41.

69. 3D Systems Press Release, ThermoJet, 3D Systems, Worldwide Corporation HQ,

Valencia, California, 1998.

70. Liu, Q., and Orme, M., On precision droplet-based net-form manufacturing

technology. Proc. Instn Mech. Engrs, Part B: J. Engineering Manufacture, 2001,

215(B10), 1333–1355.

71. Pham, D.T., Dimov, S.S., and Lacan, F., Selective laser sintering: applications and

technological capabilities. Proc. Instn Mech. Engrs, Part B: J. Engineering

Manufacture, 1999, 213(B5), 435–449.

72. Pham, D.T., and Wang, X., Prediction and reduction of build times for the selective

laser sintering process. Proc. Instn Mech. Engrs, Part B: J. Engineering Manufacture,

2000, 214(B6), 425–430.

73. Childs, T.H., Berzins, M., Ryder, G.R., and Tontowi, A., Selective laser sintering of

an amorphous polymer— simulations and experiments. Proc. Instn Mech. Engrs, Part

B: J. Engineering Manufacture, 1999, 213(B4), 333– 349.

74. Kathuria, Y.P., Metal rapid prototyping via a laser generating/selective sintering

process. Proc. Instn Mech. Engrs, Part B: J. Engineering Manufacture, 2000,

214(B1), 1–9

Page 7: Referensi

7

75. Optomec Web page, Optomec Design Company, Albuquerque, New Mexico, 2000,

http://www.optomec.com/.

76. POM Web page, Precision Optical Manufacturing, Plymouth, Michigan, 2001,

www.pom.net.

77. AeroMet Web page, AeroMet Corporation, Eden Prairie, Minnesota, 2001,

www.aerometcorp.com.

78. Miranda, R.M., Lopes, G., Quintino, L., Rodrigues, J.P., and Williams, S., Rapid

prototyping with high power fiber lasers, Materials & Design, December 2008,

Volume 29, Issue 10, 2072-2075.

79. Qian, Y.P., Huang, J.H., Zhang, H.O., and Wang, G.L., Direct rapid high-

temperature alloy prototyping by hybrid plasma-laser technology, Journal of

Materials Processing Technology, 21 November 2008, Volume 208, Issues 1-3, 99-

104.

80. Sachs, E., Cima, M., Cornie, J., et al., Three Dimensional Printing: Rapid Tooling and

Prototypes Directly from CAD Representation. In Proceedings of the Solid Freeform

Fabrication Symposium, The University of Texas at Austin, Texas, 6-8 August 1990,

pp. 27-47.

81. Marcus, H.L., Bourell, D.L., Solid Freeform Fabrication. Advanced Materials &

Processes, Sept. 1993, 144(3), 28-35.

82. Michaels, S., Sachs, E.M., Cima, M.J., Metal Parts Generation by Three

Dimensional Printing. In Proceedings of the Solid Freeform Fabrication Symposium,

The University of Texas at Austin, Texas, 3-5 August 1992, pp. 244-250.

83. http://www.zcorp.com.

84. Greulich M., Greul M., Pintat T., Fast functional prototypes via multiphase jet

solidification. Rapid Prototyping Journal, 1995, Volume 1, Number 1, 20-25(6).

85. Texas Instruments Web page, Digital Light Processing, Texas Instruments, 2001,

www.dlp.com.

86. SRI Web page, SRI International, Menlo Park, California, 2001,

http://pguerit.sri.com/SriWeb/srihome.html.

87. US Patent number 5,348,693; Taylor et al.

Page 8: Referensi

8

88. Charles S. Taylor, Paul Cherkas, Hilary Hampton, John J. Frantzen, Bob O. Shah, Dr.

William B. Tiffany, Dr. Leonard Nanis, Dr. Philip Booker, Amr Salahieh, Richard

Hansen. “Spatial Forming” A Three Dimensional Printing Process, In Proceedings

IEEE Micro Electro Mechanical System Conference, Amsterdam, January 1995, pp.

203-208.

89. Faygin, M., Hsieh, B., Laminated Object Manufacturing (LOM): A Simpler Process.

In Proceedings of the Solid Freeform Fabrication Symposium, The University of

Texas at Austin, Texas, 12-14 August 1991, pp. 123-130.

90. Helisys Web page, Helisys, Inc., Torrance, California, 2000, http://helisys.com/.

91. Karunakaran, K.P., Dibbi, S., Shanmuganathan, P.V., Raju, D.S., and Kakaraparti,

S., Optimal stock removal in Lom-Rp. Proc. Instn Mech. Engrs, Part B: J.

Engineering Manufacture, 2000, 214(B10), 947–951.

92. KIRA Web page, KIRA Corporation, Aichi, Japan, 2000, www.kiracorp.co.jp.

93. Corbel, S., Allanic, A.L., Schaeffer, P., and Andre, J.C., Computer-aided

manufacture of three-dimensional objects by laser space-resolved

photopolymerization. J. Intell. Robotic Systems, 1994, 9, 310–312.

94. Tangelder, J.W.H., Vergeest, J.S.M., and Overmars, M.H., Interference-free NC

machining using spatial planning and Minkowski operations. Computer-Aided Des.,

1998, 30(4), 277-286.

95. Walstra, W.H., Bronsvoort, W.F., and Vergeest, J.S.M., Interactive simulation of robot

milling for rapid shape prototyping. Computers Graphics, 1994, 18(6), 861-871.

96. Taylor, J.B., Cormier, D.R., Joshi, S., and Venkataraman, V., Contoured edge slice

generation in rapid prototyping via 5-axis machining. Robotics Computer-Integrated

Mfg, 2001, 17, 13-18.

97. Horvath, I., Vergeest, J.S.M., Broek, J.J., Rusak, Z., and Smit, B., Tool profile and tool

path calculation for free-form thick-layered fabrication. Computer-Aided Des., 1998,

30(14), 1097-1110.

98. Mufti, R.A., Mughal, M.P., Fawad, H., and Siddique, M., Use of welding and CNC

milling as a rapid prototyping tool. In proceedings of 2n d National Seminar on

Welding Science & Technology, PWI, Islamabad, March 2005.

Page 9: Referensi

9

99. Bourell, D.L., Beaman, J.J., Marcus, H.L., and Barlow, J.W., Solid freeform

fabrication: an advanced manufacturing approach. In Proceedings of the Solid

Freeform Fabrication Symposium. University of Texas: Austin, Texas, 6-8 August

1990, pp. 1-7.

100. Ashley, S., Prototyping with advanced tools. Mech Engg, June 1994, Vol. 116, 48-55.

101. Fessler, J.R., Merz, R., Nickel, A.H., and Prinz, F.B., Laser deposition of metals for

shape deposition manufacturing. In Proceedings of the Solid Freeform Fabrication

Symposium. University of Texas: Austin, Texas, August 1996, pp. 117-124.

102. Amon, C.H., Beuth, J., Kirchner, H., Merz, R., Prinz, F.B., Schmaltz, K., and Weiss,

L., Material issues in layered forming. In Proceedings of the Solid Freeform

Fabrication Symposium. University of Texas: Austin, Texas, 9-11 August 1993, pp. 1-

10.

103. Amon, C.H., Beuth, J., Weiss, L., Merz, R., and Prinz, F.B., SDM with microcasting:

Processing thermal and mechanical issues. J of Manufacturing Science and Engg.

August 1998, Vol. 120, 656-665.

104. Weiss, L.E., Prinz, F.B., Adams, D.A., and Siewiorek, D.P., Thermal spray deposition.

J Thermal Spray Technology, 1992; 1(3), 23 1-237.

105. Acquaviva, P., Chen, C., Chun, J., and Ando, T., Thermal modeling of deposit

solidification in uniform droplet solidification in uniform droplet spray forming.

Trans ASME, 1997, 119, 332-340.

106. Kovacevic, R., and Kmecko, I., Sensing and control of metal transfer in GMAW for

RP. In Proceedings of the NSF Design, Manufacturing & industrial Research Conf,

Tampa, Florida, January 2001.

107. Sridharan, K., Perepezko, J.H., Microstructure control in alloy steel powders. Int J

Metall, 1994, 30(3), 301-3 11.

108. Annavarapu, S., and Doherty, R.D., Evolution of microstructure in spray casting. Int J

Powder Metall, 1993, 331-343.

109. Zhang, Y.M., Pengjiu, L., Chen, Y., and Male, A.T., Automated system for welding-

based RP. J of Mechatronics, 2002, 12, 37-53.

Page 10: Referensi

10

110. Hartmann, K., Krishnan, R., Merz, R., Neplotnik, G., Prinz, F., Schultz, L., Terk, M.,

and Weiss, L., Robot assisted shape deposition manufacturing. In Proceedings of the

1994 IEEE International Conference on Robotics and Automation. San Diego, CA:

IEEE, May 1994, pp. 2890-2895.

111. Thayer, I.I.I., and William, J., Uniform droplet generator. US Patent 05392988, 1994.

112. Orme, M.E., Muntz, E.P., Method for droplet stream manufacturing. US Patent

05171360, 1992.

113. Merz, R., Shape deposition manufacturing. PhD dissertation, May 1994 (Technical

University of Vienna).

114. Merz, R., and Prinz, F.B., Method and apparatus for Depositing Molten Metal. U.S.

Patent No. 5,281,789, 1994.

115. Dickens, P.M., Cobb, R., Gibson, I., and Pridham, M.S., Rapid Prototyping Using 3D

Welding. J. of Design and Manufacturing, 1993, No.3, 1993, 39-44.

116. Spencer, J.D., and Dickens, P.M., Production of metal parts featuring heavy sections

using 3D welding. In Proceedings of First National Conference on RP & Tooling

Research (Ed. G. Bennett), Buckinghamshire College, 6-7 November 1995, pp. 127-

137 (Mechanical Engg Publications, London).

117. Spencer, J.D., Dickens, P.M., and Wykes, C.M., RP of metal parts by three-

dimensional welding. Proc. Instn Mech Engrs Part B. Vol. 212, 175-182.

118. Doyle, T.E., Edmonds, D.P., McAninch, M.D., and Ryan, P.M., Method and apparatus

for building a workpiece by deposit welding. US Patent 4,842,186, June 27, 1989.

119. Ribeiro, A.F., and Norrish, J., Metal based rapid prototyping for more complex

shapes. In Proceedings of the 6th Biennial International Conference on Computer

Technology in Welding, Lanaken, Belgium, 9-12 June 1996 (TWI, Abington

publishing).

120. Ribeiro, A.F., and Norrish, J., Rapid prototyping process using metal directly. In

Proceedings of the 7th Annual Solid Freeform Symposium, Austin, Texas, 12-14

August 1996.

Page 11: Referensi

11

121. Ribeiro, A.F., and Norrish, J., Making components with controlled metal deposition.

In Proceedings of IEEE International Symposium on Industrial Electronics,

Guimaraes, Portugal, 7-11 July 1997.

122. Kovacevic, R., and Beardsley, H.E., Process Control of 3D Welding as a Droplet-

Based Rapid Prototyping Technique. In Proceedings of the 9th Annual Solid Freeform

Fabrication Symposium, Austin, Texas, 10-12 August 1998.

123. Beardsley, H.E., and Kovacevic, R., Controlling Heat Input and Metal Transfer for 3D

Welding-Based Rapid Prototyping. In Proceedings of the 5th International Conference

on Trends in Welding Research, Pine Mountain, GA, 1-5 June, 1998.

124. Beradsley, H.E., and Kovacevic, R., New Rapid Prototyping Technique Based on 3D

Welding. In Proceedings of the 31st CIRP International Seminar on Manufacturing

Systems, Berkeley, CA, 26-28 May 1998.

125. Berdasley, H.E., and Kovacevic, R., Controlling Heat and Metal Transfer for Droplet-

Based Rapid Prototyping. 79th Annual AWS Convention, Detroit, April 1998.

126. Song, Y., Park, S., Hwang, K., Choi, D., and Jee, H., 3D Welding and Milling for

Direct Prototyping of Metallic Parts. In Proceedings of the 9th Annual Solid Freeform

Fabrication Symposium, Austin, Texas, 10-12 August 1998.

127. Karunakaran, K., Shanmuganathan, P., Roth-Koch, S., and Koch, U., Direct Rapid

Prototyping of Tools. In Proceedings of the 9th Annual Solid Freeform Fabrication

Symposium, Austin, Texas, 10-12 August 1998.

128. Doyle, T.E., Shape Melting Technology. In Proceedings of The National Conference

on Rapid Prototyping, Dayton, Ohio, 4-5 June 1990, pp.55-62.

129. Wang, H., and Kovacevic, R., Rapid prototyping based on variable polarity gas

tungsten arc welding for a 5356 aluminium alloy. Pr o c Ins tn Mec h En gr s : Pa r t B ,

2001, Vol 215.

130. Watson, J.K., Taminger, K.M.B., Hafley, R.A., and Petersen, D.D., Development of a

prototype low-voltage electron beam freeform fabrication system. In Proceedings of

13th Solid Freeform Symposium, Austin, Texas, 5-7 August 2002.

Page 12: Referensi

12

131. Taminger, K.M.B., and Hafley, R.A., Electron beam freeform fabrication: a rapid

metal deposition process. In Proceedings of 3r d Annual Automotive Composites

Conference, Society of Plastics Engineers, Troy, MI, 9-10 September 2003.

132. Prinz, F.B., and Weiss, L.E., Method and apparatus for fabrication of three-

dimensional metal articles by weld deposition. US Patent 5,207,371, 4 May 1993.

133. Karunakaran, K.P., Pushpa, V., Akula, S.B., Suryakumar, S., Techno-economic

analysis of hybrid layered manufacturing, International Journal of Intelligent Systems

Technologies and Applications, 2008, Volume 4, Number 1-2, 161-176.

134. Ling-na, W., Hua, Z., and Rong-hua, H., Study of STL Data Processing on TIG

Welding Rapid Manufacture, Robotic Welding, Intelligence and Automation, 2007,

Volume 362, 383-389.

135. Klingbeil, N., Beuth, J., Chin, R., Amon, C., Measurement and modeling of residual

stress-induced warping in direct metal deposition processes. In Proceedings of Solid

Freeform Fabrication Sym., University of Texas Austin, 1998, pp. 367-374.

136. Klingbeil, N., Beuth, J., Chin, R., and Amon. C., Residual stress-induced warping in

direct metal solid freeform fabrication. International Journal of Mechanical

Sciences, 2002, 44, 57-77.

137. Nickel, A.H., Barnett, D.M., and Prinz, F.B., Thermal stresses and deposition patterns

in layered manufacturing. Materials Science and Engineering, 2001, A317, 5 9-64.

138. Shigaev, T.G., Autom. Weld, 1983, 36(8), 52-55.

139. Wu, Y., and Kovacevic, R., Mechanically assisted droplet transfer process in

GMAW, Proc Instn Mech Engrs Vol 216 Part B; J Engineering Manufacture, 2002.

140. Zheng, S., Dayou, P., Min, K., Precision welding for edge buildup and RP. SIMTech

Technical report (PT/99/001/JT).

141. Mughal, M.P., Fawad, H., and Mufti, R.A., Parametric Thermal Analysis of molten

metal droplet as applied to layered manufacturing. Journal of Heat and Mass Transfer,

2006, Vol. 42, Number 3, 226-237.

142. Mughal, M.P., Fawad, H., and Mufti, R.A., Numerical Thermal analysis to study the

effect of static contact angle on the cooling rate of molten metal droplet. Numerical

heat Transfer A, 2006, Vol. 49, Number 1, 95-107.

Page 13: Referensi

13

143. Mughal, M.P., Fawad, H., Mufti, R.A., and Siddique, M., Deformation modeling in

layered manufacturing of metallic parts using gas metal arc welding: effect of process

parameters. Modeling Simul. Mater. Sci. Eng. 2005, 13, 1187–1204.

144. Mughal, M.P., Fawad, H., and Mufti, R.A., Finite Element Prediction of Thermal

Stresses and Deformation in Layered Manufacturing of Metallic parts. ACTA

MECHANICA, DOI: 10.1 007/s00707-006-0329-4 (2006).

145. Chin, R.K., Beuth, J.L., and Amon, C.H., Droplet level modeling of thermal stresses in

layered manufacturing methods. In Proceedings of ASME International Mech. Engg.

Congress & Exhibition, Atlanta, Ga. 17-22 November 1996.

146. Mughal, M.P., Fawad, H., and Mufti, R.A., Three-dimensional finite-element

Modeling of Deformation in Weld based Rapid Prototyping. Proc. of the I MECH E

Part C Journal of Mechanical Engineering Science, vol 220, C6, 875–885.

147. Eager, T.W., Advanced Joining Technologies, T.H. North ed., 1990 (Chapman and

Hall, London, UK).

148. Andersen, L.F., Residual Stresses and Deformations in Steel Structures, Ph.D. Thesis,

2000 (Technical University of Denmark).

149. Lindgren, L.E., Finite Element Modeling and Simulation. Part 1: Increased

Complexity. Journal of Thermal Stresses, 2001, vol. 24, 141-192.

150. Lindgren, L.E., Finite Element Modeling and Simulation. Part 2: Improved Material

Modeling. Journal of Thermal Stresses, 2001, vol. 24, 195-23 1.

151. Lindgren, L.E., Finite Element Modeling and Simulation. Part 3: Efficiency and

Integration. Journal of Thermal Stresses, 2001, vol. 24, 305-334.

152. Rosenthal, D., The Theory of Moving Heat Source and its Application to Metal

Treatment. Transaction ASME, 1946.

153. Rybicki, E.F., Schmueser, D.W., Stonesifer, R.W., Groom, J.J., and Mishler, H.W., A

Finite Element Model for Residual Stresses and Deflections in Girth-Butt Welded

Pipes. Journal of Pressure Vessel Technology, August 1978, vol. 100, 256-262.

154. Debiccari, A., Control of Distortion and Residual Stresses in Girth Welded Pipes.

Ph.D. Thesis, 1986 (Massachusetts Institute of Technology, USA).

Page 14: Referensi

14

155. Seo, S. II, Yang, Y.H., and Jang C.D., Development of New Finite Element Method to

Analyze Deformation of Plate Due to Line heating. Journal of Ship Production, 2001,

vol. 17, pp. 1-7.

156. Goldak, J., Zhou, J., Breiguine, V., and Montoya, F., Thermal Stress Analysis of

Welds: From melting Point to Room Temperature. JWRI, 1996, vol. 25, No. 2, 185-

189.

157. Goldak, J., Chakravarti, A., and Bibby, M., A new Finite Element Model for Heat

Sources. Metallurgical Transactions B, 1984, vol. 15 B, 299-305.

158. Goldak, J., Bibby, M., Moore, J., House, R., and Patel, B., Computer Modeling of

Heat Flow in Welds. Metallurgical Transactions B, 1986, vol. 17 B, 587-600.

159. Sabapathy, P.N., Wahab, M.A., and Painter, M.J., Numerical Models of In-Service

Welding of Gas-Pipeline. J. Material Processing Technology, 2001, vol. 118, 14-21.

160. Ravichandran, G., Raghupathy, V.P., and Ganesan, N., Analysis of Temperature

Distribution During Circumferential Welding of Cylindrical and Spherical

Components Using the Finite Element Method. Computer and Structures, 1996, vol.

59, no. 2, 225-255.

161. Ueda, Y., and Yamakawa, T., Analysis of Thermal-Elastic Stress and Strain During

Welding by Finite Element Method. 1971. JWRI, vol. 2, no. 2.

162. Hibbitt, H.D., and Marcal, P.V., A Numerical Thermo-Mechanical Model for the

Welding and Subsequent Loading of Fabricated Structure. Computers and Structures,

1973, vol. 3, 1145-1174.

163. Friedman, E., Thermomechanical Analysis of the welding Process Using the Finite

Element Method. ASME J. Pressure Vessel Technology, 1975, 206-213.

164. Andersson, B.A.B., Thermal Stresses in Submerged-Arc Welded Joint Considering

Phase transformations. ASME J. Engineering Material and Technology, 1978, vol.

100, 356-362.

165. MacDill, J.M., Oddy, A.S., and Klien, M.E., Data transfer for 3-D h-Adaptive

Thermal-Elasto-Plastic Finite element Analysis. Simulation of Materials Processing:

Methods and Applications, Shen & Dawson (eds), 1995.

Page 15: Referensi

15

166. MacDill, J.M., Oddy, and Goldak, J.A., An Adaptive Mesh-management Algorithm

for Three Dimensional Automatic Finite Element Analysis. Transaction of CSME,

1991, vol. 15, no. 1, 57-70.

167. MacDill, J.M., Goldak, J.A., Oddy, A.S., and Bibby, M J., Isoparametric

Quadrilaterals and Hexahedrons for Mesh-Grading Algorithms. Communications in

Applied Numerical Methods, 1987, vol. 3, 155-163.

168. MacDill, J.M., and Oddy, A.S., A Non-Conforming Eight to 26-Node Hexahedron for

Three Dimensional Thermal-Elasto-Plastic Finite Element Analysis. Computers and

Structures, 1995, vol. 54, no. 2, 183-189.

169. MacDill, J.M., and Oddy, A.S., Arbitrary Coarsening for Adaptive Mesh-Management

in Three Dimensional Automatic Finite Element Analysis. Math Modeling and

Science Computing, 1993, vol. 2, 1072-1077.

170. Runnemalm, H., and Hyun, S., Three-Dimensional Welding Analysis Suing an

Adaptive Mesh Scheme. Comput. Methods Appl. Mech. Engg. , 2000, vol. 189, 515-

523.

171. MacDill, J.M., Runnemalm, K.H., and Oddy, A.S., An 8- To 16-Node Solid Graded

Shell Elements for Far-Field Applications in 3-D Thermal Mechanical FEA. 12th

International Conference on Mathematical and Computer Modeling and Scientific

Computing, Chicago, 1999.

172. Lindgren L.E., Haggblad H.A., McDill J.M.J., and Oddy A.S., Automatic Remeshing

for Three-Dimensional Finite Element Simulation of Welding. Comput. Methods

Appl. Engrg. , 1997, vol. 147, 401-409.

173. Hyun, S., and Lindgren, L.E., Smoothing and Adaptive Remeshing Schemes for

Graded Elements. Commun.. Numer. Meth. Engng. , 2001, vol. 14, 1-17.

174. Runnemalm, H., Efficient Finite Element Modelling and Simulation of Welding,

Ph.D. 1999 (Thesis, Luleå University of Technology, Sweden).

175. Lindgren, L.E., Finite Element Simulation of Welding Residual Stresses and

Deformations. Invited Keynotes presented at Diamler-Chrysler Conference about

Welding Simulation, Stuttgart, 2001.

176. Radaj, R., Heat Efects of Welding, 1992 (Springer-Verlag).

Page 16: Referensi

16

177. Zhu, X.K., and Chao, Y.J., Effects of temperature-dependent material properties on

welding simulation. Computers and Structures, 2002, 80, 967–976.

178. Karlsson, R.I., and Josefson, B.L., Three Dimensional Finite Element Analysis of

Temperature and Stresses in a Single-Pass Butt-Welded Pipe. ASME Journal of

Pressure Vessel Technology, 1990, vol. 112, 76-84.

179. Voller, V.R., Brent, A.D., and Prakash, C., The modeling of heat, mass and solute

transport in solidification systems. Int. J. Heat Mass Transfer, 1989, 32, 1719-173 1.

180. Lide, D.R., Handbook of Chemistry and Physics, 72nd Edition, 1991 (CRC Press).

181. Lindgren, L.E., Runnemalm, H., and Näsström, M.O., Simulation of Multipass

Welding of a Thick Plate. Int. J. Numer. Meth. Engng. , 1999, vol. 44, 1301-13 16.

182. Lindgren L.E., and Karlsson, L., Deformations and Stresses in Welding of Shell

Structures. Int. J. Numerical methods in Engineering, 1988, vol. 25, 635-655.

183. ANSYS User’s Manual, 1998 (SAS IP inc.).

184. Brickstad, B., and Josefson, B.L., A Parametric Study of Residual Stresses in Multi-

Pass Butt-Welded Stainless Steel Pipes. Int. J. Pressure Vessels and Piping, 1998, vol.

75, 11-25.

185. Fanous I.F.Z., Younan M.Y.A., and Wifi A.S., 3-D Finite Element Modeling of the

Welding Process Using Element Birth and Element Movement Techniques. ASME

Journal of Pressure Vessel Technology, 2003, 125, 144-150.

186. Lindgren L.E., and Hedblom R., Modelling of Addition of Filler Material in Large

Deformation Analysis of Multipass Welding. Communication in Numerical Methods

in Engineering, 2001, vol. 17, 647-657.

187. Troive L., Näsström M., and Jonsson M., Experimental and Numerical Study of Multi-

pass Welding Process of Pipe-Flange Joints. ASME journal of pressure Vessel

Technology, 1998, vol. 120, 244-25 1.

188. Wilkening W.W., and Snow J.L., Analysis of Welding-induced Residual Stresses with

the ADINA-system. Computer and Structures, 1993, vol. 47, 767-786.

189 Karlsson, L., Jonsson, M., Lindgren, L.E., Nasstrom, M., and Troive, L., Residual

Stresses and Deformations in a Welded Thin-Walled Pipe. In Proceedings of ASME

Pressure Vessel and Piping Conference, PVP- vol. 173, 1989, pp. 7-14.

Page 17: Referensi

17

190 Runnemalm, H., and Lin, R., Investigation of Residual Stresses in a laser Welded Pipe

by Finite Element Simulations and Neutron Diffraction Measurements. In Proceedings

of 5t h International Conference on Residual Stresses, Linköping, Sweden, 1997.

191 Lindgren, L.E., Modeling of Residual Stresses and Deformations due to Welding

“Knowing what isn’t necessary to know”, Keynote at 6th Int. Seminar Numerical

Analysis of Weldability, Graz, Austria, 2001.

192 Goldak, J., Mocanita, M., Aldea, V., Zhou, J., Downey, D., and Zypchen, A.,

Computational Weld Mechanics: Is Real-Time CWM Feasible? Recent Progress in

CWM, 5Th International Seminar. Numerical Analysis of Weldability, 1999, IIW Com.

IX, Graz-Seggau.

193 Abid, M., Siddique, M., Mufti, R.A., Prediction of welding distortions and residual

stresses in a pipe–flange joint using the finite element technique. IOP: Modeling and

Simul. in Mater. Sci. and Eng. 2005, 13, 455–470.

194 Pervy, P.S., Residual Stress Distributions Produced by Strain Gage Surface Preparation.

In Proceedings of the 1986 SEM Spring Conference on Experimental Mechanics,

Society for Experimental Mechanics, Inc., Bethel, CT, 1986, pp. 216-223.

195 Anon, Surface Preparation for Strain Gage Bonding, Application Note B-129-8,

Document No. 11129, Revision Feb-2005, Vishay Micro-Measurements Group.

196 Anon, Strain Gage Installations with M-Bond 200 Adhesive, Instruction Bulletin B-

127-14, Document No. 11127, Revision Jan-2005, Vishay Micro-Measurements

Group.

197 Anon, Leadwire Attachment Techniques for Obtaining maximum Fatigue Life of Strain

gages, Application Note TT-604, Document No. 11084, Revision Jan-2005, Vishay

Micro-Measurements Group.

198 Anon, Soldering Techniques for Lead Attachment to Strain gages with Solder Dots,

Application Note TT-606, Document No. 11086, Revision Jan-2005, Vishay Micro-

Measurements Group.

199 Anon, Strain Gage Soldering Techniques, Application Note TT-609, Document No.

11089, Revision Jan-2005, Vishay Micro-Measurements Group.

Page 18: Referensi

18

200 Anon, Measurement of Residual Stresses by the Hole-Drilling Strain Gage Method,

Application Note TN-503-6, Document No. 11053, Revision Jan-2005, Vishay Micro-

Measurements Group.

201 Schajer, G.S., Measurement of Non-Uniform Residual Stresses Using the Hole-Drilling

Mthod. Part II – Practical Application of the Integral Method. Transactions of ASME,

Journal of Engineering Materials and Technology, 1988, Vol. 110, 344-349.

202 Schajer, G.S., Measurement of Non-Uniform Residual Stresses Using the Hole-Drilling

Mthod. Part I – Stress Calculation Procedures. Transactions of ASME, Journal of

Engineering Materials and Technology, 1988, Vol. 110, 338-343.

203 Aoh, J.N., and Wei C.S., On the Improvements of Calibration Coefficients for hole-

Drilling Integral Method: Part I – Analysis of Calibration Coefficients Obtained by a

3-D FEM Model. Transactions of ASME, Journal of Engineering Materials and

Technology, 2002, Vol. 124, 250-258.

204 Aoh, J.N., and Wei C.S., On the Improvements of Calibration Coefficients for hole-

Drilling Integral Method: Part II – Experimental Validation of Calibration

Coefficients. Transactions of ASME, Journal of Engineering Materials and

Technology, 2003, Vol. 125, 107-115.

205 Beaney, E.M., “Accurate measurement of residual stress on any steel using the centre-

hole method,” Strain, 121(1976), 99-106.

206 Mufti, R.A., Mughal, M.P., Khan, A.A., Junejo, H.F., Siddique, M., and Khan, I.,

Micro-structural and hardness investigation in welding based Rapid Prototyping

Process, in Proceedings of 8t h ESAFORM Conference on Material Forming, Cluj-

Napoca, Romania, 27-29 April 2005, pp. 687-690.

207 Mufti, R.A., Mughal, M.P., Khan, A.A., Fawad, H., and Siddique, M., The Effect of

Machining on the Microstructure in Hybrid Welding/Milling based Rapid Prototyping,

in Proceedings of Tehran International Congress on Manufacturing Engineering

(TICME2005) , Tehran, Iran, 12-15 December 2005.

208 Mughal M.P, Mufti R.A, and Fawad H., The Effects of Machining on Material

Properties in Hybrid Welding/Milling based Rapid Prototyping, accepted for

publication in International Journal of Materials and Product Technology.

Page 19: Referensi

19

209 Jandric, Z., Labudovic, M., and Kovacevic, R., Effect of heat sink on microstructure of

three-dimensional parts built by welding-based deposition. International J. of Machine

Tools and Manufacture, June-2004, 44, 785-796.

210 Jandric Z., and Kovacevic, R., Heat management in solid free-form fabrication based on

deposition by welding. Proc. Instn Mech. Engrs Part B: J. Engineering Manufacture,

2004, Vol.218, 1525-1540.

211 Song, Y.A., Park, S., Choi, D., and Jee, H., 3D welding and milling: Part I- a direct

approach for freeform fabrication of metallic prototypes. International J of machine

tools and manufacture, 2005, 45, 1057-1062.

212 Song, Y.A., Park, S., and Chae, S.W., 3D welding and milling: Part II- optimization of

the 3D welding process using an experimental design approach. International J of

machine tools and manufacture, 2005, 45, 1063-1069.

213 Kietzman, J., Park, B.H., and Prinz, F., Part strength improvement in polymer SDM.

Rapid Prototyping Journal, 2001, Vol 7. No. 3, 130-137.

214 Ahn, S.H., Baek, C., Lee, S., and Ahn, S., Anisotropic tensile failure model of RP

parts – FDM. Int. J. of Modern Physics B, 2003, Vol 17, Nos. 8 & 9, 1510-1516.

215 Dunne, D., Tsuei, H., and Li, H., Structural characteristics of multipass flux cored

arc steel welds, Science and Technology of Welding and Joining, 2003, Vol. 8 No. 2,

123-132.

216 Easterling, K., Introduction to the physical metallurgy of welding, 2nd edn. 1992

(Oxford, Butterworths), 183 – 187.

217 Fairchild, D.P., Local brittle zones in structural welds. In Proceedings of International

Symposium on Welding metallurgy of structural steels, Denver, Colorado, 22-26

February 1987. pp. 303-3 18.

218 Chen, J.H., Xia T.D., and Yan, C., Weld. J., 1993, 72, 19s –27s.

219 Tsuei, H., Dunne, D., Li, H., Quantification of structure and properties of ferritic weld

metal in flux cored arc welded steel. Science and Technology of Welding and Joining,

2003, Vol.8 No.3, 2 13-220.

220 ASTM-E92–82, Standard test method for Vickers hardness of metallic materials,

Annual Book of ASTM Standards 2006, Section 3, Vol.03.01 Metals Test Methods and

Analytical Procedures. 251–259.

Page 20: Referensi

20

221 ASTM-E8M–04, Standard test method for tension testing of metallic materials [metric],

Annual Book of ASTM Standards 2006, Section 3, Vol.03.0 1 Metals Test Methods and

Analytical Procedures. pp. 90.

222 Reed, R.C., Bhadeshia, H.K.D.H., A simple model for multipass steel welds. Acta

metall. mater, 1994, Vol.42, No. 11. 3663-3678.

223 Technical specification sheet ER70S-6. Carbon steel welding wire. J.W. HARRIS CO.,

INC. Ohio.

224 ASM Handbook, Mechanical testing and Evaluation, Vol-8, © 2000, Table 15, pp. 272.

225 Honeycombe, R.W.K., The plastic deformation of metals. 2n d ed. 1985 (Edward

Arnold), p. 241.

226 Honeycombe, R.W.K., Steels microstructure and properties. 1992 (London: Edward

Arnold), p. 104.

227 Honeycombe, R.W.K., The plastic deformation of metals. 2nd ed. 1985 (London: Butler

& Tanner Ltd.), p. 149-157.

228 Mughal, M.P., Mufti, R.A., and Fawad, H., The Mechanical effects of deposition

patterns in welding based Layered Manufacturing. Proceedings of the Institution of

Mechanical Engineers, Part B, Journal of Engineering Manufacture, October 2007,

Vol. 221, No. B10, ISSN 0954-4054, 1499-1509.

229 Kietzman, J., Rapid Prototyping Polymer Parts via Shape Deposition

Manufacturing. Ph.D. thesis, February 1999 (Stanford University, CA).

230 Hopkinson, N., and Dickens, P., Analysis of rapid manufacturing—using layer

manufacturing processes for production. Proc. of the I MECH E Part C Journal of

Mechanical Engineering Science, January 2003, Volume 217, Number 1, 31-39.

231 Zhang, Y.M., Pengjiu, L., Chen, Y., and Male, A.T., Automated system for Welding

based Rapid Prototyping. Mechatronics, 12, 37-53.

232 Hague, R., Campbell, I., and Dickens, P., Implications on design of rapid

manufacturing. Proceedings of the I MECH E Part C Journal of Mechanical

Engineering Science, January 2003, Volume 217, Number 1, 25-30.

Page 21: Referensi

21

233 Tang, Y., Loha, H.T., Wong, Y.S., Fuh, J.Y.H., Lu, L., and Wang, X., Direct laser

sintering of a copper-based alloy for creating three-dimensional metal parts. J Mater

Process Tech, 2003,140, 368–372.

234 Philliber, J.A., Smugeresky, J.E., Somerday, B., and Griffith, M.L., Microstructure and

Properties of LENS processed 304L Stainless Steel. Presented at the Annual meeting

of TMS, Nashville, TN, 13-15 March 2000.

235 Griffith, M.L., Ensz, M.T., Puskar, J.D., Robino, C.V., Brooks, J.A., Philliber, J.A.,

Smugeresky, J.E., and Hofmeister, W.H., Understanding the microstructure and

properties of components fabricated by LENS. In: Materials Research Society.

Symposium Y Proceedings, April 2000, V625.

236 Kovacevic, R., Rapid Prototyping Technique Based on 3D Welding. Southern

Methodist University, NSF Project 1999.

237 Masubuchi, K., Analysis of Welded Structures; 1980 (Pergamon press, New York).

238 Grenestedt, J.L., Optimization of the weld path for overlay coatings. Struct Multidisc

Optim, 2003, 25, 215-224.

239 Lisette, J. Zarzalejo., and Cristina, H., Amon, Molten Droplet solidification and

substrate remelting in microcasting. Part 1: Numerical Modeling and experimental

verification, Heat and Mass Transfer, 1999, 34, 477-485.

240 Pinkerton, A.J., and Li, L., The development of temperature fields and powder flow

during laser direct metal deposition wall growth. Proceedings of the I MECH E Part C

Journal of Mechanical Engineering Science,May 2004, Volume 218, Number 5, 53 1-

541.

241 Fawad, H., Mughal, M.P., and Siddique, M., Finite element simulation of welding

based deposition process as applied to layered manufacturing: thermal model. In

Proceedings of IMEC2004 International Mechanical Engineering Conference,

Kuwait, 5-8 December 2004, pp.656-73