References - link.springer.com978-3-642-20426-5/1.pdf · 132 References 18. Ho, H., Lam, W.:...

23
References 1. Merzkirch, W.: Flow visualization. Academic Press, London (1987) 2. Schlichting, H.: Boundary-layer theory, 7th edn. McGraw-Hill, New York (1979) 3. Merzkirch, W.: Boundary-layer visualization in a shock tube. In: Recent Develop- ments in Theoretical and Experimental Fluid Mechanics: Compressible and Incom- pressible Flows, pp. 137–143. Springer, Berlin (1979) 4. Adamson, A.W.: Physical chemistry of surfaces, 5th edn. Wiley, New York (1990) 5. Hecht, E., Zajac, A.: Optics, 4th edn. Addison-Wesley Pub. Co., Reading (2002) 6. Kihm, K.D., Banerjee, A., Choi, C.K., Takagi, T.: Near-wall hindered Brownian dif- fusion of nanoparticles examined by three-dimensional ratiometric total internal re- flection fluorescence microscopy (3-D R-TIRFM). Experiments in Fluids 37(6), 811– 824 (2004) 7. Kline, S., McClintock, F.: Describing uncertainties in single-sample experiments. Mechanical Engineering 75(1), 3–8 (1953) 8. Ritchie, R.: Plasma losses by fast electrons in thin films. Physical Review 106(5), 874–881 (1957) 9. Maier, S.: Plasmonics: fundamentals and applications. Springer, Heidelberg (2007) 10. Wikipedia, Polariton - Wikipedia, The Free Encyclopedia (2010), http://en.wikipedia.org/wiki/Polariton 11. Ferrell, T.L., Callcott, T.A., Warmack, R.J.: Plasmons and surfaces. American Scien- tist 73, 344–353 (1985) 12. Raether, H.: Surface plasmons. Springer, New York (1988) 13. Johnson, P., Christy, R.: Optical constants of the noble metals. Physical Review B 6(12), 4370–4379 (1972) 14. Kryukov, A., Kim, Y., Ketterson, J.: Surface plasmon scanning near-field optical mi- croscopy. Journal of Applied Physics 82(11), 5411–5415 (1997) 15. Lakowicz, J.: Radiative decay engineering 3. Surface Plasmon-Coupled Directional Emission. Analytical Biochemistry 324(2), 153–169 (2004) 16. Hornauer, D.L.: Light scattering experiments on silver films of different roughness using surface plasmon excitation. Optics Communications 16(1), 76–79 (1976) 17. Inagaki, T., Kagami, K., Arakawa, E.: Photoacoustic observation of nonradiative de- cay of surface plasmons in silver. Physical Review B 24(6), 3644–3646 (1981)

Transcript of References - link.springer.com978-3-642-20426-5/1.pdf · 132 References 18. Ho, H., Lam, W.:...

References

1. Merzkirch, W.: Flow visualization. Academic Press, London (1987) 2. Schlichting, H.: Boundary-layer theory, 7th edn. McGraw-Hill, New York (1979) 3. Merzkirch, W.: Boundary-layer visualization in a shock tube. In: Recent Develop-

ments in Theoretical and Experimental Fluid Mechanics: Compressible and Incom-pressible Flows, pp. 137–143. Springer, Berlin (1979)

4. Adamson, A.W.: Physical chemistry of surfaces, 5th edn. Wiley, New York (1990) 5. Hecht, E., Zajac, A.: Optics, 4th edn. Addison-Wesley Pub. Co., Reading (2002) 6. Kihm, K.D., Banerjee, A., Choi, C.K., Takagi, T.: Near-wall hindered Brownian dif-

fusion of nanoparticles examined by three-dimensional ratiometric total internal re-flection fluorescence microscopy (3-D R-TIRFM). Experiments in Fluids 37(6), 811–824 (2004)

7. Kline, S., McClintock, F.: Describing uncertainties in single-sample experiments. Mechanical Engineering 75(1), 3–8 (1953)

8. Ritchie, R.: Plasma losses by fast electrons in thin films. Physical Review 106(5), 874–881 (1957)

9. Maier, S.: Plasmonics: fundamentals and applications. Springer, Heidelberg (2007) 10. Wikipedia, Polariton - Wikipedia, The Free Encyclopedia (2010),

http://en.wikipedia.org/wiki/Polariton11. Ferrell, T.L., Callcott, T.A., Warmack, R.J.: Plasmons and surfaces. American Scien-

tist 73, 344–353 (1985) 12. Raether, H.: Surface plasmons. Springer, New York (1988) 13. Johnson, P., Christy, R.: Optical constants of the noble metals. Physical Review

B 6(12), 4370–4379 (1972) 14. Kryukov, A., Kim, Y., Ketterson, J.: Surface plasmon scanning near-field optical mi-

croscopy. Journal of Applied Physics 82(11), 5411–5415 (1997) 15. Lakowicz, J.: Radiative decay engineering 3. Surface Plasmon-Coupled Directional

Emission. Analytical Biochemistry 324(2), 153–169 (2004) 16. Hornauer, D.L.: Light scattering experiments on silver films of different roughness

using surface plasmon excitation. Optics Communications 16(1), 76–79 (1976) 17. Inagaki, T., Kagami, K., Arakawa, E.: Photoacoustic observation of nonradiative de-

cay of surface plasmons in silver. Physical Review B 24(6), 3644–3646 (1981)

132 References

18. Ho, H., Lam, W.: Application of differential phase measurement technique to surface plasmon resonance sensors. Sensors and Actuators B: Chemical 96(3), 554–559 (2003)

19. Xinglong, Y., Dingxin, W., Xing, W., Xiang, D., Wei, L., Xinsheng, Z.: A surface plasmon resonance imaging interferometry for protein micro-array detection. Sensors and Actuators B: Chemical 108(1-2), 765–771 (2005)

20. Slavík, R., Homola, J.: Ultrahigh resolution long range surface plasmon-based sensor. Sensors and Actuators B: Chemical 123(1), 10–12 (2007)

21. Liebermann, T., Knoll, W.: Surface-plasmon field-enhanced fluorescence spectros-copy. Colloids and Surfaces A: Physicochemical and Engineering Aspects 171(1-3), 115–130 (2000)

22. Neumann, T., Johansson, M., Kambhampati, D., Knoll, W.: Surface-plasmon fluores-cence spectroscopy. Advanced Functional Materials 12(9), 575–586 (2002)

23. Rothenhäusler, B., Knoll, W.: Surface plasmon microscopy. Nature 332, 615–617 (1988)

24. Peterlinz, K.A., Georgiadis, R.: In situ kinetics of self-assembly by surface plasmon resonance spectroscopy. Langmuir 12(20), 4731–4740 (1996)

25. Rothenhäusler, B., Rabe, J., Korpiun, P., Knoll, W.: On the decay of plasmon surface polaritons at smooth and rough Ag-air interfaces: A reflectance and photo-acoustic study. Surface Science 137(1), 373–383 (1984)

26. Ciddor, P.E.: Refractive index of air: new equations for the visible and near infrared. Applied Optics 35(9), 1566–1573 (1996)

27. Segelstein, D.J.: The complex refractive index of water. Department of Physics. Uni-versity of Missouri-Kansas City (1981)

28. Gray, S.: Several Microscopical Observations and Experiments, Made by Mr. Stephen Gray. Royal Society of London Philosophical Transactions Series I 19, 280–287 (1695)

29. Ingenhousz, J.: Experiments upon vegetables: discovering their great power of purify-ing the common air in the sun-shine, and of injuring it in the shade and at night. To Which is Joined, a New Method of Examining the Accurate Degree of Salubrity of the Atmosphere. Printed for P. Elmsly and H. Payne (1779)

30. Brown, R.: A brief account of microscopical observations made in the months of June, July and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Philosophi-cal Magazine Series 2 4(21), 161–173 (1828)

31. Einstein, A.: On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat. Annalen der Physik 17, 549–560 (1905)

32. Einstein, A., Fürth, R.: Investigations on the Theory of the Brownian Movement. Do-ver Pubns, New York (1956)

33. Batchelor, G.: Brownian diffusion of particles with hydrodynamic interaction. Journal of Fluid Mechanics 74(01), 1–29 (1976)

34. Salmon, R., Robbins, C., Forinash, K.: Brownian motion using video capture. Euro-pean Journal of Physics 23, 249 (2002)

35. Schätzel, K., Neumann, W., Müller, J., Materzok, B.: Optical tracking of single Brownian particles. Applied Optics 31(6), 770–778 (1992)

36. Shlesinger, M., Klafter, J., Zumofen, G.: Above, below and beyond Brownian mo-tion. American Journal of Physics 67, 1253 (1999)

37. Brenner, H.: The slow motion of a sphere through a viscous fluid towards a plane sur-face. Chemical Engineering Science 16(3-4), 242–251 (1961)

References 133

38. Dufresne, E., Squires, T., Brenner, M., Grier, D.: Hydrodynamic coupling of two Brownian spheres to a planar surface. Physical Review Letters 85(15), 3317–3320 (2000)

39. Hosoda, M., Sakai, K., Takagi, K.: Measurement of anisotropic Brownian motion near an interface by evanescent light-scattering spectroscopy. Physical Review E 58(5), 6275–6280 (1998)

40. Kim, S., Karrila, S.: Microhydrodynamics: principles and selected applications, vol. 507. Butterworth-Heinemann, Boston (1991)

41. Goldman, A., Cox, R., Brenner, H.: Slow viscous motion of a sphere parallel to a plane wall–I Motion through a quiescent fluid* 1. Chemical Engineering Sci-ence 22(4), 637–651 (1967)

42. Probstein, R.: Physicochemical hydrodynamics: an introduction. Wiley Interscience, Hoboken (1994)

43. Russel, W., Saville, D., Schowalter, W.: Colloidal dispersions. Cambridge Univ. Press, Cambridge (1992)

44. Kim, M., Beskok, A., Kihm, K.D.: Electro-osmosis-driven micro-channel flows: A comparative study of microscopic particle image velocimetry measurements and nu-merical simulations. Experiments in Fluids 33(1), 170–180 (2002)

45. Brady, J., Bossis, G.: Stokesian dynamics. Annual Review of Fluid Mechanics 20(1), 111–157 (1988)

46. Batchelor, G.: Sedimentation in a dilute dispersion of spheres. Journal of Fluid Me-chanics 52(02), 245–268 (1972)

47. Banerjee, A., Kihm, K.D.: Experimental verification of near-wall hindered diffusion for the Brownian motion of nanoparticles using evanescent wave microscopy. Physi-cal Review E 72(4), 42101 (2005)

48. Von Grünberg, H., Helden, L., Leiderer, P., Bechinger, C.: Measurement of surface charge densities on Brownian particles using total internal reflection microscopy. The Journal of Chemical Physics 114, 10094 (2001)

49. Israelachvili, J.N.: Intermolecular and surface forces. Academic Press, New York (1992)

50. Carnie, S., Chan, D., Gunning, J.: Electrical double layer interaction between dissimi-lar spherical colloidal particles and between a sphere and a plate: The linearized Pois-son-Boltzmann theory. Langmuir 10(9), 2993–3009 (1994)

51. Prieve, D.: Measurement of colloidal forces with TIRM. Advances in Colloid and In-terface Science 82(1-3), 93–125 (1999)

52. Behrens, S., Grier, D.: The charge of glass and silica surfaces. The Journal of Chemi-cal Physics 115, 6716 (2001)

53. Gady, B., Schleef, D., Reifenberger, R., Rimai, D., DeMejo, L.: Identification of elec-trostatic and van der Waals interaction forces between a micrometer-size sphere and a flat substrate. Physical Review B 53(12), 8065–8070 (1996)

54. Bike, S., Prieve, D.: Measurements of double-layer repulsion for slightly overlapping counterion clouds. International Journal of Multiphase Flow 16(4), 727–740 (1990)

55. Axelrod, D., Burghardt, T., Thompson, N.: Total internal reflection fluorescence. An-nual Review of Biophysics and Bioengineering 13, 247 (1984)

56. Axelrod, D., Hellen, E., Fulbright, R.: Total internal reflection fluorescence. Topics in Fluorescence Spectroscopy: Biochemical Applications, 289–343 (1992)

57. Sako, Y., Minoghchi, S., Yanagida, T.: Single-molecule imaging of EGFR signalling on the surface of living cells. Nature Cell Biology 2(3), 168–172 (2000)

134 References

58. Ishijima, A., Yanagida, T.: Single molecule nanobioscience. Trends in Biochemical Sciences 26(7), 438–444 (2001)

59. Rohrbach, A.: Observing secretory granules with a multiangle evanescent wave mi-croscope. Biophysical Journal 78(5), 2641–2654 (2000)

60. Sako, Y., Yanagida, T.: Single-molecule visualization in cell biology. Nature Re-views Molecular Cell Biology 4(9; supp.) (2003)

61. Zettner, C., Yoda, M.: Particle velocity field measurements in a near-wall flow using evanescent wave illumination. Experiments in Fluids 34(1), 115–121 (2003)

62. Sadr, R., Yoda, M., Zheng, Z., Conlisk, A.T.: An experimental study of electro-osmotic flow in rectangular microchannels. Journal of Fluid Mechanics 506, 357–367 (2004), doi:10.1017/S0022112004008626

63. Bevan, M., Prieve, D.: Hindered diffusion of colloidal particles very near to a wall: Revisited. The Journal of Chemical Physics 113, 1228 (2000)

64. Prieve, D., Frej, N.: Total internal reflection microscopy: A quantitative tool for the measurement of colloidal forces. Langmuir 6(2), 396–403 (1990)

65. Prieve, D., Luo, F., Lanni, F.: Brownian motion of a hydrosol particle in a colloidal force field. Faraday Discussions of the Chemical Society 83, 297–307 (1987)

66. Banerjee, A., Kihm, K.D.: Tracking of Nanoparticles Using Evanescent Microscopy. Paper Presented at the The 11th International Symposium on Flow Visualization, Notre Dame, Indiana (August 2004)

67. Benson, D., Bryan, J., Plant, A., Gotto, A., Smith, L.: Digital imaging fluorescence microscopy: spatial heterogeneity of photobleaching rate constants in individual cells. The Journal of Cell Biology 100(4), 1309 (1985)

68. Inoué, S., Spring, K.: Video microscopy: the fundamentals. Springer, US (1997) 69. Sinton, D.: Microscale flow visualization. Microfluidics and Nanofluidics 1(1), 2–21

(2004) 70. Burghardt, T., Thompson, N.: Effect of planar dielectric interfaces on fluorescence

emission and detection. Evanescent Excitation With High-Aperture Collection. Bio-physical Journal 46(6), 729–737 (1984)

71. Hellen, E., Axelrod, D.: Fluorescence emission at dielectric and metal-film interfaces. Journal of the Optical Society of America B 4(3), 337–350 (1987)

72. Banerjee, A., Chon, C., Kihm, K.D.: Nanoparticle tracking using TIRFM imaging. In: Photogallery of the ASME IMECE, Washington, DC (November 2003)

73. Banerjee, A., Kihm, K.D.: Three-Dimensional Tracking of Nanoparticles Using R-TIRFM Technique. Journal of Heat Transfer 126, 505 (2004)

74. Wu, H., Bevan, M.: Direct Measurement of Single and Ensemble Average Particle- Surface Potential Energy Profiles. Langmuir 21(4), 1244–1254 (2005)

75. Pagac, E., Tilton, R., Prieve, D.: Hindered mobility of a rigid sphere near a wall. Chemical Engineering Communications 148(1), 105–122 (1996)

76. Okamoto, K., Hassan, Y., Schmidl, W.: New tracking algorithm for particle image velocimetry. Experiments in Fluids 19(5), 342–347 (1995)

77. Okamoto, K., Nishio, S., Saga, T., Kobayashi, T.: Standard images for particle-image velocimetry. Measurement Science and Technology 11, 685 (2000)

78. Choi, C.K., Margraves, C.H., Kihm, K.D.: Examination of near-wall hindered Brownian diffusion of nanoparticles: Experimental comparison to theories by Brenner (1961) and Goldman et al. (1967). Physics of Fluids 19, 103305 (2007)

79. John, J.E.A.: Gas dynamics, 2nd edn. Allyn and Bacon Inc., Newton (1984) 80. Choi, C.H., Westin, K., Breuer, K.: Apparent slip flows in hydrophilic and hydropho-

bic microchannels. Physics of Fluids 15, 2897 (2003)

References 135

81. Cottin-Bizonne, C., Cross, B., Steinberger, A., Charlaix, E.: Boundary slip on smooth hydrophobic surfaces: Intrinsic effects and possible artifacts. Physical Review Let-ters 94(5), 56102 (2005)

82. Joseph, P., Tabeling, P.: Direct measurement of the apparent slip length. Physical Re-view E 71(3), 35303 (2005)

83. Zhu, Y., Granick, S.: Limits of the hydrodynamic no-slip boundary condition. Physi-cal Review Letters 88(10), 106102 (2002)

84. Navier, C.: Mémoire sure les lois du mouvement des fluides. Mémoires de l’Academie Royale des Sciences de l’Institute de France 1, 414–421 (1816)

85. Brandt, A., Merzkirch, W.: Particle image velocimetry applied to a spray jet. In: Zhuang, F.G. (ed.) Recent Advances in Experimental Fluid Mechanics, pp. 363–369. International Academic Publishers, Beijing (1992)

86. Tretheway, D., Meinhart, C.: Apparent fluid slip at hydrophobic microchannel walls. Physics of Fluids 14, L9 (2002)

87. Jin, S., Huang, P., Park, J., Yoo, J., Breuer, K.: Near-surface velocimetry using eva-nescent wave illumination. Experiments in Fluids 37(6), 825–833 (2004)

88. Huang, P., Guasto, J., Breuer, K.: Direct measurement of slip velocities using three-dimensional total internal reflection velocimetry. Journal of Fluid Mechanics 566, 447–464 (2006)

89. Duffy, D., McDonald, J., Schueller, O., Whitesides, G.: Rapid prototyping of micro-fluidic systems in poly (dimethylsiloxane). Anal. Chem. 70(23), 4974–4984 (1998)

90. Margraves, C.H., Choi, C.K., Kihm, K.D.: Measurements of the minimum elevation of nano-particles by 3D nanoscale tracking using ratiometric evanescent wave imag-ing. Experiments in Fluids 41(2), 173–183 (2006)

91. Banks, D., Fradin, C.: Anomalous diffusion of proteins due to molecular crowding. Biophysical Journal 89(5), 2960–2971 (2005)

92. García-Pérez, A., López-Beltrán, E., Klüner, P., Luque, J., Ballesteros, P., Cerdán, S.: Molecular Crowding and Viscosity as Determinants of Translational Diffusion of Me-tabolites in Subcellular Organelles. Archives of Biochemistry and Biophysics 362(2), 329–338 (1999)

93. Guigas, G., Kalla, C., Weiss, M.: Probing the nanoscale viscoelasticity of intracellular fluids in living cells. Biophysical Journal 93(1), 316–323 (2007)

94. Toomre, D., Keller, P., White, J., Olivo, J., Simons, K.: Dual-color visualization of trans-Golgi network to plasma membrane traffic along microtubules in living cells. Journal of Cell Science 112(1), 21–34 (1999)

95. Li, D., Xiong, J., Qu, A., Xu, T.: Three-dimensional tracking of single secretory gran-ules in live PC12 cells. Biophysical Journal 87(3), 1991–2001 (2004)

96. Axelrod, D., Koppel, D., Schlessinger, J., Elson, E., Webb, W.: Mobility measure-ment by analysis of fluorescence photobleaching recovery kinetics. Biophysical Jour-nal 16(9), 1055–1069 (1976)

97. Braeckmans, K., Remaut, K., Vandenbroucke, R., Lucas, B., De Smedt, S., De-meester, J.: Line FRAP with the confocal laser scanning microscope for diffusion measurements in small regions of 3-D samples. Biophysical Journal 92(6), 2172–2183 (2007)

98. Song, L., Hennink, E., Young, I., Tanke, H.: Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophysical Journal 68(6), 2588–2600 (1995)

99. Braeckmans, K., Peeters, L., Sanders, N., De Smedt, S., Demeester, J.: Three-dimensional fluorescence recovery after photobleaching with the confocal scanning laser microscope. Biophysical Journal 85(4), 2240–2252 (2003)

136 References

100. Schwille, P.: Fluorescence correlation spectroscopy and its potential for intracellular applications. Cell Biochemistry and Biophysics 34(3), 383–408 (2001)

101. Eling, T., Baek, S., Shim, M., Lee, C.: NSAID activated gene (NAG-1), a modulator of tumorigenesis. Journal of Biochemistry and Molecular Biology 39(6), 649 (2006)

102. Choi, C.K.: Development of an integrated opto-electric biosensor to dynamically ex-amine cytometric proliferation and cytotoxicity. Ph. D. Dissertation, The University of Tennessee (2007)

103. Cheezum, M., Walker, W., Guilford, W.: Quantitative comparison of algorithms for tracking single fluorescent particles. Biophysical Journal 81(4), 2378–2388 (2001)

104. Bausch, A., Möller, W., Sackmann, E.: Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophysical Journal 76(1), 573–579 (1999)

105. Daniels, B., Masi, B., Wirtz, D.: Probing single-cell micromechanics in vivo: the mi-crorheology of C. elegans developing embryos. Biophysical Journal 90(12), 4712–4719 (2006)

106. Fushimi, K., Verkman, A.: Low viscosity in the aqueous domain of cell cytoplasm measured by picosecond polarization microfluorimetry. The Journal of Cell Biol-ogy 112(4), 719 (1991)

107. Kelly, M., Cho, W., Jeremic, A., Abu-Hamdah, R., Jena, B.: Vesicle swelling regu-lates content expulsion during secretion. Cell Biology International 28(10), 709–716 (2004)

108. Valberg, P., Feldman, H.: Magnetic particle motions within living cells. Measurement of cytoplasmic viscosity and motile activity. Biophysical Journal 52(4), 551–561 (1987)

109. Yoneda, A., Doering, T.: A eukaryotic capsular polysaccharide is synthesized in-tracellularly and secreted via exocytosis. Molecular Biology of the Cell 17(12), 5131 (2006)

110. Margraves, C.H.: From near-field nanoparticle tracking to intracellular vesicle traf-ficking. Ph. D. Dissertation, The University of Tennessee (2008)

111. Agard, D.: Optical sectioning microscopy: cellular architecture in three dimensions. Annual Review of Biophysics and Bioengineering 13(1), 191–219 (1984)

112. McNally, J., Preza, C., Conchello, J., Thomas, L.: Artifacts in computational optical-sectioning microscopy. Journal of the Optical Society of America A 11(3), 1056–1067 (1994)

113. McNally, J., Karpova, T., Cooper, J., Conchello, J.: Three-dimensional imaging by deconvolution microscopy. Methods 19(3), 373–385 (1999)

114. Born, M., Wolf, E., Bhatia, A.: Principles of optics: electromagnetic theory of propa-gation, interference and diffraction of light, 7th edn. Cambridge Univ. Press, Cam-bridge (1999)

115. Frisken Gibson, S., Lanni, F.: Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy. Jour-nal of the Optical Society of America A 8(10), 1601–1613 (1991)

116. Speidel, M., Jonáš, A., Florin, E.: Three-dimensional tracking of fluorescent nanopar-ticles with subnanometer precision by use of off-focus imaging. Optics Letters 28(2), 69–71 (2003)

117. Park, J.S.: Study of microfluidic measurement techniques using novel optical imaging diagnostics. Ph. D. Dissertation, Texas A&M University (2005)

118. Cagnet, M., Françon, M., Thrierr, J., Eyer, J.: Atlas of optical phenomena. American Journal of Physics 31, 466 (1963)

References 137

119. Richards, B., Wolf, E.: Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences 253(1274), 358–379 (1959)

120. Park, J.S., Choi, C.K., Kihm, K.D.: Temperature measurement for a nanoparticle sus-pension by detecting the Brownian motion using optical serial sectioning microscopy (OSSM). Measurement Science and Technology 16, 1418 (2005)

121. Meyer-Arendt, J., Blaker, J.: Introduction to classical and modern optics. American Journal of Physics 41, 148 (1973)

122. Olympus Microscopy Resource Center - Axial Resolution and Depth of Field (2011), http://www.olympusmicro.com/primer/java/imageformation/depthoffield/index.html

123. Park, J.S., Kihm, K.D., Lee, J.S.: Nonintrusive measurements of mixture concentra-tion fields by analyzing diffraction image patterns (point spread function) of nanopar-ticles. Experiments in Fluids 49(1), 183–191 (2010)

124. Park, J.S., Kihm, K.D.: Three-dimensional micro-PTV using deconvolution micros-copy. Experiments in Fluids 40(3), 491–499 (2006)

125. Gaydon, M., Raffel, M., Willert, C., Rosengarten, M., Kompenhans, J.: Hybrid stereoscopic particle image velocimetry. Experiments in Fluids 23(4), 331–334 (1997)

126. Kähler, C., Kompenhans, J.: Fundamentals of multiple plane stereo particle image ve-locimetry. Experiments in Fluids 29, 70–77 (2000)

127. Prasad, A.: Stereoscopic particle image velocimetry. Experiments in Fluids 29(2), 103–116 (2000)

128. Raffel, M., Willert, C., Wereley, S.: Particle image velocimetry: a practical guide. Springer, Heidelberg (2007)

129. Fei, R., Merzkirch, W.: Investigations of the measurement accuracy of stereo particle image velocimetry. Experiments in Fluids 37(4), 559–565 (2004)

130. Bown, M., MacInnes, J., Allen, R., Zimmerman, W.: Three-component microfluidic velocity measurements using stereoscopic micro-PIV. Paper Presented at the The 6th International Symposium on Particle Image Velocimetry (PIV 2005), Pasadena, Cali-fornia, USA (September 2005)

131. Lindken, R., Westerweel, J., Wieneke, B.: Development of a self-calibrating stereo- -PIV system and its application to the three-dimensional flow in a T-shaped mixer. Paper Presented at the The 6th International Symposium on Particle Image Veloci-metry (PIV 2005), Pasadena, California, USA (September 2005)

132. Meinhart, C., Wereley, S.: The theory of diffraction-limited resolution in microparti-cle image velocimetry. Measurement Science and Technology 14, 1047 (2003)

133. Meinhart, C., Wereley, S., Gray, M.: Volume illumination for two-dimensional parti-cle image velocimetry. Measurement Science and Technology 11, 809 (2000)

134. Meinhart, C., Wereley, S., Santiago, J.: PIV measurements of a microchannel flow. Experiments in Fluids 27(5), 414–419 (1999)

135. Olsen, M., Adrian, R.: Out-of-focus effects on particle image visibility and correla-tion in microscopic particle image velocimetry. Experiments in Fluids 29, 166–174 (2000)

136. Santiago, J., Wereley, S., Meinhart, C., Beebe, D., Adrian, R.: A particle image ve-locimetry system for microfluidics. Experiments in Fluids 25(4), 316–319 (1998)

137. Pan, G., Meng, H.: Digital in-line holographic PIV for 3D particulate flow diagnos-tics. Paper Presented at the The 4th International Symposium on Particle Image Ve-locimetry (PIV 2001), Gottingen, Germany (September 2005)

138 References

138. Pereira, F., Gharib, M.: Defocusing digital particle image velocimetry and the three-dimensional characterization of two-phase flows. Measurement Science and Technol-ogy 13, 683 (2002)

139. Pereira, F., Gharib, M., Dabiri, D., Modarress, D.: Defocusing digital particle image velocimetry: a 3-component 3-dimensional DPIV measurement technique. Applica-tion to Bubbly Flows. Experiments in Fluids 29, 78–84 (2000)

140. Rohaly, J., Lammerding, J., Frigerio, F., Hart, D.: Monocular 3-D active micro-PTV. In: The 4th International Symposium on Particle Image Velocimetry (PIV 2001), Got-tingen, Germany, pp. 1–4 (September 2001)

141. Willert, C., Gharib, M.: Three-dimensional particle imaging with a single camera. Experiments in Fluids 12(6), 353–358 (1992)

142. Yoon, S.Y., Kim, K.C.: 3D particle position and 3D velocity field measurement in a microvolume via the defocusing concept. Measurement Science and Technology 17, 2897 (2006)

143. Wu, M., Roberts, J., Buckley, M.: Three-dimensional fluorescent particle tracking at micron-scale using a single camera. Experiments in Fluids 38(4), 461–465 (2005)

144. Luo, R., Sun, Y., Peng, X., Yang, X.: Tracking sub-micron fluorescent particles in three dimensions with a microscope objective under non-design optical conditions. Measurement Science and Technology 17, 1358 (2006)

145. Lawson, A., Long, E.: On the possible use of Brownian motion for low temperature thermometry. Physical Review 70(3-4), 220–221 (1946)

146. Olsen, M., Adrian, R.: Brownian motion and correlation in particle image veloci-metry. Optics & Laser Technology 32(7-8), 621–627 (2000)

147. Hohreiter, V., Wereley, S., Olsen, M., Chung, J.: Cross-correlation analysis for tem-perature measurement. Measurement Science and Technology 13, 1072 (2002)

148. Sato, Y., Inaba, S., Hishida, K., Maeda, M.: Spatially averaged time-resolved particle-tracking velocimetry in microspace considering Brownian motion of submicron fluo-rescent particles. Experiments in Fluids 35(2), 167–177 (2003)

149. Deen, W.: Analysis of transport phenomena. Oxford University Press, New York (1998)

150. Perrin, J.B. Nobel Prize in Physics 1926 - Presentation Speech. Nobelprize.org. (1965), http://nobelprize.org/nobel_prizes/physics/laureates/1926/press.html

151. Perrin, J.B.: Atoms. Ox Bow Press, New York (1990) 152. Nakroshis, P., Amoroso, M., Legere, J., Smith, C.: Measuring Boltzmann’s constant

using video microscopy of Brownian motion. American Journal of Physics 71, 568 (2003)

153. Fox, R., McDonald, A.T.: Introduction to fluid mechanics, 6th edn. John Wiley & Sons, Hoboken (2004)

154. Mills, A.F.: Heat transfer, 2nd edn. Prentice Hall, Upper Saddle River (1999) 155. Molecular Probes Inc. (2005), FluoSpheres ® Fluorescent Microspheres,

http://probes.invitrogen.com/media/pis/mp05000.pdf156. Stroock, A.D., Dertinger, S.K.W., Ajdari, A., Mezic, I., Stone, H.A., Whitesides,

G.M.: Chaotic mixer for microchannels. Science 295(5555), 647 (2002) 157. Minsky, M.: Memoir on inventing the confocal scanning microscope. Scanning 10(4),

128–138 (1988) 158. Inoué, S.: Foundations of confocal scanned imaging in light microscopy. In: Hand-

book of Biological Confocal Microscopy, pp. 1–19 (2006) 159. Wilson, T.: Confocal microscopy. Academic Press, London (1990)

References 139

160. Inoué, S., Inoué, T.: Direct-view high-speed confocal scanner: the CSU-10. Methods in Cell Biology 70, 87–127 (2002)

161. Pawley, J.B.: Handbook of Biological Confocal Microscopy, 3rd edn. Springer, US (2006)

162. Webb, R.: Confocal optical microscopy. Reports on Progress in Physics 59, 427 (1996)

163. Park, J.S., Choi, C.K., Kihm, K.D.: Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM). Experiments in Fluids 37(1), 105–119 (2004)

164. Kimura, S., Munakata, C.: Depth resolution of the fluorescent confocal scanning opti-cal microscope. Appl. Opt. 29(4), 489–494 (1990)

165. Qian, H., Elson, E.: Analysis of confocal laser-microscope optics for 3-D fluores-cence correlation spectroscopy. Appl. Opt. 30(10), 1185 (1991)

166. Sheppard, C., Gu, M.: Aberration compensation in confocal microscopy. Applied Op-tics 30(25), 3563–3568 (1991)

167. Hell, S., Reiner, G., Cremer, E.S.: Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index. Journal of Microscopy 169(Pt 3), 391–405 (1993)

168. Sandison, D., Webb, W.: Background rejection and signal-to-noise optimization in confocal and alternative fluorescence microscopes. Applied Optics 33(4), 603–615 (1994)

169. Wilhelm, S., Gröbler, B., Gluch, M., Heinz, H.: Confocal Laser Scanning Micros-copy: Principles. Carl Zeiss, Inc. (2003)

170. Park, J.S., Kihm, K.D.: Use of confocal laser scanning microscopy (CLSM) for depthwise resolved microscale-particle image velocimetry ( -PIV). Optics and Lasers in Engineering 44(3-4), 208–223 (2006)

171. Diaspro, A.: Confocal and two-photon microscopy: foundations, applications, and advances. Wiley-Liss, New York (2002)

172. Egner, A., Andresen, V., Hell, S.: Comparison of the axial resolution of practical Nip-kow disk confocal fluorescence microscopy with that of multifocal multiphoton mi-croscopy: theory and experiment. Journal of Microscopy 206(1), 24–32 (2002)

173. Solamere Technology Group Inc. (2003), http://www.solameretech.com174. The University of Auckland (2003),

http://www.health.auckland.ac.nz/biru/confocal_microscopy175. The Florida State University (2003), http://www.microscopy.fsu.edu176. Prenel, J., Bailly, Y.: Theoretical determination of light distributions in various laser

light sheets for flow visualization. Journal of Flow Visualization and Image Process-ing 5(3), 211–224 (1998)

177. Thiery, L., Prenel, J., Porcar, R.: Theoretical and experimental intensity analysis of laser light sheets for flow visualization. Optics Communications 123(4-6), 801–809 (1996)

178. Keck Microscopy Facility, University of Washington (2007), Confocal Pinhole, http://depts.washington.edu/keck/leica/pinhole.htm

179. Conchello, J., Lichtman, J.: Theoretical analysis of a rotating-disk partially confocal scanning microscope. Applied Optics 33(4), 585–596 (1994)

180. Tiziani, H., Uhde, H.: Three-dimensional analysis by a microlens-array confocal ar-rangement. Applied Optics 33(4), 567–572 (1994)

140 References

181. Ichihara, A., Tanaami, T., Isozaki, K., Sugiyama, Y., Kosugi, Y., Mikuriya, K., Abe, M., Uemura, I.: High speed confocal fluorescence microscopy using a Nipkow scan-ner with microlenses for 3-D imaging of single fluorescent molecules in real time. Bioimages 4, 57–62 (1996)

182. Adrian, R.: Image shifting technique to resolve directional ambiguity in double-pulsed velocimetry. Applied Optics 25(21), 3855–3858 (1986)

183. Adrian, R.: Dynamic ranges of velocity and spatial resolution of particle image ve-locimetry. Measurement Science and Technology 8, 1393 (1997)

184. Lima, R., Wada, S., Tsubota, K., Yamaguchi, T.: Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel. Meas-urement Science and Technology 17, 797 (2006)

185. Kinoshita, H., Kaneda, S., Fujii, T., Oshima, M.: Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV. Lab on a Chip 7(3), 338–346 (2007)

186. Lew, H., Fung, Y.: Entry flow into blood vessels at arbitrary Reynolds number. Jour-nal of Biomechanics 3(1), 23–38 (1970)

187. Sugii, Y., Nishio, S., Okamoto, K.: In vivo PIV measurement of red blood cell veloc-ity field in microvessels considering mesentery motion. Physiological Measure-ment 23, 403 (2002)

188. Park, J.S., Choi, C.K., Kihm, K.D.: Nanoparticle Tracking Using CLSM & OSSM Imaging. Journal of Heat Transfer 126(4), 504 (2004)

189. Lindken, R., Merzkirch, W.: A novel PIV technique for measurements in multiphase flows and its application to two-phase bubbly flows. Experiments in Fluids 33(6), 814–825 (2002)

190. Taylor, G.: Deposition of a viscous fluid on the wall of a tube. Journal of Fluid Me-chanics 10(02), 161–165 (1961)

191. Polonsky, S., Shemer, L., Barnea, D.: The relation between the Taylor bubble motion and the velocity field ahead of it. International Journal of Multiphase Flow 25(6-7), 957–975 (1999)

192. Goldsmith, H., Mason, S.: The movement of single large bubbles in closed vertical tubes. Journal of Fluid Mechanics 14(01), 42–58 (1962)

193. Bugg, J., Saad, G.: The velocity field around a Taylor bubble rising in a stagnant vis-cous fluid: numerical and experimental results. International Journal of Multiphase Flow 28(5), 791–803 (2002)

194. Peterson, G.: An introduction to heat pipes: modeling, testing, and applications. Wiley Interscience, Hoboken (1994)

195. Dunn, P.D., Reay, D.A.: Heat pipes, 4th edn. Pergamon, Tarrytown (1994) 196. Allen, J., Son, N., Kihm, N.: Characterization and Control of Two-Phase Flow in Mi-

crochannels. R4D Proposal, NCMR/NASA-Glenn (2000) 197. Fairbrother, F., Stubbs, A.: Studies in electro-endosmosis. Part VI. The ‘bubble-

tube’method of measurement. Journal of the Chemical Society 1, 527–529 (1935) 198. Cox, B.: An experimental investigation of the streamlines in viscous fluid expelled

from a tube. Journal of Fluid Mechanics 20(02), 193–200 (1964) 199. Gauri, V., Koelling, K.: Gas-assisted displacement of viscoelastic fluids: flow dynam-

ics at the bubble front. Journal of Non-Newtonian Fluid Mechanics 83(3), 183–203 (1999)

200. Gauri, V., Koelling, K.: The motion of long bubbles through viscoelastic fluids in capillary tubes. Rheologica Acta 38(5), 458–470 (1999)

References 141

201. Kolb, W., Cerro, R.: Coating the inside of a capillary of square cross section. Chemi-cal Engineering Science 46(9), 2181–2195 (1991)

202. Park, J.S., Kihm, K.D., Allen, J.S.: Three-Dimensional Microfluidic Measurements Using Optical Sectioning by Confocal Microscopy: Flow Around a Moving Air Bub-ble in a Micro-Channel. In: ASME Conference Proceedings, ASME 2002, vol. 36339, pp. 217–222 (2002), doi:10.1115/imece2002-32790

203. Schmitz, E., Merzkirch, W.: Direct interferometric measurement of streaming bire-fringence. Rheologica Acta 22(1), 75–80 (1983)

204. Fomin, N.A., Wernekinck, U., Merzkirch, W.: Speckle photography of a turbulent density field. In: Pichal, M. (ed.) Optical Methods in Dynamics of Fluids and Solids, vol. 1, pp. 159–165. Springer, Berlin (1985)

205. Oberste-Lehn, K., Merzkirch, W.: Speckle optical measurement of a turbulent scalar field with high fluctuation amplitudes. Experiments in Fluids 14(4), 217–223 (1993)

206. Hanenkamp, A., Merzkirch, W.: Investigation of the properties of a sharp-focusing schlieren system by means of Fourier analysis. Optics and Lasers in Engineer-ing 44(3-4), 159–169 (2006)

207. Merzkirch, W.: Density-Based Techniques. In: Tropea, C., Yarin, A., Foss, J. (eds.) Springer Handbook of Experimental Fluid Mechanics, pp. 473–486. Springer, Hei-delberg (2007)

208. Fano, U.: Atomic theory of electromagnetic interactions in dense materials. Physical Review 103(5), 1202–1218 (1956)

209. Jackson, J.D.: Classical electrodynamics, 3rd edn. Wiley, Hoboken (1999) 210. Graham-Smith, F., King, T.A., Wilkins, D.: Optics and photonics: an introduction,

2nd edn. The Manchester physics series. Wiley; John Wiley [distributor], Hoboken, N.J.; Chichester (2007)

211. Kretschmann, E.: Die Bestimmung optischer Konstanten von Metallen durch An-regung von Oberflächenplasmaschwingungen. Zeitschrift für Physik A Hadrons and Nuclei 241(4), 313–324 (1971)

212. Sidorenko, S., Martin, O.J.F.: Resonant tunneling of surface plasmon-polaritons. Opt. Express 15(10), 6380–6388 (2007)

213. Kurihara, K., Suzuki, K.: Theoretical understanding of an absorption-based surfaceplasmon resonance sensor based on Kretchmann’s theory. Anal. Chem. 74(3), 696–701 (2002)

214. Neff, H., Zong, W., Lima, A., Borre, M., Holzhüter, G.: Optical properties and in-strumental performance of thin gold films near the surface plasmon resonance. Thin Solid Films 496(2), 688–697 (2006)

215. Smith, W.J.: Modern Optical Engineering. 3rd edn. McGraw Hill, New York (2000) 216. Cristofolini, L. (2007), Surface Plasmon Resonance Calculator,

http://www.mathworks.com/matlabcentral/fileexchange/13700217. Lide, D.R.: CRC handbook of chemistry and physics, 85th edn. CRC Press, Boca

Raton (2004) 218. Moreels, E., De Greef, C., Finsy, R.: Laser light refractometer. Appl. Opt. 23(17),

3010–3013 (1984) 219. Kihm, K.D.: Surface plasmon resonance reflectance imaging technique for near-field

(~ 100 nm) fluidic characterization. Experiments in Fluids 48(4), 547–564 (2010) 220. Kihm, K.D.: Micro-system measurements, E-learning lecture note (2011),

http://etl.snu.ac.kr/

142 References

221. Kihm, K.D.: Near-field and label-free imaging by surface Plasmon resonance (SPR). Paper Presented at the The 13th International Symposium on Flow Visualization, Nice, France (2008)

222. Brockman, J.M., Nelson, B.P., Corn, R.M.: Surface Plasmon Resonance Imaging Measurement of UltraThin Organic Films. Annual Review of Physical Chemis-try 51(1), 41–63 (2000)

223. Kim, I.T., Kihm, K.D.: Label-free visualization of microfluidic mixture concentration fields using a surface plasmon resonance (spr) reflectance imaging. Experiments in Fluids 41(6), 905–916 (2006)

224. Kolomenskii, A., Gershon, P., Schuessler, H.: Sensitivity and detection limit of con-centration and adsorption measurements by laser-induced surface-plasmon resonance. Applied Optics 36(25), 6539–6547 (1997)

225. Nelson, B., Frutos, A., Brockman, J., Corn, R.: Near-infrared surface plasmon reso-nance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments. Anal. Chem. 71(18), 3928–3934 (1999)

226. Nikitin, P., Beloglazov, A., Kochergin, V., Valeiko, M., Ksenevich, T.: Surface plas-mon resonance interferometry for biological and chemical sensing. Sensors and Ac-tuators B: Chemical 54(1-2), 43–50 (1999)

227. Salamon, Z., Macleod, H., Tollin, G.: Surface plasmon resonance spectroscopy as a tool for investigating the bio-chemical and biophysical properties of membrane pro-tein systems. Biochimica et Biophysica Acta, MR Reviews on Biomem-branes 1331(2), 117–129 (1997)

228. Snopok, B., Kostyukevych, K., Rengevych, O., Shirshov, Y., Venger, E., Kolesnik-ova, I., Lugovskoi, E.: Semiconductor Physics. Quantum Electron Optoelectron 4, 56 (2001)

229. Edward, P., Palik, I.: Handbook of optical constants of solids. Academic, London (1985)

230. Kim, I.T., Kihm, K.D.: Full-field and real-time surface plasmon resonance imaging thermometry. Optics Letters 32(23), 3456–3458 (2007)

231. Johansen, K., Arwin, H., Lundström, I., Liedberg, B.: Imaging surface plasmon reso-nance sensor based on multiple wavelengths: Sensitivity considerations. Review of Scientific Instruments 71, 3530 (2000)

232. Raether, H.: Surface plasma oscillations and their applications. In: Physics of Thin Films, vol. 9, pp. 145–261. Academic Press, New York (1977)

233. Schasfoort, R.B.M., Tudos, A.J.: Handbook of surface plasmon resonance. Royal So-ciety of Chemistry (2008)

234. Yeatman, E.: Resolution and sensitivity in surface plasmon microscopy and sensing. Biosensors and Bioelectronics 11(6-7), 635–649 (1996)

235. Berger, C.E.H., Kooyman, R.P.H., Greve, J.: Surface plasmon propagation near an index step. Optics Communications 167(1-6), 183–189 (1999)

236. DiPippo, W., Lee, B.J., Park, K.: Design analysis of doped-silicon surface plasmon resonance immunosensors in mid-infrared range. Opt. Express 18(18), 19396–19406 (2010)

237. Wood, R.W.: On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philosophical Magazine Series 6 4(21), 396–402 (1902)

238. Otto, A.: Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and Nuclei 216(4), 398–410 (1968)

References 143

239. Englebienne, P., Van Hoonacker, A., Verhas, M.: Surface plasmon resonance: princi-ples, methods and applications in biomedical sciences. Spectroscopy 17(2), 255–273 (2003)

240. Giebel, K., Bechinger, C., Herminghaus, S., Riedel, M., Leiderer, P., Weiland, U., Bastmeyer, M.: Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy. Biophysical Journal 76(1), 509–516 (1999)

241. Lee, H., Li, Y., Wark, A., Corn, R.: Enzymatically amplified surface plasmon reso-nance imaging detection of DNA by exonuclease III digestion of DNA microarrays. Anal. Chem. 77(16), 5096–5100 (2005)

242. Lee, H., Yan, Y., Marriott, G., Corn, R.: Quantitative functional analysis of protein complexes on surfaces. The Journal of Physiology 563(1), 61–71 (2005)

243. Liu, J., Tiefenauer, L., Tian, S., Nielsen, P., Knoll, W.: PNA- DNA Hybridization Study Using Labeled Streptavidin by Voltammetry and Surface Plasmon Fluores-cence Spectroscopy. Anal. Chem. 78(2), 470–476 (2006)

244. Ramanavièius, A., Herberg, F., Hutschenreiter, S., Zimmermann, B., Lapënaitë, I., Kaušaitë, A., Finkelšteinas, A., Ramanavièienë, A.: Biomedical application of surface plasmon resonance biosensors (review). Acta Medica Lituanica 12(3), 1–9 (2005)

245. Shumaker-Parry, J., Aebersold, R., Campbell, C.: Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy. Anal. Chem. 76(7), 2071–2082 (2004)

246. Yuk, J., Ha, K.: Proteomic applications of surface plasmon resonance biosensors: analysis of protein arrays. Experimental & Molecular Medicine 37(1), 1 (2005)

247. Zhang, T., Morgan, H., Curtis, A., Riehle, M.: Measuring particle-substrate distance with surface plasmon resonance microscopy. Journal of Optics A: Pure and Applied Optics 3, 333 (2001)

248. Liedberg, B., Nylander, C., Lunström, I.: Surface plasmon resonance for gas detec-tion and biosensing. Sensors and Actuators 4, 299–304 (1983), doi:10.1016/0250-6874(83)85036-7

249. Chinowsky, T., Quinn, J., Bartholomew, D., Kaiser, R., Elkind, J.: Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor. Sensors and Actuators B: Chemical 91(1-3), 266–274 (2003)

250. Pathak, S., Savelkoul, H.: Biosensors in immunology: the story so far. Immunology Today 18(10), 464–467 (1997)

251. Knoll, W.: Interfaces and thin films as seen by bound electromagnetic waves. Annual Review of Physical Chemistry 49(1), 569–638 (1998)

252. Kotsev, S., Dushkin, C., Ilev, I., Nagayama, K.: Refractive index of transparent nanoparticle films measured by surface plasmon microscopy. Colloid & Polymer Sci-ence 281(4), 343–352 (2003)

253. Morgan, H., Taylor, D.: Surface plasmon resonance microscopy: Reconstructing a three dimensional image. Applied Physics Letters 64(11), 1330–1331 (1994)

254. Chadwick, B., Gal, M.: An optical temperature sensor using surface plasmons. Japa-nese Journal of Applied Physics 32(6A), 2716–2717 (1993)

255. Lam, W., Chu, L., Wong, C., Zhang, Y.: A surface plasmon resonance system for the measurement of glucose in aqueous solution. Sensors and Actuators B: Chemi-cal 105(2), 138–143 (2005)

256. Podgorsek, R., Franke, H.: Optical determination of molecule diffusion coefficients in polymer films. Applied Physics Letters 73, 2887 (1998)

257. Podgorsek, R., Franke, H.: Selective optical detection of aromatic vapors. Applied Optics 41(4), 601–608 (2002)

144 References

258. Chiang, H., Yeh, H., Chen, C., Wu, J., Su, S., Chang, R., Wu, Y., Tsai, D., Jen, S., Leung, P.: Surface plasmon resonance monitoring of temperature via phase measure-ment. Optics Communications 241(4-6), 409–418 (2004)

259. Sharma, A., Gupta, B.: Theoretical model of a fiber optic remote sensor based on sur-face plasmon resonance for temperature detection. Optical Fiber Technology 12(1), 87–100 (2006)

260. Zeng, J., Liang, D., Cao, Z.: Applications of optical fiber SPR sensor for measuring of temperature and concentration of liquids. In: The 17th International Conference on Optical Fibre Sensors Bruges, Belgium, p. 667 (2005)

261. Hutter, E., Fendler, J.: Exploitation of localized surface plasmon resonance. Ad-vanced Materials 16(19), 1685–1706 (2004)

262. Natan, M.J., Lyon, L.A.: Surface plasmon resonance biosensing with colloidal Au amplification. In: Metal Nanoparticles: Synthesis, Characterization, and Applications, pp. 183–205 (2002)

263. Smolyaninov, I.: A far-field optical microscope with nanometre-scale resolution based on in-plane surface plasmon imaging. Journal of Optics A: Pure and Applied Optics 7, S165 (2005)

264. Smolyaninov, I., Davis, C., Elliott, J., Zayats, A.: Resolution enhancement of a sur-face immersion microscope near the plasmon resonance. Optics Letters 30(4), 382–384 (2005)

265. Smolyaninov, I.I., Elliott, J., Zayats, A.V., Davis, C.C.: Far-Field Optical Microscopy with a Nanometer-Scale Resolution Based on the In-Plane Image Magnification by Surface Plasmon Polaritons. Physical Review Letters 94(5), 057401 (2005)

266. Gryczynski, I., Malicka, J., Gryczynski, Z., Nowaczyk, K., Lakowicz, J.: Ultraviolet surface plasmon-coupled emission using thin aluminum films. Anal. Chem. 76(14), 4076–4081 (2004)

267. Berger, C.E.H., Kooyman, R.P.H., Greve, J.: Resolution in surface plasmon micros-copy. Review of Scientific Instruments 65(9), 2829–2836 (1994)

268. Venkata, P.G., Aslan, M.M., Menguc, M.P., Videen, G.: Surface Plasmon Scattering by Gold Nanoparticles and Two-Dimensional Agglomerates. Journal of Heat Trans-fer 129(1), 60–70 (2007), doi:10.1115/1.2401199

269. Hawes, E.A., Hastings, J.T., Crofcheck, C., Mengüç, M.P.: Spectrally selective heat-ing of nanosized particles by surface plasmon resonance. Journal of Quantitative Spectroscopy and Radiative Transfer 104(2), 199–207 (2007), doi:10.1016/j.jqsrt.2006.07.020

270. Belda, R., Herraez, J., Diez, O.: A study of the refractive index and surface tension synergy of the binary water/ethanol: influence of concentration. Physics and Chemis-try of Liquids 43(1), 91–101 (2005)

271. Allen, J.S., Hallinan, K., Lekan, J.: A study of the fundamental operations of a capil-lary driven heat transfer device in both normal and low gravity Part 1. Liquid slug formation in low gravity. In: AIP Conference Proceedings, vol. 420(1), pp. 471–478 (1998)

272. White, F.M.: Fluid Mechanics, 6th edn. McGraw-Hill, New York (2008) 273. Kim, I.T., Kihm, K.D.: Surface Plasmon Resonance (SPR) Reflectance Imaging: A

Label-Free/Real-Time Mapping of Microscale Mixture Concentration Fields (Wa-ter+Ethanol). Journal of Heat Transfer 129(8), 930 (2007), doi:10.1115/1.2753554

274. Fu, E., Chinowsky, T., Foley, J., Weinstein, J., Yager, P.: Characterization of a wave-length-tunable surface plasmon resonance microscope. Review of Scientific Instru-ments 75, 2300 (2004)

References 145

275. Kim, I.T., Kihm, K.D.: Real-Time and Full-Field Detection of Near-Wall Salinity Us-ing Surface Plasmon Resonance Reflectance. Anal. Chem. 79(14), 5418–5423 (2007)

276. Thomson, J.J., Newall, H.F.: On the formation of vortex rings by drops falling into liquids, and some allied phenomena. Proceedings of the Royal Society of Lon-don 39(239-241), 417 (1885)

277. Joseph, D.: Fluid dynamics of two miscible liquids with diffusion and gradient stresses. European Journal of Mechanics B, Fluids 9(6), 565–596 (1990)

278. Kim, I.T., Kihm, K.D.: Label-Free and Near-Field Mapping of Molecular Diffusion (Saline Solution/Water) Using Surface Plasmon Resonance (SPR) Refractive Index Field Imaging. Journal of Heat Transfer 130, 080906 (2008)

279. Alexander, K., Killey, A., Meeten, G., Senior, M.: Refractive index of concentrated colloidal dispersions. Journal of the Chemical Society, Faraday Transactions 2 77(2), 361–372 (1981)

280. Chon, C.H., Kihm, K.D., Lee, S.P., Choi, S.U.S.: Empirical correlation finding the role of temperature and particle size for nanofluid (AlO) thermal conductivity en-hancement. Applied Physics Letters 87, 153107 (2005)

281. Han, X., Ma, H., Wilson, C., Critser, J.: Effects of nanoparticles on the nucleation and devitrification temperatures of polyol cryoprotectant solutions. Microfluidics and Nanofluidics 4(4), 357–361 (2008)

282. Mohammadi, M.: Colloidal refractometry: meaning and measurement of refractive index for dispersions; the science that time forgot* 1. Advances in Colloid and Inter-face Science 62(1), 17–29 (1995)

283. Peiponen, K., Jääskeläinen, A., Räty, J., Richard, O., Tapper, U., Kauppinen, E., Lumme, K.: Reflectance study of pigment slurries. Applied Spectroscopy 54(6), 878–884 (2000)

284. Homola, J., Yee, S., Gauglitz, G.: Surface plasmon resonance sensors: review. Sen-sors and Actuators B: Chemical 54(1-2), 3–15 (1999)

285. Homola, J.: Surface plasmon resonance sensors for detection of chemical and bio-logical species. Chem. Rev. 108(2), 462–493 (2008)

286. Pelton, M., Aizpurúa, J., Bryant, G.: Metal-nanoparticle plasmonics. Laser & Photon-ics Reviews 2(3), 136–159 (2008)

287. Wiederrecht, G., Wurtz, G., Bouhelier, A.: Ultrafast hybrid plasmonics. Chemical Physics Letters 461(4-6), 171–179 (2008)

288. Meeten, G., North, A.: Refractive index measurement of absorbing and turbid fluids by reflection near the critical angle. Measurement Science and Technology 6, 214 (1995)

289. Sarov, Y., Capek, I., Ivanov, T., Ivanova, K., Sarova, V., Rangelow, I.: On Total In-ternal Reflection Investigation of Nanoparticles by Integrated Micro-Fluidic System. Nano. Lett. 8(2), 375–381 (2008)

290. Champion, J., Meeten, G., Senior, M.: Refraction by spherical colloid particles. Jour-nal of Colloid and Interface Science 72(3), 471–482 (1979)

291. Kim, I.T., Kihm, K.D.: Measuring near-field nanoparticle concentration profiles by correlating surface plasmon resonance reflectance with effective refractive index of nanofluids. Optics Letters 35(3), 393–395 (2010)

292. Sommer, A.P.: Microtornadoes under a nanocrystalline igloo: Results predicting a worldwide intensification of tornadoes. Crystal Growth & Design 7(6), 1031–1034 (2007)

293. Sommer, A.P., Ben-Moshe, M., Magdassi, S.: Size-discriminative self-assembly of nanospheres in evaporating drops. J. Phys. Chem. B 108(1), 8–10 (2004)

146 References

294. Sommer, A.P., Zhu, D.: Microtornadoes under a Nanocrystalline Igloo. 2. Results Predicting a Worldwide Intensification of Tornadoes. Crystal Growth and De-sign 7(12), 2373–2375 (2007)

295. Bigioni, T., Lin, X., Nguyen, T., Corwin, E., Witten, T., Jaeger, H.: Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nature Materials 5(4), 265–270 (2006)

296. Chon, C., Paik, S., Tipton Jr., J., Kihm, K.: Effect of nanoparticle sizes and number densities on the evaporation and dryout characteristics for strongly pinned nanofluid droplets. Langmuir 23(6), 2953–2960 (2007)

297. Chon, C.H.: The thermophysical roll of nanoparticles in nanofluidic heat and mass transport. Ph. D. Dissertation, The University of Tennessee (2006)

298. Deegan, R., Bakajin, O., Dupont, T., Huber, G., Nagel, S., Witten, T.: Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653), 827–828 (1997)

299. Fan, F., Stebe, K.: Assembly of colloidal particles by evaporation on surfaces with patterned hydrophobicity. Langmuir 20(8), 3062–3067 (2004)

300. Hong, S., Xu, J., Lin, Z.: Template-assisted formation of gradient concentric gold rings. Nano. Lett. 6(12), 2949–2954 (2006)

301. Rabani, E., Reichman, D., Geissler, P., Brus, L.: Drying-mediated self-assembly of nanoparticles. Nature 426(6964), 271–274 (2003)

302. Whitesides, G.M., Grzybowski, B.: Self-Assembly at All Scales. Science 295(5564), 2418–2421 (2002), doi:10.1126/science.1070821

303. Xu, X., Luo, J.: Marangoni flow in an evaporating water droplet. Applied Physics Letters 91, 124102 (2007)

304. Gu, Z., Yu, Y., Zhang, H., Chen, H., Lu, Z., Fujishima, A., Sato, O.: Self-assembly of monodisperse spheres on substrates with different wettability. Applied Physics A: Materials Science & Processing 81(1), 47–49 (2005)

305. Motte, L., Lacaze, E., Maillard, M., Pileni, M.P.: Self-Assemblies of Silver Sulfide Nanocrystals on Various Substrates. Langmuir 16(8), 3803–3812 (2000), doi:10.1021/la9908283

306. Sommer, A., Pavláth, A.: The subaquatic water layer. Crystal Growth & Design 7(1), 18–24 (2007)

307. Sommer, A., Rozlosnik, N.: Formation of crystalline ring patterns on extremely hy-drophobic supersmooth substrates: Extension of ring formation paradigms. Crystal Growth & Design 5(2), 551–557 (2005)

308. Deegan, R., Bakajin, O., Dupont, T., Huber, G., Nagel, S., Witten, T.: Contact line deposits in an evaporating drop. Physical Review E 62(1), 756–765 (2000)

309. Hu, H., Larson, R.: Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. B 110(14), 7090–7094 (2006)

310. Shmuylovich, L., Shen, A., Stone, H.: Surface morphology of drying latex films: multiple ring formation. Langmuir 18(9), 3441–3445 (2002)

311. Maillard, M., Motte, L., Ngo, A., Pileni, M.: Rings and hexagons made of nanocrys-tals: a Marangoni effect. J. Phys. Chem. B 104(50), 11871–11877 (2000)

312. Kim, I.T., Kihm, K.D.: Unveiling Hidden Complex Cavities Formed during Nanocrystalline Self-Assembly. Langmuir 25(4), 1881–1884 (2009)

313. Duggal, R., Hussain, F., Pasquali, M.: Self Assembly of Single Walled Carbon Nano-tubes into a Sheet by Drop Drying. Advanced Materials 18(1), 29–34 (2006)

314. Pauchard, L., Allain, C.: Mechanical instability induced by complex liquid desicca-tion. Comptes Rendus Physique 4(2), 231–239 (2003)

References 147

315. Wang, J., Evans, J.: Drying behaviour of droplets of mixed powder suspensions. Jour-nal of the European Ceramic Society 26(15), 3123–3131 (2006)

316. Haw, M., Gillie, M., Poon, W.: Effects of phase behavior on the drying of colloidal suspensions. Langmuir 18(5), 1626–1633 (2002)

317. Kihm, K.D., Pratt, D.M.: Thickness and slope measurements of evaporative thin liq-uid film. Journal of Heat Transfer 121(3) JHT Heat Transfer Gallery-Special Insert (1999)

318. Eckert, E.R.G.: Measurements in heat transfer. McGraw-Hill, New York (1970) 319. Kim, H.J., Kihm, K.D., Allen, J.S.: Examination of ratiometric laser induced fluores-

cence thermometry for microscale spatial measurement resolution. International Jour-nal of Heat and Mass Transfer 46(21), 3967–3974 (2003)

320. Chiang, H., Leung, P., Tse, W.: The surface plasmon enhancement effect on adsorbed molecules at elevated temperatures. The Journal of Chemical Physics 108, 2659 (1998)

321. Özdemir, S., Turhan-Sayan, G.: Temperature effects on surface plasmon resonance: design considerations for an optical temperature sensor. Journal of Lightwave Tech-nology 21(3), 805 (2003)

322. Kim, I.T., Kihm, K.D.: Label-free imaging of microfluidic concentration and tem-perature fields using surface plasmon resonance (SPR) reflectance. Paper Presented at the The 18th International Symposium on Transport Phenomena, Daejeon, Korea (2007)

323. Curtis, A.: The mechanism of adhesion of cells to glass. The Journal of Cell Biol-ogy 20(2), 199 (1964)

324. Filler, T., Peuker, E.: Reflection contrast microscopy (RCM): a forgotten technique? The Journal of Pathology 190(5), 635–638 (2000)

325. Siver, P., Hinsch, J.: The use of interference reflection contrast in the examination of diatom valves. Journal of Phycology 36(3), 616–620 (2000)

326. Weber, I.: Reflection interference contrast microscopy. Methods in Enzymology 361, 34–47 (2003)

327. Limozin, L., Sengupta, K.: Quantitative Reflection Interference Contrast Microscopy (RICM) in Soft Matter and Cell Adhesion. Chem. Phys. Chems. 10(16), 2752–2768 (2009)

328. Monzel, C., Fenz, S., Merkel, R., Sengupta, K.: Probing Biomembrane Dynamics by Dual Wavelength Reflection Interference Contrast Microscopy. Chem. Phys. Chem. 10(16), 2828–2838 (2009)

329. Vest, C.M.: Holographic interferometry. Wiley, New York (1979) 330. Hernández-Andrés, J., Valero, E., Nieves, J., Romero, J.: Fizeau fringes at home.

American Journal of Physics 70, 684 (2002) 331. Verschueren, H.: Interference reflection microscopy in cell biology: methodology and

applications. Journal of Cell Science 75, 279 (1985) 332. Ploem, J.S.: Mononuclear phagocytes: in immunity, infection, and pathology. In:

Furth, R.V. (ed.), p. 404. Blackwell Scientific, Oxford (1975) 333. Haemmerli, G., Sträuli, P., Ploem, J.S.: Cell-to-substrate adhesions during spreading

and locomotion of carcinoma cells: A study by microcinematography and reflection contrast microscopy. Experimental Cell Research 128(2), 249–256 (1980), doi:10.1016/0014-4827(80)90061-0

334. Kihm, K.D., Pratt, D.M.: Contour Mapping of Thin Liquid Film Thickness Using Fizeau Interferometer. In: The 33rd National Heat Transfer Conference, Albuquerque, New Mexico (1999)

148 References

335. Singh, A.: Electrohydrodynamic (EHD) Enhancement of in-Tube Boiling and Con-densation of Alternate (Non-CFC) Refrigerants. Ph.D. Dissertation, University of Maryland (1995)

336. Pohl, H.: Dielectrophoresis: the behavior of neutral matter in nonuniform electric fields. Cambridge University Press, Cambridge (1978)

337. Kihm, K.D., Pratt, D.M.: Thickness and Slope Measurements of Thin Liquid Film To an Accuracy of /4 Using Fizeau Interferometry. In: Pacific Symposium on Flow Visu-alization and Image Processing, Honolulu, USA (1999)

338. Izzard, C., Lochner, L.: Cell-to-substrate contacts in living fibroblasts: an interference reflexion study with an evaluation of the technique. Journal of Cell Science 21(1), 129–159 (1976)

339. Gingell, D., Todd, I.: Interference reflection microscopy. A quantitative theory for image interpretation and its application to cell-substratum separation measurement. Biophysical Journal 26(3), 507–526 (1979)

340. Gingell, D., Todd, I., Heavens, O.: Quantiative Interference Microscopy: Effect of Microscope Aperture. Journal of Modern Optics 29(7), 901–908 (1982)

341. Choi, C.K., Margraves, C.H., English, A.E., Kihm, K.D.: Multicontrast microscopy technique to dynamically fingerprint live-cell focal contacts during exposure and re-placement of a cytotoxic medium. Journal of Biomedical Optics 13, 054069 (2008)

342. Abercrombie, M., Dunn, G.A.: Adhesions of fibroblasts to substratum during contact inhibition observed by interference reflection microscopy. Experimental Cell Re-search 92(1), 57–62 (1975)

343. Heath, J., Dunn, G.: Cell to substratum contacts of chick fibroblasts and their relation to the microfilament system. A correlated interference-reflexion and high-voltage electron-microscope study. Journal of Cell Science 29, 197 (1978)

344. Izzard, C., Lochner, L.: Formation of cell-to-substrate contacts during fibroblast mo-tility: an interference-reflexion study. Journal of Cell Science 42, 81–116 (1980)

Index

Abby type reflectometer 107 Aberrations − optical, definitions of 30 Airy disk 57, 58 Airy function 30 Airy unit (AU) 60, 64

Back focal plane 31, 32 Boltzman’s constant 8, 116 Bond number 76 Brain cancer cells, see Cytoplasmic viscosity, Vesicle sizes Brownian diffusion − Far-field isotropic 7 − Near-field anisotropic 9, 20-23

Capillary dominated flow regime 76 Capillary number 76 − critical value 76 Carboxylate-coated fluorescent beads

16, 20 Cell-substrate gap correlation, see RICM zero-order fringe pattern

correlations Circle fitting, see OSSM imaging analysis algorithm Close contacts of cells 129 CLSM-PIV, see Confocal laser scanning microscopy Coherence lengths − optical, Table of 121 Collision frequency 115 Confocal laser scanning microscopy

(CLSM) − axial imaging resolutions of 61, 62,

67− galvanometric scanning − geometrical optical analysis 61, 63 − lateral imaging resolutions of 61,

62, 67

− optical slice thickness of 61, 63 − particle image velocimetry (PIV)

65, 68 − Point spread function of 59, 60 − Principle of 56 − system with a Nipkow disk 65, 66

see Nipkow disk − system with a pinhole aperture 56 − wave optical analysis 61, 63 Contact line pinning 112 Convective-diffusion of salinity 108 Couette flows − rotating, microscale 73-76 − Test cell configuration of 73 Cover slip glasses − designed 30 Critical angle 2, 16-18, 107 Cross-correlation broadening 42 Cytochalasin D 127 Cytoplasm membrane 130 Cytoplasmic viscosity 27-28

Debye-Hückel reciprocal length parameter 12

Deconvolution microscopy, see Optical serial sectioning microscopy Depth-of-field 58 Dielectric constants 82 − Drude model 115 − of metals 6, 82 − of thin gold films 94, 99 − of thin silver films 9 Dielectric medium 5, 81, 82 Dielectrophoresis 125 Differential interference contrast

microscopy (DICM) − images 27, 128 Diffusion coefficient − Near-wall hindered 9-10

150 Index

− of spherical particles 8 − Temperature dependence of 44-45 Dispersion of refractive index − BK7 prism 99 − metal layers 99 − water 99 Drude model, see Dielectric constant Dynamic fingerprinting, see SPRM sensors

Einstein’s isotropic diffusion 8 Electric charge density 123 Electric Coulomb forces 124 Electric permittivity, see Dielectric constants Electrohydrodynamic (EHD) phoresis

123-124, 125 − EHD control of thin film, see RICM thin film thickness

measurements Electrostatic potential − in near-field 11 Endothelial cells − of porcine pulmonary artery 128 Epi-fluorescent microscopy 34 Equilibrium height 12, 22-23 Evanescent wave − field intensity 2, 3 − penetration depth 2-3, 15, 23 External medium 3, 5

Fizeau fringes, see RICM fringe formation Fluorescent polystyrene particles 38 Fluorophore distribution function 19 Focal contacts − Dynamic fingerprinting of 128 − of live cells 127 Fraunhofer condition 57 Free electrons 81, 85 Fresnel equations 88

Gaussian probability distribution function, see

Random PDF Gold metal layer, see Dielectric constants Gravitational potential − in near-field 11 Gravitational sedimentation 11

Hamaker constant 11 Helium-neon line 6 Hindered diffusion, see Diffusion coefficient

Index matching oil emersion 16 Interference of plain waves 119-120 − optical path differential (OPD) 120 Interference reflection microscopy, see Reflection interference contrast

microscopy Internal medium 3, 5

Kirchhoff’s law of scalar diffraction 29

Kline-McClintock uncertainties 2, 109, 110

Korteweg’s theory 107 Kretschmann’s three-layer

configuration, see Surface plasmon resonance

Label-free detection, see SPRM sensors

Marangoni flows 112 Maxwell wave equation 7, 82, 84 − Far-field 1-D solutions of 119 Mean square displacements (MSD) − definitions of 8 − Near-wall measurements of 21-22 − Temperature dependence of 47 Mean wavelength 61 Micro-capillary suction 52 Microfluidic mixing 49-53, 102-104 Microscopic imaging resolutions − confocal, see CLSM − conventional, see Wide-field microscopy Micro-tube flows − refractive index mismatching 69 − tube-wall lens effect 70-71 Modified pinhole diameter (PD) 60

NAG-1 vesicles, see Vesicle sizes Nanocrystalline complex cavities 114 Nanocrystalline self-assembly, see SPRM sensors Nanofluids 107, 109, 111

Index 151

Nanoparticles 107, 114 − Near-field tracking of 21 Natural fringes, see Fizeau fringes Natural oscillation frequency, see Plasma frequency Near-field − Definitions of 1-2 − potential energy functions 12

see van der Waals potential Electrostatic potential Gravitational potential Near-field mixing − immiscible fluids 49, 51 − miscible fluids 52, 53 see OSSM, SPRM Near-field thermal diffusion, see SPRM sensors, near-field thermometry Near IR lines, see SPR reflectance imaging resolution Neural network model 20 Nipkow disk 65 Nonlinear regression 27, 28 No-slip boundary condition 7 − penetration depth 10 Numerical aperture (NA) − definition of 16, 57

Objective lens − high NA 17, 35, 71, 123, 127 Optical path differential (OPD) 120,

121, 123 Optical sectioning −optically sectioned images 64, 69,

74, 78 see

CLSM Optical serial sectioning microscopy

(OSSM)− calibration chamber 35 − calibration data 37 − imaging analysis algorithm 39-41 − near-wall thermometry 42, 44-45 − optical path difference (OPD) 32 − outer-most-fringe diameter 37 − particle tracking velocimetry 37-38 − Principles of 35-37 − PSF images by 40 − system layout 34

− thermometry 48-49 Optical slice thicknesses − confocal 61, 63, 67 OTS-coated hydrophobic surfaces 24

Particle image sizes − diffraction limited 68 Particle image velocimetry (PIV), see Confocal laser scanning microscopy Particle tracking velocimetry 24, 37 − error due to Brownian motion 42

see TIRM, OSSM, CLSM Peclet number 11 Penetration depth, see Evanescent wave No-slip boundary conditions Skin-depth Surface plasmon polariton Pentane − EHD phoresis, see RICM thin film thickness

measurements − thin film generation test cell 126 − thin film images 124, 125 Phase aberration function 32 Photon line 83, 86 Pixel gray level (PGL) − binning 127 − normalized 106 Plane waves 119 Plank constant 116 Plasma frequency 85 Plasmon 4 Point spread function (PSF) − Asymmetric 32 − of glycerol 50 − of immersion oil 50 − of water 50 − Three-dimensional axisymmetric

30-31 − under aberration-free design condition

29-31 − under off-design conditions 31-33 Poiseuille flows 24-25, 68-72 Polaritons 4, 81 Polydimethylsiloxane (PDMS) molding

24Prism selections for SPR − BK7 89, 90 − BK11 95

152 Index

− Diamond 96 − Iodine crystal 96 − LF 96 − SF10 89, 90, 96 − SF 11 96 − Topaz 96 Protein trafficking − images of 27 − intra-cellular 26

Quantum efficiency, see TIRM combined quantum efficiency

Random probability distribution function (PDF) 47

Rayleigh criterion, see Fraunhofer condition Rayleigh number − Definition of 47 Reflection coefficient 89 Reflection interference contrast

microscopy (RICM) − Antiflex device 123 − fringe formation 122 see Nanocrystalline self-assembly − high NA requirements 123 − light sources 122-123 − monochromatic RICM 114, 122,

124− multi-spectral RICM 114, 122, 124 − numerical aperture 123 − optical slicing 78 − thin film thickness measurements

123-124 − Zero-order fringe pattern correlation

128Reflectometer − Abbey type 109 Refractive index (RI) 2, 5, 6, 82 − effective 107, 110 − imaginary part 6, 82 − various fluids 50, 90 Ring vortex flows 107, 108

Saline solution − RI dependency 106

Scattering frequency − electron-electron 115 − phonon-electron 115 Self-assembly of nanoparticles, see SPRM sensors, nanocrystalline

self-assembly Separation distance − Most probable, see Equilibrium height Skin-depth − into metal 7, 82 Slip boundary conditions 23 − on hydrophobic surface 24 − Shear rates of 24 Slip length 24, 25-26 Snell’s law 107 Speed of light 82 SPR reflectance calculations 89 SPR reflectance imaging resolution − cover layer dependency 100 − metal layer dependency 99 − SiO2 pattern boundaries 97, 100 − wavelength dependency 97-98 SPRM sensors − full-field salinity detection 105-106 − label-free mixing sensor 102-103 − nanoparticle concentration 111 − nanocrystalline self-assembly

110-112, 114 see

Nanocrystalline complex cavities − near-wall thermometry 113, 115-117 Stern potential 12 Stokes drag 7, 8 Stokes-Einstein theory 44 Surface plasmon line 86 Surface plasmon polariton (SPP) 4, 82 − Dispersion curve 86 − Dispersion relation of 85 − penetration depth 5-6 Surface plasmon resonance (SPR) 5 − Kretschmann’s configuration 85, 87 − p-polarized incident wave field 4, 5 − selection of prisms 96 − SPR reflectance, see SPR reflectance imaging resolution − SPR angle 5, 89, 95-96

Index 153

− SPR angles of various interfaces 90, 91

− SPR reflectance 87, see Fresnel equations Surface plasmon resonance microscopy

(SPRM) − A system with a white light source

92, 93 − A system with an LED source 92, 93 − History of 101 Surface plasmons 4, 81

Taylor bubbles 76 − Optical images of 77 Thermocapillaryphoresis 112 Thermophoresis 112 Threshold filtering, see OSSM imaging analysis algorithm Total internal reflection (TIR) 2 Total internal reflection microscopy

(TIRM) 15 − collection efficiency 19 − combined quantum efficiency 18 − detection probability 19 − objective lens 16-17 − Ratiometric imaging analysis 18-20 − system with a prism 16 − system with an objective lens 17, 20

Transverse electric (TE) mode 84 Transverse magnetic (TM) mode 84 see SPR p-polarized

van der Waals potential − in near-field 11, 112 Vesicle sizes − Intracellular 27-28 Viscosity − sulfuric acid 107 − Temperature dependence of 44-45 − water 107

Water-ethanol mixture 102-104 Water-glycerin mixture 52, 91, 105 Water viscosity 28 Wave propagation number − Complex form of 84 − definition 32 Wave vector 97, 100 Wide field microscopy (WFM) 60 − axial imaging resolution 58, 62 − lateral imaging resolution 57, 62 − Point spread function of 59

Zero-order natural fringes, see Reflection interference contrast

microscopy