Radical Cations•+: Generation, Reactivity, Stability

download Radical Cations•+: Generation, Reactivity, Stability

of 65

Transcript of Radical Cations•+: Generation, Reactivity, Stability

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    1/65

    Radical Cations+: Generation, Reactivity, Stability

    MacMillan Group Meeting4-27-11

    by

    Anthony Casarez

    R A R A

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    2/65

    Three Main Modes to Generate Radical Cations

    Electrochemical oxidation (anodic oxidation)

    Chemical oxidation

    Photoinduced electron transfer (PET)

    D A D A

    DAnode

    D

    D A D A* D Ah!

    D A D* A D Ah!

    1)

    2)

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    3/65

    Chemical Oxidation

    Stoichiometric oxidant: SET

    MacMillan et al. Science2007, 316, 582.

    Booker-Milburn, K. I. Synlett1992, 809.

    H

    hexyl

    DME

    N

    NBn

    O Me

    t-Bu

    H

    hexyl

    N

    NBn

    O Me

    t-BuCe(NH4)2(NO3)6

    OMe3SiO FeCl3, DMFMe3SiO

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    4/65

    Photoinduced Electron Transfer

    PET: Organic arene

    OMe

    NC CN

    h!, MeCN, MeOH

    OMe

    CN

    CN

    PET: Metal mediated

    Arnold, D. R.; Maroulis, A. J. J. Am. Chem. Soc.1976, 98, 5931.

    Ischay, M. A.; Lu, Z.; Yoon, T. P. J. Am. Chem. Soc.2010, 132, 8572.

    R

    MeOh!, MgSO4,

    MeNO2, Ru(bpy)32+

    MeN NMeR

    MeO

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    5/65

    Electrochemical Oxidation

    Anodic oxidation

    Ponsold, K.; Kasch, H. Tetrahedron Lett.1979, 4463.

    M. J. Gai et al. J. Chem. Soc.Chem. Comm. 1993, 1496.

    MeO

    MeO

    anode, MeOH

    DCM, NaClO4

    2,6-lutidine

    MeO

    MeO

    NH

    N

    EtCO2Me

    anode, 2,6-lutidine

    MeCN, Et4NClO4 NH

    N

    EtCO2Me

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    6/65

    Primary Fate of Radical Cations

    A radical cation will be generated from the electrophore on the molecule with the lowest

    oxidation potential (usually or n, where n = nonbonding electrons).

    The chemistry of the resultant radical cation is determined from the functionality around its

    periphery.

    Deprotonation of the radical cation is a major pathway, resulting in a radical which adheres

    to typical radical reactivity patterns.

    Secondary reactions play a major role in our generation and use of radical cations.

    Schmittle, M.; Burghart, A. Angew. Chem. Int.Ed. Engl. 1997, 36, 2550.

    Key Points

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    7/65

    Primary Fate of Radical Cations

    Schmittle, M.; Burghart, A. Angew. Chem. Int.Ed. Engl. 1997, 36, 2550.

    Symbol Classification Primary Product A BCH CH deprotonation -C + H+ or n-C + H+ C H

    AH AH deprotonation -A + H+ O, N, S, X H

    AB AB bond cleavage -A + B+ or -A+ + B A B

    CC CC bond cleavage -C + C+ C C

    CX CX bond cleavage -C + X+ C Si, Sn

    Nu Nu attack Nu--A-B+ A B

    CA cycloaddition cycloaddition A B

    R rearrangement rearrangement A B

    ET electron transfer -A-Bor -A-B2+ A B

    Rad radical attack R--A-B+ A B

    RA radical anion attack RA--A-B A B

    H hydrogen transfer H--A-B+ A B

    Dim dimerization (-A-B)22+ A B

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    8/65

    Primary Fate of Radical Cations

    Schmittle, M.; Burghart, A. Angew. Chem. Int.Ed. Engl. 1997, 36, 2550.

    Symbol Classification Primary Product A BCH CH deprotonation -C + H+ or n-C + H+ C H

    AH AH deprotonation -A + H+ O, N, S, X H

    AB AB bond cleavage -A + B+ or -A+ + B A B

    CC CC bond cleavage -C + C+ C C

    CX CX bond cleavage -C + X+ C Si, Sn

    Nu Nu attack Nu--A-B+ A B

    CA cycloaddition cycloaddition A B

    R rearrangement rearrangement A B

    ET electron transfer -A-Bor -A-B2+ A B

    Rad radical attack R--A-B+ A B

    RA radical anion attack RA--A-B A B

    H hydrogen transfer H--A-B+ A B

    Dim dimerization (-A-B)22+ A B

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    9/65

    Nicholas, A. M. de P.; Arnold, D. R. Can. J. Chem.1982, 60, 2165.

    Thermochemical Cycle: Calculating pKas

    G = nF[Eox

    (RH) Eox

    (R)]

    pKa(RH+) = G/2.303RT

    R-H

    Eox(RH)

    R-H!G[pKa(RH

    +)]R + H+

    !G[pKa(RH)]

    Eox(R)

    R + H+

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    10/65

    Deprotonation

    a) Bordwell et al. J. Phys. Org. Chem. 1988, 1, 209. b) Bordwell et al. J. Phys. Org. Chem.1988, 1,225. c) Bordwell, F. G.; Cheng, J.-P. J. Am. Chem. Soc. 1989, 111, 1792. d) Bordwell, F. G.; Satish,A. V. J. Am. Chem. Soc. 1992, 114, 10173. e) Bordwell, F. G.; Cheng, J.-P. J. Am. Chem. Soc. 1988,

    110, 2872. f) Bordwell, F. G.; Cheng, J.-P.; Bausch, M. J. J. Am. Chem. Soc. 1988, 110, 2867.

    Acidity of a radical cation is severely increased compared to the neutral counterpart.

    R-H

    pKa ( -RH+

    )

    pKa ( -RH)

    reference

    PhCH2CN 32 21.9 a

    PHCH2SO2Ph 25 23.4 b

    Ph2CH2 25 32.2 cPhCH3 20 43 c

    indene (3-H) 18 20.1 d

    CpH

    17

    18.0

    c,e

    fluorene (9-H) 17 22.6 f

    C5Me5H 6.5 26.1 e

    H

    H

    H

    H

    HHB

    +

    B

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    11/65

    Deprotonation

    Bordwell, F. G.; Zhang, X. J. Org. Chem. 1992, 57, 4163.

    R-H pKa (RH+) pKa (RH)

    13 27.9

    11 27.0

    11 24.4

    N

    NO

    Ph

    H

    Me

    Me

    N

    NO

    Ph

    H

    Et

    Et

    Ph

    O

    N

    O

    2

    H

    N N

    OPh

    H B

    HB+MeMe

    N N

    OPh

    MeMe

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    12/65

    Secondary Reactions

    Secondary Reactions play a major role in radical cation chemistry.

    Code Secondary Rxn Product Oxidation SystemRox R

    R+ cation anode, chemical

    Rred R R anion PET

    Rrad typical radical behavior various allRadd.ox R + C=C RCC RCC+ cation anode, chemicalRadd.red R

    + C=C RCC RCC anion PET

    RRA R + R RR anion PET

    Schmittle, M.; Burghart, A. Angew. Chem. Int.Ed. Engl. 1997, 36, 2550.

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    13/65

    Ponsold, K.; Kasch, H. Tetrahedron Lett.1979, 4463.

    -RH+Deprotonation

    -RH+ deprotonation followed by a secondary reactivity pathway (benzylic radical)

    MeO

    MeO

    anode, MeOH

    DCM, NaClO42,6-lutidine

    95%

    MeO

    MeO

    HB

    MeO

    MeO

    anode

    MeO

    MeO

    MeOH

    B

    MeO

    MeO

    MeO

    HMe

    O

    MeO

    MeO

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    14/65

    Determining n vsElectrophores

    Oxidation with typically take place at the center with the lower ionization potential

    Consider the ionization potential of the separate n- and - moieties

    NH

    H

    NMe

    Me

    NH3

    9.24 eV 10.17 eV

    HNMe2

    9.24 eV 8.24 eV

    7.69 eV

    7.17 eV

    Schmittle, M.; Burghart, A. Angew. Chem. Int.Ed. Engl. 1997, 36, 2550.

    H. M. Rosenstock et al. J. Phys. Chem. Ref. Data1977, 6, Suppl. 1.

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    15/65

    T. Shono et al. J. Am. Chem. Soc.1982, 104, 5753.

    n-RH+Deprotonation

    n-RH+ deprotonation followed by a secondary reactivity pathway (-amino radical)

    NMe

    Me

    anode, MeOH

    KOH, 73%

    N

    Me

    H

    H

    H

    OH

    N

    Me

    H H

    N

    Me

    OMe

    N

    Me

    OMe

    n donor

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    16/65

    T. Shono et al. J. Am. Chem. Soc.1982, 104, 5753.

    n-RH+Deprotonation

    NH

    H

    ! donor

    anodeN

    H

    H

    H2N NH2

    HN

    NH2

    N

    N

    Typical arene oxidation products are observed

    Observation of these products indicates that the arene is the site of oxiation, not N-lone pairs

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    17/65

    Albini et al. J. Chem. Soc. Chem. Commun.1995, 41.

    -CH+Deprotonation

    Deprotonation of the radical ion pair happens by the solvent

    NC CN

    CNNC

    h!, 81%

    MeCN

    NC CN

    CNNCH

    MeCN

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    18/65

    Albini et al. J. Chem. Soc. Chem. Commun.1995, 41.

    -CH+Deprotonation

    Deprotonation of the radical ion pair happens by the solvent

    NC CN

    CNNC

    h!, 81%

    MeCN

    NC CN

    CNNCH

    MeCN

    NC CN

    CNNC

    NC

    CN

    CNNC

    AdmAdm CN

    CNNC

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    19/65

    Morrow, G. W.; Chen, Y. Swenton, J. S. Tetrahedron1991, 47, 655.

    -AH+Deprotonation

    -OH+ deprotonation is very prevalent while -NH+ deprotonations are rare.

    O OMe

    HO

    anode, MeOHMeCN, 69%

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    20/65

    Morrow, G. W.; Chen, Y. Swenton, J. S. Tetrahedron1991, 47, 655.

    -AH+Deprotonation

    -OH+ deprotonation is very prevalent while -NH+ deprotonations are rare.

    O

    HO

    MeCN

    O

    OO OMe

    HOMe

    H+

    HO

    anode, MeOHMeCN, 69%

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    21/65

    T. Osa et al. J. Chem. Soc. Chem. Commum. 1994, 2535.

    -AH+Deprotonation

    Reaction at the ortho-position can also occur

    OH

    TEMPO-modifiedanode

    ()-sparteine, 91%

    OH

    OH

    98% ee

    Implementing a biased substrate forces reaction at the ortho-position

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    22/65

    Shine, H. J.; Hoque, A. K. M. M. J. Org. Chem. 1988, 53, 4349.

    n-AH+Deprotonation: Very Limited

    The details surrounding the cycloaddition below are speculative at best.

    NNHPh

    Ph

    H

    Th+ ClO4

    MeCN

    NNHPh

    Ph

    H

    N Me

    e

    2H+ N

    NPh

    N

    Me

    Ph

    The limited examples show how rare these deprotonations are

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    23/65

    Primary Fate of Radical Cations

    Schmittle, M.; Burghart, A. Angew. Chem. Int.Ed. Engl. 1997, 36, 2550.

    Symbol Classification Primary Product A BCH CH deprotonation -C + H+ or n-C + H+ C H

    AH AH deprotonation -A + H+ O, N, S, X H

    AB AB bond cleavage -A + B+ or n-A + B+ A B

    CC CC bond cleavage -C + C+ C C

    CX CX bond cleavage -C + X+ C Si, Sn

    Nu Nu attack Nu--A-B+ A B

    CA cycloaddition cycloaddition A B

    R rearrangement rearrangement A B

    ET electron transfer -A-Bor -A-B2+ A B

    Rad radical attack R--A-B+ A B

    RA radical anion attack RA--A-B A B

    H hydrogen transfer H--A-B+ A B

    Dim dimerization (-A-B)22+ A B

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    24/65

    -A-B+Bond Dissociation

    O

    Me

    OTMS

    MeCN, 77%

    Ce(NH4)2(NO3)6

    H

    O

    Me

    O

    Me3Si

    Dienolether has a lower oxidation potential than the enolether

    OMe3Si

    e

    O

    SiMe3+

    H

    CH2

    Me

    OTMS

    H

    O

    Me

    OTMS

    eSiMe3+

    Eventhough [O] may happen at n (lone pairs), the resonance structure affords the -oxidized

    product.

    Ruzziconi et al. Tetrahedron Lett.1993, 34, 721.

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    25/65

    -A-B+Bond Dissociation

    Certain MukaiyamaMichael reactions are postulated to operate via a radical cation initiated

    fragmentation

    OEt

    OTES

    DCM , 78 C

    LA

    Ph

    O

    Ph

    O

    Me

    Me

    OEt

    OTES

    Me

    Me

    Me Me

    Me Me

    OEt

    O

    Lewis Acid 44 product 42 product Product ratioBu2Sn(OTf)2 85 0 100:0

    SnCl4 95 0

    100:0

    Et3SiClO4 93 0 100:0

    TiCl4 97 2.4 97:3

    J. Otera et al. J. Am. Chem. Soc.1991, 113, 4028.

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    26/65

    MukaiyamaMichael Proposed Catalytic Cycle

    J. Otera et al. J. Am. Chem. Soc.1991, 113, 4028.

    SnCl4Ph

    O

    Me

    Me

    OEt

    OTES

    Me

    MeOEt

    OTES

    Me

    Me

    Ph

    O

    Me

    Me

    SnCl4

    Ph

    O

    Me

    Me

    SnCl3

    ClEt3SiCl

    Ph

    O

    Me

    Me

    OEt

    O

    Me

    Me

    Cl3Sn

    Et3SiCl

    Ph

    Et3SiO Me Me

    Me Me

    OEt

    O

    etransfer

    RR coupling complexation

    catalyst regeneration

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    27/65

    n-A-B+Bond Dissociation

    Adam, W.; Sendelbach, J. J. Org. Chem.1993, 58, 5316.

    N

    N

    Me

    Me

    OHh!, DCA

    Ph2

    O MeMe

    N

    N

    Me

    Me

    OHN2

    OH

    Me

    Me

    Me

    OH

    Me

    BET

    Limited mostly to azoalkanes and triazines

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    28/65

    Primary Fate of Radical Cations

    Schmittle, M.; Burghart, A. Angew. Chem. Int.Ed. Engl. 1997, 36, 2550.

    Symbol Classification Primary Product A BCH CH deprotonation -C + H+ or n-C + H+ C H

    AH AH deprotonation -A + H+ O, N, S, X H

    AB AB bond cleavage -A + B+ or n-A + B+ A B

    CC CC bond cleavage -C + C+ C C

    CX CX bond cleavage -C + X+ C Si, Sn

    Nu Nu attack Nu--A-B+ A B

    CA cycloaddition cycloaddition A B

    R rearrangement rearrangement A B

    ET electron transfer -A-Bor -A-B2+ A B

    Rad radical attack R--A-B+ A B

    RA radical anion attack RA--A-B A B

    H hydrogen transfer H--A-B+ A B

    Dim dimerization (-A-B)22+ A B

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    29/65

    -C-C+Bond Dissociation

    Fragmentation of a -ether generates an oxocarbenium ion

    Arnold, D. R.; Maroulis, A. J. J. Am. Chem. Soc.1976, 98, 5931.

    MeO

    NC CN

    h!, MeCN, MeOH

    MeOMeO

    HOMe

    OMeMeO

    DCB

    H+

    H+

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    30/65

    Stereoelectronic Effects in Deprotonation and Fragmentation

    Poniatowski, A.; Floreancig, P. A. In Carbon-Centered Free Radicals and RadicalCations; Forbes, M. E., Ed.; Wiley & Sons: New Jersey, 2010; Vol 3., pp 43-60.

    D. R. Arnold et al. Can. J. Chem.1997, 75, 384.

    Deprotonation Fragmentation

    Me

    h!, DCB

    collidine, MeCN

    N.R.

    Me

    h!, DCB

    collidine, MeCN

    Me

    H

    HH

    O

    Ph

    RH

    H

    Me

    OMe

    R

    Ph

    H

    R

    Me

    "*Ph

    Ph

    O

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    31/65

    -C-C+Bond Dissociation

    Nucleophile assisted CC bond fragmentation with complete inversion of stereochemistry

    Dinnocenzo et al. J. Am. Chem. Soc.1990, 112, 2462.

    Ph

    Ph

    Me

    D

    h!, 1-CN

    MeCN, MeOH

    Ph

    Ph

    Me

    D

    HOMe

    Ph

    Ph

    OMe

    Me D

    H+

    1-CN

    H+ Ph

    Ph

    OMe

    Me D

    Nucleophile assisted -C-C+ fragmentation is limited to strained systems

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    32/65

    n-C-C+Bond Dissociation

    To drive the reaction, the electrophore must be highly prone to oxidation or the resulting radical

    must be stabilized by a moiety on the molecule

    M. J. Gai

    et al. J. Chem. Soc.Chem. Comm. 1993, 1496.

    N

    H

    N

    EtCO2Me

    anode,2,6-lutidine

    MeCN,

    Et4NClO4N

    H

    N

    EtCO2Me

    N

    H

    N

    EtCO2Me

    e

    N

    N

    EtCO2Me

    N

    N

    H

    Et

    OMe

    OHMeO2C

    AcO

    NH

    N

    EtCO2MeV

    NaBH4

    NH

    N

    H

    CHO2MeV

    Et

    Me

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    33/65

    n-C-C+Bond Dissociation

    To drive the reaction, the electrophore must be highly prone to oxidation or the resulting radical

    must be stabilized by a moiety on the molecule

    M. J. Gai

    et al. J. Chem. Soc.Chem. Comm. 1993, 1496.

    N

    H

    N

    EtCO2Me

    anode,2,6-lutidine

    MeCN,

    Et4NClO4N

    H

    N

    EtCO2Me

    N

    H

    N

    EtCO2Me

    e

    N

    N

    EtCO2Me

    N

    N

    H

    Et

    OMe

    OHMeO2C

    AcO

    NH

    N

    EtCO2MeV

    NaBH4

    NH

    N

    H

    CHO2MeV

    Et

    Me

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    34/65

    Me

    AcO

    O

    O

    TCB, h!

    RSH, H2O, 90%

    AcO

    Me

    O

    O

    OHTCB

    Me

    AcO

    O

    O

    AcO

    Me

    O

    O

    TCB

    H2O

    n-C-C+Bond Dissociation

    A. Albini et al. Tetrahedron Lett. 1994, 50, 575.

    Easily oxidized acetal

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    35/65

    -C-C+Bond Dissociation

    Booker-Milburn, K. I. Synlett1992, 809.

    Me3SiO FeCl3, DMFO

    H

    H

    Cl

    H

    Cl3Fe

    SiMe3

    64%

    Me3SiO

    Trapping of the pendant olefin and Cl

    abstraction form the bicycle ESR studies on strained systems show that

    the inner C-C bond is selectively weakened

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    36/65

    Primary Fate of Radical Cations

    Schmittle, M.; Burghart, A. Angew. Chem. Int.Ed. Engl. 1997, 36, 2550.

    Symbol Classification Primary Product A BCH CH deprotonation -C + H+ or n-C + H+ C H

    AH AH deprotonation -A + H+ O, N, S, X H

    AB AB bond cleavage -A + B+ or n-A + B+ A B

    CC CC bond cleavage -C + C+ C C

    CX CX bond cleavage -C + X+ C Si, Sn

    Nu Nu attack Nu--A-B+ A B

    CA cycloaddition cycloaddition A B

    R rearrangement rearrangement A B

    ET electron transfer -A-Bor -A-B2+ A B

    Rad radical attack R--A-B+ A B

    RA radical anion attack RA--A-B A B

    H hydrogen transfer H--A-B+ A B

    Dim dimerization (-A-B)22+ A B

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    37/65

    -C-X+Bond Dissociation: Calculated BDEs

    Aromatic ionization severely weakens the adjacent bond by ~30 kcal/mol on average

    Si and Sn are the most common X-groups used as fragmentation substrates

    Reaction HR(p-C-X+)

    BDE kcal/molHR(p-C-X)

    BDE kcal/mol RefPhCH2SiMe3

    + PhCH2 + Me3Si

    + +30 +77 a

    PhCH2Cl+ PhCH2

    2+ + Cl +40 +72 b

    PhCH2Br+ PhCH2

    2+ + Br +26 +58 b

    PhCH2OMe+ PhCH2

    2+ + OMe +43 +71 b

    PhCH2SMe+ PhCH2

    2+ + SMe +38 +61 b

    PhSXan+ PhS + Xan+ 11 +26.4 c

    PhSTPCP+ PhS + TPCP+ 18.6 +40.3 c

    a) J. P. Dinnocenzo et al. J. Am. Chem. Soc. 1989, 111, 8973.b) Schmittle, M.; Burghart, A. Angew. Chem. Int.Ed. Engl. 1997, 36, 2550.c) E. M. Arnett el al. J. Am. Chem. Soc. 1992, 114, 221.

    Xan = 9-xanthyl; TPCP = 1,2,3-triphenylcyclopropenyl

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    38/65

    -C-X+Bond Dissociation

    J. Yoshida et al. Tetrahedron Lett.1986, 27, 3373.

    P. S. Mariano et al. J. Am. Chem. Soc.1984, 106, 6439.

    R3Si and R3Sn moieties can be used as super protons

    The dependence of kon MeOH, H2O,

    Bu4NF indicates Nu-assisted Si-bond

    cleavage

    SiMe3 OMeanode, Et4NOTs

    MeOH, 91%

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    39/65

    -C-X+Bond Dissociation

    J. Yoshida et al. Tetrahedron Lett.1986, 27, 3373.

    P. S. Mariano et al. J. Am. Chem. Soc.1984, 106, 6439.

    R3Si and R3Sn moieties can be used as super protons

    The dependence of kon MeOH, H2O,

    Bu4NF indicates Nu-assisted Si-bond

    cleavage

    SiMe3 OMeanode, Et4NOTs

    MeOH, 91%

    Iminium salts can act as photo-

    oxidants under PET conditions

    N

    SiMe3

    MeClO4

    h!, MeCN

    70%

    N

    SiMe3

    Me N Me

    Me3Si+

    N

    Me

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    40/65

    n-C-X+Bond Dissociation

    J. Yoshida et al. J. Am. Chem. Soc.2005, 127, 7324.

    N

    CO2Me

    BF4

    N

    CO2Me

    SiMe3

    Bn4NBF4, DCM

    anode, 78 C

    N

    CO2Me

    SiMe3

    F

    N

    CO2Me

    e

    Iminium ion used in the cation pool method is generated via n-C-X+ cleavage

    F assisted CSi bond cleavage

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    41/65

    -C-X+Bond Dissociation

    Cation pool oxidizes benzylsilane directly

    Oxidation potential of benzylsilane must be

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    42/65

    -C-X+Bond Dissociation

    Cation pool oxidizes benzylsilane directly

    Oxidation potential of benzylsilane must be

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    43/65

    OMe

    N

    CO2MeBF4

    N

    CO2MeBF4

    OMe

    Me3Si

    OMe

    Me3Si

    Me3Si+

    N

    CO2Me

    N

    CO2Me

    OMe

    OMe

    Me3Si

    N

    CO2Me

    OMe

    Propagation

    Proposed Mechanism

    J. Yoshida et al. J. Am. Chem. Soc.2007, 129, 1902.

    Propagation

    Initiation

    Stronger oxidant

    than iminium ion

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    44/65

    n-C-X+Bond Dissociation

    Pandy, G.; Reddy, G. D. Tetrahedron Lett. 1992, 33, 6533. Steckhan et al.Angew. Chem. Int.Ed. Engl. 1995, 34, 2137. Mariano et al. J. Org. Chem.

    1992, 57, 6037.

    N

    SiMe3 DCN, h!

    i-PrOH, 90% N

    H

    Me

    97:3 dr

    O

    O

    N

    Bn

    SiMe3

    DCA, h!

    MeCN, 59%

    Nhexyl

    O

    OMe

    SiMe3

    DCA, h!, 67%

    MeCn/MeOH

    NO O

    Me

    Nhexyl

    O

    OMe

    NO O

    Me

    N O

    N

    H

    N O

    O

    O

    Bn

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    45/65

    -C-X+Bond Dissociation

    Mariano P. S.; Ohga, K. J. Am. Chem. Soc.1982, 104, 617.Otsuji et al. Tetrahedron Lett. 1985, 26, 461.

    CN

    NC

    h!, 66%

    MeCNSiMe3

    NC

    NClO4

    Me

    SiMe3

    h!, 42%

    N

    CO2Me

    PhPh

    N

    Me

    Ph SiMe3

    Me3Si+

    MeCN

    Coupling of the radical cation to the oxidant is the prominent primary fate after -C-X+ cleavage

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    46/65

    Primary Fate of Radical Cations

    Schmittle, M.; Burghart, A. Angew. Chem. Int.Ed. Engl. 1997, 36, 2550.

    Symbol Classification Primary Product A BCH CH deprotonation -C + H+ or n-C + H+ C H

    AH AH deprotonation -A + H+ O, N, S, X H

    AB AB bond cleavage -A + B+ or n-A + B+ A B

    CC CC bond cleavage -C + C+ C C

    CX CX bond cleavage -C + X+ C Si, Sn

    Nu Nu attack Nu--A-B+ A B

    CA cycloaddition cycloaddition A B

    R rearrangement rearrangement A B

    ET electron transfer -A-Bor -A-B2+ A B

    Rad radical attack R--A-B+ A B

    RA radical anion attack RA--A-B A B

    H hydrogen transfer H--A-B+ A B

    Dim dimerization (-A-B)22+ A B

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    47/65

    Nu--A-B+

    Mihelcic, J.; Moeller, K D. J. Am. Chem. Soc.2004, 126, 9106.Trauner et al. J. Am. Chem. Soc.2006, 128, 17057.

    OTBS

    TBSOO

    Me

    Me

    Meanode, LiClO4

    2,6-lutidineMeOH/DCM, 88%

    O

    TBSOO

    Me

    Me

    Me

    H

    Moeller en route to ()-alliacol A

    Trauner en route to ()-guanacastepene E

    O

    TBDPSO

    Me

    MeMe

    Me

    OBn

    TBSO

    anode, LiClO4

    2,6-lutidineMeOH/DCM, 81%

    O

    TBDPSO

    Me

    MeMe

    Me

    OBn

    OMeO

    H

    H

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    48/65

    Nu-n-A-B+

    Karady et al. Tetrahedron Lett. 1989, 30, 2191.

    Me NHOAc

    anode THF, H2O

    NaBF4, 70%

    Me

    NOAc

    Me NHOAc

    Me

    NOAcH

    H+

    e

    Me

    NOAc

    OHH2O

    H+

    The authors do not rule out the possibility of olefin oxidation as an alternative mechanism

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    49/65

    Nu-n-A-B+

    Newcomb, M.; Deeb, T. M. J. Am. Chem. Soc.1987, 109, 3163.

    NPTOC

    t-BuSH, 60%

    AcOH NMe

    N

    S

    O

    O

    PTOC =

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    50/65

    Nu-n-A-B+

    Newcomb, M.; Deeb, T. M. J. Am. Chem. Soc.1987, 109, 3163.

    NPTOC

    t-BuSH, 60%

    AcOH NMe

    NH N

    H

    HSR

    H+

    Initially formed nitrene is immediately protonated

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    51/65

    Primary Fate of Radical Cations

    Schmittle, M.; Burghart, A. Angew. Chem. Int.Ed. Engl. 1997, 36, 2550.

    Symbol Classification Primary Product A BCH CH deprotonation -C + H+ or n-C + H+ C H

    AH AH deprotonation -A + H+ O, N, S, X H

    AB AB bond cleavage -A + B+ or n-A + B+ A B

    CC CC bond cleavage -C + C+ C C

    CX CX bond cleavage -C + X+ C Si, Sn

    Nu Nu attack Nu--A-B+ A B

    CA cycloaddition cycloaddition A B

    R rearrangement rearrangement A B

    ET electron transfer -A-Bor -A-B2+ A B

    Rad radical attack R--A-B+ A B

    RA radical anion attack RA--A-B A B

    H hydrogen transfer H--A-B+ A B

    Dim dimerization (-A-B)22+ A B

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    52/65

    Cycloaddition

    a) Calhoun, G. C.; Schuster, G. B. J. Am. Chem. Soc. 1984, 106, 6870. b) Lorenz, K. T.; Bauld, N. L. J. Am.Chem. Soc. 1987, 109, 1157. c) Takamuku et al. J. Org. Chem. 1991, 56, 6240. d) Schepp, N. P; Johnston, L. JJ. Am. Chem. Soc. 1994, 116, 6895. e) Schepp, N. P; Johnston, L. J J. Am. Chem. Soc. 1994, 116, 10330.

    Reaction k[M1s1] comments reference

    3 x 108Mostly [4 + 2] endo adduct; ratio of/to [2 + 2]

    varied by concentrationa, b

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    53/65

    DielsAlder [4 + 2] Cycloaddition

    Bauld et al. J. Am. Chem. Soc.1981, 109, 3163.Lorenz, K. T.; Bauld, N. L. J. Am. Chem. Soc. 1987, 109, 1157

    Suprafacial selectivity observed

    Shown to operate via a cation radical chain mechanism

    DP + Ar3N+ Ar3N + DP

    +

    DP+ + D A+

    A+ + DP A + DP+

    DCM, 70%

    H

    H

    5:1 endo/exo

    Ar3NSbCl5

    2DP+ dication

    DP+ H+ + DP

    Propagation

    Termination

    k= 3 x 108 [M1s1]

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    54/65

    DielsAlder [4 + 2] Cycloaddition

    Shown to operate via a cation radical chain mechanism

    DCM, 70%

    H

    H

    5:1 endo/exo

    Ar3NSbCl5

    Bauld et al. J. Am. Chem. Soc.1981, 109, 3163.Lorenz, K. T.; Bauld, N. L. J. Am. Chem. Soc. 1987, 109, 1157

    PropagatorHH

    H

    H

    Ar3N

    Initiator

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    55/65

    [2 + 2] Cycloaddition

    Photoredox catalyzed radical cation formation

    Ischay, M. A.; Lu, Z.; Yoon, T. P. J. Am. Chem. Soc.2010, 132, 8572.

    Concerted cycloaddition

    e +e

    MeO

    O

    Electron donating substituent on the arene is necessary to promote the initial oxidation

    MeO

    O

    O

    HH

    MeO

    h!, MgSO4, 88%

    MeNO2, Ru(bpy)32+

    MeN NMe

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    56/65

    MeO

    O

    O

    HH

    MeO

    h!, MgSO4, 82%

    MeNO2, Ru(bpy)

    3

    2+

    MeN NMe

    O

    HH

    MeO

    h!, MgSO4, 71%

    MeNO2, Ru(bpy)32+

    MeN NMe

    O

    OMe

    6:1 dr

    5:1 dr

    [2 + 2] Cycloaddition

    Stereoconvergent transformation

    Ischay, M. A.; Lu, Z.; Yoon, T. P. J. Am. Chem. Soc.2010, 132, 8572.

    isomerization > cycloaddition

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    57/65

    Primary Fate of Radical Cations

    Schmittle, M.; Burghart, A. Angew. Chem. Int.Ed. Engl. 1997, 36, 2550.

    Symbol Classification Primary Product A BCH CH deprotonation -C + H+ or n-C + H+ C H

    AH AH deprotonation -A + H+ O, N, S, X H

    AB AB bond cleavage -A + B+ or n-A + B+ A B

    CC CC bond cleavage -C + C+ C C

    CX CX bond cleavage -C + X+ C Si, Sn

    Nu Nu attack Nu--A-B+ A B

    CA cycloaddition cycloaddition A B

    R rearrangement rearrangement A B

    ET electron transfer -A-Bor -A-B2+ A B

    Rad radical attack R--A-B+ A B

    RA radical anion attack RA--A-B A B

    H hydrogen transfer H--A-B+ A B

    Dim dimerization (-A-B)22+ A B

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    58/65

    Claisen Rearrangement: A Representative Example

    Though potentially powerful, the radical cation Claisen rearrangement has found very limited

    use in synthsis

    Venkatachalam et al J. Chem. Soc Chem. Commun.1994, 511.

    OMe

    MeO

    O

    MeCN, 65%

    Ar3NSbCl5

    OMe

    MeO

    OH

    The radical cation Cope rearrangement seems to be limited to aryl substituted systems.

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    59/65

    Primary Fate of Radical Cations

    Schmittle, M.; Burghart, A. Angew. Chem. Int.Ed. Engl. 1997, 36, 2550.

    Symbol Classification Primary Product A BCH CH deprotonation -C + H+ or n-C + H+ C H

    AH AH deprotonation -A + H+ O, N, S, X H

    AB AB bond cleavage -A + B+ or n-A + B+ A B

    CC CC bond cleavage -C + C+ C C

    CX CX bond cleavage -C + X+ C Si, Sn

    Nu Nu attack Nu--A-B+ A B

    CA cycloaddition cycloaddition A B

    R rearrangement rearrangement A B

    ET electron transfer -A-Bor -A-B2+ A B

    Rad radical attack R--A-B+ A B

    RA radical anion attack RA--A-B A B

    H hydrogen transfer H--A-B+ A B

    Dim dimerization (-A-B)22+ A B

    Both radical (Rad) and radical anion (RA) have been previously discussed

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    60/65

    Primary Fate of Radical Cations

    Schmittle, M.; Burghart, A. Angew. Chem. Int.Ed. Engl. 1997, 36, 2550.

    Symbol Classification Primary Product A BCH CH deprotonation -C + H+ or n-C + H+ C H

    AH AH deprotonation -A + H+ O, N, S, X H

    AB AB bond cleavage -A + B+ or n-A + B+ A B

    CC CC bond cleavage -C + C+ C C

    CX CX bond cleavage -C + X+ C Si, Sn

    Nu Nu attack Nu--A-B+ A B

    CA cycloaddition cycloaddition A B

    R rearrangement rearrangement A B

    ET electron transfer -A-Bor -A-B2+ A B

    Rad radical attack R--A-B+ A B

    RA radical anion attack RA--A-B A B

    H hydrogen transfer H--A-B+ A B

    Dim dimerization (-A-B)22+ A B

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    61/65

    Hydrogen Transfer

    The HofmannLfflerFreytag reaction

    Kimura, M.; Ban, Y. Synthesis1976, 201.

    NH N

    NCS, ether

    NEt3, h!, quant

    N N

    Cl

    HN N

    H

    H

    N NH

    Cl

    HN N

    H H+

    Cl

    N NH+

    Typically a 1,5-H-atom abstraction

    NC homolysis

    H abstraction

    SN2 ring closure

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    62/65

    Hydrogen Transfer

    The HofmannLfflerFreytag reaction

    Kimura, M.; Ban, Y. Synthesis1976, 201.

    Intermediate en route to the synthesis of kobusine

    Me

    OH

    HO

    N

    NH

    MeMe

    NCS, DCM

    0 C, 85%

    N

    MeMe

    Cl

    h, TFA

    KOH, EtOH39%

    NN

    MeMe

    Cl

    Me

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    63/65

    Radical Cations in Synthesis: Floreancig Lab

    Epoxonium cyclization

    Houk and Floreancig et al. J. Am. Chem. Soc.2007, 129, 7915.

    Floreancig et al. Angew. Chem. Int.Ed. Engl. 2008, 47, 7317.

    Cyclic acetal formation en route to theopederin D

    Bn O

    OMe MeO

    MeO

    Ot-bu

    O

    h!, NMQPF6, O2NaOAc, Na2S2O3

    DCE, PhMe, 79% O

    O

    O

    OMe

    Me

    H

    H

    O

    MeO

    O

    O

    OMeH

    OMeO

    CbzHN

    Bn

    OO

    Me

    Me h!, NMQPF6,NaOAc, Na2SO3

    DCE, PhMe, 76% O

    O

    OMeH

    O

    OMe

    CbzHN

    O

    MeMe

    2:1 dr

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    64/65

    Radical Cations in Synthesis

    Used in Moellers synthesis of nemorensic acid

    Moeller et al J. Am. Chem. Soc.2002, 124, 10101.Boger et al J. Am. Chem. Soc.2008, 130, 420.

    Bogers synthesis of vinblastine

    S

    OHMe S

    Me

    O

    Me

    MeMe

    Me

    S

    S

    MeO

    anode, 71%

    Et4NOTsMeOH/THF

    NH

    N

    EtCO2Me

    ii. Fe2(ox)3NaBH4air, 0 C, lutidine

    43%

    N

    N

    H

    Et

    MeO

    HO CO2Me

    OAc

    i. FeCl3, 2h

    NH

    N

    H

    MeO2C

    Et

    N

    N

    H

    Et

    MeO

    HO CO2Me

    OAc

    OH

    Me

    Me

  • 7/29/2019 Radical Cations+: Generation, Reactivity, Stability

    65/65

    Radical Cations in Synthesis: MacMillan Lab

    N

    NBn

    O Me

    t-Bu

    R

    SOMO-activated

    H

    R

    O

    H

    R

    O

    !-enolation

    !-allylation

    !-vinylation

    H

    O

    R

    !-nitroalkylation

    HR

    O

    !-arylation

    intramolecular!-arylation

    R'

    O

    H

    H

    OR'

    R'

    R'

    R'

    H

    R

    O NO2

    R'