R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

44
R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley The Solar System: A Laboratory for the Study of the Physics of Particle Acceleration October 2008, Krakow, Poland

description

R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley. The Solar System: A Laboratory for the Study of the Physics of Particle Acceleration. October 2008, Krakow, Poland. - PowerPoint PPT Presentation

Transcript of R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

Page 1: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

R. P. Lin

Physics Dept & Space Sciences LaboratoryUniversity of California, Berkeley

The Solar System: A Laboratory for the Study of the Physics of Particle

Acceleration

October 2008, Krakow, Poland

Page 2: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

The Sun is the most energetic particle accelerator in the solar system:

- Ions up to ~ 1-10 GeV - Electrons up to ~100s of MeV

Acceleration to these energies occurs in transient energy releases, in two (!) processes:

- Large Solar Flares, in the lower corona- Fast Coronal Mass Ejections (CMEs), in the inner heliosphere, ~2-40 solar radii

Page 3: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

Bastille Day Flare

Page 4: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley
Page 5: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

23 July 2002 X4.8 Flare

(Lin et al 2003)

Thermal Plasma

~3x107 K

Accelerated Electrons

~10 keV to >10s MeV

Accelerated Ions

~1 to >100s of MeV

Page 6: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

<----- RHESSI coverage ----->

Π0 Decay

Nonthermal Bremsstrahlung

Thermal Bremsstrahlung

Solar Flare Spectrum

Positron and NuclearGamma-Ray lines

T = 2 x 107 K

T = 4 x 107 K

hot loop

HXRfootpoints

soft X-rays hard X-rays -rays

photosphere

Page 7: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley
Page 8: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

Krucker & Lin 2003

Page 9: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

RHESSI –Hα movie

Page 10: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

Krucker & Lin 2004

Page 11: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

e-e-

HXR HXR

vinvin

vfp

e-e-

HXR HXR

vinvin

t1

t2

vfp

?

?

HXR source motions in magnetic reconnection

models

photosphere Bfp

Bc

vin = coronal inflow velocity Bc = coronal magnetic field

strengthvfp = HXR footpoint velocityBfp = magnetic field strength

in HXR footpoint ~ photospheric value

vin Bc = vfpBfp

Page 12: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

HXR footpoint motion movie, all

Page 13: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

Velocity-HXR flux correlationRough correlation between v and HXR flux

d = B v a dt

Reconnection rate d/dt= B v a

~ 2x1018 Mx/s

E = vB ~ 5 kV/m

v= velocityB= magnetic field strengtha=footpoint diameter

Page 14: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

Mean Electron Flux Fit2002 July 23 Flare

• 00:30:00 – 00:30:20 UT,

•Isothermal component + double power-law

•T = 37 MK

• EM = 4.1 × 1049 cm-3

• nVF = 6.9 × 1055 cm-2 s-1

• Ec = 34 keV

• δL = 1.5

• EB = 129 keV

• δU = 2.5

_ _

Page 15: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

Spectral Components

511 keV- positron annihilation

Neutron-capture2.2 MeV power law - electron bremsstrahlung

De-excitation lines -narrow

broad

total model

Page 16: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

Energetics – 23 July 2002 Flare

• Accelerated Electrons: > ~2 x 1031 ergs ~3 x 1028 ergs/s = ~3 x 1035 (~50 keV) electrons/s for ~600s

• Accelerated Ions (>2.5 MeV) : ~ 1031 ergs~ 1028 ergs/s = ~1033 (~10 MeV) protons/s for ~1000s

• Thermal Plasma: ~ 1031 ergs + losses

Page 17: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

Multi-island reconnection (Drake, et al., 2006)

Large energy gains require interaction with multiple magnetic islands - energy gain linked to geometrical change of island aspect ratio

Consider a reconnection region with multiple islands in 3-D with a stochastic magnetic field -Electrons can wander from island to island

Stochastic region assumed to be macroscopic

uup

CAx

x

y

Page 18: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

Protons vs Electrons

>~30 MeV p (2.223 MeV

n-capture line)

> 0.2 MeV e (0.2-0.3 MeV

bremsstrahlung X-rays)

e & p separated by ~104 km, but

close to flare ribbons

Page 19: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

Electrons >0.3 MeV (Bremsstrahlung Fluence >0.3 MeV)

Protons >30 MeV

(2.223 MeV Line Fluence, corrected for limb darkening)

(Shih et al 2008)

Page 20: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

Mason et al., 2000

Page 21: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

Electron -3He-rich SEP events

- ~1000s/year at solar maximum

- dominated by: - electrons of ~0.1 (!) to ~100 keV energy

- 3He ~10s keV/nuc to ~MeV/nuc energyx10-x104 (!) enhancements

- heavy nuclei: Fe, Mg, Si, S enhancements

- high charge states, e.g., Fe+20

- associated with:

- small flares/coronal microflares - Type III radio bursts - Impulsive soft X-ray bursts (so also called

Impulsive SEP events)

Page 22: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley
Page 23: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

A series of He3 rich impulsive electron

Krucker & Weidenbeck, private comm 2003

Page 24: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

Reconstruct event geometry

Page 25: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

Adapted from

Gloeckler et al 2006

Page 26: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

Mewaldt et al 2004

Page 27: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley
Page 28: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

Large (L)SEP events - tens/year at solar maximum

- >10 MeV protons (small e/p ratio)- Normal coronal composition

(but sometimes 3He & Fe/O enhanced)- Normal coronal charge states, Fe+10

(but sometimes enhanced )

- SEPs seen over >~100º of solar longitude

- associated with: - Fast Coronal Mass Ejections (CMEs)- Large flares (but sometimes missing) - Gradual (hours) soft X-ray bursts (also called Gradual SEP events)

* Acceleration by fast CME driven shock wave in inner heliosphere, 2-40 solar radii

Page 29: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

Ion acceleration

Kahler 1994:Compare ion release time near Sun with CME front altitudeCME is already severalSolar radii away from the Sun

Page 30: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

(Mewaldt et al. 2004)

Page 31: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

Mewaldt et al, 2005

If these SEPs are accelerated by CME-driven shocks, they use

a significant fraction of the CME kinetic energy (up to

20%)

(see also Emslie et   al. 2004).

Page 32: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

Tylka & Lee, 2006

Page 33: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

Tylka & Lee, 2006

Page 34: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley
Page 35: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

Tylka & Lee 2006

Page 36: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

Tylka & Lee 2006

Page 37: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley
Page 38: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

Cliver & Ling, 2007

Gradual SEP events

Page 39: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

Zurbuchen 2004

Page 40: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

Ng et al 2003

Page 41: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

Solar Probe +

Page 42: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

Oct-Nov 2003 Simulation

Page 43: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley

• Thanks to the RHESSI team, and many colleagues

Page 44: R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley