References - Shodhganga : a reservoir of Indian theses...

22
References

Transcript of References - Shodhganga : a reservoir of Indian theses...

References

References

179

REFERENCES

[1] R. Schaumann, M. S. Ghausi, K. R. Laker, Design of analog filters: passive, active RC

and switched capacitor, Prentice-Hall, Englewood cliffs, New Jersey, 1981.

[2] A. S. Sedra and P. O. Brackett, Filter Theory and Design: Active and Passive, Matrix

Series in Circuits and Systems, Matrix Publishers, 1978.

[3] P. V. Ananda Mohan, Current-mode VLSI Analog Filters: Design and Applications,

Birkhauser, 2003.

[4] T. Deliyannis, Y. Sun, J. K. Fidler, Continuous-Time Active Filter Design, CRC

Press, Florida, USA, 1999.

[5] Y. P. Tsividis, J. O. Voorman, Integrated Continuous-Time Filters: Principles, Design,

and Applications, Piscataway, NJ: IEEE Press, 1993.

[6] J. E. Kardontchik, Introduction to the Design of Transconductor-Capacitor Filters,

Kluwer Academic Publishers, Massachusetts, 1992.

[7] C. Toumazou, F. J. Lidgey and D. G. Haigh, Analogue IC Design: The Current-Mode

Approach, Peter Peregrinus, London, 1990.

[8] R. Schaumann, Continuous-time Integrated Filters, in the The Circuits and Filters

Handbook, W. K. Chen, Ed., CRC Press, Boca Raton, FL, 1995.

[9] S. Pipilos, Y. P. Tsividis, J. Fenk, Y. Papananos, “A Si 1.8 GHz RLC filter with

tunable center frequency and quality factor,” IEEE Journal of Solid-State Circuits,

vol. 31, no. 10, pp. 1517-1525, 1996.

[10] R. P. Sallen and E. L. Key, “A practical method of designing RC-Active filters,” IEEE

Transactions on Circuit Theory, vol. 2, pp. 74-85, 1955.

[11] T. Deliyannis, “High-Q factor circuit with reduced sensitivity,” Electronics Letters,

vol. 4, no. 26, pp. 577-579, 1968.

[12] J. Friend, C. Harris, D. Hilberman, “STAR: An active biquadratic filter section,”

IEEE Transactions on Circuits and Systems, vol. 22, no. 2, pp. 115-121, 1975.

References

180

[13] L. C. Thomas, “The Biquad: Part I - some practical design considerations,” IEEE

Transactions on Circuit Theory, vol. 18, no. 3, pp. 350-357, 1971.

[14] L. C. Thomas, “The Biquad: Part II - a multipurpose active filtering system,” IEEE

Transactions on Circuits and Systems, vol. 18, no. 3, pp. 358-361, 1971.

[15] W. J. Kerwin, L. P. Huelsman, R. W. Newcomb, “State-variable synthesis for

insensitive integrated circuit transfer functions,” IEEE Journal of Solid-State Circuits,

vol. 2, no. 3, pp. 87-92, 1967.

[16] D. Akerberg, K. Mossberg, “A versatile Active RC building block with inherent

compensation for the finite bandwidth of the amplifier,” IEEE Transactions on

Circuits and Systems, vol. 21 , no. 1, pp. 75-78, 1974.

[17] R. Tarmy and M. S. Ghausi, “Very high Q insensitive Active RC networks,” IEEE

Transactions on Circuit Theory, vol. 17, no. 3, pp. 358-366, 1970.

[18] G. S. Moschytz, “High-Q factor insensitive active RC network similar to the Tarmy-

Ghausi circuit, but using single-ended operational amplifiers,” Electronics Letters, vol.

8, no. 18, pp. 458-459, 1972.

[19] B. B. Bhattacharyya, W. B. Mikhael, A. Antoniou, “Design of RC active networks

using generalized-immittance converters,” Journal of the Franklin Institute, vol. 297,

no. 1, pp. 45–58, 1974.

[20] W. B. Mikhael, B. B. Bhattacharyya, “A practical design for insensitive RC-active

filters,” IEEE Transactions on Circuits and Systems, vol. 22, no. 5, pp. 407-

415, 1975.

[21] P. Padukone, J. Mulawka, M. S. Ghausi, “An active-RC biquadratic section with

reduced sensitivity to operational amplifier imperfections,” Journal of the Franklin

Institute , vol. 30, no. 1, pp. 27-40, 1980.

[22] D. J. Comer, J. E. McDermid, “Inductor less band-pass characteristics using all-pass

networks,” IEEE Transactions on Circuit Theory, vol. 15, no. 4, pp. 501-503, 1968.

[23] J. Mulawka, M. Bialko, “Modifications of Tarmy-Ghausi active filter,” Electronics

Letters, vol. 10, no. 18, pp. 380-381, 1974.

References

181

[24] R. N. G. Dalpadado, “A class of high-Q high-frequency two amplifier Active RC

networks,” IEEE Transactions on Circuits and Systems, vol. 25, no. 12, pp. 1099-

1101, 1978.

[25] D. J. Comer, “High-frequency narrow-band active filters,” IEEE Transactions on

Circuits and Systems, vol. 33, no. 8, pp. 838-840, 1986.

[26] D. T. Comer, D. J. Comer and J. R. Gonzalez, “A high-frequency integrable bandpass

filter configuration,” IEEE Transactions on Circuits and Systems-II: Analog and

Digital Signal Processing, vol. 44, no. 10, pp. 856-861, 1997.

[27] A. Toker, S. Ozoguz, O. Cicekoglu and C. Acar, “Current-mode all-pass filters using

current differencing buffered amplifier and a new high-Q band-pass filter

configuration,” IEEE Transactions on Circuits and Systems-II :Analog and Digital

Signal Processing, vol. 47, no. 9, pp. 949-954, 2000.

[28] P. V. Ananda Mohan, V. Ramachandran and M. N. S. Swamy, “Novel stray-

insensitive SC band-pass filter,” Electronics Letters, vol. 19, no. 16, pp. 615-616,

1983.

[29] D. J. Allstot, R. W. Brodersen and P. R. Gray, “Design techniques for MOS switched

capacitor ladder filters,” IEEE Transactions on Circuits and Systems, vol. 25, no. 12,

pp. 1014-1021, 1978.

[30] M. Yoshihiro, A. Nishihara and T. Yanagisawa, “Low sensitivity active and digital

filters based on the node-voltage simulation of LC ladder structures,” Proceedings of

IEEE International Symposium on Circuits and Systems, pp. 446-449, 1977.

[31] A. M. Durham, J. B. Hughes and W. Redman-White, “Circuit architectures for high

linearity monolithic continuous-time filtering,” IEEE Transactions on Circuits and

Systems-II: Analog and Digital Signal Processing, vol. 39, no. 9, pp. 651-657, 1992.

[32] A. M. Durham, W. Redman-White and J. B. Hughes, “High-linearity continuous-time

filter in 5-V VLSI CMOS,” IEEE Journal of Solid-State Circuits, vol. 27, no. 9, pp.

1270-1276, 1992.

References

182

[33] A. M. Soliman and M. Ismail, “Active compensation of opamps,” IEEE Transactions

on Circuits and Systems, vol. 26, no. 2, pp. 112–117, 1979.

[34] G. Wilson, “Compensation of some operational-amplifier based RC-active networks,”

IEEE Transactions on Circuits and Systems, vol. 23, no. 7, pp. 443-446, 1976.

[35] M. Banu and Y. Tsividis, “Fully integrated Active RC filters in MOS technology,”

IEEE Journal of Solid-State Circuits, vol. 18, no. 6, pp. 644-651, 1983.

[36] P. V. Ananda Mohan, “New structures for MOSFET-C filters,” Proceedings of the

IEEE, vol. 75, no. 7, pp. 957-960, 1987.

[37] A. M. Soliman, M. Fawzy, “A universal active R biquad,” International Journal of

Circuit Theory and Applications, vol. 6, no. 2, pp. 153-157, 1978.

[38] P. V. Ananda Mohan, “Novel active filters using amplifier pole,” Electronics Letters,

vol. 16, no. 10, pp. 378-380, 1980.

[39] J. R. Brand, R. Schaumann, “Active R filters: review of theory and practice,” IEE

Journal on Electronic Circuits and Systems, vol. 2, no. 4 , pp. 89-101, 1978.

[40] K. Radhakrishnarao, S. Srinivasan, “A band-pass filter using the operational amplifier

pole,” IEEE Journal of Solid-State Circuits, vol. 8, no. 3, pp. 245-246, 1973.

[41] T. S. Rathore, “New active-R filters and their design,” IEEE International Symposium

on Circuits and Systems, California, 1983.

[42] S. D’amico and A. Baschirotto, “Active-Gm-RC continuous-time biquadratic cells,”

Analog Integrated Circuits and Signal Processing, vol. 45, no. 3, pp. 281-294, 2005.

[43] S. D'Amico, V. Giannini and A. Baschirotto, “A 4th

-order Active-Gm-RC

reconfigurable (UMTS/WLAN) filter,” IEEE Journal of Solid-State Circuits, vol. 41,

no. 7, pp. 1630-1637, 2006.

[44] P. V. Ananda Mohan, “Comments on “A 4th-order Active-Gm-RC reconfigurable

(UMTS/WLAN) filter,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 457-458,

2007.

References

183

[45] S. D'Amico, V. Giannini, A. Baschirotto, “A 1.2V-21dBm OIP3 4th

-order active-gm-

RC reconfigurable (UMTS/WLAN) filter with on-chip tuning designed with an

automatic tool,” Proceedings of the 31st European Solid-State Circuits Conference,

pp. 315-318, 2005.

[46] M. Bialko, R. W. Newcomb, “Generation of all finite linear circuits using the

integrated DVCCS,” IEEE Transactions on Circuit Theory, vol. 18, pp. 733-736,

1971.

[47] R. L. Geiger and E. Sanchez-Sinencio, “Active filter design using operational

transconductance amplifiers: A tutorial,” IEEE Circuits and Devices Magazine, vol. 1,

pp. 20-32, 1985.

[48] M. E. Robinson, J. Ramirez-Angulo, E. Sanchez-Sinencio, “Current-mode continuous-

time filters: two design approaches,” IEEE Transactions on Circuits and Systems II:

Analog and Digital Signal Processing, vol. 39, no. 6, pp. 337-341, 1992.

[49] P. V. Ananda Mohan, “Generation of OTA-C filter structures from Active RC filter

structures,” IEEE Transactions on Circuits and Systems, vol. 37, no. 5, pp. 656-660,

1990.

[50] P. V. Ananda Mohan, “Novel OTA-C filter structures using grounded capacitors,”

Proceedings of IEEE International Symposium on Circuits and Systems, vol. 3, pp.

1347-1350, 1991.

[51] C. Acar, F. Anday, H. Kuntman, “On the realization of OTA-C filters,” International

Journal of Circuit Theory and Applications, vol. 21, no. 4, pp. 331-341, 1993.

[52] Y. Sun, “Second-order OTA-C filters derived from Nawrocki-Klein biquad,”

Electronics Letters, vol. 34, no. 15, pp. 1449-1450, 1998.

[53] Y. Tao, J. K. Fidler, “Electronically tunable dual-OTA second-order sinusoidal

oscillators/filters with non-interacting controls: a systematic synthesis approach,”

IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,

vol. 47, no. 2, pp. 117-129, 2000.

References

184

[54] C. M. Chang, B. M. Al-Hashimi, Y. Sun and J. N. Ross, “New high-order filter

structures using only single-ended-input OTAs and grounded capacitors,” IEEE

Transactions on Circuits and Systems II: Express briefs, vol. 51, no. 9, pp. 458-463,

2004.

[55] E. Sanchez-Sinencio, R. L. Geiger and H. Nevarez-Lozano, “Generation of

continuous-time two integrator loop OTA filter structures,” IEEE Transactions on

Circuits and Systems, vol. 35, no. 8, pp. 936-946, 1988.

[56] Y. Sun, “Note on two integrator loop OTA-C configurations,” Electronics Letters, vol.

34, no. 16, pp. 1533-1534, 1998.

[57] M. A. Tan and R. Schaumann, “Simulating general-parameter LC-ladder filters for

monolithic realizations with only transconductance elements and grounded

capacitors,” IEEE Transactions on Circuits and Systems, vol. 36, no. 2, pp. 299-307,

1989.

[58] Y. -S. Hwang, S.-I. Liu, D.-S. Wu and Y.-P. Wu, “Table-based linear transformation

filters using OTA-C techniques,” Electronics Letters, vol. 30, no. 24, pp. 2021-2022,

1994.

[59] L. Yue, N. P. J. Greer and J. I. Sewell, “Efficient design of ladder-based

transconductor-capacitor filters and equalizers,” IEE Proceedings Circuits, Devices

and Systems, vol. 142, no. 4, pp. 263-272, 1995.

[60] Y. Sun, “OTA-C filter design using inductor substitution and Bruton transformation

methods,” Electronics Letters, vol. 34, no. 22, pp. 2082-2083, 1998.

[61] Y. Sun and J. K. Fidler, “Synthesis and performance analysis of universal minimum

component integrator-based IFLF OTA-grounded capacitor filter,” IEE Proceedings

Circuits, Devices and Systems, vol. 143, no. 2, pp. 107-114, 1996.

[62] C. M. Chang, “New multifunction OTA-C biquads,” IEEE Transactions on Circuits

and Systems-II: Analog and Digital Signal Processing, vol. 46, no. 6, pp. 820-824,

1999.

References

185

[63] J. W. Horng, “Voltage-mode universal biquadratic filter with one input and five

outputs using OTAs,” International Journal of Electronics, vol. 89, no. 9, pp. 729-

737, 2002.

[64] C. M. Chang, “Analytical synthesis of the digitally programmable voltage-mode OTA-

C universal biquad,” IEEE Transactions on Circuits and Systems-II: Express briefs,

vol. 53, no. 8, pp. 607-611, 2006.

[65] B. M. Al-Hashimi, “Current-mode filter structure based on dual-output

transconductance amplifiers,” Electronics Letters, vol. 32, no. 1, pp. 25-26, 1996.

[66] T. Tsukutani, Y. Sumi, Y. Fukui, “Electronically tunable current-mode OTA-C biquad

using two-integrator loop structure,” Frequenz, vol. 60, pp. 53-56, 2006.

[67] B. M. Al-Hashimi, F. Dudek, and M. Moniri, and J. Living, “Integrated universal

biquad based on triple output OTAs and using digitally programmable zeros,” IEE

Proceedings Circuits, Devices and Systems, vol. 145, no. 3, pp. 192-196, 1998.

[68] C. M. Chang, B. M. Al-Hashimi, “Analytical synthesis of current-mode high-order

OTA-C filters,” IEEE Transactions on Circuits and Systems-I: Fundamental Theory

and Applications, vol. 50, no. 9, pp. 1188-1192, 2003.

[69] Y. S. Hwang, D. S. Wu, J. J. Chen, W. S Chou, “Realization of current-mode high-

order filters employing multiple output OTAs,” International Journal of Electronics

and Communications (AEÜ), vol. 62, no. 4, pp. 299-303, 2008.

[70] D. R. Bhaskar, A. K. Singh, R. K. Sharma and R. Senani, “New OTA-C universal

current-mode/ transadmittance biquads,” IEICE Electronics Express, vol. 2, no. 1, pp.

8-13, 2005.

[71] Hua-Pin Chen, Yi-Zhen Liao, Wen-Ta Lee, “Tunable mixed-mode OTA-C universal

filter,” Analog Integrated Circuits and Signal Processing, vol. 58, no. 2, pp. 135-141,

2009.

[72] B. Thandri, J. Silva-Martinez and F. Maloberti, “A feedforward compensation scheme

for high gain wideband amplifiers,” Proceedings of the 8th

IEEE International

Conference on Electronics, Circuits and Systems, vol. 3, pp. 1115-1118, 2001.

References

186

[73] B. K. Thandri and J. Silva-Martinez, “A robust feedforward compensation scheme for

multistage operational transconductance amplifiers with no Miller capacitors,” IEEE

Journal of Solid-State Circuits, vol. 38, no. 2, pp. 237-243, 2003.

[74] S. Szczepanski and S. Koziel, “Phase compensation scheme for feed-forward

linearized CMOS operational transconductance amplifier,” Bulletin of the Polish

Academy of Sciences, Technical Sciences, vol. 52, no.2, pp. 141-148, 2004.

[75] J. Harrison and N. Weste, “350MHz opamp-RC filter in 0.18μm CMOS,” Electronics

Letters, vol. 38, no. 6, pp. 259-260, 2002.

[76] J. Harrison, N. Weste, “A 500MHz CMOS anti-alias filter using feed-forward op-

amps with local common-mode feedback,” IEEE International Solid-State Circuits

Conference, vol. 1, pp. 132-483, 2003.

[77] T. Laxminidhi, V. Prasadu and S. Pavan, “Widely programmable high-frequency

active RC filters in CMOS technology,” IEEE Transactions on Circuits and Systems-

I: Regular Papers, vol. 56, no. 2, pp. 327-336, 2009.

[78] D. Biolek, R. Senani, V. Biolkova and Z. Kolka, “Active elements for analog signal

processing: classification, review and new proposals,” Radio Engineering Journal,

vol. 17, no. 4, pp. 15-32, 2008.

[79] AD 844 Datasheet and SPICE macro models, Analog Devices Inc.

[80] R. Senani, “A novel application of four-terminal floating nullors,” Proceedings of the

IEEE, vol. 75, no. 11, pp. 1544-1546, 1987.

[81] T. S. Rathore, “Single FTFN realization of current transfer functions,” IETE Journal of

Research, vol. 51, no. 3, pp. 193-199, 2005.

[82] T. S. Rathore, “Current conveyor realizations of transfer functions,” IEE Proceedings,

vol. 122, no. 10, pp. 1119-1120, 1975.

[83] T. S. Rathore, “Analog computations using current conveyors, Journal of IETE (I), vol.

22, no. 8, pp. 510-511, 1976.

[84] T. S. Rathore, “Some more published literature on current conveyors,” IEE Proceedings

(Pt G), vol. 138, no. 3, pp. 432, 1991.

References

187

[85] A. K. Singh and R. Senani, “A new four-CC-based configuration for realizing a

voltage-mode biquad filters,” Journal of Circuits, Systems and Computers, vol. 11, no.

3, pp. 213-218, 2002.

[86] R. Senani, A. K. Singh and V. K. Singh, “New tunable SIMO-type current mode

universal biquad using MOCCs and all grounded passive elements,” Frequenz:

Journal of Telecommunications, vol. 57, no. 7-8, pp. 160-161, 2003.

[87] R. Senani, V. K. Singh, A. K. Singh and D. R. Bhaskar, “Novel electronically

controllable current-mode universal biquad filter,” IEICE Electronics Express, vol. 1,

no. 14, pp. 410-415, 2004.

[88] R. Senani, V. K. Singh, A. K. Singh and D. R. Bhaskar, “Tunable current-mode

universal biquads employing only three MOCCs and all grounded passive elements:

additional new realizations,” Frequenz: Journal of Telecommunications, vol. 59, no.

9-10, pp. 220-224, 2005.

[89] A. M. Soliman, “Current-mode universal filters using current conveyors: classification

and review,” Circuits, Systems, and Signal Processing, vol. 27, no. 3, pp. 405-

427, 2008.

[90] T. S. Rathore, “Current conveyor equivalent circuits,” International Journal of

Engineering & Technology, vol. 4, no. 1, pp. 1-7, 2012.

[91] S.-I. Liu, “Universal filter using two current-feedback amplifiers,” Electronics Letters,

vol. 31, no. 8, pp. 629-630, 1995.

[92] J. Mahattanakul and C. Toumazou, “A theoretical study of the stability of high

frequency current feedback op-amp integrators,” IEEE Transactions on Circuits and

Systems, vol. 43, no. 1, pp. 2-12, 1996.

[93] X. R. Meng, Z. H. Yu, “CFA based fully integrated Tow-Thomas biquad,” Electronics

Letters, vol. 32, no. 8, pp. 722-723, 1996.

[94] R. Senani and S. S. Gupta, “Universal voltage mode/current mode filter realized with

current feedback op-amps,” Frequenz: Journal of Telecommunications, vol. 51, no.

7/8, pp. 203-208, 1997.

References

188

[95] S. A. Mahmoud and A. M. Soliman, “New MOS-C biquad filter using the current

feedback operational amplifier,” IEEE Transactions on Circuits and Systems-I, vol.

46, no. 12, pp. 1510-1512, 1999.

[96] R. K. Sharma and R. Senani, “Multifunction CM/ VM biquads realized with a single

CFOA and grounded capacitors,” International Journal of Electronics and

Communications, AEU, vol. 57, no. 5, pp. 301-308, 2003.

[97] R. K. Sharma and R. Senani, “Universal current-mode biquad using a single CFOA,”

International Journal of Electronics, vol. 91, no. 3, pp. 175-183, 2004.

[98] R. Mita, G. Palumbo, and S. Pennisi, “Effect of CFOA nonidealities in Miller

integrator cells,” IEEE Transactions on Circuits and Systems-II: Express briefs, vol.

51, no. 5, pp. 249-253, 2004.

[99] R. K. Sharma and R. Senani, “On the realization of universal current mode biquads

using a single CFOA,” Analog Integrated Circuits and Signal Processing, vol. 41, no.

1, pp. 65-78, 2004.

[100] A. K. Singh, R. Senani, “CFOA-based state-variable biquad and its high-frequency

compensation,” IEICE Electronic Express, vol. 2, no. 7, pp. 232-238, 2005.

[101] R. Mita, G. Palumbo, and S. Pennisi, “Nonidealities of Tow-Thomas biquads using

VOA- and CFOA-based Miller integrators,” IEEE Transactions on Circuits and

Systems-II: Express briefs, vol. 52, no. 1, pp. 22-27, 2005.

[102] V. K. Singh, A. K. Singh, D. R. Bhaskar, R. Senani, “New universal biquads

employing CFOAs,” IEEE Transactions on Circuits and Systems-II: Express briefs,

vol. 53, no. 11, pp. 1299-1303, 2006.

[103] T. S. Rathore, “CFA-based grounded capacitor operational simulation of ladder filters,”

International Journal of Circuit Theory Applications, vol. 36, pp. 697-716, 2008.

[104] R. F. Ahmed, I. A. Awad and A. N. Soliman, “A transformation method from voltage-

mode op-amp RC circuits to current-mode Gm-C circuits,” Circuits, Systems and

Signal Processing, vol. 25, pp. 609-626, 2006.

References

189

[105] A. C. M. De Queiroz, L. P. Caloba, E. Sanchez-Sinencio, “Signal-flow graph OTA-C

integrated filters,” IEEE International Symposium on Circuits and Systems, vol. 3, pp.

2165-2168, 1988.

[106] Y. Sun and J. K. Fidler, “Structure generation of current-mode two-integrator loop

dual output-OTA grounded capacitor filters,” IEEE Transactions on Circuits and

Systems-II: Analog and Digital Signal Processing, vol. 43, no. 9, pp. 659-663, 1996.

[107] J. Wu, and E. I. El-Masry, “Design of current-mode ladder filters using coupled

biquads,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal

Processing, vol. 45, no. 11, pp. 1445-1454, 1998.

[108] B. M. Al-Hashimi, F. Dudek and M. Moniri, “Current-mode group-delay equalization

using pole-zero mirroring technique,” IEE Proceedings: Circuits, Devices and

Systems, vol. 147, no. 4, pp. 257-263, 2000.

[109] Y. Sun and J. K. Fidler, “Current-mode OTA-C realization of arbitrary filter

characteristics,” Electronics Letters, vol. 32, no. 13, pp. 1181-1182, 1996.

[110] D. Biolek, V. Biolková and Z. Kolka, “Universal current-mode OTA-C KHN biquad,”

International Journal of Electronics, Circuits and Systems, vol. 1, no. 4, pp. 214-217,

2007.

[111] C. M. Chang and S. K. Pai, “Universal current-mode OTA-C biquad with the

minimum components,” IEEE Transactions on Circuits and Systems-I: Fundamental

Theory and Applications, vol. 47, no. 8, pp. 1235-1238, 2000.

[112] C. Chang, B. M. Al-Hashimi and J. Neil Ross, “Unified active filter biquad

structures,” IEE Proceedings: Circuits, Devices and Systems, vol. 151, no. 4, pp. 273-

277, 2004.

[113] M. T. Abuelma’atti and A. Bentrcia, “New universal current-mode multiple-input

multiple-output OTA-C filter,” IEEE Asia-Pacific Conference on Circuits and

Systems, vol. 2, pp. 1037-1040, 2004.

References

190

[114] T. Tsukutani, Y. Sumi, M. Higashimura and Y. Fukui, “Current-mode universal

biquad circuit using MO-OTAs and DO-CCII,” IEEE International Symposium on

Circuits and Systems, vol. 2, pp. 1589-1592, 2005.

[115] W. Chunhua, Z. Ling, L. Tao, “A new OTA-C current-mode biquad filter with single

input and multiple outputs,” International Journal of Electronics and Communications

(AEÜ), vol. 62, no. 3, pp. 232-234, 2008.

[116] K. Laker, R. Schaumann, M. Ghausi, “Multiple-loop feedback topologies for the

design of low-sensitivity active filters,” IEEE Transactions on Circuits and Systems,

vol. 26, no. 1, pp. 1-21, 1979.

[117] Y. Sun, J. K. Fidler, “OTA-C realization of general high-order transfer functions,”

Electronics Letters, vol. 29, no. 12, pp. 1057-1058, 1993.

[118] Y. Sun, J. K. Fidler, “General multiple loop feedback OTA-C filter architecture,” IEE

Third one-day Colloquium on Analog Signal Processing, pp. 3/1-3/6, 1996.

[119] Y. Sun, and J. K. Fidler, “Structure generation and design of multiple-loop feedback

OTA-grounded capacitor filters,” IEEE Transactions on Circuits and Systems, vol. 44,

pp. 1-11, 1997.

[120] Y. Sun, and J. K. Fidler, “Current-mode multiple loop feedback filters using dual

output OTAs and grounded capacitors,” International Journal of Circuit Theory and

Applications, vol. 25, pp. 69-80, 1997.

[121] Y. Sun, “Synthesis of leap-frog multiple-loop feedback OTA-C filters,” IEEE

Transactions on Circuits and Systems-II: Express briefs, vol. 53, no. 9, pp. 961-965,

2006.

[122] C. M. Chang, B. M. Al-Hashimi, “Analytical synthesis of high-order current-mode

OTA-C filters,” IEEE Transactions on Circuits Systems-I, vol. 50, no. 9, pp. 1188-

1192, 2003.

[123] C. M. Chang, C. L. Hou, W. Y. Chung, J. W. Horng, and C. K. Tu, “Analytical

synthesis of high-order single-ended-input OTA-grounded C all-pass and band-reject

References

191

filter structures,” IEEE Transactions on Circuits and Systems-I: Regular Papers, vol.

53, no. 3, pp. 489-498, 2006.

[124] J. Ramírez-Angulo and E. Sánchez-Sinencio, “High-frequency compensated current-

mode ladder filters using multiple output OTAs,” IEEE Transactions on Circuits and

Systems- II: Analog and Digital Signal Processing, vol. 41, no. 9, pp. 581-586, 1994.

[125] J. Wu and E. I. El-Masry, “Current-mode band-pass ladder filters using OTAs,”

International Journal of Electronics, vol. 85, no. 1, pp. 61-70, 1998.

[126] Y. Sun, X. Zhu, J. Moritz, “Explicit design formulas for current-mode leap-frog OTA-

C filters and 300MHz CMOS seventh-order linear phase filter,” Journal of Circuit

Theory and Applications, vol. 38, no. 4, pp. 367-382, 2010.

[127] R. Nawrocki, “Electronically controlled OTA-C filter with follow-the-leader-feedback

structure,” International Journal of Circuit Theory and Applications, vol. 16, no. 1,

pp. 93-96, 1988.

[128] A. N. Gönüleren, R. Köprü and H. Kuntman, “Multiloop feedback bandpass OTA-C

filters using quads,” Proceedings of 12th

European Conference on Circuit Theory and

Design, vol. 2, pp. 607-610, 1995.

[129] J. S. Martinez, M. S. J. Steyaert and W. Sansen, “A 10.7-MHz 68-dB SNR CMOS

continuous-time filter with on-chip automatic tuning,” IEEE Journal of Solid-State

Circuits, vol. 21, no. 12, pp. 1843-1853, 1992.

[130] K. C. Smith and A. S. Sedra, “The current conveyor- a new circuit building block,”

Proceedings of IEEE, vol. 56, no. 8, pp. 1368-1369, 1968.

[131] A. S. Sedra and K. C. Smith, “A second generation current conveyor and its

applications,” IEEE Transactions on Circuit Theory, vol. 17, no. 1, pp. 132-134, 1970.

[132] R. Senani, “Novel application of generalized current conveyor,” Electronics Letters,

IEE, vol. 20, no. 4, pp. 169-170, 1984.

[133] B. Wilson, “Recent developments in current conveyors and current-mode circuits,”

IEE Proceedings: Circuits, Devices and Systems, vol. 137, no. 2, pp. 63-77, 1990.

References

192

[134] A. S. Sedra, G. W. Roberts and F. Gohk, “The current conveyor: history, progress and

new results,” IEE Proceedings: Circuits, Devices and Systems, vol. 137, no. 2, pp. 78-

87, 1990.

[135] G. G. A. Black, R. T. Friedmann and A. S. Sedra, “Gyrator implementation with

integrable current conveyors,” IEEE Journal of Solid State Circuits, vol. 6, pp. 395-

399, 1971.

[136] R. Senani, “Active simulation of inductors using current conveyors,” Electronics

Letters, IEE, vol. 14, no. 15, pp. 483-484, 1978.

[137] K. Pal, “Simulated inductances using current conveyors and their applications,”

Microelectronics Journal, vol. 12, pp. 30-31, 1981.

[138] A. M. Soliman, “Current mode CCII oscillators using grounded capacitors and

resistors,” International Journal of Circuit Theory and Applications, vol. 26, no. 5, pp.

431-438, 1998.

[139] R. Senani, S. S. Gupta, “Novel SRCOs using first generation current conveyor,”

International Journal of Electronics, vol. 87, no. 10, pp. 1187-1192, 2000.

[140] A. M. Soliman, “Generation of three oscillator families using CCII and ICCII,” AEU

- International Journal of Electronics and Communications, vol. 64, no. 9, pp. 880-

887, 2010.

[141] S. Franco, “Analytical foundations of current-feedback amplifiers,” IEEE

International Symposium on Circuits and Systems, vol. 2, pp. 1050-1053, 1993.

[142] D. F. Bowers, “The so-called current feedback operational amplifier - technological

breakthrough or engineering curiosity?” Proceedings of IEEE International

Symposium on Circuits and Systems, vol. 2, pp. 1054-1057, 1993.

[143] B. Harvey, “Current feedback opamp limitations: a state-of-the-art review,”

Proceedings of IEEE International Symposium on Circuits and Systems, vol. 2, pp.

1066-1069, 1993.

References

193

[144] C. Tomazou, A. Payne and J. Lidgey, “Current feedback versus voltage feedback

amplifiers: history, insight and relationships,” Proceedings of IEEE International

Symposium on Circuits and Systems, vol. 2, pp. 1046-1049, 1993.

[145] C. Toumazou and F. G. Lidgey, “Current feedback op-amps: a blessing in disguise?”

IEEE Circuits Devices Magazine, vol. 10, no. 1, pp. 34-37, 1994.

[146] A. Payne and C. Toumazou, “Analog amplifiers: classification and generalization,”

IEEE Transactions on Circuits and Systems-I, vol. 43, no. 1, pp. 43-50, 1996.

[147] G. Palumbo and S. Pennisi, “Current-feedback amplifiers versus voltage operational

amplifiers,” IEEE Transactions on Circuits and Systems-I: Fundamental Theory and

Applications, vol. 48, no. 5, pp. 617-623, 2001.

[148] J. Bayard, “CFOA based inverting amplifier bandwidth enhancement,” IEEE

Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, vol.

48, no. 12, pp. 1148-1150, 2001.

[149] A. M. Soliman, “Applications of the current feedback operational amplifier,” Analog

Integrated Circuits Signal Processing, vol. 11, no. 3, pp. 265-302, 1996.

[150] A. M. Ismail and A. M. Soliman, “Novel CMOS current feedback op-amp realization

suitable for high frequency applications,” IEEE Transactions on Circuits and Systems-

I, vol. 47, no. 6, pp. 918-921, 2000.

[151] S. A. Mahmoud, H. O. Elwan, and A. M. Soliman, “Low voltage rail to rail CMOS

current feedback operational amplifier and its applications for analog VLSI,” Analog

Integrated Circuits and Signal Processing, vol. 25, no. 1, pp. 47-57, 2000.

[152] A. K. Singh and R. Senani, “Active-R design using CFOA-poles: new resonators,

filters and oscillators,” IEEE Transactions on Circuits and Systems II- Analog and

Digital Signal Processing, vol. 48, no. 5, pp. 504-511, 2001.

[153] E. Bruun, “Feedback analysis of transimpedance operational amplifier circuits,” IEEE

Transactions on Circuits Systems-I: Fundamental Theory and Applications, vol. 40,

no. 4, pp. 275-278, 1993.

References

194

[154] S. Pennisi, G. Scotti, A. Trifiletti, “Avoiding the gain-bandwidth trade off in feedback

amplifiers,” IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 58,

no. 9, pp. 2108-2113, 2011.

[155] P. V. Ananda Mohan, “Comments on avoiding the gain-bandwidth trade off in

feedback amplifiers,” IEEE Transactions on Circuits and Systems-I: Regular Papers,

vol. 58, no. 9, pp. 2114-2116, 2011.

[156] S. Pennisi, G. Scotti, A. Trifiletti, “Reply to comments on avoiding the gain-

bandwidth trade off in feedback amplifiers,” IEEE Transactions on Circuits and

Systems-I: Regular Papers, vol. 58, no. 9, pp. 2117, 2011.

[157] A. Assi, M. Sawan and J. Zhu, “An offset compensated and high-gain CMOS current

feedback op-amp,” IEEE Transactions on Circuits and Systems-I, vol. 45, no.1, pp.

85-90, 1998.

[158] G. Palumbo, “Bipolar current feedback amplifier: compensation guidelines,” Analog

Integrated Circuits and Signal Processing Journal, vol. 19, no. 2, pp. 107-114, 1999.

[159] R. Senani and V. K. Singh, “Synthesis of canonic single resistance controlled

oscillators using a single current-feedback-amplifier,” IEE Proceedings Circuits,

Devices and Systems, vol. 143, pp. 71-72, 1996.

[160] M. T. Abuelma’atti, A. A. Farooqi, “Novel RC oscillators using the current-feedback

operational amplifier,” IEEE Transactions on Circuits and Systems-I: Fundamental

Theory and Applications, vol. 43, no. 2, pp. 155-157, 1996.

[161] R. Senani and V. K. Singh, “Novel single-resistance-controlled oscillator

configuration using current feedback amplifiers,” IEEE Transactions on Circuits and

Systems-I: Fundamental Theory and Applications, vol. 43, no. 8, pp. 698-700, 1996.

[162] R. Senani and S. S. Gupta, “Synthesis of single-resistance-controlled oscillators using

CFOAs: simple state variable approach,” IEE Proceedings- Circuits, Devices and

Systems, vol. 144, no. 2, pp. 104-106, 1997.

References

195

[163] S. S. Gupta and R. Senani, “State variable synthesis of single-resistance-controlled

grounded-capacitor oscillators using only two CFOAs,” IEE Proceedings- Circuits,

Devices and Systems, vol. 145, no. 2, pp. 135-138, 1998.

[164] S. S. Gupta and R. Senani, “State variable synthesis of single-resistance-controlled

grounded-capacitor oscillators using only two CFOAs: additional new realisations,”

IEE Proceedings-Circuits, Devices and Systems, vol. 145, no. 6, pp. 415-418, 1998.

[165] R. Senani, “Realization of a class of analog signal processing/signal generation

circuits: novel configurations using current feedback op-amps,” Frequenz: Journal of

Telecommunications, vol. 52, no. 9/10, pp. 196-206, 1998.

[166] V. K. Singh, R. K. Sharma, A. K. Singh, D. R. Bhaskar and R. Senani, “Two new

canonic single-CFOA oscillators with single resistor controls,” IEEE Transactions on

Circuits and Systems-II: Express briefs , vol. 52, no. 12, pp. 860-864, 2005.

[167] D. R. Bhaskar, R. Senani, “New CFOA-based single-element-controlled sinusoidal

oscillators,” IEEE Transactions on Instrumentation and Measurement, vol. 55, no. 6,

pp. 2014-2021, 2006.

[168] S. S. Gupta, R. K. Sharma, D. R. Bhaskar and R. Senani, “Sinusoidal oscillators with

explicit current output employing current-feedback op-amps,” International Journal of

Circuit Theory and Applications, vol. 38, no. 2, pp. 131-147, 2010.

[169] S. K. Mitra and K. Hirano, “Digital all-pass networks,” IEEE Transactions on Circuits

and Systems, vol. 21, pp. 688-700, 1974.

[170] A. H. Gray and J. D. Markel, “Digital lattice and ladder filter synthesis,” IEEE

Transactions on Audio Electroacoustics, vol. 21, pp. 491-500, 1973.

[171] S. Minaei, M. A. Ibrahim, H. Kuntman, “DVCC based current-mode first-order all-

pass filter and its application,” Proceedings of 10th

IEEE International Conference on

Electronics, Circuits and Systems, vol. 1, pp. 276-279, 2003.

[172] CA 3080 Data sheet, Intersil.

References

196

[173] D. Akerberg and K. Mossberg, “A versatile Active RC building block with inherent

compensation for the finite bandwidth of the amplifier,” IEEE Transactions on

Circuits and Systems, vol. 21, pp. 75-78, 1974.

[174] A. V. Oppenheim and R. W. Schafer, Digital Processing of Signals, John Wiley : New

York, 2007.

[175] N. Boutin, “Active compensation of op-amp inverting amplifier using NIC,”

Electronics Letters, vol. 17, no. 25, pp. 978-979, 1981.

[176] T. S. Rathore, “Application of complementary transformation to NIC compensated

amplifiers,” Electronics Letters, vol. 18, no. 10, pp. 400-401, 1982.

[177] T. S. Rathore and K. R. Pai, “Optimum design and study of an NIC compensated

inverting amplifier,” IEEE International Symposium on Circuits and Systems, 1984.

[178] P. V. Ananda Mohan, “Active compensation of op-amp inverting amplifiers using

NIC,” AEU, vol. 42, pp. 192-194, 1988.

[179] T. S. Rathore and K. R. Pai, “Performance of a negative resistance compensated

inverting amplifier,” IETE Technical Review, vol. 5, pp. 287-290, l988.

[180] W. Jaikla and M. Siripruchyanan, “An electronically controllable capacitance

multiplier with temperature compensation,” Proceedings of International Symposium

on Communications and Information Technologies (ISCIT), pp. 356-359, 2006.

[181] S. Ravichandran and K. Radhakrishna Rao, “A novel active compensation scheme for

Active-RC filters,” Proceedings of IEEE, vol. 68, no. 6, pp. 743-744, 1980.

[182] T. S. Rathore, “Compensated integrators for high frequency applications,” International

Journal of Circuit Theory and Applications, vol. 11, no 1, pp. 99-106, 1983.

[183] S. I. Liu, Y.-H. Liao, “Table-based log-domain linear transformation filter,”

Electronics Letters, vol. 32, no. 19, pp. 1771-1772, 1996.

[184] S. Hiroyuki, T. Seiichiro, F. Kikuo, F. Yutaka, “Current-mode LTA filters using

OTA,” IEE Papers of Technical Meeting on Electronic Circuits, Japan, vol. 6, no.

107-113, pp. 7-11, 2006.

References

197

[185] G. Groenewold, “A high-dynamic-range integrated continuous-time band pass filter,”

IEEE Journal of Solid-State Circuits, vol. 27 , no. 11, pp. 1614-1622, 1992.

[186 ] G. Groenewold, “Optimal dynamic range integrators,” IEEE Transactions on Circuits

and Systems I: Fundamental Theory and Applications, vol. 39, no. 8, pp. 614-627,

1992.

[187] J. P. Moree, G. Groenewold, L. A. D. van den Broeke, “A bipolar integrated

continuous-time filter with optimized dynamic range,” IEEE Journal of Solid-State

Circuits, vol. 28 , no. 9, pp. 954-961, 1993.

[188] E. Vittoz and Y. Tsividis, “Frequency - Dynamic Range – Power,” Chapter 10 in

Tradeoffs in Analog Circuit Design, ed. by C. Toumazou, G. Moschytz, and B.

Gilbert, Kluwer Academic Publishers, 2002.

[189] S. Koziel, A. Ramachandran, S. Szczepanski, E. Sánchez-Sinencio, “Dynamic range,

noise and linearity optimization of continuous-time OTA-C filters,” Proceedings of

the 11th IEEE International Conference on Electronics, Circuits and Systems, pp. 41-

44, 2004.

[190] S. Koziel, A. Ramachandran, S. Szczepanski, E. Sánchez-Sinencio, “A general

framework for evaluating nonlinearity, noise and dynamic range in continuous-time

OTA-C filters for computer-aided design and optimization,” International Journal of

Circuit Theory and Applications, vol. 35, no. 4, pp. 405-425, 2007.

[191] G. Espinosa, F. Montecchi, E. Sanchez Sinencio, F. Maloberti, “Noise performances of

OTA-C filters,” IEEE International Symposium on Circuits and Systems, vol. 3, pp.

2173-2176, 1988.

[192] A. Brambilla, G. Espinosa, F. Montecchi, E. Sánchez Sinecio, “Noise optimization in

operational transconductance amplifier filters,” IEEE International Symposium on

Circuits and Systems, vol. 1, pp. 118-121, 1989.

[193] A. A. Abidi, “Noise in active resonators and the available dynamic range,” IEEE

Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol.

39, no. 4, pp. 296-299, 1992.

References

198

[194] J. Mahattanakul and C. Toumazou, “Current-mode versus voltage-mode Gm-C biquad

filters: what the theory says,” IEEE Transactions on Circuits and Systems II: Analog

and Digital Signal Processing, vol. 45, no. 2, pp. 173-186, 1998.

[195] L. Toth, Y. P. Tsividis, N. Krishnapura, “On the analysis of noise and interference in

instantaneously companding signal processors,” IEEE Transactions on Circuits and

Systems II: Analog and Digital Signal Processing, vol. 45, no. 9, pp. 1242-249, 1998.

[196] G. Efthivoulidis, L. Toth and Y. P. Tsividis, “Noise in Gm-C filters,” IEEE

Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol.

45, no. 3, pp. 295-302, 1998.

[197] K. A. Mezher, P. Bowron, “Noise-flow-graph analysis of OTA-C filters,” The IEEE

International Symposium on Circuits and Systems, vol. 1, pp. 695-698, 2001.

[198] S. Koziel, R. Schaumann, Haiqiao Xiao, “Analysis and optimization of noise in

continuous-time OTA-C filters,” IEEE Transactions on Circuits and Systems I:

Regular Papers, vol. 52, no. 6, pp. 1086-1094, 2005.

[199] G. Groenewold, “Noise and Group Delay in Active Filters,” IEEE Transactions on

Circuits and Systems I: Regular Papers, vol. 54, no. 7, pp. 1471-1480, 2007.

[200] G. Palumbo, S. Pennisi, “Analysis of the noise characteristics of current-feedback

operational amplifier,” Microelectronics Reliability, vol. 40, no. 2, pp. 321-327, 2000.

[201] G. Palumbo, S. Pennisi, “Current-feedback amplifiers versus voltage operational

amplifiers,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and

Applications, vol. 48, no. 5, pp. 617-623, 2001.

[202] E. Vittoz and J. Fellrath, “CMOS analog circuits based on weak inversion operation,”

IEEE Journal of Solid-State Circuits, vol. 12, pp. 224-231, 1977.

[203] E. Vittoz, “Future trends of analog in the VLSI environment,” Proceedings of the IEEE

International Symposium on Circuits and Systems, pp. 1372-1375, 1990.

[204] S. L. Smith, E. Sanchez-Sinencio, “Low voltage integrators for high-frequency CMOS

filters using current mode techniques,” IEEE Transactions on Circuits and Systems II:

Analog and Digital Signal Processing, vol. 43, no. 1, pp. 39-48, 1996.

References

199

[205] N. Krishnapura and Y. Tsividis, “Noise and power reduction in filters through the use

of adjustable biasing,” IEEE Journal of Solid State Circuits, vol. 36, no. 12, pp. 1912-

1920, 2001.

[206] N. Krishnapura and Y. Tsividis, “Micropower low-voltage analog filter in a digital

CMOS process,” IEEE Journal of Solid State Circuits, vol. 38, no. 6, pp. 1063-1067,

2003.

[207] Y. Tsividis, N. Krishnapura, Y. Palaskas, L. Toth, “Internally varying analog circuits

minimize power dissipation,” IEEE Circuits and Devices Magazine, vol. 19, no. 1, pp.

63-72, 2003.