RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A...

54
RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering Kansas State University Manhatta, Kansas 55606 published as Report 290 ENGINEERING EXPERIMENT STATION College of Engineering Kansas State University Manhattan, Kansas 66506 January 2000

Transcript of RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A...

Page 1: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

RADIATION ANALYSIS OF ASPENT-FUEL STORAGE CASK

by

J.K. Shultis

Department of Mechanical and Nuclear EngineeringKansas State UniversityManhatta, Kansas 55606

published as

Report 290

ENGINEERING EXPERIMENT STATION

College of EngineeringKansas State University

Manhattan, Kansas 66506

January 2000

Page 2: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

Radiation Analysis of a Spect-FuelStorage Cask

by

J.K.Shultis

Dept. Mechanical and Nuclear Engineering

Summary

This report describes MCNP calculations of the neutron and gamma-ray doses rates arising from asingle Transnuclear spent-fuel storage cask holding 68 design-basis fuel assemblies (a TN-68 cask).Calculations of radiation fields both near the cask and at distances up to 1000 m from the caskare reported. These external dose rates are reported for both primary gamma rays (arising fromfission and activation products in the spend fuel and from activation products in the assembly endfittings and plenum) and from neutrons emitted by the transuranic isotopes and (α, n) reactions inthe spent fuel.

Dose rates 4.5 inches from the cask surface and doses 1-m above grade out to 1000 m arereported. For the far-field dose rates, the skyshine dose rate components are separated from thetotal dose rates. In addition, secondary-photon dose rates are also reported both at the cask surfaceand at large distances from the cask. Results, both with and without an earthen berm at 30 mfrom the cask, are presented.

1 MCNP Modeling of the TN-68 Cask

1.1 Geometry Models

The MCNP [Br97] models of the TN-68 cask developed in this study are based on the SAS4 model(Figs. 5.3-1 and 5.3-2) provided by Transnuclear [Ma98a]. The basic cask structure in shown inFig. 1.

An analog model of the TN-68 cask for the neutron dose calculations was used (i.e., each caskcomponent was modeled by a single MCNP cell). However, for the gamma-ray doses this analoggeometry model proved insufficient, and it was necessary to subdivide the iron cask body intomultiple cell sublayers with increasing photon importances for the outer layers in order to biasphoton transport to the outside of the cask. In particular, 10 sublayers for the cask body wereused, as shown in Fig. 2.

An important simplification in the MCNP model was to homogenize the fuel and holding basketwithin the cask. This represents an enormous simplification since the detailed modeling of eachfuel pin and the basket structure would have produced an MCNP model with great geometriccomplexity and one which would have run prohibitively slowly.

1.2 Material Compositions

The elemental and/or isotopic compositions of the various materials used in the TN-68 cask aregiven in Table 1. The data for this table were provided by Transnuclear [MA98a], in part, by Table

1

Page 3: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

bottom fitting

active fuel and basket

cask body

cask

bod

y

cask

bod

y

plenum & basket

top fitting

cask lid

resi

n/al

umin

um s

hiel

d

polypropylene shieldvoid

Figure 1. The TN-68 cask showing the principal material components.

2

Page 4: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

top fitting

plenum & basket

fuel zone 10

fuel zone 9

fuel zone 8

void

polypropylene shield

resi

n/al

umin

um s

hiel

d

air

Figure 2. The MCNP geometry model for the TN-68 cask in which theiron wall, top and bottom of the cask are split into 10 sublayers.

5.3-1 for the SAS4 model. Material compositions for the air, soil, berm and concrete were takenfrom the references indicated in Table 1.

1.3 Cask Source Terms

1.3.1 Gamma Photons

The gamma-ray source strengths were provided by Transnuclear [Ma98b]. To account for thevarying burnup along the length of the fuel assemblies, the active fuel zone in the MCNP wasdivided into 10 separate axial zones. In addition to gamma radiation from the fuel, activationgamma photons were emitted from the end fittings and the plenum.

The gamma-ray source spectra and source strengths for the TN-68 cask are tabulated in Tables 2and 3. Although, the gamma source activity for the fittings/plenum is considerably less than thatfor the fuel, the top fitting/plenum being closer to the cask top might be expected to contributemore to the leakage dose than gammas from the fuel. To assess the relative importance of thefitting/plenum and the fuel gamma rays, separate source models were used for these two gamma-ray sources and near- and far-field dose calculations were run for each source region.

3

Page 5: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

Table 1. Composition of materials used in the MCNP models of the TN-68 cask. Shown arethe elemental (or nuclide) or atomic fraction (positive) or mass fraction (negative), wi of eachcomponent. Values for TN-68 cask materials are derived from Table 5.3.1 “Materials Input forSAS4 and SAS1 Model.”

Element & wi Element & wi Element & wi Element & wi Element & wi

Dry Air: ρ = 0.0012 g/cm3 [ANSI/ANS 6.4.3]14N -0.75519 16O -0.23179 C -0.00014 Ar -0.01288

Concrete: ρ = 2.32 g/cm3 [ANSI/ANS 6.4.3]1H -0.0056 16O -0.4983 23Na -0.0171 Mg -0.0024 27Al -0.0456Si -0.3158 S -0.0012 K -0.0192 Ca -0.0826 Fe -0.0122

Soil: ρ = 1.625 g/cm3 [Jacob, Prot. Dos., 14, 299, 1986]1H -0.021 12C -0.016 K -0.013 Fe -0.011 Ca -0.041

27Al -0.050 Si -0.271 16O -0.577

Fuel-Basket Homogenized – TN-68 Cask: ρ = 3.231 g/cm3

238U 0.00494 235U 0.14291 Zr 0.09981 Ni 0.02423 Fe 0.1862955Mn 0.00545 Cr 0.05470 27Al 0.18597 16O 0.29570

Plenum/Basket – TN-68 Cask: ρ = 1.158 g/cm3

Fe 0.34907 Ni 0.04535 55Mn 0.01021 Cr 0.10246 27Al 0.31316Zr 0.17975

Top Fitting – TN-68 Cask: ρ = 0.491 g/cm3

Fe 0.50712 Ni 0.06595 Zr 0.26320 55Mn 0.01483 Cr 0.14890

Bottom Fitting/Basket – TN-68 Cask: ρ = 1.918 g/cm3

Fe 0.48621 Ni 0.06329 55Mn 0.01423 Cr 0.14285 27Al 0.23378Zr 0.05954

Basket Periphery (stainless steel): ρ = 7.92 g/cm3

Fe 0.68826 Cr 0.20209 Ni 0.08952 55Mn 0.02013

Periphery Shim/Rails – TN-68 Cask (aluminum): ρ = 2.702 g/cm3

27Al 1.00000

Cask Body – TN-68 Cask (carbon steel): ρ = 7.8212 g/cm3

Fe 0.95510 12C 0.04490

Polypropylene Disk – TN-68 Cask: ρ = 0.90 g/cm3

12C 0.33480 1H 0.66520

Resin/Aluminum – TN-68 Cask: ρ = 1.687 g/cm3

27Al 0.10331 12C 0.24658 16O 0.21985 1H 0.42207 10B 0.0016411B 0.00655

Berm (Silica + water): ρ = 1.400 g/cm3

Si 0.26524 16O 0.59855 1H 0.13621

4

Page 6: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

Table 2. Energy spectrum of gamma photons emitted bythe spent fuel and by the fittings/plenum. Source strengthsare the number of photons emitted per second per assembly.

Energy Energy range Number of PhotonsFraction

Group (MeV) (s−1 assembly−1)

Spent Fuel:

36 1.33 to 1.66 4.826 × 1012 0.00422

37 1.00 to 1.33 3.321 × 1013 0.03273

38 0.80 to 1.00 3.321 × 1013 0.03549

39 0.60 to 0.80 3.321 × 1013 0.65402

40 0.40 to 0.60 3.321 × 1013 0.05790

41 0.30 to 0.40 3.321 × 1013 0.01359

42 0.20 to 0.30 3.321 × 1013 0.02211

43 0.10 to 0.20 3.321 × 1013 0.07902

44 0.05 to 0.10 3.321 × 1013 0.10092

Total 1.015 × 1014 1.00000

Top Fitting:

36 1.33 to 1.66 1.246 × 1012 0.77977

37 1.00 to 1.33 3.519 × 1011 0.22023

Total 1.598 × 1012 1.00000

Plenum:

36 1.33 to 1.66 7.534 × 1011 0.77976

37 1.00 to 1.33 2.128 × 1011 0.22024

Total 9.662 × 1011 1.00000

Bottom Fitting:

36 1.33 to 1.66 8.829 × 1011 0.77981

37 1.00 to 1.33 2.493 × 1011 0.22019

Total 1.132 × 1012 1.00000

Table 3. Axial distribution of the gamma-raysource strength in the 10 fuel zones. Axial rangesare with respect to the center of the fuel.

Fuel Axial Range Fraction of TotalZone (cm) Fuel Photons

1 -182.88 to -163.49 0.023852 -163.49 to -123.62 0.092643 -123.62 to -61.82 0.199344 -61.82 to -30.91 0.101395 -30.91 to 0.00 0.101396 0.00 to 30.91 0.101397 30.91 to 61.82 0.098018 61.82 to 123.64 0.182519 123.64 to 157.27 0.0714910 157.27 to 182.88 0.02799

Total 1.00000

5

Page 7: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

1.3.2 Neutrons

Transnuclear Inc. provided neutron source strengths and energy spectrum for a 7 × 7 assemblywith 40,000 MWd/Mt average burnup with a 10-year cooling time [Ma99]. The energy spectrumof the neutrons emitted from the spent fuel are given in Table 4. The variation in burnup alongthe axis of the fuel assembly is modeled by dividing the assembly into 12 axial zones. The fractionof neutrons emitted by each axial zone is listed in Table 5.

Table 4. Energy spectrum of neutrons emitted bythe spent fuel and by the fittings/plenum. Sourcestrengths are the number of neutrons emitted persecond per assembly.

Energy range Number of NeutronsFraction

(MeV) (s−1 assembly−1)

6.34 to 20.0 2.181 × 106 0.01843

3.00 to 6.43 2.484 × 107 0.20989

1.85 to 3.00 2.756 × 107 0.23295

1.40 to 1.85 1.550 × 107 0.13102

0.90 to 1.40 2.095 × 107 0.17702

0.40 to 0.90 2.283 × 107 0.19296

0.10 to 0.40 4.469 × 106 0.03777

Total 1.183 × 108 1.00000

Table 5. Axial distribution of the neutronsource strength in the 12 fuel zones. Axial rangesare with respect to the center of the fuel.

Fuel Axial Range Fraction of TotalZone (cm) Fuel Neutrons

1 -182.88 to -164.59 0.0000922 -164.59 to -146.30 0.0085363 -146.30 to -109.73 0.0845124 -109.73 to -73.15 0.1369095 -73.15 to -36.58 0.1529676 -36.58 to 0.00 0.1580377 0.00 to 36.58 0.1563478 36.58 to 73.15 0.1386009 73.15 to 109.73 0.10733010 109.73 to 146.30 0.05096111 146.30 to 164.59 0.00556912 164.59 to 182.88 0.000140

Total 1.000000

6

Page 8: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

1.4 Dose Conversion Factors

The fluence-to-dose conversion factors incorporated into the MCNP TN-68 cask models were thosefor the ambient dose equivalent (the dose equivalent at 10-cm depth in the ICRP spherical phantomilluminated by a plane-parallel beam of radiation incident on the sphere) [IC87, Sh96]. These doseconversion factors are listed in Table 6.

Table 6. Response functions (fluence-to-dose conversion factors) used inthe MCNP analyses. These factors yield the ambient dose equivalent at10-cm depth inside the ICRU sphere (human-phantom approximation) forthe case of a plane parallel beam incident on the sphere.

Photon energy Response Function Neutron energy Response Function(MeV) (10−12 Sv cm2) (MeV) (10−12 Sv cm2)

0.01 0.0769 2.5 × 10−8 8.00.015 0.846 1.0 × 10−7 10.40.02 1.01 1.0 × 10−6 11.20.03 0.785 1.0 × 10−5 9.20.04 0.614 1.0 × 10−4 7.1

0.05 0.526 1.0 × 10−3 6.20.06 0.504 1.0 × 10−2 8.60.08 0.532 2.0 × 10−2 14.60.10 0.611 5.0 × 10−2 35.00.15 0.890 1.0 × 10−1 69.0

0.20 1.18 2.0 × 10−1 1260.30 1.81 5.0 × 10−1 2580.40 2.38 1.0 3640.50 2.89 1.5 3750.60 3.38 2.0 369

0.80 4.29 3.0 4181.0 5.11 4.0 4391.5 6.92 5.0 4022.0 8.48 6.0 4153.0 11.1 7.0 444

4.0 13.3 8.0 4645.0 15.4 10.0 4816.0 17.4 14.0 5208.0 21.2 17.0 640

10.0 25.2 20.0 660

Source: ICRP [1987].

Since MCNP yields results normalized to one source particle, it is necessary to convert theMCNP calculated dose D(Sv/particle) to an appropriate dose rate, here taken as D(mrem/h).This is accomplished with

D(mrem/h) = D(Sv/particle) × Si(particles/s) × 105(mrem/Sv) × 3600(s/h), (1)

where Si(particles/s) is the total particle emission rate from the ith source region when the cask isfully loaded with 68 assemblies.

7

Page 9: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

1.4.1 Dose-Rate Conversion Factors for Primary Gamma Rays

From Table 2 the total number of gamma photons emitted by the fuel zones, per assembly, is1.015 × 1015 s−1. Thus, SγF = 1.015 × 1015 × 68 = 6.899 × 1016 photons/s. Finally, from Eq. (1)one has

DγF (mrem/h) = 2.484 × 1025 × DγF (Sv/photon). (2)

Similarly, the total gamma source strength for the top and bottom end fittings and the plenumregion is SγX = 3.6963 × 1012 × 68 = 2.514 × 1014 photons/s, and the dose-rate conversion factorbecomes

DγX(mrem/h) = 9.049 × 1022 × DγX(Sv/photon). (3)

These dose-rate conversion factors can be incorporated into the MCNP model by using a tallymultiplier FM card.

1.4.2 Dose-Rate Conversion Factors for Neutrons and Secondary Photons

From Table 4 the total number of neutrons emitted by the fuel zones, per assembly, is 1.183 × 108

s−1. Thus, Sn = 1.183 × 108 × 68 = 8.044 × 109 neutrons/s. Finally, from Eq. (1) one has

Dn(mrem/h) = 2.896 × 1018 × Dn(Sv/neutron). (4)

This result is also used to convert the MCNP-calculated doses for secondary photons.

2 Near-Field Gamma Dose Rates

The 10-sublayer TN-68 cask model of Fig. 2 was placed on a concrete pad and surround by a void.A horizontal detector surface was placed 4.5 inches above the top protective cover and a cylindricaldetector surface was placed 4.5 inches outside the radial cask shield.1 These detector surfaces werefurther subdivided into segments, and the F2 surface tally was used to obtain the dose averagedover each surface segment.

The resulting dose rates are given in Tables 7 and 8 and shown schematically in Fig. 3. Theseresults were obtained with the MCNP input files GNFB2X.I and GNFB2F.I for the fuel photons andfor the fittings/plenum photons, respectively. It is interesting to note that most of the gammadose-rate escaping through the upper corner of the cask and through the cask top is due to photonsemitted by the plenum/top-fitting region. By contrast, along the radial shield, photons emitted bythe fuel are the dominant component of the leakage dose rate.

3 Far-Field Gamma Dose Rates

The 10-sublayer cask model of Fig. 2 was placed on a flat concrete pad which extended 10 m fromthe cask axis. Beyond the concrete pad, “standard” soil was used for a continuation of the flatground surface. Dry air, of density 0.0013 g/cm3, was used above the ground interface. To sweepphotons outwards, the air was subdivided into many radial cells with cell importances increasingwith increasing distance from the cask. Annular detector volumes of air, 2-m high and 0.5 or 1-mthick, were placed on the ground interface at multiple distance ranging from 2 to 1000 m fromthe cask axis. The MCNP F4 volume tally was used to obtain the dose in these air-phantomrepresentation of a human.

1The 4.5-inch distance represents the center of a 9-inch remball, which is often used for neutron surveys at“contact.”

8

Page 10: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

Figure 3. The primary gamma dose rate at various positions around theTN-68 cask at 4.5 inches from the cask surface.

9

Page 11: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

Table 7. Primary gamma-ray dose-equivalent rates as a functionof elevation at a distance of 4.5 inches from the TN-68 cask radialsurface.

ElevationFittings/Plenum Fuel Total Dose

from fuelcenter (cm) (mrem/h) error (mrem/h) error (mrem/h)

-209.59 49.2 0.0062 8.42 0.1032 57.6-171.38 9.19 0.0076 21.3 0.0606 30.5-120.00 0.645 0.0256 44.5 0.0310 49.2-60.00 0.263 0.0448 53.8 0.0261 54.10.00 0.220 0.0567 49.6 0.0320 49.860.00 0.178 0.0761 48.0 0.0353 48.1120.00 0.084 0.1011 22.9 0.0556 22.1181.82 30.8 0.0047 29.4 0.0328 60.1231.10 352. 0.0031 1.26 0.1213 352.255.23 283. 0.0043 1.00 0.5234 284.268.25 157. 0.0053 0.36 0.2971 157.279.68 79.2 0.0073 0.83 0.4102 60.0302.07 35.0 0.0084 1.1 0.6503 36.1325.10 18.7 0.0148 0.2 0.7379 18.9

Table 8. Primary gamma-ray dose-equivalent rates along the TN-68cask top (4.5 inches from the top surface).

Radial dist.Fittings/Plenum Fuel Total Dose

from fuelcenter (cm) (mrem/h) error (mrem/h) error (mrem/h)

22.50 125.9 0.0071 0.81 0.2166 127.67.11 82.82 0.0053 0.53 0.1753 83.495.81 44.87 0.0096 0.48 0.3538 45.4113.43 22.50 0.0096 0.27 0.2915 22.8130.18 17.38 0.0134 0.35 0.3490 17.7

To obtain the skyshine component of the far-field dose rate, two MCNP calculations wereperformed: one using the above model to obtain the total (direct+groundshine+skyshine) doserate, Dt, as a function of distance from the cask, and a second using the same MCNP model, butwith the air above the elevation of the cask top replaced by a void. The doses obtained with thissecond calculation eliminated the skyshine component, leaving only the direct plus groundshine,Dd. Thus the differences between these two calculations yields an estimate of the skyshine dose.The skyshine dose rate, Ds is then calculated as

Ds = (Dt − Dd) ± rs. (5)

10

Page 12: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

The relative error or uncertainty rs is obtained by the standard propagation of errors as

rs =

√r2t D

2t + r2

dD2d

(Dt − Dd)2, (6)

with rt and rd the (1-sigma) relative error in the total and direct dose rates, respectively.Near the cask, the direct component dominates and the two calculated values will be nearly

equal, yielding a skyshine estimate with relatively large uncertainties. At large distances from thecask, however, the direct component is severely attenuated, and the total dose is dominated by theskyshine component so that the difference between the two calculated values yields a very accurateestimate of the skyshine field.

3.1 Cask without a Berm

Far-field calculations of the primary gamma-ray dose rates for the fuel and fittings/plenum gammasource terms were performed separately. MCNP input files GFFAF.I and GFFAX.I were used todetermine the total dose rate (direct+groundshine+skyshine) for the fuel photons and for theplenum/fittings photons, respectively. The corresponding direct plus groundshine doses were ob-tained with the MCNP input files GFFAFO.I and GFFAX0.I. These fuel and plenum/fitting compo-nents were then added to yield total gamma-ray dose rates using formulas analogous to Eqs. (5)and (6). The resulting far-field dose rates and the derived skyshine dose rates are presented inTable 9 and shown graphically in Figs. 4 and 5.

Table 9. Primary gamma-ray dose-equivalent rates as a function of the distancefrom the TN-68 cask. Cask is on an infinite plane surface without any interveningberm to block the direct component.

DistanceTotal Dose Direct Dose Skyshine Dose

from caskaxis (m) (mrem/h) error (mrem/h) error (mrem/h) error

2 0.27894E+02 0.0154 0.27383E+02 0.0151 0.51120E+00 1.16363 0.16293E+02 0.0160 0.15945E+02 0.0158 0.34753E+00 1.04255 0.86932E+01 0.0161 0.85376E+01 0.0157 0.15558E+00 1.24307 0.58398E+01 0.0152 0.57001E+01 0.0149 0.13968E+00 0.8809

10 0.37084E+01 0.0149 0.35992E+01 0.0145 0.10926E+00 0.696520 0.11798E+01 0.0167 0.11166E+01 0.0159 0.63200E−01 0.418630 0.53518E+00 0.0185 0.48342E+00 0.0175 0.51763E−01 0.251450 0.18492E+00 0.0225 0.15801E+00 0.0232 0.26906E−01 0.206270 0.84451E−01 0.0260 0.69342E−01 0.0293 0.15109E−01 0.1977

100 0.36452E−01 0.0305 0.27564E−01 0.0382 0.88879E−02 0.1721150 0.11862E−01 0.0340 0.76926E−02 0.0493 0.41694E−02 0.1327200 0.46494E−02 0.0301 0.25620E−02 0.0610 0.20874E−02 0.1005300 0.11087E−02 0.0362 0.50049E−03 0.0824 0.60824E−03 0.0946500 0.10372E−03 0.0385 0.36922E−04 0.1269 0.66799E−04 0.0922700 0.13992E−04 0.0425 0.38309E−05 0.1571 0.10162E−04 0.0833

1000 0.90534E−06 0.0449 0.22654E−06 0.2054 0.67880E−06 0.0910

In Fig. 4 the total dose rate (direct+groundshine+skyshine) is shown together with its twocomponents, namely, the total dose produced by the fuel gamma-rays and by the fittings/plenum

11

Page 13: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

Figure 4. The total primary gamma-ray dose at 1-m above the groundand the contribution made by the two source components.

Figure 5. The total, direct, and skyshine dose rates from primary gamma-rays at 1-m above grade.

12

Page 14: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

gamma rays. It is observed that for a human phantom standing on the ground near the cask,the gamma-rays emitted by the fuel are the major contributor to the total dose rate since theleaking plenum/top-fitting, which have a greater intensity, are emitted primarily from the topcorner of the cask above the human. However, beyond about 10 m, the gamma-rays emitted bythe plenum/fittings become slightly more dominant.

In Fig. 5 total dose rate from primary gamma rays is shown along with the direct (includinggroundshine) and derived skyshine dose rates. As expected, the skyshine component becomesdominant at large distances from the cask and, beyond several hundred meters, comprises almostall the dose rate.

3.2 Berm Around Cask

Calculations were performed with an 8-foot thick and 20-foot high berm placed around the TN-68cask. The berm was centered 30 m from the cask axis. This berm was slightly taller than the caskand thus collimated any skyshine radiation from the cask into an upward cone with a half angle ofbetween 88.8 degrees (for radiation emitted from the top of cask) to 78.5 degrees (from radiationemitted by the bottom of the cask). The total and direct dose rates were performed with the MCNPinput files GFFBF.I and GFFBF0.I, respectively, for the fuel emitted photons and with GFFBX.I andGFFBX0.I, respectively, for the fittings/plenum emitted photons. Results are presented in Table 10and Fig. 6. No photon scores were observed beyond the berm, an indication of the effectiveness ofthe berm in stopping all direct gamma radiation. Beyond the berm only skyshine contributes tothe dose rate.

In Fig. 6 the total and skyshine dose rates for a cask without a berm are also shown by thedashed lines. It is seen that, beyond the berm, the total dose rate for a berm is slightly below butparallel to the no-berm skyshine dose-rate profile. This slight depression is a result of the bermcollimating the escaping radiation from the cask into an upward conical beam with a full-angleslightly less than the 2π geometry of the no-berm case. Also in front of the berm, the berm is seento act as a reflector, slightly enhancing the total dose rate over that for the no-berm case.

13

Page 15: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

Figure 6. The total primary gamma-ray dose rate (solid line and circles) at1-m above the ground with a 20-foot berm present. Also shown by dashedlines are the total and skyshine dose rates without a berm.

14

Page 16: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

Table 10. Primary gamma-ray dose-equivalent rates as a function of the distancefrom the TN-68 cask. Cask is on an infinite plane surface with an 8-foot thickintervening berm at 30 m from the cask axis.

DistanceTotal Dose Direct Dose Skyshine Dose

from caskaxis (m) (mrem/h) error (mrem/h) error (mrem/h) error

2 0.27910E+02 0.0156 0.27747E+02 0.0153 0.16287E+00 3.73453 0.16392E+02 0.0161 0.16227E+02 0.0162 0.16508E+00 2.25125 0.87644E+01 0.0163 0.87128E+01 0.0160 0.51640E−01 3.86867 0.58255E+01 0.0154 0.58142E+01 0.0152 0.11290E−01 11.134

10 0.36805E+01 0.0150 0.36924E+01 0.0152 -.11860E−01 6.632920 0.12165E+01 0.0160 0.11682E+01 0.0163 0.48342E−01 0.562050 0.14008E−01 0.0251 0.00000E+00 0.0000 0.14008E−01 0.025170 0.10856E−01 0.0244 0.00000E+00 0.0000 0.10856E−01 0.0244

100 0.65911E−02 0.0227 0.00000E+00 0.0000 0.65911E−02 0.0227150 0.30272E−02 0.0199 0.00000E+00 0.0000 0.30272E−02 0.0199200 0.14550E−02 0.0179 0.00000E+00 0.0000 0.14550E−02 0.0179300 0.40583E−03 0.0233 0.00000E+00 0.0000 0.40583E−03 0.0233500 0.44773E−04 0.0235 0.00000E+00 0.0000 0.44773E−04 0.0235700 0.65538E−05 0.0279 0.00000E+00 0.0000 0.65538E−05 0.0279

1000 0.45735E−06 0.0216 0.00000E+00 0.0000 0.45735E−06 0.0216

15

Page 17: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

4 Near-Field Neutron Dose Rates

The analog model of Fig. 1 was used to estimate the neutron dose rates and the secondary-photondose rates 4.5-inches from the cask side and 4.5 inches above the cask top. These calculationswere performed with the MCNP input file NGNF2.I. Results are shown schematically in Fig. 7 andtabulated in Tables 11 and 12.

Table 11. Neutron and secondary-photon dose-equivalent rates as a function of elevation at a distanceof 4.5 inches from the TN-68 cask radial surface. Pho-ton dose rates arise only from neutron interactions in thecask; no production of photons in the surrounding air isincluded.

ElevationNeutrons Secondary Photons

from fuelcenter (cm) (mrem/h) error (mrem/h) error

-209.59 28.08 0.0180 0.534 0.0355-171.38 5.885 0.0316 0.738 0.0239-120.00 4.120 0.0305 1.499 0.0122-60.00 5.367 0.0278 2.326 0.01020.00 5.286 0.0313 2.476 0.009960.00 4.702 0.0304 2.046 0.0104120.00 1.551 0.0535 0.702 0.0160181.82 3.018 0.0266 0.793 0.0143231.10 15.98 0.0179 0.153 0.0458255.23 13.14 0.0245 0.122 0.0999268.25 10.46 0.0271 0.119 0.0764279.68 7.577 0.0334 0.162 0.0735302.07 4.512 0.0276 0.215 0.0346325.10 2.788 0.0619 0.249 0.0542

Table 12. Neutron and secondary-photon dose-equivalent rates along the TN-68 cask top (4.5 inchesfrom the top surface). Photon dose rates arise only fromneutron interactions in the cask; no production of pho-tons in the surrounding air is included.

Radial dist.Neutrons Secondary Photons

from fuelcenter (cm) (mrem/h) error (mrem/h) error

22.50 0.700 0.1072 1.133 0.035067.11 0.785 0.0578 0.748 0.026495.81 1.362 0.0652 0.488 0.0513113.43 1.752 0.0419 0.334 0.0453130.18 2.369 0.0518 0.233 0.0714

16

Page 18: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

Figure 7. The neutron and secondary-photon dose rate at various positionsaround the TN-68 cask at 4.5 inches from the cask surface.

17

Page 19: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

5 Far-Field Neutron Dose Rates

The same MCNP model used for the far-field gamma-ray analysis was also used for the far-fieldneutron calculations, except that the ten-layer cask model was replaced by the analog model ofFig. 1. Since the iron is not nearly as effective at stopping neutrons, a simpler and more computa-tionally efficient model was justified. The MCNP importances of the radial air cells were adjustedto optimize the neutron population as it migrated away from the cask. No attempt was made todevelop separate importances for the secondary photons; rather, the same cell importances wereused for both neutrons and photons. Two far-field geometries were considered: a cask on a flatinfinite plane without any surround berm, and a cask with an 8-foot thick berm placed 30 m fromthe cask axis.

5.1 Cask Without a Berm

The simulation of the TN-68 cask without a berm was performed with the MCNP input fileNGFFA1.I to produce both the total neutron dose (direct + groundshine + skyshine) as well asthe dose from secondary photons. No attempt was made to distinguish between secondary photonsproduced in the cask materials and photons produced in the air and soil.

To extract the skyshine component of the neutron dose, calculations were made using the MCNPfile NFFA0.I in which the air above the cask was replaced by a void. The neutron doses obtainedfrom this simulation consist of only the direct plus groundshine components. Thus the differencebetween this two sets of neutron doses yields the skyshine component. Errors for the skyshinecomponent were obtained in the same manner previously described for the gamma-ray skyshinecalculation.

The neutron and secondary photon dose rates obtained with MCNP are listed in Table 13 andshown in Fig. 8. As expected, at large distances (greater than a few hundred meters), the totalneutron dose is dominated by the skyshine component.

Finally, in Fig. 9 the dose rates are shown for the primary gamma photons, the neutrons, andthe secondary photons. The primary gamma dose is seen to be about ten times larger than theneutron dose.

5.2 Cask Surrounded by a Berm

The MCNP file NGFFB1.I was used to determine the neutron and secondary-photon dose rates outto 1000 m. Results are presented in Table 14 and show in Figs. 10 and 11.

From Fig. 10 it is seen that the berm is very effective at stopping the direct plus groundshinecomponents. Outside the berm, the total neutron dose rate is entirely composed of skyshineneutrons.

The secondary-photon dose rate, shown in Fig. 11, arises from neutron interactions both in thecask and in the surrounding air. However, both inside and outside the berm, the secondary-photondose shown in this figure is dominated by the secondary photons created in the cask material. Thesolid line before the berm is primarily due to the direct contribution of the secondary photonsproduced in in the cask, while the solid line beyond the berm is a result of the skyshine of thesesecondary photons. The contribution from the secondary photons produced in the air is minor,representing, for example, only about 10% of the total secondary-photon skyshine dose at 50 m.

18

Page 20: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

Figure 8. The total, direct and skyshine components of the neutron am-bient dose equivalent rate 1-m above the ground.

Figure 9. The three components of the total dose rate for the TN-68 caskat 1-m above grade without a berm present.

19

Page 21: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

Figure 10. The total neutron ambient dose equivalent rate (solid line andcircles) 1-m above the ground when the cask is surrounded by a berm at30 m. Shown by the dashed lines are the total and skyshine dose rateswithout the berm.

Figure 11. The secondary-photon dose rate at 1-m above grade with aberm present (solid line and circles) and without a berm (dashed line).

20

Page 22: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

Table 13. Neutron and secondary-photon dose-equivalent rates as a function of the distance from theTN-68 cask. Cask is on an infinite plane surface without any intervening berm to block the directcomponent.

Neutron Secondary photon

DistanceTotal Dose Direct Dose Skyshine Dose Total

from caskaxis (m) (mrem/h) error (mrem/h) error (mrem/h) error (mrem/h) error

2 4.09530E+00 0.0182 4.04755E+00 0.0187 0.47750E−01 1.5734 8.26774E−01 0.01143 2.19212E+00 0.0212 2.18145E+00 0.0223 0.10670E−01 4.3863 4.70071E−01 0.01185 9.86438E−01 0.0249 9.55247E−01 0.0252 0.31191E−01 0.7928 2.04857E−01 0.01397 5.76745E−01 0.0280 5.61649E−01 0.0279 0.15096E−01 1.0760 1.11779E−01 0.0156

10 3.02998E−01 0.0274 2.95224E−01 0.0337 0.77740E−02 1.0768 5.63312E−02 0.019020 8.16933E−02 0.0349 7.23196E−02 0.0411 0.93737E−02 0.3067 1.40715E−02 0.026250 1.23560E−02 0.0459 7.55002E−03 0.0733 0.48060E−02 0.1192 2.01831E−03 0.039670 5.71711E−03 0.0484 2.86614E−03 0.0998 0.28510E−02 0.0985 9.97975E−04 0.0473

100 2.47995E−03 0.0518 9.62159E−04 0.1442 0.15178E−02 0.0862 4.54840E−04 0.0542150 7.53934E−04 0.0460 2.14173E−04 0.1914 0.53976E−03 0.0674 1.57295E−04 0.0701200 3.05704E−04 0.0494 5.46354E−05 0.1854 0.25107E−03 0.0639 6.88059E−05 0.0788300 6.76530E−05 0.0620 6.06175E−06 0.2858 0.61591E−04 0.0771 2.22423E−05 0.0998500 5.35991E−06 0.0921 1.71597E−07 0.4562 0.51883E−05 0.1375 3.83293E−06 0.1344700 6.99944E−07 0.0956 3.36815E−08 0.9639 0.66626E−06 0.2600 1.01962E−06 0.1567

1000 5.90845E−08 0.0926 8.55682E−11 0.9579 0.58999E−07 0.6692 2.11132E−07 0.1852

Table 14. Neutron and secondary-photon dose-equivalent rates as a function of the distancefrom the TN-68 cask. Cask is on an infinite plane surface with a berm 30 m from the cask toblock any direct component.

DistanceTotal Neutron Secondary Photon

from caskaxis (m) (Sv/neutron) (mrem/h) error (Sv/neutron) (mrem/h) error

2 1.42424E−18 4.12459E+00 0.0183 2.87054E−19 8.31308E−01 0.01143 7.56246E−19 2.19009E+00 0.0212 1.62506E−19 4.70618E−01 0.01185 3.40826E−19 9.87031E−01 0.0254 7.08414E−20 2.05157E−01 0.01397 1.99381E−19 5.77409E−01 0.0281 3.88145E−20 1.12407E−01 0.0156

10 1.06075E−19 3.07193E−01 0.0271 1.95559E−20 5.66340E−02 0.018920 2.98470E−20 8.64368E−02 0.0328 5.08237E−21 1.47186E−02 0.025150 1.48908E−21 4.31238E−03 0.0406 9.66106E−23 2.79784E−04 0.049670 9.66380E−22 2.79864E−03 0.0458 6.39033E−23 1.85064E−04 0.0454

100 4.96766E−22 1.43864E−03 0.0460 3.75457E−23 1.08732E−04 0.0442150 1.78189E−22 5.16035E−04 0.0442 1.37832E−23 3.99161E−05 0.0405200 7.67425E−23 2.22246E−04 0.0512 6.92113E−24 2.00436E−05 0.0380300 1.73160E−23 5.01471E−05 0.0679 2.18710E−24 6.33385E−06 0.0558500 1.48187E−24 4.29151E−06 0.0843 3.43965E−25 9.96123E−07 0.0682700 2.03419E−25 5.89102E−07 0.1036 7.60892E−26 2.20354E−07 0.0657

1000 1.58511E−26 4.59047E−08 0.1063 2.14833E−26 6.22155E−08 0.3076

21

Page 23: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

REFERENCES

Briesmeister, J.F., Ed., MCNP–A General Monte Carlo N-Particle Transport Code, Version 4b, LA-12625-M,Los Alamos National Laboratory, 1997.

ICRP, Data For Use in Protection Against External Radiation, Report 51, International Commission onRadiological Protection, Pergamon Press, Oxford, 1987.

ICRP, Conversion Coefficients for Use in Radiological Protection against External Radiation, Report 74,Annals of the ICRP, Vol 26, No. 3/4 (1996).

Mason, M., FAX to J.K. Shultis, 12/17/98, 1998a.

Mason, M., FAX to J.K. Shultis, 12/23/98, 1998b.

Mason, M., email to J.K. Shultis, 1/13/98, 1999.

NCRP, Protection Against Neutron Radiation, Report 38, National Council on Radiation Protection andMeasurements, Washington, D.C., 1971.

Shultis, J.K., and R.E. Faw, Radiation Shielding,” Prentice-Hall, Upper Saddle River, New Jersey, 1996.

22

Page 24: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

Apprendix: Listing of Sample MCNP Inpout Files

For the MCNP calculations reported here, many input files and models were developed. In partic-ular the following input files were used.

GNFB2X.I* near-field analysis for gamma rays from the end fittings

GNFB2F.I near-field analysis for gamma rays from the fuel

NGNF2.I near-field analysis for neutrons from the fuel

GFFAF0.I far-field direct component for gamma rays from the fuel (no berm)

GFFAF.I* far-field direct plus skyshine for gamma rays from the fuel (no berm)

GFFAX0.I far-field direct component for gamma rays from end fittings (no berm)

GFFAX.I far-field direct plus skyshine for gamma rays from end fittings (no berm)

NGFFA0.I far-field direct component for fuel neutrons (no berm)

NGFFA1.I far-field direct plus skyshine for fuel neutrons (no berm)

GFFBF0.I far-field direct component for gamma rays from the fuel (with a berm)

GFFBF.I far-field direct plus skyshine for gamma rays from the fuel (with a berm)

GFFBX0.I far-field direct component for gamma rays from end fittings (with a berm)

GFFBX.I far-field direct plus skyshine for gamma rays from end fittings (with a berm)

NGFFB.I far-field direct component for fuel neutrons (with a berm)

NGFFB1.I* far-field direct plus skyshine for fuel neutrons (with a berm)

On the following pages, the three MCNP input files marked by an * are listed. The other inputfiles are redily constructed from the components listed in the three example files.

23

Page 25: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

File GNFB2X.I

TransNuclear TN-68 cask: Near-field gamma doses. Source: fittings & plenum.c Air replaced by void. Surface F2 detectors used for doses outside cask.c Cask’s iron shell is decomposed into 10 sublayers and importances arec used to sweep photons through cask sublayers.c *********************** BLOCK 1: CELL CARDS ************************c GEOMETRY (r-z)cc ^ z-axisc |c . | tally surfacesc | -------------|--------------c ._____________. |c |-------------+--+ |c .-------------+ | |c |.............| | |c . BASKETS | |+ |c |.............| || | VOIDc . | || |c | | || |c . FUEL | || |c O ------------|--||------------------------------> y-axisc | (10 sub | || |c . regions) | || |c | | || |c . | ||c |.............| ||c . BASKET | |+c |-------------+ |c .=---------------+------------------------------------------------------c |c . CONCRETEc |c J.K. Shultis (12/26/98)cc ****** Cask cellsc decomposed case bottom into 10 sublayers110 9 -7.8212 1 -110 -30 imp:n,p=1024 $ Fe cask bot-sublayer 1111 9 -7.8212 110 -109 -209 imp:n,p=512 $ Fe cask bot-sublayer 2112 9 -7.8212 109 -108 -208 imp:n,p=256 $ Fe cask bot-sublayer 3113 9 -7.8212 108 -107 -207 imp:n,p=128 $ Fe cask bot-sublayer 4114 9 -7.8212 107 -106 -206 imp:n,p=64 $ Fe cask bot-sublayer 5115 9 -7.8212 106 -105 -205 imp:n,p=32 $ Fe cask bot-sublayer 6116 9 -7.8212 105 -104 -204 imp:n,p=16 $ Fe cask bot-sublayer 7117 9 -7.8212 104 -103 -203 imp:n,p=8 $ Fe cask bot-sublayer 8118 9 -7.8212 103 -102 -202 imp:n,p=4 $ Fe cask bot-sublayer 9119 9 -7.8212 102 -2 -201 imp:n,p=2 $ Fe cask bot-sublayer 10

c decompose cask side into 10 sublayers201 9 -7.8212 102 -122 201 -202 imp:n,p=2 $ Fe cask side-sublayer 1202 9 -7.8212 103 -123 202 -203 imp:n,p=4 $ Fe cask side-sublayer 2

24

Page 26: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

203 9 -7.8212 104 -124 203 -204 imp:n,p=8 $ Fe cask side-sublayer 3204 9 -7.8212 105 -13 204 -205 imp:n,p=16 $ Fe cask side-sublayer 4205 9 -7.8212 106 -126 205 -206 imp:n,p=32 $ Fe cask side-sublayer 5206 9 -7.8212 107 -18 206 -207 imp:n,p=64 $ Fe cask side-sublayer 6207 9 -7.8212 108 -128 207 -208 imp:n,p=128 $ Fe cask side-sublayer 7208 9 -7.8212 109 -129 208 -209 imp:n,p=256 $ Fe cask side-sublayer 8209 9 -7.8212 110 -14 209 -30 imp:n,p=512 $ Fe cask side-sublayer 9210 9 -7.8212 1 -18 30 -21 imp:n,p=1024 $ Fe cask side-sublayer 10

c decompose cask lid into 9 sublayers301 9 -7.8212 12 -122 -201 imp:n,p=4 $ Fe cask lid-sublayer 1302 9 -7.8212 122 -123 -202 imp:n,p=8 $ Fe cask lid-sublayer 2303 9 -7.8212 123 -124 -203 imp:n,p=16 $ Fe cask lid-sublayer 3304 9 -7.8212 124 -13 -204 imp:n,p=32 $ Fe cask lid-sublayer 4305 9 -7.8212 13 -126 -205 imp:n,p=64 $ Fe cask lid-sublayer 5306 9 -7.8212 126 -18 -206 imp:n,p=128 $ Fe cask lid-sublayer 6307 9 -7.8212 18 -128 -207 imp:n,p=256 $ Fe cask lid-sublayer 7308 9 -7.8212 128 -129 -208 imp:n,p=512 $ Fe cask lid-sublayer 8309 9 -7.8212 129 -14 -209 imp:n,p=1024 $ Fe cask lid-sublayer 9

c other cask cells3 7 -1.918 2 -5 -26 imp:n,p=1 $ bottom basket4 6 -1.158 7 -8 -26 imp:n,p=2 $ top plenum basket5 5 -0.491 8 -11 -26 imp:n,p=2 $ top fitting6 8 -7.92 26 -27 2 -28 imp:n,p=2 $ ss side basket7 10 -2.702 27 -201 2 -28 imp:n,p=2 $ Al side basket/rails8 0 11 -12 -26 imp:n,p=2 $ top void - part19 0 28 -12 26 -201 #10 imp:n,p=2 $ top void - part210 9 -7.8212 28 -19 24 -201 imp:n,p=2 $ hold down ring13 11 -0.90 14 -15 -25 imp:n,p=1024 $ polyprop top shield14 0 15 -16 -25 imp:n,p=1024 $ void under top cover -pt115 0 14 -16 25 -29 imp:n,p=1024 $ void under top cover -pt216 9 -7.8212 16 -17 -30 imp:n,p=1024 $ top Fe cover - top17 9 -7.8212 14 -16 29 -30 imp:n,p=1024 $ top Fe cover - side19 9 -7.8212 21 -23 9 -10 imp:n,p=1024 $ top side-shld Fe shell20 9 -7.8212 22 -23 4 -9 imp:n,p=1024 $ side side-shld Fe shell21 9 -7.8212 21 -23 3 -4 imp:n,p=1024 $ bot side-shld Fe shell22 12 -1.687 21 -22 4 -9 imp:n,p=1024 $ side resin/Al shield23 0 1 -3 21 -23 imp:n,p=1024 $ void under side shld24 0 21 -23 10 -18 imp:n,p=1024 $ void above side shld - pt125 0 30 -23 18 -17 imp:n,p=1024 $ void above side shld - pt2

c **** fuel regions40 4 -3.231 5 -40 -26 imp:n,p=1 $ FUEL region 1 (bottom)41 4 -3.231 40 -41 -26 imp:n,p=1 $ FUEL region 242 4 -3.231 41 -42 -26 imp:n,p=1 $ FUEL region 343 4 -3.231 42 -43 -26 imp:n,p=1 $ FUEL region 444 4 -3.231 43 -44 -26 imp:n,p=1 $ FUEL region 545 4 -3.231 44 -45 -26 imp:n,p=1 $ FUEL region 646 4 -3.231 45 -46 -26 imp:n,p=1 $ FUEL region 747 4 -3.231 46 -47 -26 imp:n,p=1 $ FUEL region 848 4 -3.231 47 -48 -26 imp:n,p=1 $ FUEL region 949 4 -3.231 48 -7 -26 imp:n,p=1 $ FUEL region 10 (top)

c ***** outside cells above/below cask

25

Page 27: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

140 2 -2.32 150 -1 -23 imp:n,p=1024 $ concrete beneath cask145 0 17 -61 -23 imp:n,p=1024 $ air above cask-pt1146 0 61 -151 -23 imp:n,p=1024 $ air above cask-pt2

c ***** Cells outside radial cask surface600 2 -2.32 150 -1 23 -60 imp:n,p=1024 $ concrete inner air601 0 1 -17 23 -60 imp:n,p=1024 $ inner air (void)602 0 17 -61 23 -60 imp:n,p=1024 $ inner air (void)603 0 61 -151 23 -60 imp:n,p=1024 $ inner air (void)604 2 -2.32 150 -1 60 -152 imp:n,p=1024 $ concrete outer air605 0 1 -17 60 -152 imp:n,p=1024 $ outer air (void)606 0 17 -61 60 -152 imp:n,p=1024 $ outer air (void)607 0 61 -151 60 -152 imp:n,p=1024 $ outer air (void)90 0 -150:151:152 imp:n,p=0 $ problem boundary

c *********************** BLOCK 2: SURFACE CARDS ************************c **** Horizontal cask planes1 pz -226.42 $ cask bottom - ground surface110 pz -223.94 $ cask bottom - top of sublayer 10109 pz -221.47 $ cask bottom - top of sublayer 9108 pz -219.99 $ cask bottom - top of sublayer 8107 pz -216.51 $ cask bottom - top of sublayer 7106 pz -214.04 $ cask bottom - top of sublayer 6105 pz -211.56 $ cask bottom - top of sublayer 5104 pz -209.08 $ cask bottom - top of sublayer 4103 pz -206.60 $ cask bottom - top of sublayer 3102 pz -204.13 $ cask bottom - top of sublayer 22 pz -201.65 $ cask bottom - top of bot Fe plate3 pz -192.76 $ side Fe jacket - outside lower bottom4 pz -190.86 $ side Fe jacket - inside lower bottom5 pz -182.88 $ top bottom basket/bottom of fuel7 pz 182.88 $ bottom of plenum basket/top of fuel8 pz 224.72 $ top of plenum basket9 pz 211.74 $ side Fe jacket - inside top10 pz 213.64 $ side Fe jacket - outside top11 pz 245.90 $ top of top fitting12 pz 250.47 $ cask top - bot of lid122 pz 253.33 $ cask top - top of sublayer 1123 pz 256.19 $ cask top - top of sublayer 2124 pz 259.04 $ cask top - top of sublayer 3126 pz 264.44 $ cask top - top of sublayer 6128 pz 269.52 $ cask top - top of sublayer 8129 pz 272.06 $ cask top - top of sublayer 914 pz 274.60 $ cask top - top of lid13 pz 261.90 $ cask side - top of Fe side15 pz 284.76 $ top of polyprop on top of cask16 pz 318.74 $ top Fe cover - bot surface17 pz 319.38 $ top Fe cover - top surface18 pz 266.35 $ top cover flange19 pz 248.56 $ top hold down ring28 pz 214.91 $ bottom hold down ring

c ***** cylindrical cask surfaces

26

Page 28: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

201 cz 88.27 $ cask wall - inner surface202 cz 89.84 $ cask wall - inner surface of sublayer 1203 cz 91.41 $ cask wall - inner surface of sublayer 2204 cz 92.98 $ cask wall - inner surface of sublayer 3205 cz 94.55 $ cask wall - inner surface of sublayer 4206 cz 96.12 $ cask wall - inner surface of sublayer 5207 cz 97.69 $ cask wall - inner surface of sublayer 6208 cz 99.26 $ cask wall - inner surface of sublayer 7209 cz 100.83 $ cask wall - inner surface of sublayer 821 cz 107.32 $ cask outer surface22 cz 122.56 $ side Fe jacket -- inside23 cz 124.47 $ side Fe jacket -- outside24 cz 85.73 $ inside radius of hold down ring25 cz 89.22 $ top polyprop disk radius26 cz 83.92 $ inside radius ss basket27 cz 84.40 $ inside radius Al backet/rails29 cz 101.45 $ inside radius top cover30 cz 102.40 $ outside radius top cover

c ***** surfaces for fuel regions40 pz -163.49 $ top of fuel region 4041 pz -123.62 $ top of fuel region 4142 pz -61.82 $ top of fuel region 4243 pz -30.91 $ top of fuel region 4344 pz -0.0 $ top of fuel region 4445 pz 30.91 $ top of fuel region 4546 pz 61.82 $ top of fuel region 4647 pz 123.64 $ top of fuel region 4748 pz 157.27 $ top of fuel region 48

c ***** problem boundaries150 pz -300.E2 $ bottom of soil (problem boundary)151 pz 500.E2 $ top of air (problem boundary)152 cz 500.E2 $ radial air limit (problem boundary)

c ****** surfaces for detector segmentation60 cz 135.90 $ radial tally surface61 pz 330.81 $ top tally surface71 pz -150.0 $ segmentation plane72 pz -90.0 $ segmentation plane73 pz -30.0 $ segmentation plane74 pz 30.0 $ segmentation plane75 pz 90.0 $ segmentation plane76 pz 120.0 $ segmentation plane80 cz 45.00 $ segmentation cylinder

c *********************** BLOCK 3: DATA CARDS ***************************cc --- 3 volumetric cylindrical sources in cells 3,4,5 for bottom fitting,c plenum basket and top fittingSDEF CEL=d1 POS=FCEL d2 AXS=0 0 1 RAD=d9 EXT=FCEL d10 ERG=d14c -- define cells for each sourceSI1 L 5 4 3 $ cell: top fit. / plenum / bot. fittingSP1 0.43231 0.26139 0.30630 $ relative source strengths

27

Page 29: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

c -- set POS for each sourceDS2 S 3 4 5 $ based on cell choosen, set distribution for POSSI3 L 0 0 235.31 $ center for spatially sampling of source 1 (top fit.)SP3 1 $ prob. distn for src 1 centerSI4 L 0 0 203.8 $ center for spatially sampling of source 2 (plenum)SP4 1 $ prob. distn for src 2 centerSI5 L 0 0 -192.265 $ center for spatially sampling of source 3 (bot.fit.)SP5 1 $ prob. distn for src 3 centerc -- set RAD for each source (must completely include cells 5, 4 or 3)SI9 0 83.42 $ radial sampling limits for all 3 sourcesSP9 -21 1 $ radial sampling weight for all 3 sourcesc -- set EXT for each source (must completely include cells 5, 4, or 3)DS10 S 11 12 13 $ distns for sampling axially for each srcSI11 -10.59 10.59 $ axial sampling limits for src1SP11 -21 0 $ axial sampling weight for src1SI12 -2.92 20.92 $ axial sampling limits for src2SP12 -21 0 $ axial sampling weight for src2SI13 -9.385 9.385 $ axial sampling limits for src3SP13 -21 0 $ axial sampling weight for src3c -- gamma energy spectrum: same for all three sourcesSI14 H 1.0 1.33 1.66 $ energy bins - same for the 3 source regionsSP14 0.0 .77977 0.22023 $ bin probs. - same for the 3 source regionscccc ---- Detector types and locations (F2 segmented surface detectors)c -- doses on cask’s radial surfaceFC2 Doses 4.5" from cask radial surface averaged over subsurfacesF2:p 60 $ surface tallyFS2 -1 -3 -71 -72 -73 -74 -75 -76 -10 -19 -13 -14 -15 -17 -61SD2 2.542321E7 28741.77 36512.11 51233.09 51233.09 51233.09 51233.09

51233.09 54341.23 29817.66 11390.82 10844.35 8675.4729561.49 9759.90 4.241177E7

TF2 3j 6cc -- doses along cask’s topFC12 Doses 4.5" from cask top surface averaged over subsurfacesf12:p 61 $ surface tallyfs12 -80 -25 -30 -23 -60sd12 6361.73 18646.01 7934.25 15730.02 9349.46 7.8539233E9ccmode pPHYS:p 10 1 1 $ -- no bremsstrahlung, no coherent scatteringnps 40000000c voidcc ------------------------------------------------------------------c ambient photon dose equiv. H*(10mm) Sv (from T-D1 of S&F)c ------------------------------------------------------------------de0 1.000E-02 1.500E-02 2.000E-02 3.000E-02 4.000E-02 5.000E-02

28

Page 30: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

6.000E-02 8.000E-02 1.000E-01 1.500E-01 2.000E-01 3.000E-014.000E-01 5.000E-01 6.000E-01 8.000E-01 1.000E+00 1.500E+002.000E+00 3.000E+00 4.000E+00 5.000E+00 6.000E+00 8.000E+001.000E+01

df0 7.690E-14 8.460E-13 1.010E-12 7.850E-13 6.140E-13 5.260E-135.040E-13 5.320E-13 6.110E-13 8.900E-13 1.180E-12 1.810E-122.380E-12 2.890E-12 3.380E-12 4.290E-12 5.110E-12 6.920E-128.480E-12 1.110E-11 1.330E-11 1.540E-11 1.740E-11 2.120E-112.520E-11

ccc ***** MATERIAL CARDSc ************************************************************c AIR: ANSI/ANS-6.4.3, Dry air; density = 0.0012 g/cm^3c Composition by mass fractionc *************************************************************m1 7014 -.75519

8016 -.231796000 -.00014

18000 -.01288cc ************************************************************c CONCRETE: ANSI/ANS-6.4.3; density = 2.32 g/cm^3c Composition by mass fractionc ************************************************************m2 1001 -.0056

8016 -.498311023 -.017112000 -.002413027 -.045614000 -.315816000 -.001219000 -.019220000 -.082626000 -.0122

cc **************************************************************c SOIL: [Jacob, Radn. Prot. Dos. 14, 299, 1986]c density = 1.625 g/cm^3; Composition by mass fractionc **************************************************************m3 1001 -.021

6012 -.01619000 -.01326000 -.01120000 -.04113027 -.05014000 -.2718016 -.577

cc **************************************************************c Fuel-Basket TN-68 Cask (Table 5.3-1)

29

Page 31: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

c Density = 3.231 g/cm^3; Composition by atom fractionc **************************************************************m4 92238 0.14291

92235 0.0049440000 0.0998128000 0.0242326000 0.1862925055 0.0054524000 0.0547013027 0.185978016 0.29570

cc *************************************************************c Top Fitting TN-68 Cask (Table 5.3-1)c Density = 0.491 g/cm^3; Composition by atom fractionc *************************************************************m5 26000 0.50712

28000 0.0659525055 0.0148324000 0.1489040000 0.26320

cc *************************************************************c Plenum/Basket TN-68 (Table 5.3-1)c Density = 1.158 g/cm^3; Composition by atom fractionc *************************************************************m6 26000 0.34907

28000 0.0453540000 0.1797525055 0.0102124000 0.1024613027 0.31316

cc *************************************************************c Bottom/Basket TN-68 (Table 5.3-1)c Density = 1.918 g/cm^3; Composition by atom fractionc *************************************************************m7 26000 0.48631

28000 0.0632925055 0.0142324000 0.1428513027 0.2337840000 0.05954

cc **************************************************************c Basket Periphery (SS304) TN-68 (Table 5.3-1)c Density = 7.92 g/cm^3; Composition by atom fractionc **************************************************************m8 26000 0.68826

25055 0.0201324000 0.20209

30

Page 32: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

28000 0.08952cc **************************************************************c Carbon Steel TN-68 (Table 5.3-1)c Density = 7.8212 g/cm^3; Composition by atom fractionc **************************************************************m9 26000 0.95510

6000 0.04490cc **************************************************************c Outer Basket/Rails TN-68 (Table 5.3-1)c Density = 2.702 g/cm^3; Composition by atom fractionc **************************************************************m10 13027 1.00000cc *************************************************************c Polypropylene Disk TN-68 (Table 5.3-1)c Density = 0.90 g/cm^3; Composition by atom fractionc *************************************************************m11 6012 .33480

1001 .66520cc *************************************************************c Resin/Aluminum Composite for TN-68 (Table 5.3-1)c Density = 1.687 g/cm^3; Composition by atom fractionc *************************************************************m12 13027 0.10331

6012 0.246588016 0.219851001 0.422075010 0.001645011 0.00655

cc *************************************************************c Berm (Silica + water) for ISFSI Site (SAR Page 7a-5);c density = 1.400 g/cm^3; Composition by atom fractionc *************************************************************m13 14000 0.26524

8016 0.598551001 0.13621

31

Page 33: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

File GFFAF.I

TransNuclear TN-68 cask: Far-Field model; gammas from fuel zones only.c Volumetric F4 detectors used. Geometry splitting/routlette added.c NOTE: Dose are from "direct" + "skyshine" radiation. No berm.c *********************** BLOCK 1: CELL CARDS ************************c GEOMETRY (r-z)c (J.K.Shultis 12/30/98)c ^z-axisc | AIRc |c | caskc |---------+c .-------+ |c | | |-c . FUEL | ||c | | ||c o ---- | || ----> r-axisc | | ||c . | || --|-|---|-|--...--| |---|-|---|-|---|-|---|-|---|-|-c | | |- | | | | | | | | | | | | | | | |c .-------+ | | | | | | | | | | | | | | | | |c |---------+----|-|---|-|--...--|-|---|-|---|-|---|-|---|-|---|-|-c | | \c . | \ det vols (16 in all)c | |c . CONCRETE | SOILc | 10mcc ****** Cask cellsc decomposed case bottom into 10 sublayers110 9 -7.8212 1 -110 -30 imp:n,p=1024 $ Fe cask bot-sublayer 1111 9 -7.8212 110 -109 -209 imp:n,p=512 $ Fe cask bot-sublayer 2112 9 -7.8212 109 -108 -208 imp:n,p=256 $ Fe cask bot-sublayer 3113 9 -7.8212 108 -107 -207 imp:n,p=128 $ Fe cask bot-sublayer 4114 9 -7.8212 107 -106 -206 imp:n,p=64 $ Fe cask bot-sublayer 5115 9 -7.8212 106 -105 -205 imp:n,p=32 $ Fe cask bot-sublayer 6116 9 -7.8212 105 -104 -204 imp:n,p=16 $ Fe cask bot-sublayer 7117 9 -7.8212 104 -103 -203 imp:n,p=8 $ Fe cask bot-sublayer 8118 9 -7.8212 103 -102 -202 imp:n,p=4 $ Fe cask bot-sublayer 9119 9 -7.8212 102 -2 -201 imp:n,p=2 $ Fe cask bot-sublayer 10

c decompose cask side into 10 sublayers201 9 -7.8212 102 -122 201 -202 imp:n,p=2 $ Fe cask side-sublayer 1202 9 -7.8212 103 -123 202 -203 imp:n,p=4 $ Fe cask side-sublayer 2203 9 -7.8212 104 -124 203 -204 imp:n,p=8 $ Fe cask side-sublayer 3204 9 -7.8212 105 -13 204 -205 imp:n,p=16 $ Fe cask side-sublayer 4205 9 -7.8212 106 -126 205 -206 imp:n,p=32 $ Fe cask side-sublayer 5206 9 -7.8212 107 -18 206 -207 imp:n,p=64 $ Fe cask side-sublayer 6207 9 -7.8212 108 -128 207 -208 imp:n,p=128 $ Fe cask side-sublayer 7208 9 -7.8212 109 -129 208 -209 imp:n,p=256 $ Fe cask side-sublayer 8209 9 -7.8212 110 -14 209 -30 imp:n,p=512 $ Fe cask side-sublayer 9

32

Page 34: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

210 9 -7.8212 1 -18 30 -21 imp:n,p=1024 $ Fe cask side-sublayer 10c decompose cask lid into 9 sublayers301 9 -7.8212 12 -122 -201 imp:n,p=4 $ Fe cask lid-sublayer 1302 9 -7.8212 122 -123 -202 imp:n,p=8 $ Fe cask lid-sublayer 2303 9 -7.8212 123 -124 -203 imp:n,p=16 $ Fe cask lid-sublayer 3304 9 -7.8212 124 -13 -204 imp:n,p=32 $ Fe cask lid-sublayer 4305 9 -7.8212 13 -126 -205 imp:n,p=64 $ Fe cask lid-sublayer 5306 9 -7.8212 126 -18 -206 imp:n,p=128 $ Fe cask lid-sublayer 6307 9 -7.8212 18 -128 -207 imp:n,p=256 $ Fe cask lid-sublayer 7308 9 -7.8212 128 -129 -208 imp:n,p=512 $ Fe cask lid-sublayer 8309 9 -7.8212 129 -14 -209 imp:n,p=1024 $ Fe cask lid-sublayer 9

c other cask cells3 7 -1.918 2 -5 -26 imp:n,p=1 $ bottom basket4 6 -1.158 7 -8 -26 imp:n,p=2 $ top plenum basket5 5 -0.491 8 -11 -26 imp:n,p=2 $ top fitting6 8 -7.92 26 -27 2 -28 imp:n,p=2 $ ss side basket7 10 -2.702 27 -201 2 -28 imp:n,p=2 $ Al side basket/rails8 1 -0.0013 11 -12 -26 imp:n,p=2 $ top void - part1 (air)9 1 -0.0013 28 -12 26 -201 #10 imp:n,p=2 $ top void - part2 (air)10 9 -7.8212 28 -19 24 -201 imp:n,p=2 $ hold down ring13 11 -0.90 14 -15 -25 imp:n,p=1024 $ polyprop top shield14 1 -0.0013 15 -16 -25 imp:n,p=1024 $ air under top cover -pt115 1 -0.0013 14 -16 25 -29 imp:n,p=1024 $ air under top cover -pt216 9 -7.8212 16 -17 -30 imp:n,p=1024 $ top Fe cover - top17 9 -7.8212 14 -16 29 -30 imp:n,p=1024 $ top Fe cover - side19 9 -7.8212 21 -23 9 -10 imp:n,p=1024 $ top side-shld Fe shell20 9 -7.8212 22 -23 4 -9 imp:n,p=1024 $ side side-shld Fe shell21 9 -7.8212 21 -23 3 -4 imp:n,p=1024 $ bot side-shld Fe shell22 12 -1.687 21 -22 4 -9 imp:n,p=1024 $ side resin/Al shield23 1 -0.0013 1 -3 21 -23 imp:n,p=1024 $ air under side shld24 1 -0.0013 21 -23 10 -18 imp:n,p=1024 $ air above side shld - pt125 1 -0.0013 30 -23 18 -17 imp:n,p=1024 $ air above side shld - pt2

c **** fuel regions40 4 -3.231 5 -40 -26 imp:n,p=1 $ FUEL region 1 (bottom)41 4 -3.231 40 -41 -26 imp:n,p=1 $ FUEL region 242 4 -3.231 41 -42 -26 imp:n,p=1 $ FUEL region 343 4 -3.231 42 -43 -26 imp:n,p=1 $ FUEL region 444 4 -3.231 43 -44 -26 imp:n,p=1 $ FUEL region 545 4 -3.231 44 -45 -26 imp:n,p=1 $ FUEL region 646 4 -3.231 45 -46 -26 imp:n,p=1 $ FUEL region 747 4 -3.231 46 -47 -26 imp:n,p=1 $ FUEL region 848 4 -3.231 47 -48 -26 imp:n,p=1 $ FUEL region 949 4 -3.231 48 -7 -26 imp:n,p=1 $ FUEL region 10 (top)

c ***** outside cells above/below cask140 2 -2.32 150 -1 -23 imp:n,p=1024 $ concrete beneath cask145 1 -0.0013 17 -54 -23 imp:n,p=1024 $ air above cask-pt1146 1 -0.0013 54 -151 -23 imp:n,p=1024 $ top-top air above cask-pt2

c ***** cells for detector volumes and air/soil layers beyond caskc -- cells before and at 2m detector600 2 -2.32 150 -1 23 -60 imp:n,p=1024 $ concrete before detector601 1 -0.0013 1 -53 23 -60 imp:n,p=1024 $ air before detector

33

Page 35: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

602 1 -0.0013 53 -54 23 -60 imp:n,p=1024 $ top air before detector603 1 -0.0013 54 -151 23 -60 imp:n,p=1024 $ top-top air before det.610 2 -2.32 150 -1 60 -61 imp:n,p=1024 $ concrete beneath detector611 1 -0.0013 1 -53 60 -61 imp:n,p=1024 $ air for detector612 1 -0.0013 53 -54 60 -61 imp:n,p=1024 $ top air above det.613 1 -0.0013 54 -151 60 -61 imp:n,p=1024 $ top-top air above det.

c -- cells before and at 3m detector620 2 -2.32 150 -1 61 -62 imp:n,p=1024 $ concrete before detector621 1 -0.0013 1 -53 61 -62 imp:n,p=1024 $ air before detector622 1 -0.0013 53 -54 61 -62 imp:n,p=1024 $ top air before detector623 1 -0.0013 54 -151 61 -62 imp:n,p=1024 $ top-top air before det.630 2 -2.32 150 -1 62 -63 imp:n,p=1024 $ concrete beneath detector631 1 -0.0013 1 -53 62 -63 imp:n,p=1024 $ air for detector632 1 -0.0013 53 -54 62 -63 imp:n,p=1024 $ top air above det.633 1 -0.0013 54 -151 62 -63 imp:n,p=1024 $ top-top air above det.

c -- cells before and at 5m detector640 2 -2.32 150 -1 63 -64 imp:n,p=1536 $ concrete before detector641 1 -0.0013 1 -53 63 -64 imp:n,p=1536 $ air before detector642 1 -0.0013 53 -54 63 -64 imp:n,p=1536 $ top air before detector643 1 -0.0013 54 -151 63 -64 imp:n,p=1536 $ top-top air before det.650 2 -2.32 150 -1 64 -65 imp:n,p=1536 $ concrete beneath detector651 1 -0.0013 1 -53 64 -65 imp:n,p=1536 $ air for detector652 1 -0.0013 53 -54 64 -65 imp:n,p=1536 $ top air above det.653 1 -0.0013 54 -151 64 -65 imp:n,p=1536 $ top-top air above det.

c -- cells before and at 7m detector660 2 -2.32 150 -1 65 -66 imp:n,p=1536 $ concrete before detector661 1 -0.0013 1 -53 65 -66 imp:n,p=1536 $ air before detector662 1 -0.0013 53 -54 65 -66 imp:n,p=1536 $ top air before detector663 1 -0.0013 54 -151 65 -66 imp:n,p=1536 $ top-top air before det.670 2 -2.32 150 -1 66 -67 imp:n,p=1536 $ concrete beneath detector671 1 -0.0013 1 -53 66 -67 imp:n,p=1536 $ air for detector672 1 -0.0013 53 -54 66 -67 imp:n,p=1536 $ top air above det.673 1 -0.0013 54 -151 66 -67 imp:n,p=1536 $ top-top air above det.

c -- cells before and at 10m detector680 2 -2.32 150 -1 67 -68 imp:n,p=2176 $ concrete before detector681 1 -0.0013 1 -53 67 -68 imp:n,p=2176 $ air before detector682 1 -0.0013 53 -54 67 -68 imp:n,p=2176 $ top air before detector683 1 -0.0013 54 -151 67 -68 imp:n,p=2176 $ top-top air before det.690 2 -2.32 150 -1 68 -69 imp:n,p=2176 $ concrete beneath detector691 1 -0.0013 1 -53 68 -69 imp:n,p=2176 $ air for detector692 1 -0.0013 53 -54 68 -69 imp:n,p=2176 $ top air above det.693 1 -0.0013 54 -151 68 -69 imp:n,p=2176 $ top-top air above det.

c -- cells before and at 20m detector700 3 -1.625 150 -1 69 -70 imp:n,p=3200 $ soil before detector701 1 -0.0013 1 -53 69 -70 imp:n,p=3200 $ air before detector702 1 -0.0013 53 -54 69 -70 imp:n,p=3200 $ top air before detector703 1 -0.0013 54 -151 69 -70 imp:n,p=3200 $ top-top air before det.710 3 -1.625 150 -1 70 -71 imp:n,p=3200 $ soil beneath detector711 1 -0.0013 1 -53 70 -71 imp:n,p=3200 $ air for detector712 1 -0.0013 53 -54 70 -71 imp:n,p=3200 $ top air above det.713 1 -0.0013 54 -151 70 -71 imp:n,p=3200 $ top-top air above det.

34

Page 36: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

c -- cells before and at 30m detector720 3 -1.625 150 -1 71 -72 imp:n,p=3200 $ soil before detector721 1 -0.0013 1 -53 71 -72 imp:n,p=3200 $ air before detector722 1 -0.0013 53 -54 71 -72 imp:n,p=3200 $ top air before detector723 1 -0.0013 54 -151 71 -72 imp:n,p=3200 $ top-top air before det.730 3 -1.625 150 -1 72 -73 imp:n,p=3200 $ soil beneath detector731 1 -0.0013 1 -53 72 -73 imp:n,p=3200 $ air for detector732 1 -0.0013 53 -54 72 -73 imp:n,p=3200 $ top air above detector733 1 -0.0013 54 -151 72 -73 imp:n,p=4800 $ top-top air above detector

c -- cells before and at 50m detector740 3 -1.625 150 -1 73 -74 imp:n,p=4800 $ soil before detector741 1 -0.0013 1 -53 73 -74 imp:n,p=4800 $ air before detector742 1 -0.0013 53 -54 73 -74 imp:n,p=4800 $ top air before detector743 1 -0.0013 54 -151 73 -74 imp:n,p=4800 $ top-top air before det.750 3 -1.625 150 -1 74 -75 imp:n,p=4800 $ soil beneath detector751 1 -0.0013 1 -53 74 -75 imp:n,p=4800 $ air for detector752 1 -0.0013 53 -54 74 -75 imp:n,p=4800 $ top air above det.753 1 -0.0013 54 -151 74 -75 imp:n,p=4800 $ top-top air above det.

c -- cells before and at 70m detector760 3 -1.625 150 -1 75 -76 imp:n,p=5440 $ soil before detector761 1 -0.0013 1 -53 75 -76 imp:n,p=5440 $ air before detector762 1 -0.0013 53 -54 75 -76 imp:n,p=5440 $ top air before detector763 1 -0.0013 54 -151 75 -76 imp:n,p=5440 $ top-top air before det.770 3 -1.625 150 -1 76 -77 imp:n,p=5440 $ soil beneath detector771 1 -0.0013 1 -53 76 -77 imp:n,p=5440 $ air for detector772 1 -0.0013 53 -54 76 -77 imp:n,p=5440 $ top air above det.773 1 -0.0013 54 -151 76 -77 imp:n,p=5440 $ top-top air above det.

c -- cells before and at 100m detector780 3 -1.625 150 -1 77 -78 imp:n,p=8000 $ intermed soil cell781 1 -0.0013 1 -53 77 -78 imp:n,p=8000 $ intermed air cell782 1 -0.0013 53 -54 77 -78 imp:n,p=8000 $ intermed top air cell783 1 -0.0013 54 -151 77 -78 imp:n,p=8000 $ intermed top-top air cell790 3 -1.625 150 -1 78 -79 imp:n,p=8000 $ soil before detector791 1 -0.0013 1 -53 78 -79 imp:n,p=8000 $ air before detector792 1 -0.0013 53 -54 78 -79 imp:n,p=8000 $ top air before detector793 1 -0.0013 54 -151 78 -79 imp:n,p=8000 $ top-top air before det.

c -- cells before and at 150m detector800 3 -1.625 150 -1 79 -80 imp:n,p=1.5E4 $ intermed soil cell801 1 -0.0013 1 -53 79 -80 imp:n,p=1.5E4 $ intermed air cell802 1 -0.0013 53 -54 79 -80 imp:n,p=1.5E4 $ intermed top air cell803 1 -0.0013 54 -151 79 -80 imp:n,p=1.5E4 $ intermed top-top air cell810 3 -1.625 150 -1 80 -81 imp:n,p=1.5E4 $ soil before detector811 1 -0.0013 1 -53 80 -81 imp:n,p=1.5E4 $ air before detector812 1 -0.0013 53 -54 80 -81 imp:n,p=1.5E4 $ top air before detector813 1 -0.0013 54 -151 80 -81 imp:n,p=1.5E4 $ top-top air before det.

c -- cells before and at 200m detector820 3 -1.625 150 -1 81 -82 imp:n,p=2.8E4 $ intermed soil cell821 1 -0.0013 1 -53 81 -82 imp:n,p=2.8E4 $ intermed air cell822 1 -0.0013 53 -54 81 -82 imp:n,p=2.8E4 $ intermed top air cell823 1 -0.0013 54 -151 81 -82 imp:n,p=2.8E4 $ intermed top-top air cell830 3 -1.625 150 -1 82 -83 imp:n,p=2.8E4 $ soil before detector

35

Page 37: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

831 1 -0.0013 1 -53 82 -83 imp:n,p=2.8E4 $ air before detector832 1 -0.0013 53 -54 82 -83 imp:n,p=2.8E4 $ top air before detector833 1 -0.0013 54 -151 82 -83 imp:n,p=2.8E4 $ top-top air before det.

c -- cells before and at 300m detector840 3 -1.625 150 -1 83 -84 imp:n,p=5.5E4 $ intermed soil cell841 1 -0.0013 1 -53 83 -84 imp:n,p=5.5E4 $ intermed air cell842 1 -0.0013 53 -54 83 -84 imp:n,p=5.5E4 $ intermed top air cell843 1 -0.0013 54 -151 83 -84 imp:n,p=5.5E4 $ intermed top-top air cell850 3 -1.625 150 -1 84 -85 imp:n,p=8.3E4 $ soil before detector851 1 -0.0013 1 -53 84 -85 imp:n,p=8.3E4 $ air before detector852 1 -0.0013 53 -54 84 -85 imp:n,p=8.3E4 $ top air before detector853 1 -0.0013 54 -151 84 -85 imp:n,p=8.3E4 $ top-top air before det.

c -- cells before and at 500m detector860 3 -1.625 150 -1 85 -86 imp:n,p=1.7E5 $ intermed soil cell861 1 -0.0013 1 -53 85 -86 imp:n,p=1.7E5 $ intermed air cell862 1 -0.0013 53 -54 85 -86 imp:n,p=1.7E5 $ intermed top air cell863 1 -0.0013 54 -151 85 -86 imp:n,p=1.7E5 $ intermed top-top air cell870 3 -1.625 150 -1 86 -87 imp:n,p=3.3E5 $ soil before detector871 1 -0.0013 1 -53 86 -87 imp:n,p=3.3E5 $ air before detector872 1 -0.0013 53 -54 86 -87 imp:n,p=3.3E5 $ top air before detector873 1 -0.0013 54 -151 86 -87 imp:n,p=3.3E5 $ top-top air before det.

c -- cells before and at 700m detector (2 cells before detector vol.)570 3 -1.625 150 -1 87 -57 imp:n,p=6.7E5 $ intermed soil cell571 1 -0.0013 1 -53 87 -57 imp:n,p=6.7E5 $ intermed air cell572 1 -0.0013 53 -54 87 -57 imp:n,p=6.7E5 $ intermed top air cell573 1 -0.0013 54 -151 87 -57 imp:n,p=6.7E5 $ intermed top-top air cell880 3 -1.625 150 -1 57 -88 imp:n,p=1.3E6 $ intermed soil cell881 1 -0.0013 1 -53 57 -88 imp:n,p=1.3E6 $ intermed air cell882 1 -0.0013 53 -54 57 -88 imp:n,p=1.3E6 $ intermed top air cell883 1 -0.0013 54 -151 57 -88 imp:n,p=1.3E6 $ intermed top-top air cell890 3 -1.625 150 -1 88 -89 imp:n,p=2.6E6 $ soil before detector891 1 -0.0013 1 -53 88 -89 imp:n,p=2.6E6 $ air before detector892 1 -0.0013 53 -54 88 -89 imp:n,p=2.6E6 $ top air before detector893 1 -0.0013 54 -151 88 -89 imp:n,p=2.6E6 $ top-top air before det.

c -- cells before and at 1000m detector (2 intermed cells before detector)590 3 -1.625 150 -1 89 -59 imp:n,p=5.2E6 $ intermed soil cell591 1 -0.0013 1 -53 89 -59 imp:n,p=5.2E6 $ intermed air cell592 1 -0.0013 53 -54 89 -59 imp:n,p=5.2E6 $ intermed top air cell593 1 -0.0013 54 -151 89 -59 imp:n,p=5.2E6 $ intermed top-top air cell900 3 -1.625 150 -1 59 -90 imp:n,p=1.4E7 $ intermed soil cell901 1 -0.0013 1 -53 59 -90 imp:n,p=1.4E7 $ intermed air cell902 1 -0.0013 53 -54 59 -90 imp:n,p=1.4E7 $ intermed top air cell903 1 -0.0013 54 -151 59 -90 imp:n,p=1.4E7 $ intermed top-top air cell910 3 -1.625 150 -1 90 -91 imp:n,p=2.8E7 $ soil before detector911 1 -0.0013 1 -53 90 -91 imp:n,p=2.8E7 $ air before detector912 1 -0.0013 53 -54 90 -91 imp:n,p=2.8E7 $ top air before detector913 1 -0.0013 54 -151 90 -91 imp:n,p=2.8E7 $ top-top air before det.

c920 3 -1.625 150 -1 91 -152 imp:n,p=2.8E7 $ soil after 1000-m detector921 1 -0.0013 1 -53 91 -152 imp:n,p=2.8E7 $ air after 1000-m detector922 1 -0.0013 53 -54 91 -152 imp:n,p=2.8E7 $ top air after 1000-m det

36

Page 38: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

923 1 -0.0013 54 -151 91 -152 imp:n,p=2.8E7 $ top-top air after det.90 0 -150:151:152 imp:n,p=0 $ problem boundary

c *********************** BLOCK 2: SURFACE CARDS ************************c **** Horizontal cask planes1 pz -226.42 $ cask bottom - ground surface110 pz -223.94 $ cask bottom - top of sublayer 10109 pz -221.47 $ cask bottom - top of sublayer 9108 pz -219.99 $ cask bottom - top of sublayer 8107 pz -216.51 $ cask bottom - top of sublayer 7106 pz -214.04 $ cask bottom - top of sublayer 6105 pz -211.56 $ cask bottom - top of sublayer 5104 pz -209.08 $ cask bottom - top of sublayer 4103 pz -206.60 $ cask bottom - top of sublayer 3102 pz -204.13 $ cask bottom - top of sublayer 22 pz -201.65 $ cask bottom - top of bot Fe plate3 pz -192.76 $ side Fe jacket - outside lower bottom4 pz -190.86 $ side Fe jacket - inside lower bottom5 pz -182.88 $ top bottom basket/bottom of fuel7 pz 182.88 $ bottom of plenum basket/top of fuel8 pz 224.72 $ top of plenum basket9 pz 211.74 $ side Fe jacket - inside top10 pz 213.64 $ side Fe jacket - outside top11 pz 245.90 $ top of top fitting12 pz 250.47 $ cask top - bot of lid122 pz 253.33 $ cask top - top of sublayer 1123 pz 256.19 $ cask top - top of sublayer 2124 pz 259.04 $ cask top - top of sublayer 3126 pz 264.44 $ cask top - top of sublayer 6128 pz 269.52 $ cask top - top of sublayer 8129 pz 272.06 $ cask top - top of sublayer 914 pz 274.60 $ cask top - top of lid13 pz 261.90 $ cask side - top of Fe side15 pz 284.76 $ top of polyprop on top of cask16 pz 318.74 $ top Fe cover - bot surface17 pz 319.38 $ top Fe cover - top surface18 pz 266.35 $ top cover flange19 pz 248.56 $ top hold down ring28 pz 214.91 $ bottom hold down ring

c ***** cylindrical cask surfaces201 cz 88.27 $ cask wall - inner surface202 cz 89.84 $ cask wall - inner surface of sublayer 1203 cz 91.41 $ cask wall - inner surface of sublayer 2204 cz 92.98 $ cask wall - inner surface of sublayer 3205 cz 94.55 $ cask wall - inner surface of sublayer 4206 cz 96.12 $ cask wall - inner surface of sublayer 5207 cz 97.69 $ cask wall - inner surface of sublayer 6208 cz 99.26 $ cask wall - inner surface of sublayer 7209 cz 100.83 $ cask wall - inner surface of sublayer 821 cz 107.32 $ cask outer surface22 cz 122.56 $ side Fe jacket -- inside

37

Page 39: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

23 cz 124.47 $ side Fe jacket -- outside24 cz 85.73 $ inside radius of hold down ring25 cz 89.22 $ top polyprop disk radius26 cz 83.92 $ inside radius ss basket27 cz 84.40 $ inside radius Al backet/rails29 cz 101.45 $ inside radius top cover30 cz 102.40 $ outside radius top cover

c ***** surfaces for fuel regions40 pz -163.49 $ top of fuel region 4041 pz -123.62 $ top of fuel region 4142 pz -61.82 $ top of fuel region 4243 pz -30.91 $ top of fuel region 4344 pz -0.0 $ top of fuel region 4445 pz 30.91 $ top of fuel region 4546 pz 61.82 $ top of fuel region 4647 pz 123.64 $ top of fuel region 4748 pz 157.27 $ top of fuel region 48

c ***** problem boundaries150 pz -500.E2 $ bottom of soil (problem boundary)151 pz 2000.E2 $ top of air (problem boundary)152 cz 2000.E2 $ radial air limit (problem boundary)

c ***** surfaces for detector volumes53 pz -26.42 $ top of detector volumes54 pz 383.18 $ top of berm60 cz 175.00 $ detector at 2 m - inner face (2-m from cask center)61 cz 225.00 $ detector at 2 m - outer face62 cz 275.00 $ detector at 3 m - inner face63 cz 325.00 $ detector at 3 m - outer face64 cz 475.00 $ detector at 5 m - inner face65 cz 525.00 $ detector at 5 m - outer face66 cz 675.00 $ detector at 7 m - inner face67 cz 725.00 $ detector at 7 m - outer face68 cz 975.00 $ detector at 10 m - inner face69 cz 1025.00 $ detector at 10 m - outer face70 cz 1975.00 $ detector at 20 m - inner face71 cz 2025.00 $ detector at 20 m - outer face

c 72 cz 2847.6 $ front face of bermc 73 cz 3152.4 $ back of berm72 cz 2975.00 $ detector at 30 m - inner face73 cz 3025.00 $ detector at 30 m - outer face74 cz 4950.00 $ detector at 50 m - inner face75 cz 5050.00 $ detector at 50 m - outer face76 cz 6950.00 $ detector at 70 m - inner face77 cz 7050.00 $ detector at 70 m - outer face78 cz 9950.00 $ detector at 100 m - inner face79 cz 10050.0 $ detector at 100 m - outer face80 cz 14950.0 $ detector at 150 m - inner face81 cz 15050.0 $ detector at 150 m - outer face82 cz 19950.0 $ detector at 200 m - inner face83 cz 20050.0 $ detector at 200 m - outer face84 cz 29950.0 $ detector at 300 m - inner face

38

Page 40: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

85 cz 30050.0 $ detector at 300 m - outer face86 cz 49950.0 $ detector at 500 m - inner face87 cz 50050.0 $ detector at 500 m - outer face57 cz 60000.0 $ extra surface at 600 m88 cz 69950.0 $ detector at 700 m - inner face89 cz 70050.0 $ detector at 700 m - outer face59 cz 85000.0 $ extra surface at 850m90 cz 99900.0 $ detector at 1000 m - inner face91 cz 100100.0 $ detector at 1000 m - outer face

c *********************** BLOCK 3: DATA CARDS ***************************cc --- gamma-ray source for fuel in TN68 -- 10 axial cylindrical zonesSDEF par=2 pos= 0 0 0 axs=0 0 1 rad=d1 ext=d2 erg d6 cel=d7SI1 0 83.92 $ range of radius sampling: 0 to RmaxSP1 -21 1 $ radial distriubtion: here r^1SI2 -182.88 182.88 $ range of axial samplingSP2 -21 0 $ axial distribution: here z^0SI6 H 0.05 0.1 0.2 0.3 0.4 0.6 0.8 1.0 1.33 1.66 $ energy bins - fuelSP6 0.0 .10092 .07902 .02211 .01359 .05790 $ bin probs. - fuel

.65402 .03549 .03273 .00422SI7 L 40 41 42 43 44 45 46 47 48 49 $ fuel zonesSP7 0.02385 .09264 .19934 .10139 .10139 $ prob. emission per fuel zone

.10139 .09801 .18251 .07149 .02799SB7 0.05 0.05 0.5 0.1 0.1 0.1 0.1 0.1 0.15 0.20 $ bias top zonesccc ---- Detector types and locationsFC4 *** Dose in Sv per photon ***F4:p 611 631 651 671 691 711 731 751 771 791 811 831 851 871 891 911FC14 *** Dose in mrem/h ***F14:p 611 631 651 671 691 711 731 751 771 791 811 831 851 871 891 911FM14 2.4839E25 $ convert Sv/photon to mrem/h for fuel zonesccc ---- Physics and problem controlmode pphys:p 0 1 1nps 100000000c voidcc ------------------------------------------------------------------c ambient photon dose equiv. H*(10mm) Sv (from T-D1 of S&F)c ------------------------------------------------------------------de0 1.000E-02 1.500E-02 2.000E-02 3.000E-02 4.000E-02 5.000E-02

6.000E-02 8.000E-02 1.000E-01 1.500E-01 2.000E-01 3.000E-014.000E-01 5.000E-01 6.000E-01 8.000E-01 1.000E+00 1.500E+002.000E+00 3.000E+00 4.000E+00 5.000E+00 6.000E+00 8.000E+001.000E+01

df0 7.690E-14 8.460E-13 1.010E-12 7.850E-13 6.140E-13 5.260E-135.040E-13 5.320E-13 6.110E-13 8.900E-13 1.180E-12 1.810E-12

39

Page 41: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

2.380E-12 2.890E-12 3.380E-12 4.290E-12 5.110E-12 6.920E-128.480E-12 1.110E-11 1.330E-11 1.540E-11 1.740E-11 2.120E-112.520E-11

ccc ***** MATERIAL CARDSc ************************************************************c AIR: ANSI/ANS-6.4.3, Dry air; density = 0.0012 g/cm^3c Composition by mass fractionc *************************************************************m1 7014 -.75519

8016 -.231796000 -.00014

18000 -.01288cc ************************************************************c CONCRETE: ANSI/ANS-6.4.3; density = 2.32 g/cm^3c Composition by mass fractionc ************************************************************m2 1001 -.0056

8016 -.498311023 -.017112000 -.002413027 -.045614000 -.315816000 -.001219000 -.019220000 -.082626000 -.0122

cc **************************************************************c SOIL: [Jacob, Radn. Prot. Dos. 14, 299, 1986]c density = 1.625 g/cm^3; Composition by mass fractionc **************************************************************m3 1001 -.021

6012 -.01619000 -.01326000 -.01120000 -.04113027 -.05014000 -.2718016 -.577

cc **************************************************************c Fuel-Basket TN-68 Cask (Table 5.3-1)c Density = 3.231 g/cm^3; Composition by atom fractionc **************************************************************m4 92238 0.14291

92235 0.0049440000 0.0998128000 0.02423

40

Page 42: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

26000 0.1862925055 0.0054524000 0.0547013027 0.185978016 0.29570

cc *************************************************************c Top Fitting TN-68 Cask (Table 5.3-1)c Density = 0.491 g/cm^3; Composition by atom fractionc *************************************************************m5 26000 0.50712

28000 0.0659525055 0.0148324000 0.1489040000 0.26320

cc *************************************************************c Plenum/Basket TN-68 (Table 5.3-1)c Density = 1.158 g/cm^3; Composition by atom fractionc *************************************************************m6 26000 0.34907

28000 0.0453540000 0.1797525055 0.0102124000 0.1024613027 0.31316

cc *************************************************************c Bottom/Basket TN-68 (Table 5.3-1)c Density = 1.918 g/cm^3; Composition by atom fractionc *************************************************************m7 26000 0.48631

28000 0.0632925055 0.0142324000 0.1428513027 0.2337840000 0.05954

cc **************************************************************c Basket Periphery (SS304) TN-68 (Table 5.3-1)c Density = 7.92 g/cm^3; Composition by atom fractionc **************************************************************m8 26000 0.68826

25055 0.0201324000 0.2020928000 0.08952

cc **************************************************************c Carbon Steel TN-68 (Table 5.3-1)c Density = 7.8212 g/cm^3; Composition by atom fractionc **************************************************************

41

Page 43: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

m9 26000 0.955106000 0.04490

cc **************************************************************c Outer Basket/Rails TN-68 (Table 5.3-1)c Density = 2.702 g/cm^3; Composition by atom fractionc **************************************************************m10 13027 1.00000cc *************************************************************c Polypropylene Disk TN-68 (Table 5.3-1)c Density = 0.90 g/cm^3; Composition by atom fractionc *************************************************************m11 6012 .33480

1001 .66520cc *************************************************************c Resin/Aluminum Composite for TN-68 (Table 5.3-1)c Density = 1.687 g/cm^3; Composition by atom fractionc *************************************************************m12 13027 0.10331

6012 0.246588016 0.219851001 0.422075010 0.001645011 0.00655

cc *************************************************************c Berm (Silica + water) for ISFSI Site (SAR Page 7a-5);c density = 1.400 g/cm^3; Composition by atom fractionc *************************************************************m13 14000 0.26524

8016 0.598551001 0.13621

42

Page 44: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

File NGFFB1.I

TransNuclear TN-68 cask: Far-Field model; neutron source (12 zones)c Neutron and secondary-photon doses. Volumetric F4 detectors used.c Geometry splitting/routlette only in air layers. Cask cells IMP=1.c Berm included at 30 m.cc *********************** BLOCK 1: CELL CARDS ************************c GEOMETRY (r-z)c (J.K.Shultis 1/13/99)c ^z-axisc | AIRc |c | cask +=+c |---------+ | | bermc .-------+ | | |c | | |- | |c . FUEL | || | |c | | || | |c o ---- | || ----> r-axis | |c | | || | |c . | || --|-|---|-|--...--| |---|-|---|-|---|-|---|-|---|-|-c | | |- | | | | | | | | | | | | | | | |c .-------+ | | | | | | | | | | | | | | | | |c |---------+----|-|---|-|--...--|-|---|-|---|-|---|-|---|-|---|-|-c | | | \c . | | \ det vols (14 in all)c | CONCRETE | 30mc . | SOILc | 10mcc ****** Cask cells1 9 -7.8212 1 -2 -21 imp:n,p=1 $ Fe cask bottom2 9 -7.8212 2 -13 20 -21 imp:n,p=1 $ Fe cask side3 7 -1.918 2 -5 -26 imp:n,p=1 $ bottom basket4 6 -1.158 7 -8 -26 imp:n,p=1 $ top plenum basket5 5 -0.491 8 -11 -26 imp:n,p=1 $ top fitting6 8 -7.92 26 -27 2 -28 imp:n,p=1 $ ss side basket7 10 -2.702 27 -20 2 -28 imp:n,p=1 $ Al side basket/rails8 0 11 -12 -26 imp:n,p=1 $ top void - part19 0 28 -12 26 -20 #10 imp:n,p=1 $ top void - part210 9 -7.8212 28 -19 24 -20 imp:n,p=1 $ hold down ring11 9 -7.8212 12 -14 -20 imp:n,p=1 $ Fe cask lid - part112 9 -7.8212 13 -14 20 -29 imp:n,p=1 $ Fe cask lid - part213 11 -0.90 14 -15 -25 imp:n,p=1 $ polyprop top shield14 0 15 -16 -25 imp:n,p=1 $ void under top cover -pt115 0 14 -16 25 -29 imp:n,p=1 $ void under top cover -pt216 9 -7.8212 16 -17 -30 imp:n,p=1 $ top Fe cover - top17 9 -7.8212 13 -16 29 -30 imp:n,p=1 $ top Fe cover - side18 9 -7.8212 13 -18 30 -21 imp:n,p=1 $ top cover flange19 9 -7.8212 21 -23 9 -10 imp:n,p=1 $ top side-shld Fe shell

43

Page 45: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

20 9 -7.8212 22 -23 4 -9 imp:n,p=1 $ side side-shld Fe shell21 9 -7.8212 21 -23 3 -4 imp:n,p=1 $ bot side-shld Fe shell22 12 -1.687 21 -22 4 -9 imp:n,p=1 $ side resin/Al shield23 1 -0.0013 1 -3 21 -23 imp:n,p=1 $ air under side shld24 1 -0.0013 21 -23 10 -18 imp:n,p=1 $ air above side shld - pt125 1 -0.0013 30 -23 18 -17 imp:n,p=1 $ air above side shld - pt2

c **** fuel regions40 4 -3.231 5 -40 -26 imp:n,p=1 $ FUEL region 1 (bottom)41 4 -3.231 40 -41 -26 imp:n,p=1 $ FUEL region 242 4 -3.231 41 -42 -26 imp:n,p=1 $ FUEL region 343 4 -3.231 42 -43 -26 imp:n,p=1 $ FUEL region 444 4 -3.231 43 -44 -26 imp:n,p=1 $ FUEL region 545 4 -3.231 44 -45 -26 imp:n,p=1 $ FUEL region 646 4 -3.231 45 -46 -26 imp:n,p=1 $ FUEL region 747 4 -3.231 46 -47 -26 imp:n,p=1 $ FUEL region 848 4 -3.231 47 -48 -26 imp:n,p=1 $ FUEL region 949 4 -3.231 48 -49 -26 imp:n,p=1 $ FUEL region 1050 4 -3.231 49 -50 -26 imp:n,p=1 $ FUEL region 1151 4 -3.231 50 -7 -26 imp:n,p=1 $ FUEL region 12 (top)

c ***** cells above/below cask140 2 -2.32 150 -1 -23 imp:n,p=1 $ concrete beneath cask145 1 -0.0013 17 -151 -23 imp:n,p=1 $ air above cask

c ***** cells for detector volumes and air/soil layers beyond caskc -- cells before and at 2m detector600 2 -2.32 150 -1 23 -60 imp:n,p=1 $ concrete before detector601 1 -0.0013 1 -53 23 -60 imp:n,p=1 $ air before detector602 1 -0.0013 53 -54 23 -60 imp:n,p=1 $ top air before detector603 1 -0.0013 54 -151 23 -60 imp:n,p=1 $ top-top air before det.610 2 -2.32 150 -1 60 -61 imp:n,p=1 $ concrete beneath detector611 1 -0.0013 1 -53 60 -61 imp:n,p=1 $ air for detector612 1 -0.0013 53 -54 60 -61 imp:n,p=1 $ top air above det.613 1 -0.0013 54 -151 60 -61 imp:n,p=1 $ top-top air above det.

c -- cells before and at 3m detector620 2 -2.32 150 -1 61 -62 imp:n,p=1 $ concrete before detector621 1 -0.0013 1 -53 61 -62 imp:n,p=1 $ air before detector622 1 -0.0013 53 -54 61 -62 imp:n,p=1 $ top air before detector623 1 -0.0013 54 -151 61 -62 imp:n,p=1 $ top-top air before det.630 2 -2.32 150 -1 62 -63 imp:n,p=1 $ concrete beneath detector631 1 -0.0013 1 -53 62 -63 imp:n,p=1 $ air for detector632 1 -0.0013 53 -54 62 -63 imp:n,p=1 $ top air above det.633 1 -0.0013 54 -151 62 -63 imp:n,p=1 $ top-top air above det.

c -- cells before and at 5m detector640 2 -2.32 150 -1 63 -64 imp:n,p=1.5 $ concrete before detector641 1 -0.0013 1 -53 63 -64 imp:n,p=1.5 $ air before detector642 1 -0.0013 53 -54 63 -64 imp:n,p=1.5 $ top air before detector643 1 -0.0013 54 -151 63 -64 imp:n,p=1.5 $ top-top air before det.650 2 -2.32 150 -1 64 -65 imp:n,p=1.5 $ concrete beneath detector651 1 -0.0013 1 -53 64 -65 imp:n,p=1.5 $ air for detector652 1 -0.0013 53 -54 64 -65 imp:n,p=1.5 $ top air above det.653 1 -0.0013 54 -151 64 -65 imp:n,p=1.5 $ top-top air above det.

c -- cells before and at 7m detector

44

Page 46: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

660 2 -2.32 150 -1 65 -66 imp:n,p=1.5 $ concrete before detector661 1 -0.0013 1 -53 65 -66 imp:n,p=1.5 $ air before detector662 1 -0.0013 53 -54 65 -66 imp:n,p=1.5 $ top air before detector663 1 -0.0013 54 -151 65 -66 imp:n,p=1.5 $ top-top air before det.670 2 -2.32 150 -1 66 -67 imp:n,p=1.5 $ concrete beneath detector671 1 -0.0013 1 -53 66 -67 imp:n,p=1.5 $ air for detector672 1 -0.0013 53 -54 66 -67 imp:n,p=1.5 $ top air above det.673 1 -0.0013 54 -151 66 -67 imp:n,p=1.5 $ top-top air above det.

c -- cells before and at 10m detector680 2 -2.32 150 -1 67 -68 imp:n,p=2.1 $ concrete before detector681 1 -0.0013 1 -53 67 -68 imp:n,p=2.1 $ air before detector682 1 -0.0013 53 -54 67 -68 imp:n,p=2.1 $ top air before detector683 1 -0.0013 54 -151 67 -68 imp:n,p=2.1 $ top-top air before det.690 2 -2.32 150 -1 68 -69 imp:n,p=2.1 $ concrete beneath detector691 1 -0.0013 1 -53 68 -69 imp:n,p=2.1 $ air for detector692 1 -0.0013 53 -54 68 -69 imp:n,p=2.1 $ top air above det.693 1 -0.0013 54 -151 68 -69 imp:n,p=2.1 $ top-top air above det.

c -- cells before and at 20m detector700 3 -1.625 150 -1 69 -70 imp:n,p=3.1 $ soil before detector701 1 -0.0013 1 -53 69 -70 imp:n,p=3.1 $ air before detector702 1 -0.0013 53 -54 69 -70 imp:n,p=3.1 $ top air before detector703 1 -0.0013 54 -151 69 -70 imp:n,p=3.1 $ top-top air before det.710 3 -1.625 150 -1 70 -71 imp:n,p=3.1 $ soil beneath detector711 1 -0.0013 1 -53 70 -71 imp:n,p=3.1 $ air for detector712 1 -0.0013 53 -54 70 -71 imp:n,p=3.1 $ top air above det.713 1 -0.0013 54 -151 70 -71 imp:n,p=3.1 $ top-top air above det.

c -- cells before BERM centered at 30m from cask center720 3 -1.625 150 -1 71 -72 imp:n,p=3.1 $ soil before detector721 1 -0.0013 1 -53 71 -72 imp:n,p=3.1 $ air before detector722 1 -0.0013 53 -54 71 -72 imp:n,p=3.1 $ top air before detector723 1 -0.0013 54 -151 71 -72 imp:n,p=3.1 $ top-top air before det.730 3 -1.625 150 -1 72 -73 imp:n,p=3.1 $ soil beneath BERM731 13 -1.400 1 -53 72 -73 imp:n,p=3.1 $ bottom half of BERM732 13 -1.400 53 -54 72 -73 imp:n,p=3.1 $ top half of BERM733 1 -0.0013 54 -151 72 -73 imp:n,p=4.7 $ top-top air above BERM

c -- cells before and at 50m detector740 3 -1.625 150 -1 73 -74 imp:n,p=4.7 $ soil before detector741 1 -0.0013 1 -53 73 -74 imp:n,p=4.7 $ air before detector742 1 -0.0013 53 -54 73 -74 imp:n,p=4.7 $ top air before detector743 1 -0.0013 54 -151 73 -74 imp:n,p=4.7 $ top-top air before det.750 3 -1.625 150 -1 74 -75 imp:n,p=4.7 $ soil beneath detector751 1 -0.0013 1 -53 74 -75 imp:n,p=4.7 $ air for detector752 1 -0.0013 53 -54 74 -75 imp:n,p=4.7 $ top air above det.753 1 -0.0013 54 -151 74 -75 imp:n,p=4.7 $ top-top air above det.

c -- cells before and at 70m detector760 3 -1.625 150 -1 75 -76 imp:n,p=6 $ soil before detector761 1 -0.0013 1 -53 75 -76 imp:n,p=6 $ air before detector762 1 -0.0013 53 -54 75 -76 imp:n,p=6 $ top air before detector763 1 -0.0013 54 -151 75 -76 imp:n,p=6 $ top-top air before det.770 3 -1.625 150 -1 76 -77 imp:n,p=6 $ soil beneath detector771 1 -0.0013 1 -53 76 -77 imp:n,p=6 $ air for detector

45

Page 47: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

772 1 -0.0013 53 -54 76 -77 imp:n,p=6 $ top air above det.773 1 -0.0013 54 -151 76 -77 imp:n,p=6 $ top-top air above det.

c -- cells before and at 100m detector780 3 -1.625 150 -1 77 -78 imp:n,p=8 $ intermed soil cell781 1 -0.0013 1 -53 77 -78 imp:n,p=8 $ intermed air cell782 1 -0.0013 53 -54 77 -78 imp:n,p=8 $ intermed top air cell783 1 -0.0013 54 -151 77 -78 imp:n,p=8 $ intermed top-top air cell790 3 -1.625 150 -1 78 -79 imp:n,p=8 $ soil before detector791 1 -0.0013 1 -53 78 -79 imp:n,p=8 $ air before detector792 1 -0.0013 53 -54 78 -79 imp:n,p=8 $ top air before detector793 1 -0.0013 54 -151 78 -79 imp:n,p=8 $ top-top air before det.

c -- cells before and at 150m detector800 3 -1.625 150 -1 79 -80 imp:n,p=15 $ intermed soil cell801 1 -0.0013 1 -53 79 -80 imp:n,p=15 $ intermed air cell802 1 -0.0013 53 -54 79 -80 imp:n,p=15 $ intermed top air cell803 1 -0.0013 54 -151 79 -80 imp:n,p=15 $ intermed top-top air cell810 3 -1.625 150 -1 80 -81 imp:n,p=15 $ soil before detector811 1 -0.0013 1 -53 80 -81 imp:n,p=15 $ air before detector812 1 -0.0013 53 -54 80 -81 imp:n,p=15 $ top air before detector813 1 -0.0013 54 -151 80 -81 imp:n,p=15 $ top-top air before det.

c -- cells before and at 200m detector820 3 -1.625 150 -1 81 -82 imp:n,p=30 $ intermed soil cell821 1 -0.0013 1 -53 81 -82 imp:n,p=30 $ intermed air cell822 1 -0.0013 53 -54 81 -82 imp:n,p=30 $ intermed top air cell823 1 -0.0013 54 -151 81 -82 imp:n,p=30 $ intermed top-top air cell830 3 -1.625 150 -1 82 -83 imp:n,p=30 $ soil before detector831 1 -0.0013 1 -53 82 -83 imp:n,p=30 $ air before detector832 1 -0.0013 53 -54 82 -83 imp:n,p=30 $ top air before detector833 1 -0.0013 54 -151 82 -83 imp:n,p=30 $ top-top air before det.

c -- cells before and at 300m detector840 3 -1.625 150 -1 83 -84 imp:n,p=55 $ intermed soil cell841 1 -0.0013 1 -53 83 -84 imp:n,p=55 $ intermed air cell842 1 -0.0013 53 -54 83 -84 imp:n,p=55 $ intermed top air cell843 1 -0.0013 54 -151 83 -84 imp:n,p=55 $ intermed top-top air cell850 3 -1.625 150 -1 84 -85 imp:n,p=90 $ soil before detector851 1 -0.0013 1 -53 84 -85 imp:n,p=90 $ air before detector852 1 -0.0013 53 -54 84 -85 imp:n,p=90 $ top air before detector853 1 -0.0013 54 -151 84 -85 imp:n,p=90 $ top-top air before det.

c -- cells before and at 500m detector860 3 -1.625 150 -1 85 -86 imp:n,p=180 $ intermed soil cell861 1 -0.0013 1 -53 85 -86 imp:n,p=180 $ intermed air cell862 1 -0.0013 53 -54 85 -86 imp:n,p=180 $ intermed top air cell863 1 -0.0013 54 -151 85 -86 imp:n,p=180 $ intermed top-top air cell870 3 -1.625 150 -1 86 -87 imp:n,p=360 $ soil before detector871 1 -0.0013 1 -53 86 -87 imp:n,p=360 $ air before detector872 1 -0.0013 53 -54 86 -87 imp:n,p=360 $ top air before detector873 1 -0.0013 54 -151 86 -87 imp:n,p=360 $ top-top air before det.

c -- cells before and at 700m detector (2 cells before detector vol.)570 3 -1.625 150 -1 87 -57 imp:n,p=720 $ intermed soil cell571 1 -0.0013 1 -53 87 -57 imp:n,p=720 $ intermed air cell572 1 -0.0013 53 -54 87 -57 imp:n,p=720 $ intermed top air cell

46

Page 48: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

573 1 -0.0013 54 -151 87 -57 imp:n,p=720 $ intermed top-top air cell880 3 -1.625 150 -1 57 -88 imp:n,p=1440 $ intermed soil cell881 1 -0.0013 1 -53 57 -88 imp:n,p=1440 $ intermed air cell882 1 -0.0013 53 -54 57 -88 imp:n,p=1440 $ intermed top air cell883 1 -0.0013 54 -151 57 -88 imp:n,p=1440 $ intermed top-top air cell890 3 -1.625 150 -1 88 -89 imp:n,p=2800 $ soil before detector891 1 -0.0013 1 -53 88 -89 imp:n,p=2800 $ air before detector892 1 -0.0013 53 -54 88 -89 imp:n,p=2800 $ top air before detector893 1 -0.0013 54 -151 88 -89 imp:n,p=2800 $ top-top air before det.

c -- cells before and at 1000m detector (2 intermed cells before detector)590 3 -1.625 150 -1 89 -59 imp:n,p=5600 $ intermed soil cell591 1 -0.0013 1 -53 89 -59 imp:n,p=5600 $ intermed air cell592 1 -0.0013 53 -54 89 -59 imp:n,p=5600 $ intermed top air cell593 1 -0.0013 54 -151 89 -59 imp:n,p=5600 $ intermed top-top air cell900 3 -1.625 150 -1 59 -90 imp:n,p=10000 $ intermed soil cell901 1 -0.0013 1 -53 59 -90 imp:n,p=10000 $ intermed air cell902 1 -0.0013 53 -54 59 -90 imp:n,p=10000 $ intermed top air cell903 1 -0.0013 54 -151 59 -90 imp:n,p=10000 $ intermed top-top air cell910 3 -1.625 150 -1 90 -91 imp:n,p=20000 $ soil before detector911 1 -0.0013 1 -53 90 -91 imp:n,p=20000 $ air before detector912 1 -0.0013 53 -54 90 -91 imp:n,p=20000 $ top air before detector913 1 -0.0013 54 -151 90 -91 imp:n,p=20000 $ top-top air before det.

c920 3 -1.625 150 -1 91 -152 imp:n,p=20000 $ soil after 1000-m detector921 1 -0.0013 1 -53 91 -152 imp:n,p=20000 $ air after 1000-m detector922 1 -0.0013 53 -54 91 -152 imp:n,p=20000 $ top air after 1000-m det923 1 -0.0013 54 -151 91 -152 imp:n,p=20000 $ top-top air after det.90 0 -150:151:152 imp:n,p=0 $ problem boundary

c *********************** BLOCK 2: SURFACE CARDS ************************c **** Horizontal cask planes1 pz -226.42 $ cask bottom - ground surface2 pz -201.65 $ cask bottom - top of bot Fe plate3 pz -192.76 $ side Fe jacket - outside lower bottom4 pz -190.86 $ side Fe jacket - inside lower bottom5 pz -182.88 $ top bottom basket/bottom of fuel7 pz 182.88 $ bottom of plenum basket/top of fuel8 pz 224.72 $ top of plenum basket9 pz 211.74 $ side Fe jacket - inside top10 pz 213.64 $ side Fe jacket - outside top11 pz 245.90 $ top of top fitting12 pz 250.47 $ cask top - bot of lid13 pz 261.90 $ cask side - top of Fe side14 pz 274.60 $ cask top - top of Fe15 pz 284.76 $ top of polyprop on top of cask16 pz 318.74 $ top Fe cover - bot surface17 pz 319.38 $ top Fe cover - top surface18 pz 266.35 $ top cover flange19 pz 248.56 $ top hold down ring28 pz 214.91 $ bottom hold down ring

c ***** cylindrical cask surfaces

47

Page 49: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

20 cz 88.27 $ cask inner surface21 cz 107.32 $ cask outer surface22 cz 122.56 $ side Fe jacket -- inside23 cz 124.47 $ side Fe jacket -- outside24 cz 85.73 $ inside radius of hold down ring25 cz 89.22 $ top polyprop disk radius26 cz 83.92 $ inside radius ss basket27 cz 84.40 $ inside radius Al backet/rails29 cz 101.45 $ inside radius top cover30 cz 102.40 $ outside radius top cover

c ***** surfaces for fuel regions40 pz -164.59 $ top of fuel zone 141 pz -146.30 $ top of fuel zone 242 pz -109.73 $ top of fuel zone 343 pz -73.15 $ top of fuel zone 444 pz -36.58 $ top of fuel zone 545 pz 0.00 $ top of fuel zone 646 pz 36.58 $ top of fuel zone 747 pz 73.16 $ top of fuel zone 848 pz 109.73 $ top of fuel zone 949 pz 146.30 $ top of fuel zone 1050 pz 164.59 $ top of fuel zone 11

c ***** problem boundaries150 pz -300.E2 $ bottom of soil (problem boundary)151 pz 2000.E2 $ top of air (problem boundary)152 cz 2000.E2 $ radial air limit (problem boundary)

c ***** surfaces for detector volumes53 pz -26.42 $ top of detector volumes54 pz 383.18 $ top of berm60 cz 175.00 $ detector at 2 m - inner face (2-m from cask center)61 cz 225.00 $ detector at 2 m - outer face62 cz 275.00 $ detector at 3 m - inner face63 cz 325.00 $ detector at 3 m - outer face64 cz 475.00 $ detector at 5 m - inner face65 cz 525.00 $ detector at 5 m - outer face66 cz 675.00 $ detector at 7 m - inner face67 cz 725.00 $ detector at 7 m - outer face68 cz 975.00 $ detector at 10 m - inner face69 cz 1025.00 $ detector at 10 m - outer face70 cz 1975.00 $ detector at 20 m - inner face71 cz 2025.00 $ detector at 20 m - outer face72 cz 2847.6 $ front face of berm73 cz 3152.4 $ back of berm74 cz 4950.00 $ detector at 50 m - inner face75 cz 5050.00 $ detector at 50 m - outer face76 cz 6950.00 $ detector at 70 m - inner face77 cz 7050.00 $ detector at 70 m - outer face78 cz 9950.00 $ detector at 100 m - inner face79 cz 10050.0 $ detector at 100 m - outer face80 cz 14950.0 $ detector at 150 m - inner face81 cz 15050.0 $ detector at 150 m - outer face

48

Page 50: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

82 cz 19950.0 $ detector at 200 m - inner face83 cz 20050.0 $ detector at 200 m - outer face84 cz 29950.0 $ detector at 300 m - inner face85 cz 30050.0 $ detector at 300 m - outer face86 cz 49950.0 $ detector at 500 m - inner face87 cz 50050.0 $ detector at 500 m - outer face57 cz 60000.0 $ extra surface at 600 m88 cz 69950.0 $ detector at 700 m - inner face89 cz 70050.0 $ detector at 700 m - outer face59 cz 85000.0 $ extra surface at 850m90 cz 99900.0 $ detector at 1000 m - inner face91 cz 100100.0 $ detector at 1000 m - outer face

c *********************** BLOCK 3: DATA CARDS ***************************cc --- volumetric neutron source in 12 axial zones for TN-68 caskc 7x7 fuel assemblies; 40,000 MWd/Mt average burnup; 10y cooling timeSDEF par=1 pos 0 0 0 axs=0 0 1 rad=d1 ext=d2 erg=d3 cel=d4SI1 0 83.92 $ range of radius sampling: 0 to RmaxSP1 -21 1 $ radial distriubtion: here r^1SI2 -182.88 182.88 $ range of axial samplingSP2 -21 0 $ axial distribution: here z^0SI3 H 0.1 0.4 0.9 1.4 1.85 3.0 6.434 20 $ energy binsSP3 0.0 .03777 .19296 .17703 .13102 .23295 .20989 .01843 $ bin prob.SI4 L 40 41 42 43 44 45 46 47 48 49 50 51SP4 0.000092 0.008536 0.084512 0.136909 0.152967 0.158037

0.156347 0.138600 0.107330 0.050961 0.005569 0.000140SB4 0.05 0.05 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.05 0.05ccc ---- Detector types and locationsF4:n 611 631 651 671 691 711 751 771 791 811 831 851 871 891 911TF4 13 $-- fluctualtion tally for 500-m detectorF14:n 611 631 651 671 691 711 751 771 791 811 831 851 871 891 911FM14 2.896E18 $-- convert (Sv/neut) to (mrem/h)F24:p 611 631 651 671 691 711 751 771 791 811 831 851 871 891 911TF24 13 $-- fluctualtion tally for 500-m detectorF34:p 611 631 651 671 691 711 751 771 791 811 831 851 871 891 911FM34 2.896E18 $-- convert (Sv/neut) to (mrem/h)ccmode n pphys:n 20.0 0.0cut:n j 0.0phys:p 0 1 1nps 2000000c voidcc ------------------------------------------------------------------c ambient neutron dose equiv. H*(10mm) Sv (from T-D3 of S&F)

49

Page 51: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

c ------------------------------------------------------------------de4 2.500E-08 1.000E-07 1.000E-06 1.000E-05 1.000E-04 1.000E-03

1.000E-02 2.000E-02 5.000E-02 1.000E-01 2.000E-01 5.000E-011.000E+00 1.500E+00 2.000E+00 3.000E+00 4.000E+00 5.000E+006.000E+00 7.000E+00 8.000E+00 1.000E+01 1.400E+01 1.700E+012.000E+01

df4 8.000E-12 1.040E-11 1.120E-11 9.200E-12 7.100E-12 6.200E-128.600E-12 1.460E-11 3.500E-11 6.900E-11 1.260E-10 2.580E-103.400E-10 3.620E-10 3.520E-10 3.800E-10 4.090E-10 3.780E-103.830E-10 4.030E-10 4.170E-10 4.460E-10 5.200E-10 6.100E-106.500E-10

c ------------------------------------------------------------------c ambient neutron dose equiv. H*(10mm) Sv (from T-D3 of S&F)c ------------------------------------------------------------------de14 2.500E-08 1.000E-07 1.000E-06 1.000E-05 1.000E-04 1.000E-03

1.000E-02 2.000E-02 5.000E-02 1.000E-01 2.000E-01 5.000E-011.000E+00 1.500E+00 2.000E+00 3.000E+00 4.000E+00 5.000E+006.000E+00 7.000E+00 8.000E+00 1.000E+01 1.400E+01 1.700E+012.000E+01

df14 8.000E-12 1.040E-11 1.120E-11 9.200E-12 7.100E-12 6.200E-128.600E-12 1.460E-11 3.500E-11 6.900E-11 1.260E-10 2.580E-103.400E-10 3.620E-10 3.520E-10 3.800E-10 4.090E-10 3.780E-103.830E-10 4.030E-10 4.170E-10 4.460E-10 5.200E-10 6.100E-106.500E-10

c ------------------------------------------------------------------c ambient photon dose equiv. H*(10mm) Sv (from T-D1 of S&F)c ------------------------------------------------------------------de24 1.000E-02 1.500E-02 2.000E-02 3.000E-02 4.000E-02 5.000E-02

6.000E-02 8.000E-02 1.000E-01 1.500E-01 2.000E-01 3.000E-014.000E-01 5.000E-01 6.000E-01 8.000E-01 1.000E+00 1.500E+002.000E+00 3.000E+00 4.000E+00 5.000E+00 6.000E+00 8.000E+001.000E+01

df24 7.690E-14 8.460E-13 1.010E-12 7.850E-13 6.140E-13 5.260E-135.040E-13 5.320E-13 6.110E-13 8.900E-13 1.180E-12 1.810E-122.380E-12 2.890E-12 3.380E-12 4.290E-12 5.110E-12 6.920E-128.480E-12 1.110E-11 1.330E-11 1.540E-11 1.740E-11 2.120E-112.520E-11

c ------------------------------------------------------------------c ambient photon dose equiv. H*(10mm) Sv (from T-D1 of S&F)c ------------------------------------------------------------------de34 1.000E-02 1.500E-02 2.000E-02 3.000E-02 4.000E-02 5.000E-02

6.000E-02 8.000E-02 1.000E-01 1.500E-01 2.000E-01 3.000E-014.000E-01 5.000E-01 6.000E-01 8.000E-01 1.000E+00 1.500E+002.000E+00 3.000E+00 4.000E+00 5.000E+00 6.000E+00 8.000E+001.000E+01

df34 7.690E-14 8.460E-13 1.010E-12 7.850E-13 6.140E-13 5.260E-135.040E-13 5.320E-13 6.110E-13 8.900E-13 1.180E-12 1.810E-122.380E-12 2.890E-12 3.380E-12 4.290E-12 5.110E-12 6.920E-128.480E-12 1.110E-11 1.330E-11 1.540E-11 1.740E-11 2.120E-112.520E-11

c

50

Page 52: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

cc ***** MATERIAL CARDSc ************************************************************c AIR: ANSI/ANS-6.4.3, Dry air; density = 0.0012 g/cm^3c Composition by mass fractionc *************************************************************m1 7014.50c -.75519

8016.60c -.231796000.60c -.00014

18000.35c -.01288cc ************************************************************c CONCRETE: ANSI/ANS-6.4.3; density = 2.32 g/cm^3c Composition by mass fractionc ************************************************************m2 1001.50c -.0056

8016.60c -.498311023 -.017112000 -.002413027.50c -.045614000.50c -.315816000 -.001219000.50c -.019220000.50c -.082626000.50c -.0122

cc **************************************************************c SOIL: [Jacob, Radn. Prot. Dos. 14, 299, 1986]c density = 1.625 g/cm^3; Composition by mass fractionc **************************************************************m3 1001.50c -.021

6012.50c -.01619000.50c -.01326000.50c -.01120000.50c -.04113027.50c -.05014000.50c -.2718016.60c -.577

cc **************************************************************c Fuel-Basket TN-68 Cask (Table 5.3-1)c Density = 3.231 g/cm^3; Composition by atom fractionc **************************************************************m4 92238.50c 0.14291

92235.50c 0.0049440000.60c 0.0998128000.50c 0.0242326000.50c 0.1862925055.50c 0.0054524000.50c 0.0547013027.50c 0.18597

51

Page 53: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

8016.60c 0.29570cc *************************************************************c Top Fitting TN-68 Cask (Table 5.3-1)c Density = 0.491 g/cm^3; Composition by atom fractionc *************************************************************m5 26000.50c 0.50712

28000.50c 0.0659525055.50c 0.0148324000.50c 0.1489040000.60c 0.26320

cc *************************************************************c Plenum/Basket TN-68 (Table 5.3-1)c Density = 1.158 g/cm^3; Composition by atom fractionc *************************************************************m6 26000.50c 0.34907

28000.50c 0.0453540000.60c 0.1797525055.50c 0.0102124000.50c 0.1024613027.50c 0.31316

cc *************************************************************c Bottom/Basket TN-68 (Table 5.3-1)c Density = 1.918 g/cm^3; Composition by atom fractionc *************************************************************m7 26000.50c 0.48631

28000.50c 0.0632925055.50c 0.0142324000.50c 0.1428513027.50c 0.2337840000.60c 0.05954

cc **************************************************************c Basket Periphery (SS304) TN-68 (Table 5.3-1)c Density = 7.92 g/cm^3; Composition by atom fractionc **************************************************************m8 26000.50c 0.68826

25055.50c 0.0201324000.50c 0.2020928000.50c 0.08952

cc **************************************************************c Carbon Steel TN-68 (Table 5.3-1)c Density = 7.8212 g/cm^3; Composition by atom fractionc **************************************************************m9 26000.50c 0.95510

6000.60c 0.04490cc **************************************************************

52

Page 54: RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASKjks/papers/ees290.pdf · RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical and Nuclear Engineering

c Outer Basket/Rails TN-68 (Table 5.3-1)c Density = 2.702 g/cm^3; Composition by atom fractionc **************************************************************m10 13027.50c 1.00000cc *************************************************************c Polypropylene Disk TN-68 (Table 5.3-1)c Density = 0.90 g/cm^3; Composition by atom fractionc *************************************************************m11 6012.50c .33480

1001.50c .66520cc *************************************************************c Resin/Aluminum Composite for TN-68 (Table 5.3-1)c Density = 1.687 g/cm^3; Composition by atom fractionc *************************************************************m12 13027.50c 0.10331

6012.50c 0.246588016.60c 0.219851001.50c 0.422075010.60c 0.001645011.60c 0.00655

cc *************************************************************c Berm (Silica + water) for ISFSI Site (SAR Page 7a-5);c density = 1.400 g/cm^3; Composition by atom fractionc *************************************************************m13 14000.50c 0.26524

8016.60c 0.598551001.50c 0.13621

53