Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of...

43
Member of the Helmholtz Association Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials 2nd RCM on PWI with irradiated Tungsten and Tungsten Alloys in Fusion Devices, 08 - 11 September 2015, Seoul, Rep. of Korea M. Berger a , L. Buzi a , J. Coenen a , H. Greuner b , A. Huber a , A. Kreter a , N. Lemahieu a , B. Jaspers a , J. Linke a , A. Litnovsky a , H. Maier b , D. Matveev a , G. Pintsuk a , M. Rasinski a , M. Reinhart a , G. Sergienko a , I. Steudel a , T. Wegener a , B. Unterberg a , M. Wirtz a , a Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, 52425 Jülich, Germany b Max-Planck-Institut für Plasmaphysik, Garching, Germany

Transcript of Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of...

Page 1: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Me

mb

er

of th

e H

elm

ho

ltz A

sso

cia

tio

n

Radiation induced degradation of tungsten

under thermal and plasma exposure and

development of advanced tungsten materials

2nd RCM on PWI with irradiated Tungsten and Tungsten Alloys in Fusion Devices,

08 - 11 September 2015, Seoul, Rep. of Korea

M. Bergera, L. Buzia, J. Coenena, H. Greunerb, A. Hubera, A. Kretera, N. Lemahieua, B. Jaspersa,

J. Linkea, A. Litnovskya, H. Maierb, D. Matveeva, G. Pintsuka, M. Rasinskia, M. Reinharta, G. Sergienkoa,

I. Steudela, T. Wegenera, B. Unterberga, M. Wirtza,

aForschungszentrum Jülich GmbH, Institute of Energy and Climate Research, 52425 Jülich, Germany

bMax-Planck-Institut für Plasmaphysik, Garching, Germany

Page 2: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 2

Thermal shock behavior of irradiated and un-irradiated W grades

Change of W micro- structure under simultaneous heat and particle loads and

impact on W erosion and fuel retention in W

Development of advanced tungsten materials with improved micro-structure

Characterization of commercially available tungsten grades

Outline of FZJ contributions

2nd RCM on PWI with irradiated Tungsten and Tungsten Alloys in Fusion Devices,

08 - 11 September 2015, Seoul, Rep. of Korea

Page 3: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 3

A Environmental conditions - test facilities

Page 4: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 4

plasma

exposure neutrons

very high

thermal

loads

Environmental conditions

Page 5: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 5

Environmental conditions

plasma

exposure neutrons

very high thermal loads

Plasma loads:

• sputtering

• hydrogen

• helium

Neutrons:

• up to 14 MeV

• defects

• transmutation

Steady state heat loads:

up to 20 MWm-2 in ITER

(lower loads in DEMO)

• recrystallization

• failure of joints

Transient thermal loads:

up to 60 MJm-2

(disrupt., ELMs, VDEs)

• crackings

• melting

• dust formation

Page 6: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 6

Electron beam facility JUDITH 1 Linear plasma device PSI-2

• max. power 60 kW

• acceleration voltage < 150 kV

• EB diameter ~1 mm (FWHM)

• plasma diameter 60 mm

• particle flux ≤ 1023 m-2s-1

• incident ion energy (bias) 10 – 300 eV

• Nd:YAG laser 1064 nm

• laser energy 32 J

target

positions

plasma source

target exchange &

analysis chamber

linear manipulator

Facilities at FZJ

Page 7: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 8

B Combined steady state and transient heat loads

Page 8: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 9

Expected heat loads in ITER divertor:

100 10-4 10-3 103 102 101 10-2 10-1

duration of event [s]

105

104

103

102

101

100

pow

er

den

sity [M

W/m

2]

normal

R. A. Pitts, et al., Journal of Nuclear Materials 438 (2013) S48-S56

J. Linke, Transactions of fusion science and technology 49 (2006) 455-464

A. Loarte et al., Plasma Physics and Controlled Fusion 45 (2003) 1549-1569

Introduction

divertor: 5-20 MW/m2, 450 s, n ~ 30000

ELMs: 1 GW/m2, 0.5 ms, n >> 106

off-normal

disruptions

VDEs

MGI: 0.3 GW/m2, 3 ms, n ~ 3000

Page 9: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 10

Experimental status

PILOT-PSI (H plasma) +

JUDITH 2 (transient heat

load)

PSI-2 (H plasma + laser)

JUDITH 2 (heat load)

PSI-2 (H plasma + laser)

MAGNUM-PSI (H plasma)

PILOT-PSI (H plasma)

Plasma

SSL TL

SSL = Steady state load

TL = Transient load monoblock

Tsurf

Successive (sequential) SSL + TL

Simultaneous SSL + TL

Page 10: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 11

Experimental status

Simultaneous SSL + TL – JUDITH 2

Page 11: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 12

0.14

0.27

0.41

0.55

0.68

0.82

pow

er

density [

GW

/m²]

Th. Loewenhoff et al., Physica Scripta T145 (2011) 014057

damage threshold

DF-W: double forged pure tungsten, Tsurf = 700 °C

Experimental status

Simultaneous SSL + TL – JUDITH 2

Page 12: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 13 Th. Loewenhoff et al., Physica Scripta T145 (2011) 014057

0.14

0.27

0.41

0.55

0.68

0.82

pow

er

density [

GW

/m²]

Only < 30 ELMy ITER discharges!

damage threshold

Experimental status

DF-W: double forged pure tungsten, Tsurf = 700 °C

Simultaneous SSL + TL – JUDITH 2

Page 13: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 14

damage threshold

0.14

0.27

0.41

0.55

0.68

0.82

pow

er

density [

GW

/m²]

Only < 30 ELMy ITER discharges!

50 µm

ITER grade @ Tsurf = 1500 °C

Recrystallisation

Experimental status

DF-W: double forged pure tungsten, Tsurf = 700 °C

Simultaneous SSL + TL – JUDITH 2

Page 14: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 15

C Combined particle and heat flux exposure of tungsten

Page 15: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 16

A laser beam exposure: Δt = 1 ms, n = 100 (1000)

step A

B plasma exposure (H or He) of the full sample surface

+ simultaneous

laser beam exposure: Δt = 1 ms, n = 100 (1000)

step B

C laser beam exposure: Δt = 1 ms, n = 100 (1000)

step C

plasma only

plasma + laser (sequentially)

laser + plasma (simultaneously)

laser + plasma (sequentially)

Combined tests in PSI-2

Page 16: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 17

Thermal shock and H-loading in PSI-2

Laser beam

1000 ELM-like events at RT

absorbed power density: 0.3 GW/m²

pulse duration: 1 ms (f = 0.5 Hz)

H-Plasma

biasing voltage: - 60 V

source current: 150 A

plasma flux: 2.5 – 4.0 × 1021 m-2s-1

Laser ⇒ H-Plasma H-Plasma ⇒ Laser Simultaneous (ΔT ≈ 100 °C)

400 µm 20 µm 400 µm 20 µm

Page 17: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 18

Thermal shock and H-loading in PSI-2

Laser beam

1000 ELM-like events at 400 °C

absorbed power density: 0.38 GW/m²

pulse duration: 1 ms (f = 0.5 Hz)

Laser ⇒ H-Plasma H-Plasma ⇒ Laser Simultaneous

H-Plasma

biasing voltage: - 60 V

source current: 150 A

plasma flux: 2.5 – 4.0 × 1021 m-2s-1

300 µm 300 µm 300 µm

5 µm 5 µm 5 µm

Page 18: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 19

Surface structure analysis via FIB

2 µm

10 µm

formation of melt droplets

erosion of scales

Page 19: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 20

Thermal shock and H-loading in PSI-2 p

ow

er

de

ns

ity [

MW

/m²]

transversal longitudinal recrystallised

no damage

surface modification

cracks

po

we

r d

en

sit

y [

MW

/m²]

0.2 0.2

0.3 0.3

0.4 0.4

0.5 0.5

0.6 0.6

0.7 0.7

0.8 0.8

transversal longitudinal recrystallised

sequential tests only laser tests

100 pulses, 400°C 100 pulses, 400°C

hydrogen embrittlement

Page 20: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 21

Thermal shock and He-loading

in PSI-2

Laser (RT) ⇒ He-

Plasma

He-Plasma

plasma flux: 2.8 × 1022 m-2s-1

plasma fluence: 5.6 × 1025 m-2

Tbase: 1000 – 1100 K

Laser beam

1000 ELM-like events

absorbed power density: 0.76 GW/m²

pulse duration: 1 ms (f = 0.5 Hz)

Simultaneous

He-Plasma ⇒ Laser (RT) He-Plasma only

1 µm

200 nm

1 µm

1 µm

Page 21: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 22

Combined tests in JUDITH 1

and GLADIS

Beam content H or H/He6%

Extraction voltage 30 kV

Peak heat flux 10.5 MW m-2

Peak particle flux 3.7×1021 m-2 s-1

180 pulses of 30 s

Peak fluence 2×1025 m-2

L M S

Surface 5×10 mm²

Height 5/10/15 mm

600°C/1000°C/1500°C

100 pulses of 1 ms at RT

120 kV acceleration voltage

0.38 GW/m² absorbed power density

4×4 mm2 scanned surface

JUDITH 1 GLADIS

Page 22: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 23

Thermal shock and H/He-loading

in Gladis H/He-Plasma

plasma flux: 3.7 × 1021 m-2s-1

plasma fluence: 2 × 1025 m-2

180 pulses of 30 s

Electron beam

100 ELM-like events

absorbed power density: 0.38 GW/m²

pulse duration: 1 ms (f = 0.5 Hz) Tbase = 1000 °C Tbase = 1500 °C

risk of erosion?

Page 23: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 24

H/He exposed S-sample

Tsurface ≈ 600°C in GLADIS

Tbase ≈ 1000°C in JUDITH 1

Base temperature effect?

Thermal shock effect? 500 nm

500 nm

Increased gas pressure? (if cavity

contains gas, despite lack of flux)

Decreased shear modulus affects the

Greenwood equilibrium:

PLP ≥ 2 γ / rb + G b / rb

G. Greenwood et al., Journal of Nuclear Materials 1 (1959) 305-324

600°C with H/He – before ELM

600°C with H/He – after ELM

Surface tension γ

Bubble radius rb

Shear modulus G

Burgers vector b

Cavity growth if pressure > PLP

Thermal shock and H/He-loading

in Gladis

Page 24: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 25

D Change of W micro- structure under simultaneous heat and

particle loads and impact on W erosion and fuel retention in W

Page 25: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 26

Plasma exposure parameters in PSI-2

Magnetic field in

exposure chamber 0.1 T steady-state

Plasma species D, H, N, Ar, He, Ne etc.

Electron temperature 1 - 25 eV (for D)

El. density ~1016 - 1019 m-3

Particle flux ~1020 - 1023 m-2s-1

Particle fluence up to ~1027 m-2 per

exposure

Incident ion energy ~10 - 300 eV (negative

bias)

Sample temperature RT - 2000C

Diameter of plasma

column 6 cm

Transients (ELMs, disruptions) can be simulated by

laser irradiation

Exposure parameters can be pre-selected to

simulate particular ITER conditions

Langmuir probe measurements

for deuterium plasma

Hollow plasma profile due to

cathode – anode geometry

Sample is usually placed in region

with maximum flux (r = 2.0 - 3.5 cm)

Plasma parameters

M. Reinhart, A. Kreter, B. Unterberg, D. Matveev, M. Rasinski

Page 26: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 27

Plasma exposure parameters for studies on impact of

impurities on fuel retention

Incident ion flux ~ 1022 m-2s-1

Incident ion fluence ~ 1026 m-2

Incident ion energy 40 eV

Sample temperature 380 K

Fraction of seeded Helium and Argon ions 0 – 8%, controlled by spectroscopy

Sample surface mechanically polished, annealed at 1000°C for 2 h

Page 27: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 28

Deuterium retention in tungsten

under influence of helium and argon

0 200 400 600 8000

1

2

3

4

5

6

7

8

D r

ele

ase

ra

te [

x10

17 m

-2s-1

]

Desorption temperature [°C]

D2

D2 + 1% He

D2 + 5% He

0 200 400 600 8000

1

2

3

4

5

6

7

8

D r

ele

ase

ra

te [x1

017 m

-2s-1

]

Desorption temperature [°C]

D2

D2 + 4% Ar

D2 + 8% Ar

Effect of helium:

Total deuterium retention is reduced by a factor of 3

Effect of argon:

Total deuterium retention slightly increased

TDS spectra show different shapes Change in trapping sites due to material damage by

argon

[M. Reinhart et al., J. Nucl. Mater. 463 (2015) 1021]

Thermal desorption spectra (TDS) of tungsten exposed to mixed plasmas

Total amount of deuterium retained in exposed tungsten

0.4 K/s ramp

0.4 K/s ramp

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

de

ute

riu

m r

ete

ntio

n [x1

020 m

-2]

impurity ion fraction [%]

D + He

D + Ar

Page 28: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 29

TEM cross-section images

for D, D+He and D+Ar exposure

a) platinum coating

b) damaged surface

layer/

He nano-bubbles

c) bulk tungsten

D, D+Ar exposures:

damaged layer depth is in the ion penetration range (2 nm)

D+He exposure:

damaged layer depth is beyond the ion penetration range

→ formation and growth of helium nano-bubble layer

Page 29: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 30

Deuterium retention in tungsten

for variation of incident fluences

Influence of He develops at low fluences (He+ fluence <1023 m-2)

Reduction in retention of factor of 3-4 remains constant for the range of fluences

1024

1025

1026

0.1

1

10

de

ute

riu

m r

ete

ntio

n / 1

020 m

-2

deuterium fluence / m-2

D

D + He

D + 5% He: ~0.40.1

pure D: ~0.350.1

Page 30: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 32

Blister formation in tungsten by deuterium irradiation at

high surface temperatures

[L. Buzi et al., J. Nucl. Mater. 455 (2014) 316]

SEM images of tungsten exposed to low flux in PSI-2 high flux in Magnum-PSI

No blisters

At high flux, blistering occurred for Ts > 800 K !

Incident ion fluence kept constant

by longer exposures in PSI-2

Page 31: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 33

500 600 700 800 900

10 20

10 21

10 22

De

ute

riu

m r

ete

nti

on

[m

-2]

Sample temperature [K]

Blistering and deuterium retention in tungsten

exposed to different ion fluxes

200 400 600 800

1022

1023

1024

50No Blisters

0.1-10.1-1

0.05

17100.5-2

1 10-30 5 No Blisters

0.05-0.1

5

blister [m]

present data

Shu [13]

Xu [14]

Sharpe [15]

Tyburska [16]

Alimov [17]

35 - 70 eV, ~1026

D/m2

Flu

x d

en

sity

(D

/m2s)

Temperature (K)

2

4

Domain of blister formation Total retention (TDS)

Magnum-PSI: flux 71023 m-2s-1

PSI-2: flux 1022 m-2s-1

The presence of blisters correlates with the total amount of retained deuterium

At low and moderate exposure temperatures: higher retention for lower flux

At high exposure temperatures: higher retention for higher flux

[L. Buzi et al., J. Nucl. Mater. 455 (2014) 316]

Page 32: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 35

E Development of advanced tungsten materials

Page 33: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 36

W-Fibre re-inforced Tungsten

Matrix Fiber

5 µm 50 µm

Single Fibre Wf/W , 150µm fibre , HIP Matrix

99% dens material

Er2O3 interface

Early development stages

Multi-fibre materials in 2016

Powder metallurgical Wf/W based on

Hot-Isostatic Pressing

Wf/W based on Chemical Vapor

Deposition

10 layers with 220 fibres (pure) each, fibre volume

fraction ≈ 0.3, unidirectional

62 x 57 x 3.5-4 mm3, 194 g

94.2 % overall density

Er2O3 interface

Proven enhanced mechanical strength and fracture

toughness

CVD Setup now available at FZJ

J.W. Coenen, B. Jasper,

J.Riesch and T.Hoeschen

cm

Page 34: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 37

Smart alloys: Motivation

Temperature profile in PPCS Model A, 10

days after accident with a total loss of

coolant.

[Final Report of the European Fusion Power Plant

Conceptual Study, EFDA RP-RE 5.0, 2005]

Accidental loss of coolant:

peak temperatures of first wall up to

1200 °C due to nuclear afterheat

Additional air ingress:

formation of highly volatile WO3 (Re,

Os)

Evaporation rate: 10 -100 kg/h

>1000°C in a reactor

1000 m2 surface

Radioactive WO3 may leave hot vessel

Conceptual study of the fusion power plant

Mobilization of radioactive

elements must be prevented

Tungsten-

based

“smart”

alloys

Behave like tungsten during

plasma operation

Suppress oxidation during

accident

Page 35: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 38

600 700 800 900 1000

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Pure tungsten

Smart alloy (W-Cr-Y)

Ti-free alloys: oxidation tests

Oxidation rates (Kp)

at 800oC:

Kp (smart alloy W-Cr-Y) =

1.4*10-5

Kp (pure W) = 0.52

Oxidation rate has been calculated from

weight increase versus time, linear fit.

Oxidation was performed at the IPP Garching

Temperature, C.

Oxidation constant, mg² cm-4 s-1

104-fold suppression of tungsten oxidation due to self passivation

Tungsten fraction in the alloy is about 80 at.%

A. Litnovsky

T. Wegener

F. Klein

Page 36: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 39

High temperature oxidation:

W-Cr vs. W-Cr-Ti vs. W-Cr-Y alloys

Best passivation behavior of W-Cr-Y alloy

W-Cr 10.3

W-Cr 10.3-Ti 1.1

W-Cr 11.8-Y 0.3

Kp=6.7*10-5 mg2/(cm4*s)

Kp=2.3*10-5 mg2/(cm4*s)

Kp=6.4*10-6 mg2/(cm4*s)

0 200 400 600 8000,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18Mass change, mg

2/cm

4

Oxidation time, sec

W Cr

W-Cr-Ti

W-Cr-Y

1000oC

Oxidation constants

Page 37: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 40

F Tungsten characterization

Page 38: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 41

G. Pintsuk, et al. “Qualification and post-mortem characterization of tungsten mock-ups exposed to cyclic high heat flux

loading”, SOFT2012 Liege BE

W Plate: 1/10 self-castellation

W bar: 8/14 self-castellation

W monoblock after HHF tests

Page 39: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 42

Conformity of W material with ITER material specification

Chemical composition: similar

Hardness: similar

Density: similar

Microstructure: different

N.B. production routes are different (e.g. forged bar vs rolled plates)

Observation

Self-castellation often appeared in W monoblocks used by EU industry

W-Plansee W-Polema W-ALMT W-AT&M

HV30 441 443 461 448

density [g/cm3] 19.25 19.12 19.17 19.25

Rolled plate

Y direction

Forged bar

Y direction

Strength in y-direction would

be different

See supporting data in M. Wirtz,

et al. presented at SOFT2012

http://dx.doi.org/10.1016/j.fusen

gdes.2013.05.07

Difference in W materials

Page 40: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 44

Square sample (x- and y- direction) Cylinder sample

Uniaxial Tensile Tests

Calibration tests on tensile specimen according to industrial standards

Tests on small scale samples in two directions (microstructure)

Strain-controlled (0.2 mm/min or 10-4 s-1)

Tests at elevated temperature of 800 °C

Tests on as-received and recrystallized samples

Required Tests and Examinations (1/3)

Page 41: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 46

G Tungsten grade for CRP

(rod material provided by Plansee)

Page 42: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 48

S No Element

Manufacturer's

Specifications

[µg/g]

As determined

by ZEA - 3

[µg/g]

Upper

impurity limit

Atomic

Mass

1 Al 15 < 3 3 27

2 Fe 30 7,1 7,1 55

3 Si 20 28

4 H 5 0,0001 0,0001 1

5 Cd 5 0,01 0,01 112,4

6 Cr 20 3,18 3,18 52

7 K 10 < 30 30 39,1

8 Mo 100 6 6 96

9 N 5 0,0004 0,0004 14

10 Hg 1 < 2 2 200,6

11 Cu 10 < 0.7 0,7 63,55

12 Ni 20 < 10 10 58,7

13 C 30 0,0012 0,0012 12

14 O 20 0,0004 0,0004 16

15 Pb 5 < 0,008 0,008 207,2

16 Re 0 < 0,5 0,5 186,2

17 Ta 0 < 2 2 181

18 S 0 <0,0013 0,0013 32,06

Impurities µg 296 16,2921 64,5001

Impurities weight% 0,02960% 0,00163% 0,00645%

Purity weight% 99,970% 99,998% 99,994%

Purity atom% 99,76% 99,98%

deformation

of the w-rod

test coupons

Tungsten grade for CRP (rod material provided by Plansee)

Page 43: Radiation induced degradation of tungsten under thermal ... · Radiation induced degradation of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich No. 49

Thermal shock behavior of irradiated and un-irradiated W grades

Synergistic effects of particle and transient heat loads on thermal shock

performance of W grades

Change of W micro- structure under simultaneous heat and particle loads and

impact on W erosion and fuel retention in W

Fuel retention in pre-damaged W: impact of impurities (He, N, Ne, Ar) on

fuel retention

Modification of W surface morphology under high flux/ high fluency

bombardment by H and He ions and subsequent W erosion

Isotope exchange in damaged W – no results obtained in 2015

Impact of W surface contamination with oxygen on hydrogen retention

and W erosion

Development of advanced tungsten materials with improved micro-structure

Characterization of commercially available tungsten grades

(properties of W to be used in the frame of this CRP)

Summary